1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
11 * Copyright (C) 2008 by Hongtao Zheng *
14 * Copyright (C) 2009 by David Brownell *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
21 * This program is distributed in the hope that it will be useful, *
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
24 * GNU General Public License for more details. *
26 * You should have received a copy of the GNU General Public License *
27 * along with this program; if not, write to the *
28 * Free Software Foundation, Inc., *
29 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
30 ***************************************************************************/
36 #include "breakpoints.h"
37 #include "embeddedice.h"
38 #include "target_request.h"
40 #include <helper/time_support.h>
41 #include "arm_simulator.h"
42 #include "arm_semihosting.h"
43 #include "algorithm.h"
49 * Hold common code supporting the ARM7 and ARM9 core generations.
51 * While the ARM core implementations evolved substantially during these
52 * two generations, they look quite similar from the JTAG perspective.
53 * Both have similar debug facilities, based on the same two scan chains
54 * providing access to the core and to an EmbeddedICE module. Both can
55 * support similar ETM and ETB modules, for tracing. And both expose
56 * what could be viewed as "ARM Classic", with multiple processor modes,
57 * shadowed registers, and support for the Thumb instruction set.
59 * Processor differences include things like presence or absence of MMU
60 * and cache, pipeline sizes, use of a modified Harvard Architecure
61 * (with separate instruction and data busses from the CPU), support
62 * for cpu clock gating during idle, and more.
65 static int arm7_9_debug_entry(struct target
*target
);
68 * Clear watchpoints for an ARM7/9 target.
70 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
71 * @return JTAG error status after executing queue
73 static int arm7_9_clear_watchpoints(struct arm7_9_common
*arm7_9
)
76 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
77 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
78 arm7_9
->sw_breakpoint_count
= 0;
79 arm7_9
->sw_breakpoints_added
= 0;
81 arm7_9
->wp1_used
= arm7_9
->wp1_used_default
;
82 arm7_9
->wp_available
= arm7_9
->wp_available_max
;
84 return jtag_execute_queue();
88 * Assign a watchpoint to one of the two available hardware comparators in an
89 * ARM7 or ARM9 target.
91 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
92 * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
94 static void arm7_9_assign_wp(struct arm7_9_common
*arm7_9
, struct breakpoint
*breakpoint
)
96 if (!arm7_9
->wp0_used
) {
99 arm7_9
->wp_available
--;
100 } else if (!arm7_9
->wp1_used
) {
101 arm7_9
->wp1_used
= 1;
103 arm7_9
->wp_available
--;
105 LOG_ERROR("BUG: no hardware comparator available");
106 LOG_DEBUG("BPID: %d (0x%08" PRIx32
") using hw wp: %d",
107 breakpoint
->unique_id
,
113 * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
115 * @param arm7_9 Pointer to common struct for ARM7/9 targets
116 * @return Error codes if there is a problem finding a watchpoint or the result
117 * of executing the JTAG queue
119 static int arm7_9_set_software_breakpoints(struct arm7_9_common
*arm7_9
)
121 if (arm7_9
->sw_breakpoints_added
)
123 if (arm7_9
->wp_available
< 1) {
124 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
125 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
127 arm7_9
->wp_available
--;
129 /* pick a breakpoint unit */
130 if (!arm7_9
->wp0_used
) {
131 arm7_9
->sw_breakpoints_added
= 1;
132 arm7_9
->wp0_used
= 3;
133 } else if (!arm7_9
->wp1_used
) {
134 arm7_9
->sw_breakpoints_added
= 2;
135 arm7_9
->wp1_used
= 3;
137 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
141 if (arm7_9
->sw_breakpoints_added
== 1) {
142 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_VALUE
], arm7_9
->arm_bkpt
);
143 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0x0);
144 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffffu
);
145 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
146 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
147 } else if (arm7_9
->sw_breakpoints_added
== 2) {
148 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_VALUE
], arm7_9
->arm_bkpt
);
149 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0x0);
150 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0xffffffffu
);
151 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
152 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
154 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
157 LOG_DEBUG("SW BP using hw wp: %d",
158 arm7_9
->sw_breakpoints_added
);
160 return jtag_execute_queue();
164 * Setup the common pieces for an ARM7/9 target after reset or on startup.
166 * @param target Pointer to an ARM7/9 target to setup
167 * @return Result of clearing the watchpoints on the target
169 static int arm7_9_setup(struct target
*target
)
171 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
173 return arm7_9_clear_watchpoints(arm7_9
);
177 * Set either a hardware or software breakpoint on an ARM7/9 target. The
178 * breakpoint is set up even if it is already set. Some actions, e.g. reset,
179 * might have erased the values in Embedded ICE.
181 * @param target Pointer to the target device to set the breakpoints on
182 * @param breakpoint Pointer to the breakpoint to be set
183 * @return For hardware breakpoints, this is the result of executing the JTAG
184 * queue. For software breakpoints, this will be the status of the
185 * required memory reads and writes
187 static int arm7_9_set_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
189 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
190 int retval
= ERROR_OK
;
192 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32
", Type: %d",
193 breakpoint
->unique_id
,
197 if (target
->state
!= TARGET_HALTED
) {
198 LOG_WARNING("target not halted");
199 return ERROR_TARGET_NOT_HALTED
;
202 if (breakpoint
->type
== BKPT_HARD
) {
203 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
204 uint32_t mask
= (breakpoint
->length
== 4) ? 0x3u
: 0x1u
;
206 /* reassign a hw breakpoint */
207 if (breakpoint
->set
== 0)
208 arm7_9_assign_wp(arm7_9
, breakpoint
);
210 if (breakpoint
->set
== 1) {
211 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
], breakpoint
->address
);
212 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], mask
);
213 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffffu
);
214 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
215 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
216 } else if (breakpoint
->set
== 2) {
217 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], breakpoint
->address
);
218 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], mask
);
219 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffffu
);
220 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
221 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
223 LOG_ERROR("BUG: no hardware comparator available");
227 retval
= jtag_execute_queue();
228 } else if (breakpoint
->type
== BKPT_SOFT
) {
229 /* did we already set this breakpoint? */
233 if (breakpoint
->length
== 4) {
234 uint32_t verify
= 0xffffffff;
235 /* keep the original instruction in target endianness */
236 retval
= target_read_memory(target
, breakpoint
->address
, 4, 1, breakpoint
->orig_instr
);
237 if (retval
!= ERROR_OK
)
239 /* write the breakpoint instruction in target
240 * endianness (arm7_9->arm_bkpt is host endian) */
241 retval
= target_write_u32(target
, breakpoint
->address
, arm7_9
->arm_bkpt
);
242 if (retval
!= ERROR_OK
)
245 retval
= target_read_u32(target
, breakpoint
->address
, &verify
);
246 if (retval
!= ERROR_OK
)
248 if (verify
!= arm7_9
->arm_bkpt
) {
249 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32
250 " - check that memory is read/writable", breakpoint
->address
);
254 uint16_t verify
= 0xffff;
255 /* keep the original instruction in target endianness */
256 retval
= target_read_memory(target
, breakpoint
->address
, 2, 1, breakpoint
->orig_instr
);
257 if (retval
!= ERROR_OK
)
259 /* write the breakpoint instruction in target
260 * endianness (arm7_9->thumb_bkpt is host endian) */
261 retval
= target_write_u16(target
, breakpoint
->address
, arm7_9
->thumb_bkpt
);
262 if (retval
!= ERROR_OK
)
265 retval
= target_read_u16(target
, breakpoint
->address
, &verify
);
266 if (retval
!= ERROR_OK
)
268 if (verify
!= arm7_9
->thumb_bkpt
) {
269 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32
270 " - check that memory is read/writable", breakpoint
->address
);
275 retval
= arm7_9_set_software_breakpoints(arm7_9
);
276 if (retval
!= ERROR_OK
)
279 arm7_9
->sw_breakpoint_count
++;
288 * Unsets an existing breakpoint on an ARM7/9 target. If it is a hardware
289 * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
290 * will be updated. Otherwise, the software breakpoint will be restored to its
291 * original instruction if it hasn't already been modified.
293 * @param target Pointer to ARM7/9 target to unset the breakpoint from
294 * @param breakpoint Pointer to breakpoint to be unset
295 * @return For hardware breakpoints, this is the result of executing the JTAG
296 * queue. For software breakpoints, this will be the status of the
297 * required memory reads and writes
299 static int arm7_9_unset_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
301 int retval
= ERROR_OK
;
302 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
304 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32
,
305 breakpoint
->unique_id
,
306 breakpoint
->address
);
308 if (!breakpoint
->set
) {
309 LOG_WARNING("breakpoint not set");
313 if (breakpoint
->type
== BKPT_HARD
) {
314 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
315 breakpoint
->unique_id
,
317 if (breakpoint
->set
== 1) {
318 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
319 arm7_9
->wp0_used
= 0;
320 arm7_9
->wp_available
++;
321 } else if (breakpoint
->set
== 2) {
322 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
323 arm7_9
->wp1_used
= 0;
324 arm7_9
->wp_available
++;
326 retval
= jtag_execute_queue();
329 /* restore original instruction (kept in target endianness) */
330 if (breakpoint
->length
== 4) {
331 uint32_t current_instr
;
332 /* check that user program as not modified breakpoint instruction */
333 retval
= target_read_memory(target
,
334 breakpoint
->address
, 4, 1, (uint8_t *)¤t_instr
);
335 if (retval
!= ERROR_OK
)
337 current_instr
= target_buffer_get_u32(target
, (uint8_t *)¤t_instr
);
338 if (current_instr
== arm7_9
->arm_bkpt
) {
339 retval
= target_write_memory(target
,
340 breakpoint
->address
, 4, 1, breakpoint
->orig_instr
);
341 if (retval
!= ERROR_OK
)
346 uint16_t current_instr
;
347 /* check that user program as not modified breakpoint instruction */
348 retval
= target_read_memory(target
,
349 breakpoint
->address
, 2, 1, (uint8_t *)¤t_instr
);
350 if (retval
!= ERROR_OK
)
352 current_instr
= target_buffer_get_u16(target
, (uint8_t *)¤t_instr
);
353 if (current_instr
== arm7_9
->thumb_bkpt
)
354 retval
= target_write_memory(target
,
355 breakpoint
->address
, 2, 1, breakpoint
->orig_instr
);
356 if (retval
!= ERROR_OK
)
361 if (--arm7_9
->sw_breakpoint_count
== 0) {
362 /* We have removed the last sw breakpoint, clear the hw breakpoint we used
364 if (arm7_9
->sw_breakpoints_added
== 1)
365 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[
366 EICE_W0_CONTROL_VALUE
], 0);
367 else if (arm7_9
->sw_breakpoints_added
== 2)
368 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[
369 EICE_W1_CONTROL_VALUE
], 0);
379 * Add a breakpoint to an ARM7/9 target. This makes sure that there are no
380 * dangling breakpoints and that the desired breakpoint can be added.
