target: add function to get number of bytes available in working area
[openocd.git] / src / target / target.c
blob5b37ef03bc22b2ffabdcecae1bc6b90c1059a72c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
40 ***************************************************************************/
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
59 static int target_read_buffer_default(struct target *target, uint32_t address,
60 uint32_t size, uint8_t *buffer);
61 static int target_write_buffer_default(struct target *target, uint32_t address,
62 uint32_t size, const uint8_t *buffer);
63 static int target_array2mem(Jim_Interp *interp, struct target *target,
64 int argc, Jim_Obj * const *argv);
65 static int target_mem2array(Jim_Interp *interp, struct target *target,
66 int argc, Jim_Obj * const *argv);
67 static int target_register_user_commands(struct command_context *cmd_ctx);
69 /* targets */
70 extern struct target_type arm7tdmi_target;
71 extern struct target_type arm720t_target;
72 extern struct target_type arm9tdmi_target;
73 extern struct target_type arm920t_target;
74 extern struct target_type arm966e_target;
75 extern struct target_type arm946e_target;
76 extern struct target_type arm926ejs_target;
77 extern struct target_type fa526_target;
78 extern struct target_type feroceon_target;
79 extern struct target_type dragonite_target;
80 extern struct target_type xscale_target;
81 extern struct target_type cortexm3_target;
82 extern struct target_type cortexa8_target;
83 extern struct target_type arm11_target;
84 extern struct target_type mips_m4k_target;
85 extern struct target_type avr_target;
86 extern struct target_type dsp563xx_target;
87 extern struct target_type dsp5680xx_target;
88 extern struct target_type testee_target;
89 extern struct target_type avr32_ap7k_target;
90 extern struct target_type stm32_stlink_target;
92 static struct target_type *target_types[] = {
93 &arm7tdmi_target,
94 &arm9tdmi_target,
95 &arm920t_target,
96 &arm720t_target,
97 &arm966e_target,
98 &arm946e_target,
99 &arm926ejs_target,
100 &fa526_target,
101 &feroceon_target,
102 &dragonite_target,
103 &xscale_target,
104 &cortexm3_target,
105 &cortexa8_target,
106 &arm11_target,
107 &mips_m4k_target,
108 &avr_target,
109 &dsp563xx_target,
110 &dsp5680xx_target,
111 &testee_target,
112 &avr32_ap7k_target,
113 &stm32_stlink_target,
114 NULL,
117 struct target *all_targets;
118 static struct target_event_callback *target_event_callbacks;
119 static struct target_timer_callback *target_timer_callbacks;
120 static const int polling_interval = 100;
122 static const Jim_Nvp nvp_assert[] = {
123 { .name = "assert", NVP_ASSERT },
124 { .name = "deassert", NVP_DEASSERT },
125 { .name = "T", NVP_ASSERT },
126 { .name = "F", NVP_DEASSERT },
127 { .name = "t", NVP_ASSERT },
128 { .name = "f", NVP_DEASSERT },
129 { .name = NULL, .value = -1 }
132 static const Jim_Nvp nvp_error_target[] = {
133 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
134 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
135 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
136 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
137 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
138 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
139 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
140 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
141 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
142 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
143 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
144 { .value = -1, .name = NULL }
147 static const char *target_strerror_safe(int err)
149 const Jim_Nvp *n;
151 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
152 if (n->name == NULL)
153 return "unknown";
154 else
155 return n->name;
158 static const Jim_Nvp nvp_target_event[] = {
159 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
160 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
162 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
163 { .value = TARGET_EVENT_HALTED, .name = "halted" },
164 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
165 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
166 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
168 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
169 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
171 /* historical name */
173 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
175 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
176 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
177 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
178 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
179 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
180 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
181 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
182 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
183 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
184 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
185 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
187 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
188 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
190 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
191 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
193 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
194 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
196 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
197 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
199 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
200 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
202 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
203 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
204 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
206 { .name = NULL, .value = -1 }
209 static const Jim_Nvp nvp_target_state[] = {
210 { .name = "unknown", .value = TARGET_UNKNOWN },
211 { .name = "running", .value = TARGET_RUNNING },
212 { .name = "halted", .value = TARGET_HALTED },
213 { .name = "reset", .value = TARGET_RESET },
214 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
215 { .name = NULL, .value = -1 },
218 static const Jim_Nvp nvp_target_debug_reason[] = {
219 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
220 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
221 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
222 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
223 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
224 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
225 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