382 * @param target Pointer to the target ARM7/9 device to add a breakpoint to
383 * @param breakpoint Pointer to the breakpoint to be added
384 * @return An error status if there is a problem adding the breakpoint or the
385 * result of setting the breakpoint
387 int arm7_9_add_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
389 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
391 if (arm7_9
->breakpoint_count
== 0) {
392 /* make sure we don't have any dangling breakpoints. This is vital upon
393 * GDB connect/disconnect
395 arm7_9_clear_watchpoints(arm7_9
);
398 if ((breakpoint
->type
== BKPT_HARD
) && (arm7_9
->wp_available
< 1)) {
399 LOG_INFO("no watchpoint unit available for hardware breakpoint");
400 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
403 if ((breakpoint
->length
!= 2) && (breakpoint
->length
!= 4)) {
404 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
405 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
408 if (breakpoint
->type
== BKPT_HARD
)
409 arm7_9_assign_wp(arm7_9
, breakpoint
);
411 arm7_9
->breakpoint_count
++;
413 return arm7_9_set_breakpoint(target
, breakpoint
);
417 * Removes a breakpoint from an ARM7/9 target. This will make sure there are no
418 * dangling breakpoints and updates available watchpoints if it is a hardware
421 * @param target Pointer to the target to have a breakpoint removed
422 * @param breakpoint Pointer to the breakpoint to be removed
423 * @return Error status if there was a problem unsetting the breakpoint or the
424 * watchpoints could not be cleared
426 int arm7_9_remove_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
428 int retval
= ERROR_OK
;
429 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
431 retval
= arm7_9_unset_breakpoint(target
, breakpoint
);
432 if (retval
!= ERROR_OK
)
435 if (breakpoint
->type
== BKPT_HARD
)
436 arm7_9
->wp_available
++;
438 arm7_9
->breakpoint_count
--;
439 if (arm7_9
->breakpoint_count
== 0) {
440 /* make sure we don't have any dangling breakpoints */
441 retval
= arm7_9_clear_watchpoints(arm7_9
);
442 if (retval
!= ERROR_OK
)
450 * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units. It is
451 * considered a bug to call this function when there are no available watchpoint
454 * @param target Pointer to an ARM7/9 target to set a watchpoint on
455 * @param watchpoint Pointer to the watchpoint to be set
456 * @return Error status if watchpoint set fails or the result of executing the
459 static int arm7_9_set_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
461 int retval
= ERROR_OK
;
462 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
466 mask
= watchpoint
->length
- 1;
468 if (target
->state
!= TARGET_HALTED
) {
469 LOG_WARNING("target not halted");
470 return ERROR_TARGET_NOT_HALTED
;
473 if (watchpoint
->rw
== WPT_ACCESS
)
478 if (!arm7_9
->wp0_used
) {
479 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
],
480 watchpoint
->address
);
481 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], mask
);
482 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
],
484 if (watchpoint
->mask
!= 0xffffffffu
)
485 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_VALUE
],
487 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
],
488 0xff & ~EICE_W_CTRL_nOPC
& ~rw_mask
);
489 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
],
490 EICE_W_CTRL_ENABLE
| EICE_W_CTRL_nOPC
| (watchpoint
->rw
& 1));
492 retval
= jtag_execute_queue();
493 if (retval
!= ERROR_OK
)
496 arm7_9
->wp0_used
= 2;
497 } else if (!arm7_9
->wp1_used
) {
498 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
],
499 watchpoint
->address
);
500 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], mask
);
501 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
],
503 if (watchpoint
->mask
!= 0xffffffffu
)
504 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_VALUE
],
506 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
],
507 0xff & ~EICE_W_CTRL_nOPC
& ~rw_mask
);
508 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
],
509 EICE_W_CTRL_ENABLE
| EICE_W_CTRL_nOPC
| (watchpoint
->rw
& 1));
511 retval
= jtag_execute_queue();
512 if (retval
!= ERROR_OK
)
515 arm7_9
->wp1_used
= 2;
517 LOG_ERROR("BUG: no hardware comparator available");
525 * Unset an existing watchpoint and clear the used watchpoint unit.
527 * @param target Pointer to the target to have the watchpoint removed
528 * @param watchpoint Pointer to the watchpoint to be removed
529 * @return Error status while trying to unset the watchpoint or the result of
530 * executing the JTAG queue
532 static int arm7_9_unset_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
534 int retval
= ERROR_OK
;
535 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
537 if (target
->state
!= TARGET_HALTED
) {
538 LOG_WARNING("target not halted");
539 return ERROR_TARGET_NOT_HALTED
;
542 if (!watchpoint
->set
) {
543 LOG_WARNING("breakpoint not set");
547 if (watchpoint
->set
== 1) {
548 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
549 retval
= jtag_execute_queue();
550 if (retval
!= ERROR_OK
)
552 arm7_9
->wp0_used
= 0;
553 } else if (watchpoint
->set
== 2) {
554 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
555 retval
= jtag_execute_queue();
556 if (retval
!= ERROR_OK
)
558 arm7_9
->wp1_used
= 0;
566 * Add a watchpoint to an ARM7/9 target. If there are no watchpoint units
567 * available, an error response is returned.
569 * @param target Pointer to the ARM7/9 target to add a watchpoint to
570 * @param watchpoint Pointer to the watchpoint to be added
571 * @return Error status while trying to add the watchpoint
573 int arm7_9_add_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
575 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
577 if (arm7_9
->wp_available
< 1)
578 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
580 if ((watchpoint
->length
!= 1) && (watchpoint
->length
!= 2) && (watchpoint
->length
!= 4))
581 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
583 arm7_9
->wp_available
--;
589 * Remove a watchpoint from an ARM7/9 target. The watchpoint will be unset and
590 * the used watchpoint unit will be reopened.
592 * @param target Pointer to the target to remove a watchpoint from
593 * @param watchpoint Pointer to the watchpoint to be removed
594 * @return Result of trying to unset the watchpoint
596 int arm7_9_remove_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
598 int retval
= ERROR_OK
;
599 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
601 if (watchpoint
->set
) {
602 retval
= arm7_9_unset_watchpoint(target
, watchpoint
);
603 if (retval
!= ERROR_OK
)
607 arm7_9
->wp_available
++;
613 * Restarts the target by sending a RESTART instruction and moving the JTAG
614 * state to IDLE. This includes a timeout waiting for DBGACK and SYSCOMP to be
615 * asserted by the processor.
617 * @param target Pointer to target to issue commands to
618 * @return Error status if there is a timeout or a problem while executing the
621 int arm7_9_execute_sys_speed(struct target
*target
)
624 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
625 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
626 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
628 /* set RESTART instruction */
629 if (arm7_9
->need_bypass_before_restart
) {
630 arm7_9
->need_bypass_before_restart
= 0;
631 retval
= arm_jtag_set_instr(jtag_info
, 0xf, NULL
, TAP_IDLE
);
632 if (retval
!= ERROR_OK
)
635 retval
= arm_jtag_set_instr(jtag_info
, 0x4, NULL
, TAP_IDLE
);
636 if (retval
!= ERROR_OK
)
639 long long then
= timeval_ms();
641 while (!(timeout
= ((timeval_ms()-then
) > 1000))) {
642 /* read debug status register */
643 embeddedice_read_reg(dbg_stat
);
644 retval
= jtag_execute_queue();
645 if (retval
!= ERROR_OK
)
647 if ((buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1))
648 && (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_SYSCOMP
, 1)))
650 if (debug_level
>= 3)
656 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32
"",
657 buf_get_u32(dbg_stat
->value
, 0, dbg_stat
->size
));
658 return ERROR_TARGET_TIMEOUT
;
665 * Restarts the target by sending a RESTART instruction and moving the JTAG
666 * state to IDLE. This validates that DBGACK and SYSCOMP are set without
667 * waiting until they are.
669 * @param target Pointer to the target to issue commands to
670 * @return Always ERROR_OK
672 static int arm7_9_execute_fast_sys_speed(struct target
*target
)
675 static uint8_t check_value
[4], check_mask
[4];
677 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
678 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
679 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
682 /* set RESTART instruction */
683 if (arm7_9
->need_bypass_before_restart
) {
684 arm7_9
->need_bypass_before_restart
= 0;
685 retval
= arm_jtag_set_instr(jtag_info
, 0xf, NULL
, TAP_IDLE
);
686 if (retval
!= ERROR_OK
)
689 retval
= arm_jtag_set_instr(jtag_info
, 0x4, NULL
, TAP_IDLE
);
690 if (retval
!= ERROR_OK
)
694 /* check for DBGACK and SYSCOMP set (others don't care) */
696 /* NB! These are constants that must be available until after next jtag_execute() and
697 * we evaluate the values upon first execution in lieu of setting up these constants
698 * during early setup.
700 buf_set_u32(check_value
, 0, 32, 0x9);
701 buf_set_u32(check_mask
, 0, 32, 0x9);
705 /* read debug status register */
706 embeddedice_read_reg_w_check(dbg_stat
, check_value
, check_mask
);
712 * Get some data from the ARM7/9 target.
714 * @param target Pointer to the ARM7/9 target to read data from
715 * @param size The number of 32bit words to be read
716 * @param buffer Pointer to the buffer that will hold the data
717 * @return The result of receiving data from the Embedded ICE unit
719 int arm7_9_target_request_data(struct target
*target
, uint32_t size
, uint8_t *buffer
)
721 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
722 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
724 int retval
= ERROR_OK
;
727 data
= malloc(size
* (sizeof(uint32_t)));
729 retval
= embeddedice_receive(jtag_info
, data
, size
);
731 /* return the 32-bit ints in the 8-bit array */
732 for (i
= 0; i
< size
; i
++)
733 h_u32_to_le(buffer
+ (i
* 4), data
[i
]);
741 * Handles requests to an ARM7/9 target. If debug messaging is enabled, the
742 * target is running and the DCC control register has the W bit high, this will
743 * execute the request on the target.
745 * @param priv Void pointer expected to be a struct target pointer
746 * @return ERROR_OK unless there are issues with the JTAG queue or when reading
747 * from the Embedded ICE unit
749 static int arm7_9_handle_target_request(void *priv
)
751 int retval
= ERROR_OK
;
752 struct target
*target
= priv
;
753 if (!target_was_examined(target
))
755 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
756 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
757 struct reg
*dcc_control
= &arm7_9
->eice_cache
->reg_list
[EICE_COMMS_CTRL
];
759 if (!target
->dbg_msg_enabled
)
762 if (target
->state
== TARGET_RUNNING
) {
763 /* read DCC control register */
764 embeddedice_read_reg(dcc_control
);
765 retval
= jtag_execute_queue();
766 if (retval
!= ERROR_OK
)
770 if (buf_get_u32(dcc_control
->value
, 1, 1) == 1) {
773 retval
= embeddedice_receive(jtag_info
, &request
, 1);
774 if (retval
!= ERROR_OK
)
776 retval
= target_request(target
, request
);
777 if (retval
!= ERROR_OK
)
786 * Polls an ARM7/9 target for its current status. If DBGACK is set, the target
787 * is manipulated to the right halted state based on its current state. This is
791 * <tr><th > State</th><th > Action</th></tr>
792 * <tr><td > TARGET_RUNNING | TARGET_RESET</td>
793 * <td > Enters debug mode. If TARGET_RESET, pc may be checked</td></tr>
794 * <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
795 * <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
796 * <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
799 * If the target does not end up in the halted state, a warning is produced. If
800 * DBGACK is cleared, then the target is expected to either be running or
803 * @param target Pointer to the ARM7/9 target to poll
804 * @return ERROR_OK or an error status if a command fails
806 int arm7_9_poll(struct target
*target
)
809 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
810 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
812 /* read debug status register */
813 embeddedice_read_reg(dbg_stat
);
814 retval
= jtag_execute_queue();
815 if (retval
!= ERROR_OK
)
818 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1)) {
819 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, *32));*/
820 if (target
->state
== TARGET_UNKNOWN
) {
821 /* Starting OpenOCD with target in debug-halt */
822 target
->state
= TARGET_RUNNING
;
823 LOG_DEBUG("DBGACK already set during server startup.");
825 if ((target
->state
== TARGET_RUNNING
) || (target
->state
== TARGET_RESET
)) {
826 target
->state
= TARGET_HALTED
;
828 retval
= arm7_9_debug_entry(target
);
829 if (retval
!= ERROR_OK
)
832 if (arm_semihosting(target
, &retval
) != 0)
835 retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
);
836 if (retval
!= ERROR_OK
)
839 if (target
->state
== TARGET_DEBUG_RUNNING
) {
840 target
->state
= TARGET_HALTED
;
841 retval
= arm7_9_debug_entry(target
);
842 if (retval
!= ERROR_OK
)
845 retval
= target_call_event_callbacks(target
, TARGET_EVENT_DEBUG_HALTED
);
846 if (retval
!= ERROR_OK
)
849 if (target
->state
!= TARGET_HALTED
)
851 "DBGACK set, but the target did not end up in the halted state %d",
854 if (target
->state
!= TARGET_DEBUG_RUNNING
)
855 target
->state
= TARGET_RUNNING
;
862 * Asserts the reset (SRST) on an ARM7/9 target. Some -S targets (ARM966E-S in
863 * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
864 * affected) completely stop the JTAG clock while the core is held in reset
865 * (SRST). It isn't possible to program the halt condition once reset is
866 * asserted, hence a hook that allows the target to set up its reset-halt
867 * condition is setup prior to asserting reset.
869 * @param target Pointer to an ARM7/9 target to assert reset on
870 * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
872 int arm7_9_assert_reset(struct target
*target
)
874 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
875 enum reset_types jtag_reset_config
= jtag_get_reset_config();
876 bool use_event
= false;
878 LOG_DEBUG("target->state: %s", target_state_name(target
));
880 if (target_has_event_action(target
, TARGET_EVENT_RESET_ASSERT
))
882 else if (!(jtag_reset_config
& RESET_HAS_SRST
)) {
883 LOG_ERROR("%s: how to reset?", target_name(target
));
887 /* At this point trst has been asserted/deasserted once. We would
888 * like to program EmbeddedICE while SRST is asserted, instead of
889 * depending on SRST to leave that module alone. However, many CPUs
890 * gate the JTAG clock while SRST is asserted; or JTAG may need
891 * clock stability guarantees (adaptive clocking might help).
893 * So we assume JTAG access during SRST is off the menu unless it's
894 * been specifically enabled.
896 bool srst_asserted
= false;
898 if (!use_event
&& !(jtag_reset_config
& RESET_SRST_PULLS_TRST
)
899 && (jtag_reset_config
& RESET_SRST_NO_GATING
)) {
900 jtag_add_reset(0, 1);
901 srst_asserted
= true;
904 if (target
->reset_halt
) {
906 * For targets that don't support communication while SRST is
907 * asserted, we need to set up the reset vector catch first.
909 * When we use TRST+SRST and that's equivalent to a power-up
910 * reset, these settings may well be reset anyway; so setting
911 * them here won't matter.
913 if (arm7_9
->has_vector_catch
) {
914 /* program vector catch register to catch reset */
915 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_VEC_CATCH
], 0x1);
917 /* extra runtest added as issues were found with
918 * certain ARM9 cores (maybe more) - AT91SAM9260
921 jtag_add_runtest(1, TAP_IDLE
);
923 /* program watchpoint unit to match on reset vector
926 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
], 0x0);
927 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0x3);
928 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
929 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
930 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
935 target_handle_event(target
, TARGET_EVENT_RESET_ASSERT
);
937 /* If we use SRST ... we'd like to issue just SRST, but the
938 * board or chip may be set up so we have to assert TRST as
939 * well. On some chips that combination is equivalent to a
940 * power-up reset, and generally clobbers EICE state.
942 if (jtag_reset_config
& RESET_SRST_PULLS_TRST
)
943 jtag_add_reset(1, 1);
944 else if (!srst_asserted
)
945 jtag_add_reset(0, 1);
946 jtag_add_sleep(50000);
949 target
->state
= TARGET_RESET
;
950 register_cache_invalidate(arm7_9
->arm
.core_cache
);
952 /* REVISIT why isn't standard debug entry logic sufficient?? */
953 if (target
->reset_halt
&& (!(jtag_reset_config
& RESET_SRST_PULLS_TRST
) || use_event
)) {
954 /* debug entry was prepared above */
955 target
->debug_reason
= DBG_REASON_DBGRQ
;
962 * Deassert the reset (SRST) signal on an ARM7/9 target. If SRST pulls TRST
963 * and the target is being reset into a halt, a warning will be triggered
964 * because it is not possible to reset into a halted mode in this case. The
965 * target is halted using the target's functions.
967 * @param target Pointer to the target to have the reset deasserted
968 * @return ERROR_OK or an error from polling or halting the target
970 int arm7_9_deassert_reset(struct target
*target
)
972 int retval
= ERROR_OK
;
973 LOG_DEBUG("target->state: %s", target_state_name(target
));
975 /* deassert reset lines */
976 jtag_add_reset(0, 0);
978 /* In case polling is disabled, we need to examine the
979 * target and poll here for this target to work correctly.
981 * Otherwise, e.g. halt will fail afterwards with bogus
982 * error messages as halt will believe that reset is
985 retval
= target_examine_one(target
);
986 if (retval
!= ERROR_OK
)
989 retval
= target_poll(target
);
990 if (retval
!= ERROR_OK
)
993 enum reset_types jtag_reset_config
= jtag_get_reset_config();
994 if (target
->reset_halt
&& (jtag_reset_config
& RESET_SRST_PULLS_TRST
) != 0) {
996 "srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
997 retval
= target_halt(target
);
998 if (retval
!= ERROR_OK
)
1005 * Clears the halt condition for an ARM7/9 target. If it isn't coming out of
1006 * reset and if DBGRQ is used, it is progammed to be deasserted. If the reset
1007 * vector catch was used, it is restored. Otherwise, the control value is
1008 * restored and the watchpoint unit is restored if it was in use.
1010 * @param target Pointer to the ARM7/9 target to have halt cleared
1011 * @return Always ERROR_OK
1013 static int arm7_9_clear_halt(struct target
*target
)
1015 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1016 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1018 /* we used DBGRQ only if we didn't come out of reset */
1019 if (!arm7_9
->debug_entry_from_reset
&& arm7_9
->use_dbgrq
) {
1020 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1022 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1023 embeddedice_store_reg(dbg_ctrl
);
1025 if (arm7_9
->debug_entry_from_reset
&& arm7_9
->has_vector_catch
) {
1026 /* if we came out of reset, and vector catch is supported, we used
1027 * vector catch to enter debug state
1028 * restore the register in that case
1030 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_VEC_CATCH
]);
1032 /* restore registers if watchpoint unit 0 was in use
1034 if (arm7_9
->wp0_used
) {
1035 if (arm7_9
->debug_entry_from_reset
)
1036 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[
1037 EICE_W0_ADDR_VALUE
]);
1038 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[
1039 EICE_W0_ADDR_MASK
]);
1040 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[
1041 EICE_W0_DATA_MASK
]);
1042 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[
1043 EICE_W0_CONTROL_MASK
]);
1045 /* control value always has to be restored, as it was either disabled,
1046 * or enabled with possibly different bits
1048 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
]);
1056 * Issue a software reset and halt to an ARM7/9 target. The target is halted
1057 * and then there is a wait until the processor shows the halt. This wait can
1058 * timeout and results in an error being returned. The software reset involves
1059 * clearing the halt, updating the debug control register, changing to ARM mode,
1060 * reset of the program counter, and reset of all of the registers.