226 { .name = NULL, .value = -1 },
229 static const Jim_Nvp nvp_target_endian[] = {
230 { .name = "big", .value = TARGET_BIG_ENDIAN },
231 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
232 { .name = "be", .value = TARGET_BIG_ENDIAN },
233 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
234 { .name = NULL, .value = -1 },
237 static const Jim_Nvp nvp_reset_modes[] = {
238 { .name = "unknown", .value = RESET_UNKNOWN },
239 { .name = "run" , .value = RESET_RUN },
240 { .name = "halt" , .value = RESET_HALT },
241 { .name = "init" , .value = RESET_INIT },
242 { .name = NULL , .value = -1 },
245 const char *debug_reason_name(struct target *t)
247 const char *cp;
249 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
250 t->debug_reason)->name;
251 if (!cp) {
252 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
253 cp = "(*BUG*unknown*BUG*)";
255 return cp;
258 const char *target_state_name(struct target *t)
260 const char *cp;
261 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
262 if (!cp) {
263 LOG_ERROR("Invalid target state: %d", (int)(t->state));
264 cp = "(*BUG*unknown*BUG*)";
266 return cp;
269 /* determine the number of the new target */
270 static int new_target_number(void)
272 struct target *t;
273 int x;
275 /* number is 0 based */
276 x = -1;
277 t = all_targets;
278 while (t) {
279 if (x < t->target_number)
280 x = t->target_number;
281 t = t->next;
283 return x + 1;
286 /* read a uint32_t from a buffer in target memory endianness */
287 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
289 if (target->endianness == TARGET_LITTLE_ENDIAN)
290 return le_to_h_u32(buffer);
291 else
292 return be_to_h_u32(buffer);
295 /* read a uint24_t from a buffer in target memory endianness */
296 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
298 if (target->endianness == TARGET_LITTLE_ENDIAN)
299 return le_to_h_u24(buffer);
300 else
301 return be_to_h_u24(buffer);
304 /* read a uint16_t from a buffer in target memory endianness */
305 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
307 if (target->endianness == TARGET_LITTLE_ENDIAN)
308 return le_to_h_u16(buffer);
309 else
310 return be_to_h_u16(buffer);
313 /* read a uint8_t from a buffer in target memory endianness */
314 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
316 return *buffer & 0x0ff;
319 /* write a uint32_t to a buffer in target memory endianness */
320 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
322 if (target->endianness == TARGET_LITTLE_ENDIAN)
323 h_u32_to_le(buffer, value);
324 else
325 h_u32_to_be(buffer, value);
328 /* write a uint24_t to a buffer in target memory endianness */
329 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
331 if (target->endianness == TARGET_LITTLE_ENDIAN)
332 h_u24_to_le(buffer, value);
333 else
334 h_u24_to_be(buffer, value);
337 /* write a uint16_t to a buffer in target memory endianness */
338 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
340 if (target->endianness == TARGET_LITTLE_ENDIAN)
341 h_u16_to_le(buffer, value);
342 else
343 h_u16_to_be(buffer, value);
346 /* write a uint8_t to a buffer in target memory endianness */
347 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
349 *buffer = value;
352 /* write a uint32_t array to a buffer in target memory endianness */
353 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
355 uint32_t i;
356 for (i = 0; i < count; i++)
357 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
360 /* write a uint16_t array to a buffer in target memory endianness */
361 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
363 uint32_t i;
364 for (i = 0; i < count; i++)
365 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
368 /* write a uint32_t array to a buffer in target memory endianness */
369 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
371 uint32_t i;
372 for (i = 0; i < count; i++)
373 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
376 /* write a uint16_t array to a buffer in target memory endianness */
377 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
379 uint32_t i;
380 for (i = 0; i < count; i++)
381 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
384 /* return a pointer to a configured target; id is name or number */
385 struct target *get_target(const char *id)
387 struct target *target;
389 /* try as tcltarget name */
390 for (target = all_targets; target; target = target->next) {
391 if (target->cmd_name == NULL)
392 continue;
393 if (strcmp(id, target->cmd_name) == 0)
394 return target;
397 /* It's OK to remove this fallback sometime after August 2010 or so */
399 /* no match, try as number */
400 unsigned num;
401 if (parse_uint(id, &num) != ERROR_OK)
402 return NULL;
404 for (target = all_targets; target; target = target->next) {
405 if (target->target_number == (int)num) {
406 LOG_WARNING("use '%s' as target identifier, not '%u'",
407 target->cmd_name, num);
408 return target;
412 return NULL;
415 /* returns a pointer to the n-th configured target */
416 static struct target *get_target_by_num(int num)
418 struct target *target = all_targets;
420 while (target) {
421 if (target->target_number == num)
422 return target;
423 target = target->next;
426 return NULL;
429 struct target *get_current_target(struct command_context *cmd_ctx)
431 struct target *target = get_target_by_num(cmd_ctx->current_target);
433 if (target == NULL) {
434 LOG_ERROR("BUG: current_target out of bounds");
435 exit(-1);
438 return target;
441 int target_poll(struct target *target)
443 int retval;
445 /* We can't poll until after examine */
446 if (!target_was_examined(target)) {
447 /* Fail silently lest we pollute the log */
448 return ERROR_FAIL;
451 retval = target->type->poll(target);
452 if (retval != ERROR_OK)
453 return retval;
455 if (target->halt_issued) {
456 if (target->state == TARGET_HALTED)
457 target->halt_issued = false;
458 else {
459 long long t = timeval_ms() - target->halt_issued_time;
460 if (t > 1000) {
461 target->halt_issued = false;
462 LOG_INFO("Halt timed out, wake up GDB.");
463 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
468 return ERROR_OK;
471 int target_halt(struct target *target)
473 int retval;
474 /* We can't poll until after examine */
475 if (!target_was_examined(target)) {
476 LOG_ERROR("Target not examined yet");
477 return ERROR_FAIL;
480 retval = target->type->halt(target);
481 if (retval != ERROR_OK)
482 return retval;
484 target->halt_issued = true;
485 target->halt_issued_time = timeval_ms();
487 return ERROR_OK;
491 * Make the target (re)start executing using its saved execution
492 * context (possibly with some modifications).