1062 * @param target Pointer to the ARM7/9 target to be reset and halted by software
1063 * @return Error status if any of the commands fail, otherwise ERROR_OK
1065 int arm7_9_soft_reset_halt(struct target
*target
)
1067 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1068 struct arm
*arm
= &arm7_9
->arm
;
1069 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
1070 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1074 /* FIX!!! replace some of this code with tcl commands
1076 * halt # the halt command is synchronous
1077 * armv4_5 core_state arm
1081 retval
= target_halt(target
);
1082 if (retval
!= ERROR_OK
)
1085 long long then
= timeval_ms();
1087 while (!(timeout
= ((timeval_ms()-then
) > 1000))) {
1088 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1) != 0)
1090 embeddedice_read_reg(dbg_stat
);
1091 retval
= jtag_execute_queue();
1092 if (retval
!= ERROR_OK
)
1094 if (debug_level
>= 3)
1100 LOG_ERROR("Failed to halt CPU after 1 sec");
1101 return ERROR_TARGET_TIMEOUT
;
1103 target
->state
= TARGET_HALTED
;
1105 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1106 * ensure that DBGRQ is cleared
1108 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
1109 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1110 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 1);
1111 embeddedice_store_reg(dbg_ctrl
);
1113 retval
= arm7_9_clear_halt(target
);
1114 if (retval
!= ERROR_OK
)
1117 /* if the target is in Thumb state, change to ARM state */
1118 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_ITBIT
, 1)) {
1119 uint32_t r0_thumb
, pc_thumb
;
1120 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1121 /* Entered debug from Thumb mode */
1122 arm
->core_state
= ARM_STATE_THUMB
;
1123 arm7_9
->change_to_arm(target
, &r0_thumb
, &pc_thumb
);
1126 /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1128 /* all register content is now invalid */
1129 register_cache_invalidate(arm
->core_cache
);
1131 /* SVC, ARM state, IRQ and FIQ disabled */
1134 cpsr
= buf_get_u32(arm
->cpsr
->value
, 0, 32);
1137 arm_set_cpsr(arm
, cpsr
);
1138 arm
->cpsr
->dirty
= 1;
1140 /* start fetching from 0x0 */
1141 buf_set_u32(arm
->pc
->value
, 0, 32, 0x0);
1145 /* reset registers */
1146 for (i
= 0; i
<= 14; i
++) {
1147 struct reg
*r
= arm_reg_current(arm
, i
);
1149 buf_set_u32(r
->value
, 0, 32, 0xffffffff);
1154 retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
);
1155 if (retval
!= ERROR_OK
)
1162 * Halt an ARM7/9 target. This is accomplished by either asserting the DBGRQ
1163 * line or by programming a watchpoint to trigger on any address. It is
1164 * considered a bug to call this function while the target is in the
1165 * TARGET_RESET state.
1167 * @param target Pointer to the ARM7/9 target to be halted
1168 * @return Always ERROR_OK
1170 int arm7_9_halt(struct target
*target
)
1172 if (target
->state
== TARGET_RESET
) {
1174 "BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1178 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1179 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1181 LOG_DEBUG("target->state: %s",
1182 target_state_name(target
));
1184 if (target
->state
== TARGET_HALTED
) {
1185 LOG_DEBUG("target was already halted");
1189 if (target
->state
== TARGET_UNKNOWN
)
1190 LOG_WARNING("target was in unknown state when halt was requested");
1192 if (arm7_9
->use_dbgrq
) {
1193 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1195 if (arm7_9
->set_special_dbgrq
)
1196 arm7_9
->set_special_dbgrq(target
);
1198 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 1);
1199 embeddedice_store_reg(dbg_ctrl
);
1202 /* program watchpoint unit to match on any address
1204 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1205 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1206 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
],
1207 EICE_W_CTRL_ENABLE
);
1208 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
],
1209 ~EICE_W_CTRL_nOPC
& 0xff);
1212 target
->debug_reason
= DBG_REASON_DBGRQ
;
1218 * Handle an ARM7/9 target's entry into debug mode. The halt is cleared on the
1219 * ARM. The JTAG queue is then executed and the reason for debug entry is
1220 * examined. Once done, the target is verified to be halted and the processor
1221 * is forced into ARM mode. The core registers are saved for the current core
1222 * mode and the program counter (register 15) is updated as needed. The core
1223 * registers and CPSR and SPSR are saved for restoration later.
1225 * @param target Pointer to target that is entering debug mode
1226 * @return Error code if anything fails, otherwise ERROR_OK
1228 static int arm7_9_debug_entry(struct target
*target
)
1231 uint32_t context
[16];
1232 uint32_t *context_p
[16];
1233 uint32_t r0_thumb
, pc_thumb
;
1234 uint32_t cpsr
, cpsr_mask
= 0;
1236 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1237 struct arm
*arm
= &arm7_9
->arm
;
1238 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
1239 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1241 #ifdef _DEBUG_ARM7_9_
1245 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1246 * ensure that DBGRQ is cleared
1248 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
1249 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1250 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 1);
1251 embeddedice_store_reg(dbg_ctrl
);
1253 retval
= arm7_9_clear_halt(target
);
1254 if (retval
!= ERROR_OK
)
1257 retval
= jtag_execute_queue();
1258 if (retval
!= ERROR_OK
)
1261 retval
= arm7_9
->examine_debug_reason(target
);
1262 if (retval
!= ERROR_OK
)
1265 if (target
->state
!= TARGET_HALTED
) {
1266 LOG_WARNING("target not halted");
1267 return ERROR_TARGET_NOT_HALTED
;
1270 /* if the target is in Thumb state, change to ARM state */
1271 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_ITBIT
, 1)) {
1272 LOG_DEBUG("target entered debug from Thumb state");
1273 /* Entered debug from Thumb mode */
1274 arm
->core_state
= ARM_STATE_THUMB
;
1276 arm7_9
->change_to_arm(target
, &r0_thumb
, &pc_thumb
);
1277 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1278 ", pc_thumb: 0x%8.8" PRIx32
, r0_thumb
, pc_thumb
);
1279 } else if (buf_get_u32(dbg_stat
->value
, 5, 1)) {
1280 /* \todo Get some vaguely correct handling of Jazelle, if
1281 * anyone ever uses it and full info becomes available.
1282 * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1283 * B.7.3 for the reverse. That'd be the bare minimum...
1285 LOG_DEBUG("target entered debug from Jazelle state");
1286 arm
->core_state
= ARM_STATE_JAZELLE
;
1287 cpsr_mask
= 1 << 24;
1288 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1290 LOG_DEBUG("target entered debug from ARM state");
1291 /* Entered debug from ARM mode */
1292 arm
->core_state
= ARM_STATE_ARM
;
1295 for (i
= 0; i
< 16; i
++)
1296 context_p
[i
] = &context
[i
];
1297 /* save core registers (r0 - r15 of current core mode) */
1298 arm7_9
->read_core_regs(target
, 0xffff, context_p
);
1300 arm7_9
->read_xpsr(target
, &cpsr
, 0);
1302 retval
= jtag_execute_queue();
1303 if (retval
!= ERROR_OK
)
1306 /* Sync our CPSR copy with J or T bits EICE reported, but
1307 * which we then erased by putting the core into ARM mode.
1309 arm_set_cpsr(arm
, cpsr
| cpsr_mask
);
1311 if (!is_arm_mode(arm
->core_mode
)) {
1312 target
->state
= TARGET_UNKNOWN
;
1313 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1314 return ERROR_TARGET_FAILURE
;
1317 LOG_DEBUG("target entered debug state in %s mode",
1318 arm_mode_name(arm
->core_mode
));
1320 if (arm
->core_state
== ARM_STATE_THUMB
) {
1321 LOG_DEBUG("thumb state, applying fixups");
1322 context
[0] = r0_thumb
;
1323 context
[15] = pc_thumb
;
1324 } else if (arm
->core_state
== ARM_STATE_ARM
) {
1325 /* adjust value stored by STM */
1326 context
[15] -= 3 * 4;
1329 if ((target
->debug_reason
!= DBG_REASON_DBGRQ
) || (!arm7_9
->use_dbgrq
))
1330 context
[15] -= 3 * ((arm
->core_state
== ARM_STATE_ARM
) ? 4 : 2);
1332 context
[15] -= arm7_9
->dbgreq_adjust_pc
*
1333 ((arm
->core_state
== ARM_STATE_ARM
) ? 4 : 2);
1335 for (i
= 0; i
<= 15; i
++) {
1336 struct reg
*r
= arm_reg_current(arm
, i
);
1338 LOG_DEBUG("r%i: 0x%8.8" PRIx32
"", i
, context
[i
]);
1340 buf_set_u32(r
->value
, 0, 32, context
[i
]);
1341 /* r0 and r15 (pc) have to be restored later */
1342 r
->dirty
= (i
== 0) || (i
== 15);
1346 LOG_DEBUG("entered debug state at PC 0x%" PRIx32
"", context
[15]);
1348 /* exceptions other than USR & SYS have a saved program status register */
1351 arm7_9
->read_xpsr(target
, &spsr
, 1);
1352 retval
= jtag_execute_queue();
1353 if (retval
!= ERROR_OK
)
1355 buf_set_u32(arm
->spsr
->value
, 0, 32, spsr
);
1356 arm
->spsr
->dirty
= 0;
1357 arm
->spsr
->valid
= 1;
1360 retval
= jtag_execute_queue();
1361 if (retval
!= ERROR_OK
)
1364 if (arm7_9
->post_debug_entry
) {
1365 retval
= arm7_9
->post_debug_entry(target
);
1366 if (retval
!= ERROR_OK
)
1374 * Validate the full context for an ARM7/9 target in all processor modes. If
1375 * there are any invalid registers for the target, they will all be read. This
1378 * @param target Pointer to the ARM7/9 target to capture the full context from
1379 * @return Error if the target is not halted, has an invalid core mode, or if
1380 * the JTAG queue fails to execute
1382 static int arm7_9_full_context(struct target
*target
)
1386 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1387 struct arm
*arm
= &arm7_9
->arm
;
1391 if (target
->state
!= TARGET_HALTED
) {
1392 LOG_WARNING("target not halted");
1393 return ERROR_TARGET_NOT_HALTED
;
1396 if (!is_arm_mode(arm
->core_mode
)) {
1397 LOG_ERROR("not a valid arm core mode - communication failure?");
1401 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1402 * SYS shares registers with User, so we don't touch SYS
1404 for (i
= 0; i
< 6; i
++) {
1406 uint32_t *reg_p
[16];
1410 /* check if there are invalid registers in the current mode
1412 for (j
= 0; j
<= 16; j
++) {
1413 if (ARMV4_5_CORE_REG_MODE(arm
->core_cache
, armv4_5_number_to_mode(i
), j
).valid
== 0)
1420 /* change processor mode (and mask T bit) */
1421 tmp_cpsr
= buf_get_u32(arm
->cpsr
->value
, 0, 8)
1423 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1425 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1427 for (j
= 0; j
< 15; j
++) {
1428 if (ARMV4_5_CORE_REG_MODE(arm
->core_cache
,
1429 armv4_5_number_to_mode(i
), j
).valid
== 0) {
1430 reg_p
[j
] = (uint32_t *)ARMV4_5_CORE_REG_MODE(
1432 armv4_5_number_to_mode(i
),
1435 ARMV4_5_CORE_REG_MODE(arm
->core_cache
,
1436 armv4_5_number_to_mode(i
),
1438 ARMV4_5_CORE_REG_MODE(arm
->core_cache
,
1439 armv4_5_number_to_mode(i
),
1444 /* if only the PSR is invalid, mask is all zeroes */
1446 arm7_9
->read_core_regs(target
, mask
, reg_p
);
1448 /* check if the PSR has to be read */
1449 if (ARMV4_5_CORE_REG_MODE(arm
->core_cache
, armv4_5_number_to_mode(i
),
1451 arm7_9
->read_xpsr(target
,
1452 (uint32_t *)ARMV4_5_CORE_REG_MODE(arm
->core_cache
,
1453 armv4_5_number_to_mode(i
), 16).value
, 1);
1454 ARMV4_5_CORE_REG_MODE(arm
->core_cache
, armv4_5_number_to_mode(i
),
1456 ARMV4_5_CORE_REG_MODE(arm
->core_cache
, armv4_5_number_to_mode(i
),
1462 /* restore processor mode (mask T bit) */
1463 arm7_9
->write_xpsr_im8(target
,
1464 buf_get_u32(arm
->cpsr
->value
, 0, 8) & ~0x20, 0, 0);
1466 retval
= jtag_execute_queue();
1467 if (retval
!= ERROR_OK
)
1473 * Restore the processor context on an ARM7/9 target. The full processor
1474 * context is analyzed to see if any of the registers are dirty on this end, but
1475 * have a valid new value. If this is the case, the processor is changed to the
1476 * appropriate mode and the new register values are written out to the
1477 * processor. If there happens to be a dirty register with an invalid value, an
1478 * error will be logged.