494 * @param target Which target should start executing.
495 * @param current True to use the target's saved program counter instead
496 * of the address parameter
497 * @param address Optionally used as the program counter.
498 * @param handle_breakpoints True iff breakpoints at the resumption PC
499 * should be skipped. (For example, maybe execution was stopped by
500 * such a breakpoint, in which case it would be counterprodutive to
501 * let it re-trigger.
502 * @param debug_execution False if all working areas allocated by OpenOCD
503 * should be released and/or restored to their original contents.
504 * (This would for example be true to run some downloaded "helper"
505 * algorithm code, which resides in one such working buffer and uses
506 * another for data storage.)
508 * @todo Resolve the ambiguity about what the "debug_execution" flag
509 * signifies. For example, Target implementations don't agree on how
510 * it relates to invalidation of the register cache, or to whether
511 * breakpoints and watchpoints should be enabled. (It would seem wrong
512 * to enable breakpoints when running downloaded "helper" algorithms
513 * (debug_execution true), since the breakpoints would be set to match
514 * target firmware being debugged, not the helper algorithm.... and
515 * enabling them could cause such helpers to malfunction (for example,
516 * by overwriting data with a breakpoint instruction. On the other
517 * hand the infrastructure for running such helpers might use this
518 * procedure but rely on hardware breakpoint to detect termination.)
520 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
522 int retval;
524 /* We can't poll until after examine */
525 if (!target_was_examined(target)) {
526 LOG_ERROR("Target not examined yet");
527 return ERROR_FAIL;
530 /* note that resume *must* be asynchronous. The CPU can halt before
531 * we poll. The CPU can even halt at the current PC as a result of
532 * a software breakpoint being inserted by (a bug?) the application.
534 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
535 if (retval != ERROR_OK)
536 return retval;
538 return retval;
541 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
543 char buf[100];
544 int retval;
545 Jim_Nvp *n;
546 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
547 if (n->name == NULL) {
548 LOG_ERROR("invalid reset mode");
549 return ERROR_FAIL;
552 /* disable polling during reset to make reset event scripts
553 * more predictable, i.e. dr/irscan & pathmove in events will
554 * not have JTAG operations injected into the middle of a sequence.
556 bool save_poll = jtag_poll_get_enabled();
558 jtag_poll_set_enabled(false);
560 sprintf(buf, "ocd_process_reset %s", n->name);
561 retval = Jim_Eval(cmd_ctx->interp, buf);
563 jtag_poll_set_enabled(save_poll);
565 if (retval != JIM_OK) {
566 Jim_MakeErrorMessage(cmd_ctx->interp);
567 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
568 return ERROR_FAIL;
571 /* We want any events to be processed before the prompt */
572 retval = target_call_timer_callbacks_now();
574 struct target *target;
575 for (target = all_targets; target; target = target->next)
576 target->type->check_reset(target);
578 return retval;
581 static int identity_virt2phys(struct target *target,
582 uint32_t virtual, uint32_t *physical)
584 *physical = virtual;
585 return ERROR_OK;
588 static int no_mmu(struct target *target, int *enabled)
590 *enabled = 0;
591 return ERROR_OK;
594 static int default_examine(struct target *target)
596 target_set_examined(target);
597 return ERROR_OK;
600 /* no check by default */
601 static int default_check_reset(struct target *target)
603 return ERROR_OK;
606 int target_examine_one(struct target *target)
608 return target->type->examine(target);
611 static int jtag_enable_callback(enum jtag_event event, void *priv)
613 struct target *target = priv;
615 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
616 return ERROR_OK;
618 jtag_unregister_event_callback(jtag_enable_callback, target);
619 return target_examine_one(target);
623 /* Targets that correctly implement init + examine, i.e.