1480 * @param target Pointer to the ARM7/9 target to have its context restored
1481 * @return Error status if the target is not halted or the core mode in the
1482 * armv4_5 struct is invalid.
1484 static int arm7_9_restore_context(struct target
*target
)
1486 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1487 struct arm
*arm
= &arm7_9
->arm
;
1489 enum arm_mode current_mode
= arm
->core_mode
;
1496 if (target
->state
!= TARGET_HALTED
) {
1497 LOG_WARNING("target not halted");
1498 return ERROR_TARGET_NOT_HALTED
;
1501 if (arm7_9
->pre_restore_context
)
1502 arm7_9
->pre_restore_context(target
);
1504 if (!is_arm_mode(arm
->core_mode
)) {
1505 LOG_ERROR("not a valid arm core mode - communication failure?");
1509 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1510 * SYS shares registers with User, so we don't touch SYS
1512 for (i
= 0; i
< 6; i
++) {
1513 LOG_DEBUG("examining %s mode",
1514 arm_mode_name(arm
->core_mode
));
1517 /* check if there are dirty registers in the current mode
1519 for (j
= 0; j
<= 16; j
++) {
1520 reg
= &ARMV4_5_CORE_REG_MODE(arm
->core_cache
, armv4_5_number_to_mode(i
), j
);
1521 if (reg
->dirty
== 1) {
1522 if (reg
->valid
== 1) {
1524 LOG_DEBUG("examining dirty reg: %s", reg
->name
);
1525 struct arm_reg
*reg_arch_info
;
1526 reg_arch_info
= reg
->arch_info
;
1527 if ((reg_arch_info
->mode
!= ARM_MODE_ANY
)
1528 && (reg_arch_info
->mode
!= current_mode
)
1529 && !((reg_arch_info
->mode
== ARM_MODE_USR
)
1530 && (arm
->core_mode
== ARM_MODE_SYS
))
1531 && !((reg_arch_info
->mode
== ARM_MODE_SYS
)
1532 && (arm
->core_mode
== ARM_MODE_USR
))) {
1534 LOG_DEBUG("require mode change");
1537 LOG_ERROR("BUG: dirty register '%s', but no valid data",
1543 uint32_t mask
= 0x0;
1550 /* change processor mode (mask T bit) */
1551 tmp_cpsr
= buf_get_u32(arm
->cpsr
->value
,
1553 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1555 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1556 current_mode
= armv4_5_number_to_mode(i
);
1559 for (j
= 0; j
<= 14; j
++) {
1560 reg
= &ARMV4_5_CORE_REG_MODE(arm
->core_cache
,
1561 armv4_5_number_to_mode(i
),
1564 if (reg
->dirty
== 1) {
1565 regs
[j
] = buf_get_u32(reg
->value
, 0, 32);
1570 LOG_DEBUG("writing register %i mode %s "
1571 "with value 0x%8.8" PRIx32
, j
,
1572 arm_mode_name(arm
->core_mode
),
1578 arm7_9
->write_core_regs(target
, mask
, regs
);
1581 &ARMV4_5_CORE_REG_MODE(arm
->core_cache
, armv4_5_number_to_mode(
1583 struct arm_reg
*reg_arch_info
;
1584 reg_arch_info
= reg
->arch_info
;
1585 if ((reg
->dirty
) && (reg_arch_info
->mode
!= ARM_MODE_ANY
)) {
1586 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32
"",
1588 buf_get_u32(reg
->value
, 0, 32));
1589 arm7_9
->write_xpsr(target
, buf_get_u32(reg
->value
, 0, 32), 1);
1594 if (!arm
->cpsr
->dirty
&& (arm
->core_mode
!= current_mode
)) {
1595 /* restore processor mode (mask T bit) */
1598 tmp_cpsr
= buf_get_u32(arm
->cpsr
->value
, 0, 8) & 0xE0;
1599 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1601 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr
));
1602 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1604 } else if (arm
->cpsr
->dirty
) {
1605 /* CPSR has been changed, full restore necessary (mask T bit) */
1606 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32
,
1607 buf_get_u32(arm
->cpsr
->value
, 0, 32));
1608 arm7_9
->write_xpsr(target
,
1609 buf_get_u32(arm
->cpsr
->value
, 0, 32)
1611 arm
->cpsr
->dirty
= 0;
1612 arm
->cpsr
->valid
= 1;
1616 LOG_DEBUG("writing PC with value 0x%8.8" PRIx32
,
1617 buf_get_u32(arm
->pc
->value
, 0, 32));
1618 arm7_9
->write_pc(target
, buf_get_u32(arm
->pc
->value
, 0, 32));
1625 * Restart the core of an ARM7/9 target. A RESTART command is sent to the
1626 * instruction register and the JTAG state is set to TAP_IDLE causing a core
1629 * @param target Pointer to the ARM7/9 target to be restarted
1630 * @return Result of executing the JTAG queue
1632 static int arm7_9_restart_core(struct target
*target
)
1634 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1635 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
1638 /* set RESTART instruction */
1639 if (arm7_9
->need_bypass_before_restart
) {
1640 arm7_9
->need_bypass_before_restart
= 0;
1642 retval
= arm_jtag_set_instr(jtag_info
, 0xf, NULL
, TAP_IDLE
);
1643 if (retval
!= ERROR_OK
)
1646 retval
= arm_jtag_set_instr(jtag_info
, 0x4, NULL
, TAP_IDLE
);
1647 if (retval
!= ERROR_OK
)
1650 jtag_add_runtest(1, TAP_IDLE
);
1651 return jtag_execute_queue();
1655 * Enable the watchpoints on an ARM7/9 target. The target's watchpoints are
1656 * iterated through and are set on the target if they aren't already set.
1658 * @param target Pointer to the ARM7/9 target to enable watchpoints on
1660 static void arm7_9_enable_watchpoints(struct target
*target
)
1662 struct watchpoint
*watchpoint
= target
->watchpoints
;
1664 while (watchpoint
) {
1665 if (watchpoint
->set
== 0)
1666 arm7_9_set_watchpoint(target
, watchpoint
);
1667 watchpoint
= watchpoint
->next
;
1672 * Enable the breakpoints on an ARM7/9 target. The target's breakpoints are
1673 * iterated through and are set on the target.
1675 * @param target Pointer to the ARM7/9 target to enable breakpoints on
1677 static void arm7_9_enable_breakpoints(struct target
*target
)
1679 struct breakpoint
*breakpoint
= target
->breakpoints
;
1681 /* set any pending breakpoints */
1682 while (breakpoint
) {
1683 arm7_9_set_breakpoint(target
, breakpoint
);
1684 breakpoint
= breakpoint
->next
;
1688 int arm7_9_resume(struct target
*target
,
1691 int handle_breakpoints
,
1692 int debug_execution
)
1694 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1695 struct arm
*arm
= &arm7_9
->arm
;
1696 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1697 int err
, retval
= ERROR_OK
;
1701 if (target
->state
!= TARGET_HALTED
) {
1702 LOG_WARNING("target not halted");
1703 return ERROR_TARGET_NOT_HALTED
;
1706 if (!debug_execution
)
1707 target_free_all_working_areas(target
);
1709 /* current = 1: continue on current pc, otherwise continue at <address> */
1711 buf_set_u32(arm
->pc
->value
, 0, 32, address
);
1713 uint32_t current_pc
;
1714 current_pc
= buf_get_u32(arm
->pc
->value
, 0, 32);
1716 /* the front-end may request us not to handle breakpoints */
1717 if (handle_breakpoints
) {
1718 struct breakpoint
*breakpoint
;
1719 breakpoint
= breakpoint_find(target
,
1720 buf_get_u32(arm
->pc
->value
, 0, 32));
1721 if (breakpoint
!= NULL
) {
1722 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32
" (id: %d)",
1723 breakpoint
->address
,
1724 breakpoint
->unique_id
);
1725 retval
= arm7_9_unset_breakpoint(target
, breakpoint
);
1726 if (retval
!= ERROR_OK
)
1729 /* calculate PC of next instruction */
1731 retval
= arm_simulate_step(target
, &next_pc
);
1732 if (retval
!= ERROR_OK
) {
1733 uint32_t current_opcode
;
1734 target_read_u32(target
, current_pc
, ¤t_opcode
);
1736 "Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32
"",
1741 LOG_DEBUG("enable single-step");
1742 arm7_9
->enable_single_step(target
, next_pc
);
1744 target
->debug_reason
= DBG_REASON_SINGLESTEP
;
1746 retval
= arm7_9_restore_context(target
);
1747 if (retval
!= ERROR_OK
)
1750 if (arm
->core_state
== ARM_STATE_ARM
)
1751 arm7_9
->branch_resume(target
);
1752 else if (arm
->core_state
== ARM_STATE_THUMB
)
1753 arm7_9
->branch_resume_thumb(target
);
1755 LOG_ERROR("unhandled core state");
1759 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
1760 embeddedice_write_reg(dbg_ctrl
,
1761 buf_get_u32(dbg_ctrl
->value
, 0, dbg_ctrl
->size
));
1762 err
= arm7_9_execute_sys_speed(target
);
1764 LOG_DEBUG("disable single-step");
1765 arm7_9
->disable_single_step(target
);
1767 if (err
!= ERROR_OK
) {
1768 retval
= arm7_9_set_breakpoint(target
, breakpoint
);
1769 if (retval
!= ERROR_OK
)
1771 target
->state
= TARGET_UNKNOWN
;
1775 retval
= arm7_9_debug_entry(target
);
1776 if (retval
!= ERROR_OK
)
1778 LOG_DEBUG("new PC after step: 0x%8.8" PRIx32
,
1779 buf_get_u32(arm
->pc
->value
, 0, 32));
1781 LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32
"", breakpoint
->address
);
1782 retval
= arm7_9_set_breakpoint(target
, breakpoint
);
1783 if (retval
!= ERROR_OK
)
1788 /* enable any pending breakpoints and watchpoints */
1789 arm7_9_enable_breakpoints(target
);
1790 arm7_9_enable_watchpoints(target
);
1792 retval
= arm7_9_restore_context(target
);
1793 if (retval
!= ERROR_OK
)
1796 if (arm
->core_state
== ARM_STATE_ARM
)
1797 arm7_9
->branch_resume(target
);
1798 else if (arm
->core_state
== ARM_STATE_THUMB
)
1799 arm7_9
->branch_resume_thumb(target
);
1801 LOG_ERROR("unhandled core state");
1805 /* deassert DBGACK and INTDIS */
1806 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
1807 /* INTDIS only when we really resume, not during debug execution */
1808 if (!debug_execution
)
1809 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 0);
1810 embeddedice_write_reg(dbg_ctrl
, buf_get_u32(dbg_ctrl
->value
, 0, dbg_ctrl
->size
));
1812 retval
= arm7_9_restart_core(target
);
1813 if (retval
!= ERROR_OK
)
1816 target
->debug_reason
= DBG_REASON_NOTHALTED
;
1818 if (!debug_execution
) {
1819 /* registers are now invalid */
1820 register_cache_invalidate(arm
->core_cache
);
1821 target
->state
= TARGET_RUNNING
;
1822 retval
= target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
);
1823 if (retval
!= ERROR_OK
)
1826 target
->state
= TARGET_DEBUG_RUNNING
;
1827 retval
= target_call_event_callbacks(target
, TARGET_EVENT_DEBUG_RESUMED
);
1828 if (retval
!= ERROR_OK
)
1832 LOG_DEBUG("target resumed");
1837 void arm7_9_enable_eice_step(struct target
*target
, uint32_t next_pc
)
1839 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1840 struct arm
*arm
= &arm7_9
->arm
;
1841 uint32_t current_pc
;
1842 current_pc
= buf_get_u32(arm
->pc
->value
, 0, 32);
1844 if (next_pc
!= current_pc
) {
1845 /* setup an inverse breakpoint on the current PC
1846 * - comparator 1 matches the current address
1847 * - rangeout from comparator 1 is connected to comparator 0 rangein
1848 * - comparator 0 matches any address, as long as rangein is low */
1849 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1850 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1851 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
],
1852 EICE_W_CTRL_ENABLE
);
1853 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
],
1854 ~(EICE_W_CTRL_RANGE
| EICE_W_CTRL_nOPC
) & 0xff);
1855 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
],
1857 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0);
1858 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffff);
1859 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
1860 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
],
1861 ~EICE_W_CTRL_nOPC
& 0xff);
1863 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1864 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1865 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
1866 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], 0xff);
1867 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], next_pc
);
1868 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0);
1869 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffff);
1870 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
],
1871 EICE_W_CTRL_ENABLE
);
1872 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
],
1873 ~EICE_W_CTRL_nOPC
& 0xff);
1877 void arm7_9_disable_eice_step(struct target
*target
)
1879 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1881 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
]);
1882 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
]);
1883 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
]);
1884 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
]);
1885 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
]);
1886 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
]);
1887 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
]);
1888 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
]);
1889 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
]);
1892 int arm7_9_step(struct target
*target
, int current
, uint32_t address
, int handle_breakpoints
)
1894 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1895 struct arm
*arm
= &arm7_9
->arm
;
1896 struct breakpoint
*breakpoint
= NULL
;
1899 if (target
->state
!= TARGET_HALTED
) {
1900 LOG_WARNING("target not halted");
1901 return ERROR_TARGET_NOT_HALTED
;
1904 /* current = 1: continue on current pc, otherwise continue at <address> */
1906 buf_set_u32(arm
->pc
->value
, 0, 32, address
);
1908 uint32_t current_pc
= buf_get_u32(arm
->pc
->value
, 0, 32);
1910 /* the front-end may request us not to handle breakpoints */
1911 if (handle_breakpoints
)
1912 breakpoint
= breakpoint_find(target
, current_pc
);
1913 if (breakpoint
!= NULL
) {
1914 retval
= arm7_9_unset_breakpoint(target
, breakpoint
);
1915 if (retval
!= ERROR_OK
)
1919 target
->debug_reason
= DBG_REASON_SINGLESTEP
;
1921 /* calculate PC of next instruction */
1923 retval
= arm_simulate_step(target
, &next_pc
);
1924 if (retval
!= ERROR_OK
) {
1925 uint32_t current_opcode
;
1926 target_read_u32(target
, current_pc
, ¤t_opcode
);
1928 "Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32
"",
1933 retval
= arm7_9_restore_context(target
);
1934 if (retval
!= ERROR_OK
)
1937 arm7_9
->enable_single_step(target
, next_pc
);
1939 if (arm
->core_state
== ARM_STATE_ARM
)
1940 arm7_9
->branch_resume(target
);
1941 else if (arm
->core_state
== ARM_STATE_THUMB
)
1942 arm7_9
->branch_resume_thumb(target
);
1944 LOG_ERROR("unhandled core state");
1948 retval
= target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
);
1949 if (retval
!= ERROR_OK
)
1952 err
= arm7_9_execute_sys_speed(target
);
1953 arm7_9
->disable_single_step(target
);
1955 /* registers are now invalid */
1956 register_cache_invalidate(arm
->core_cache
);
1958 if (err
!= ERROR_OK
)
1959 target
->state
= TARGET_UNKNOWN
;
1961 retval
= arm7_9_debug_entry(target
);
1962 if (retval
!= ERROR_OK
)
1964 retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
);
1965 if (retval
!= ERROR_OK
)
1967 LOG_DEBUG("target stepped");
1971 retval
= arm7_9_set_breakpoint(target
, breakpoint
);
1972 if (retval
!= ERROR_OK
)
1979 static int arm7_9_read_core_reg(struct target
*target
, struct reg
*r
,
1980 int num
, enum arm_mode mode
)
1982 uint32_t *reg_p
[16];
1984 struct arm_reg
*areg
= r
->arch_info
;
1985 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1986 struct arm
*arm
= &arm7_9
->arm
;
1988 if (!is_arm_mode(arm
->core_mode
))
1990 if ((num
< 0) || (num
> 16))
1991 return ERROR_COMMAND_SYNTAX_ERROR
;
1993 if ((mode
!= ARM_MODE_ANY
) && (mode
!= arm
->core_mode
)
1994 && (areg
->mode
!= ARM_MODE_ANY
)) {
1997 /* change processor mode (mask T bit) */
1998 tmp_cpsr
= buf_get_u32(arm
->cpsr
->value
, 0, 8) & 0xE0;
2001 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
2005 if ((num
>= 0) && (num
<= 15)) {
2006 /* read a normal core register */
2007 reg_p
[num
] = &value
;
2009 arm7_9
->read_core_regs(target
, 1 << num
, reg_p
);
2011 /* read a program status register
2012 * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2014 arm7_9
->read_xpsr(target
, &value
, areg
->mode
!= ARM_MODE_ANY
);
2017 retval
= jtag_execute_queue();
2018 if (retval
!= ERROR_OK
)
2023 buf_set_u32(r
->value
, 0, 32, value
);
2025 if ((mode
!= ARM_MODE_ANY
) && (mode
!= arm
->core_mode
)
2026 && (areg
->mode
!= ARM_MODE_ANY
)) {
2027 /* restore processor mode (mask T bit) */
2028 arm7_9
->write_xpsr_im8(target
,
2029 buf_get_u32(arm
->cpsr
->value
, 0, 8) & ~0x20, 0, 0);
2035 static int arm7_9_write_core_reg(struct target
*target
, struct reg
*r
,
2036 int num
, enum arm_mode mode
, uint32_t value
)
2039 struct arm_reg
*areg
= r
->arch_info
;
2040 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2041 struct arm
*arm
= &arm7_9
->arm
;
2043 if (!is_arm_mode(arm
->core_mode
))
2045 if ((num
< 0) || (num
> 16))
2046 return ERROR_COMMAND_SYNTAX_ERROR
;
2048 if ((mode
!= ARM_MODE_ANY
) && (mode
!= arm
->core_mode
)
2049 && (areg
->mode
!= ARM_MODE_ANY
)) {
2052 /* change processor mode (mask T bit) */
2053 tmp_cpsr
= buf_get_u32(arm
->cpsr
->value
, 0, 8) & 0xE0;
2056 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
2059 if ((num
>= 0) && (num
<= 15)) {
2060 /* write a normal core register */
2063 arm7_9
->write_core_regs(target
, 1 << num
, reg
);
2065 /* write a program status register
2066 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2068 int spsr
= (areg
->mode
!= ARM_MODE_ANY
);
2070 /* if we're writing the CPSR, mask the T bit */
2074 arm7_9
->write_xpsr(target
, value
, spsr
);
2080 if ((mode
!= ARM_MODE_ANY
) && (mode
!= arm
->core_mode
)
2081 && (areg
->mode
!= ARM_MODE_ANY
)) {
2082 /* restore processor mode (mask T bit) */
2083 arm7_9
->write_xpsr_im8(target
,
2084 buf_get_u32(arm
->cpsr
->value
, 0, 8) & ~0x20, 0, 0);
2087 return jtag_execute_queue();
2090 int arm7_9_read_memory(struct target
*target
,
2096 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2097 struct arm
*arm
= &arm7_9
->arm
;
2099 uint32_t num_accesses
= 0;
2100 int thisrun_accesses
;
2106 LOG_DEBUG("address: 0x%8.8" PRIx32
", size: 0x%8.8" PRIx32
", count: 0x%8.8" PRIx32
"",
2107 address
, size
, count
);
2109 if (target
->state
!= TARGET_HALTED
) {
2110 LOG_WARNING("target not halted");
2111 return ERROR_TARGET_NOT_HALTED
;
2114 /* sanitize arguments */
2115 if (((size
!= 4) && (size
!= 2) && (size
!= 1)) || (count
== 0) || !(buffer
))
2116 return ERROR_COMMAND_SYNTAX_ERROR
;
2118 if (((size
== 4) && (address
& 0x3u
)) || ((size
== 2) && (address
& 0x1u
)))
2119 return ERROR_TARGET_UNALIGNED_ACCESS
;
2121 /* load the base register with the address of the first word */
2123 arm7_9
->write_core_regs(target
, 0x1, reg
);
2129 while (num_accesses
< count
) {
2132 ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2133 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2135 if (last_reg
<= thisrun_accesses
)
2136 last_reg
= thisrun_accesses
;
2138 arm7_9
->load_word_regs(target
, reg_list
);
2140 /* fast memory reads are only safe when the target is running
2141 * from a sufficiently high clock (32 kHz is usually too slow)
2143 if (arm7_9
->fast_memory_access
)
2144 retval
= arm7_9_execute_fast_sys_speed(target
);
2146 retval
= arm7_9_execute_sys_speed(target
);
2147 if (retval
!= ERROR_OK
)
2150 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 4);
2152 /* advance buffer, count number of accesses */
2153 buffer
+= thisrun_accesses
* 4;
2154 num_accesses
+= thisrun_accesses
;
2156 if ((j
++%1024) == 0)
2161 while (num_accesses
< count
) {
2164 ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2165 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2167 for (i
= 1; i
<= thisrun_accesses
; i
++) {
2170 arm7_9
->load_hword_reg(target
, i
);
2171 /* fast memory reads are only safe when the target is running
2172 * from a sufficiently high clock (32 kHz is usually too slow)
2174 if (arm7_9
->fast_memory_access
)
2175 retval
= arm7_9_execute_fast_sys_speed(target
);
2177 retval
= arm7_9_execute_sys_speed(target
);
2178 if (retval
!= ERROR_OK
)
2183 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 2);
2185 /* advance buffer, count number of accesses */
2186 buffer
+= thisrun_accesses
* 2;
2187 num_accesses
+= thisrun_accesses
;
2189 if ((j
++%1024) == 0)
2194 while (num_accesses
< count
) {
2197 ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2198 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2200 for (i
= 1; i
<= thisrun_accesses
; i
++) {
2203 arm7_9
->load_byte_reg(target
, i
);
2204 /* fast memory reads are only safe when the target is running
2205 * from a sufficiently high clock (32 kHz is usually too slow)
2207 if (arm7_9
->fast_memory_access
)
2208 retval
= arm7_9_execute_fast_sys_speed(target
);
2210 retval
= arm7_9_execute_sys_speed(target
);
2211 if (retval
!= ERROR_OK
)
2215 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 1);
2217 /* advance buffer, count number of accesses */
2218 buffer
+= thisrun_accesses
* 1;
2219 num_accesses
+= thisrun_accesses
;
2221 if ((j
++%1024) == 0)
2227 if (!is_arm_mode(arm
->core_mode
))
2230 for (i
= 0; i
<= last_reg
; i
++) {
2231 struct reg
*r
= arm_reg_current(arm
, i
);
2232 r
->dirty
= r
->valid
;
2235 arm7_9
->read_xpsr(target
, &cpsr
, 0);
2236 retval
= jtag_execute_queue();
2237 if (retval
!= ERROR_OK
) {
2238 LOG_ERROR("JTAG error while reading cpsr");
2239 return ERROR_TARGET_DATA_ABORT
;
2242 if (((cpsr
& 0x1f) == ARM_MODE_ABT
) && (arm
->core_mode
!= ARM_MODE_ABT
)) {
2244 "memory read caused data abort (address: 0x%8.8" PRIx32
", size: 0x%" PRIx32
", count: 0x%" PRIx32
")",
2249 arm7_9
->write_xpsr_im8(target
,
2250 buf_get_u32(arm
->cpsr
->value
, 0, 8)
2253 return ERROR_TARGET_DATA_ABORT
;
2259 int arm7_9_write_memory(struct target
*target
,
2263 const uint8_t *buffer
)
2265 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2266 struct arm
*arm
= &arm7_9
->arm
;
2267 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
2270 uint32_t num_accesses
= 0;
2271 int thisrun_accesses
;
2277 #ifdef _DEBUG_ARM7_9_
2278 LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address
, size
, count
);
2281 if (target
->state
!= TARGET_HALTED
) {
2282 LOG_WARNING("target not halted");
2283 return ERROR_TARGET_NOT_HALTED
;
2286 /* sanitize arguments */
2287 if (((size
!= 4) && (size
!= 2) && (size
!= 1)) || (count
== 0) || !(buffer
))
2288 return ERROR_COMMAND_SYNTAX_ERROR
;
2290 if (((size
== 4) && (address
& 0x3u
)) || ((size
== 2) && (address
& 0x1u
)))
2291 return ERROR_TARGET_UNALIGNED_ACCESS
;
2293 /* load the base register with the address of the first word */
2295 arm7_9
->write_core_regs(target
, 0x1, reg
);
2297 /* Clear DBGACK, to make sure memory fetches work as expected */
2298 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
2299 embeddedice_store_reg(dbg_ctrl
);
2303 while (num_accesses
< count
) {
2306 ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2307 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2309 for (i
= 1; i
<= thisrun_accesses
; i
++) {
2312 reg
[i
] = target_buffer_get_u32(target
, buffer
);
2316 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2318 arm7_9
->store_word_regs(target
, reg_list
);
2320 /* fast memory writes are only safe when the target is running
2321 * from a sufficiently high clock (32 kHz is usually too slow)
2323 if (arm7_9
->fast_memory_access
)
2324 retval
= arm7_9_execute_fast_sys_speed(target
);
2326 retval
= arm7_9_execute_sys_speed(target
);
2329 * if memory writes are made when the clock is running slow
2330 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2331 * processor operations after a "reset halt" or "reset init",
2332 * need to immediately stroke the keep alive or will end up with
2333 * gdb "keep alive not sent error message" problem.
2339 if (retval
!= ERROR_OK
)
2342 num_accesses
+= thisrun_accesses
;
2346 while (num_accesses
< count
) {
2349 ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2350 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2352 for (i
= 1; i
<= thisrun_accesses
; i
++) {
2355 reg
[i
] = target_buffer_get_u16(target
, buffer
) & 0xffff;
2359 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2361 for (i
= 1; i
<= thisrun_accesses
; i
++) {
2362 arm7_9
->store_hword_reg(target
, i
);
2364 /* fast memory writes are only safe when the target is running
2365 * from a sufficiently high clock (32 kHz is usually too slow)
2367 if (arm7_9
->fast_memory_access
)
2368 retval
= arm7_9_execute_fast_sys_speed(target
);
2370 retval
= arm7_9_execute_sys_speed(target
);
2373 * if memory writes are made when the clock is running slow
2374 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2375 * processor operations after a "reset halt" or "reset init",
2376 * need to immediately stroke the keep alive or will end up with
2377 * gdb "keep alive not sent error message" problem.
2383 if (retval
!= ERROR_OK
)
2387 num_accesses
+= thisrun_accesses
;
2391 while (num_accesses
< count
) {
2394 ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2395 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2397 for (i
= 1; i
<= thisrun_accesses
; i
++) {
2400 reg
[i
] = *buffer
++ & 0xff;
2403 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2405 for (i
= 1; i
<= thisrun_accesses
; i
++) {
2406 arm7_9
->store_byte_reg(target
, i
);
2407 /* fast memory writes are only safe when the target is running
2408 * from a sufficiently high clock (32 kHz is usually too slow)
2410 if (arm7_9
->fast_memory_access
)
2411 retval
= arm7_9_execute_fast_sys_speed(target
);
2413 retval
= arm7_9_execute_sys_speed(target
);
2416 * if memory writes are made when the clock is running slow
2417 * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2418 * processor operations after a "reset halt" or "reset init",
2419 * need to immediately stroke the keep alive or will end up with
2420 * gdb "keep alive not sent error message" problem.
2426 if (retval
!= ERROR_OK
)
2431 num_accesses
+= thisrun_accesses
;
2437 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
2438 embeddedice_store_reg(dbg_ctrl
);
2440 if (!is_arm_mode(arm
->core_mode
))
2443 for (i
= 0; i
<= last_reg
; i
++) {
2444 struct reg
*r
= arm_reg_current(arm
, i
);
2445 r
->dirty
= r
->valid
;
2448 arm7_9
->read_xpsr(target
, &cpsr
, 0);
2449 retval
= jtag_execute_queue();
2450 if (retval
!= ERROR_OK
) {
2451 LOG_ERROR("JTAG error while reading cpsr");
2452 return ERROR_TARGET_DATA_ABORT
;
2455 if (((cpsr
& 0x1f) == ARM_MODE_ABT
) && (arm
->core_mode
!= ARM_MODE_ABT
)) {
2457 "memory write caused data abort (address: 0x%8.8" PRIx32
", size: 0x%" PRIx32
", count: 0x%" PRIx32
")",
2462 arm7_9
->write_xpsr_im8(target
,
2463 buf_get_u32(arm
->cpsr
->value
, 0, 8)
2466 return ERROR_TARGET_DATA_ABORT
;
2472 static int dcc_count
;
2473 static const uint8_t *dcc_buffer
;
2475 static int arm7_9_dcc_completion(struct target
*target
,
2476 uint32_t exit_point
,
2480 int retval
= ERROR_OK
;
2481 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2483 retval
= target_wait_state(target
, TARGET_DEBUG_RUNNING
, 500);
2484 if (retval
!= ERROR_OK
)
2487 int little
= target
->endianness
== TARGET_LITTLE_ENDIAN
;
2488 int count
= dcc_count
;
2489 const uint8_t *buffer
= dcc_buffer
;
2491 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2492 * core function repeated. */
2493 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
],
2494 fast_target_buffer_get_u32(buffer
, little
));
2497 struct embeddedice_reg
*ice_reg
=
2498 arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
].arch_info
;
2499 uint8_t reg_addr
= ice_reg
->addr
& 0x1f;
2500 struct jtag_tap
*tap
;
2501 tap
= ice_reg
->jtag_info
->tap
;
2503 embeddedice_write_dcc(tap
, reg_addr
, buffer
, little
, count
-2);
2504 buffer
+= (count
-2)*4;
2506 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
],
2507 fast_target_buffer_get_u32(buffer
, little
));
2510 for (i
= 0; i
< count
; i
++) {
2511 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
],
2512 fast_target_buffer_get_u32(buffer
, little
));
2517 retval
= target_halt(target
);
2518 if (retval
!= ERROR_OK
)
2520 return target_wait_state(target
, TARGET_HALTED
, 500);
2523 static const uint32_t dcc_code
[] = {
2524 /* r0 == input, points to memory buffer
2528 /* spin until DCC control (c0) reports data arrived */
2529 0xee101e10, /* w: mrc p14, #0, r1, c0, c0 */
2530 0xe3110001, /* tst r1, #1 */
2531 0x0afffffc, /* bne w */
2533 /* read word from DCC (c1), write to memory */
2534 0xee111e10, /* mrc p14, #0, r1, c1, c0 */
2535 0xe4801004, /* str r1, [r0], #4 */
2538 0xeafffff9 /* b w */
2541 int arm7_9_bulk_write_memory(struct target
*target
,
2544 const uint8_t *buffer
)
2547 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2550 if (!arm7_9
->dcc_downloads
)
2551 return target_write_memory(target
, address
, 4, count
, buffer
);
2553 /* regrab previously allocated working_area, or allocate a new one */
2554 if (!arm7_9
->dcc_working_area
) {
2555 uint8_t dcc_code_buf
[6 * 4];
2557 /* make sure we have a working area */
2558 if (target_alloc_working_area(target
, 24, &arm7_9
->dcc_working_area
) != ERROR_OK
) {
2559 LOG_INFO("no working area available, falling back to memory writes");
2560 return target_write_memory(target
, address
, 4, count
, buffer
);
2563 /* copy target instructions to target endianness */
2564 for (i
= 0; i
< 6; i
++)
2565 target_buffer_set_u32(target
, dcc_code_buf
+ i
*4, dcc_code
[i
]);
2567 /* write DCC code to working area */
2568 retval
= target_write_memory(target
,
2569 arm7_9
->dcc_working_area
->address
, 4, 6, dcc_code_buf
);
2570 if (retval
!= ERROR_OK
)
2574 struct arm_algorithm armv4_5_info
;
2575 struct reg_param reg_params
[1];
2577 armv4_5_info
.common_magic
= ARM_COMMON_MAGIC
;
2578 armv4_5_info
.core_mode
= ARM_MODE_SVC
;
2579 armv4_5_info
.core_state
= ARM_STATE_ARM
;
2581 init_reg_param(®_params
[0], "r0", 32, PARAM_IN_OUT
);
2583 buf_set_u32(reg_params
[0].value
, 0, 32, address
);
2586 dcc_buffer
= buffer
;
2587 retval
= armv4_5_run_algorithm_inner(target
, 0, NULL
, 1, reg_params
,
2588 arm7_9
->dcc_working_area
->address
,
2589 arm7_9
->dcc_working_area
->address
+ 6*4,
2590 20*1000, &armv4_5_info
, arm7_9_dcc_completion
);
2592 if (retval
== ERROR_OK
) {
2593 uint32_t endaddress
= buf_get_u32(reg_params
[0].value
, 0, 32);
2594 if (endaddress
!= (address
+ count
*4)) {
2596 "DCC write failed, expected end address 0x%08" PRIx32
" got 0x%0" PRIx32
"",
2597 (address
+ count
*4),
2599 retval
= ERROR_FAIL
;
2603 destroy_reg_param(®_params
[0]);
2609 * Perform per-target setup that requires JTAG access.
2611 int arm7_9_examine(struct target
*target
)
2613 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2616 if (!target_was_examined(target
)) {
2617 struct reg_cache
*t
, **cache_p
;
2619 t
= embeddedice_build_reg_cache(target
, arm7_9
);
2623 cache_p
= register_get_last_cache_p(&target
->reg_cache
);
2625 arm7_9
->eice_cache
= (*cache_p
);
2627 if (arm7_9
->arm
.etm
)
2628 (*cache_p
)->next
= etm_build_reg_cache(target
,
2632 target_set_examined(target
);
2635 retval
= embeddedice_setup(target
);
2636 if (retval
== ERROR_OK
)
2637 retval
= arm7_9_setup(target
);
2638 if (retval
== ERROR_OK
&& arm7_9
->arm
.etm
)
2639 retval
= etm_setup(target
);
2644 int arm7_9_check_reset(struct target
*target
)
2646 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2648 if (get_target_reset_nag() && !arm7_9
->dcc_downloads
)
2650 "NOTE! DCC downloads have not been enabled, defaulting to slow memory writes. Type 'help dcc'.");
2652 if (get_target_reset_nag() && (target
->working_area_size
== 0))
2653 LOG_WARNING("NOTE! Severe performance degradation without working memory enabled.");
2655 if (get_target_reset_nag() && !arm7_9
->fast_memory_access
)
2657 "NOTE! Severe performance degradation without fast memory access enabled. Type 'help fast'.");
2662 COMMAND_HANDLER(handle_arm7_9_dbgrq_command
)
2664 struct target
*target
= get_current_target(CMD_CTX
);
2665 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2667 if (!is_arm7_9(arm7_9
)) {
2668 command_print(CMD_CTX
, "current target isn't an ARM7/ARM9 target");
2669 return ERROR_TARGET_INVALID
;
2673 COMMAND_PARSE_ENABLE(CMD_ARGV
[0], arm7_9
->use_dbgrq
);
2675 command_print(CMD_CTX
,
2676 "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s",
2677 (arm7_9
->use_dbgrq
) ? "enabled" : "disabled");
2682 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command
)
2684 struct target
*target
= get_current_target(CMD_CTX
);
2685 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2687 if (!is_arm7_9(arm7_9
)) {
2688 command_print(CMD_CTX
, "current target isn't an ARM7/ARM9 target");
2689 return ERROR_TARGET_INVALID
;
2693 COMMAND_PARSE_ENABLE(CMD_ARGV
[0], arm7_9
->fast_memory_access
);
2695 command_print(CMD_CTX
,
2696 "fast memory access is %s",
2697 (arm7_9
->fast_memory_access
) ? "enabled" : "disabled");
2702 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command
)
2704 struct target
*target
= get_current_target(CMD_CTX
);
2705 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2707 if (!is_arm7_9(arm7_9
)) {
2708 command_print(CMD_CTX
, "current target isn't an ARM7/ARM9 target");
2709 return ERROR_TARGET_INVALID
;
2713 COMMAND_PARSE_ENABLE(CMD_ARGV
[0], arm7_9
->dcc_downloads
);
2715 command_print(CMD_CTX
,
2716 "dcc downloads are %s",
2717 (arm7_9
->dcc_downloads
) ? "enabled" : "disabled");
2722 static int arm7_9_setup_semihosting(struct target
*target
, int enable
)
2724 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2726 if (!is_arm7_9(arm7_9
)) {
2727 LOG_USER("current target isn't an ARM7/ARM9 target");
2728 return ERROR_TARGET_INVALID
;
2731 if (arm7_9
->has_vector_catch
) {
2732 struct reg
*vector_catch
= &arm7_9
->eice_cache
2733 ->reg_list
[EICE_VEC_CATCH
];
2735 if (!vector_catch
->valid
)
2736 embeddedice_read_reg(vector_catch
);
2737 buf_set_u32(vector_catch
->value
, 2, 1, enable
);
2738 embeddedice_store_reg(vector_catch
);
2740 /* TODO: allow optional high vectors and/or BKPT_HARD */
2742 breakpoint_add(target
, 8, 4, BKPT_SOFT
);
2744 breakpoint_remove(target
, 8);
2750 int arm7_9_init_arch_info(struct target
*target
, struct arm7_9_common
*arm7_9
)
2752 int retval
= ERROR_OK
;
2753 struct arm
*arm
= &arm7_9
->arm
;
2755 arm7_9
->common_magic
= ARM7_9_COMMON_MAGIC
;
2757 retval
= arm_jtag_setup_connection(&arm7_9
->jtag_info
);
2758 if (retval
!= ERROR_OK
)
2761 /* caller must have allocated via calloc(), so everything's zeroed */
2763 arm7_9
->wp_available_max
= 2;
2765 arm7_9
->fast_memory_access
= false;
2766 arm7_9
->dcc_downloads
= false;
2768 arm
->arch_info
= arm7_9
;
2769 arm
->read_core_reg
= arm7_9_read_core_reg
;
2770 arm
->write_core_reg
= arm7_9_write_core_reg
;
2771 arm
->full_context
= arm7_9_full_context
;
2772 arm
->setup_semihosting
= arm7_9_setup_semihosting
;
2774 retval
= arm_init_arch_info(target
, arm
);
2775 if (retval
!= ERROR_OK
)
2778 return target_register_timer_callback(arm7_9_handle_target_request
,
2782 static const struct command_registration arm7_9_any_command_handlers
[] = {
2785 .handler
= handle_arm7_9_dbgrq_command
,
2786 .mode
= COMMAND_ANY
,
2787 .usage
= "['enable'|'disable']",
2788 .help
= "use EmbeddedICE dbgrq instead of breakpoint "
2789 "for target halt requests",
2792 "fast_memory_access",
2793 .handler
= handle_arm7_9_fast_memory_access_command
,
2794 .mode
= COMMAND_ANY
,
2795 .usage
= "['enable'|'disable']",
2796 .help
= "use fast memory accesses instead of slower "
2797 "but potentially safer accesses",
2801 .handler
= handle_arm7_9_dcc_downloads_command
,
2802 .mode
= COMMAND_ANY
,
2803 .usage
= "['enable'|'disable']",
2804 .help
= "use DCC downloads for larger memory writes",
2806 COMMAND_REGISTRATION_DONE
2808 const struct command_registration arm7_9_command_handlers
[] = {
2810 .chain
= arm_command_handlers
,
2813 .chain
= etm_command_handlers
,
2817 .mode
= COMMAND_ANY
,
2818 .help
= "arm7/9 specific commands",
2820 .chain
= arm7_9_any_command_handlers
,
2822 COMMAND_REGISTRATION_DONE