624 * no communication with target during init:
626 * XScale
628 int target_examine(void)
630 int retval = ERROR_OK;
631 struct target *target;
633 for (target = all_targets; target; target = target->next) {
634 /* defer examination, but don't skip it */
635 if (!target->tap->enabled) {
636 jtag_register_event_callback(jtag_enable_callback,
637 target);
638 continue;
640 retval = target_examine_one(target);
641 if (retval != ERROR_OK)
642 return retval;
644 return retval;
646 const char *target_type_name(struct target *target)
648 return target->type->name;
651 static int target_write_memory_imp(struct target *target, uint32_t address,
652 uint32_t size, uint32_t count, const uint8_t *buffer)
654 if (!target_was_examined(target)) {
655 LOG_ERROR("Target not examined yet");
656 return ERROR_FAIL;
658 return target->type->write_memory_imp(target, address, size, count, buffer);
661 static int target_read_memory_imp(struct target *target, uint32_t address,
662 uint32_t size, uint32_t count, uint8_t *buffer)
664 if (!target_was_examined(target)) {
665 LOG_ERROR("Target not examined yet");
666 return ERROR_FAIL;
668 return target->type->read_memory_imp(target, address, size, count, buffer);
671 static int target_soft_reset_halt_imp(struct target *target)
673 if (!target_was_examined(target)) {
674 LOG_ERROR("Target not examined yet");
675 return ERROR_FAIL;
677 if (!target->type->soft_reset_halt_imp) {
678 LOG_ERROR("Target %s does not support soft_reset_halt",
679 target_name(target));
680 return ERROR_FAIL;
682 return target->type->soft_reset_halt_imp(target);
686 * Downloads a target-specific native code algorithm to the target,
687 * and executes it. * Note that some targets may need to set up, enable,
688 * and tear down a breakpoint (hard or * soft) to detect algorithm
689 * termination, while others may support lower overhead schemes where
690 * soft breakpoints embedded in the algorithm automatically terminate the
691 * algorithm.
693 * @param target used to run the algorithm
694 * @param arch_info target-specific description of the algorithm.
696 int target_run_algorithm(struct target *target,
697 int num_mem_params, struct mem_param *mem_params,
698 int num_reg_params, struct reg_param *reg_param,
699 uint32_t entry_point, uint32_t exit_point,
700 int timeout_ms, void *arch_info)
702 int retval = ERROR_FAIL;
704 if (!target_was_examined(target)) {
705 LOG_ERROR("Target not examined yet");
706 goto done;
708 if (!target->type->run_algorithm) {
709 LOG_ERROR("Target type '%s' does not support %s",
710 target_type_name(target), __func__);
711 goto done;
714 target->running_alg = true;
715 retval = target->type->run_algorithm(target,
716 num_mem_params, mem_params,
717 num_reg_params, reg_param,
718 entry_point, exit_point, timeout_ms, arch_info);
719 target->running_alg = false;
721 done:
722 return retval;
726 * Downloads a target-specific native code algorithm to the target,
727 * executes and leaves it running.
729 * @param target used to run the algorithm
730 * @param arch_info target-specific description of the algorithm.
732 int target_start_algorithm(struct target *target,
733 int num_mem_params, struct mem_param *mem_params,
734 int num_reg_params, struct reg_param *reg_params,
735 uint32_t entry_point, uint32_t exit_point,
736 void *arch_info)
738 int retval = ERROR_FAIL;
740 if (!target_was_examined(target)) {
741 LOG_ERROR("Target not examined yet");
742 goto done;
744 if (!target->type->start_algorithm) {
745 LOG_ERROR("Target type '%s' does not support %s",
746 target_type_name(target), __func__);
747 goto done;
749 if (target->running_alg) {
750 LOG_ERROR("Target is already running an algorithm");
751 goto done;
754 target->running_alg = true;
755 retval = target->type->start_algorithm(target,
756 num_mem_params, mem_params,
757 num_reg_params, reg_params,
758 entry_point, exit_point, arch_info);
760 done:
761 return retval;
765 * Waits for an algorithm started with target_start_algorithm() to complete.
767 * @param target used to run the algorithm
768 * @param arch_info target-specific description of the algorithm.
770 int target_wait_algorithm(struct target *target,
771 int num_mem_params, struct mem_param *mem_params,
772 int num_reg_params, struct reg_param *reg_params,
773 uint32_t exit_point, int timeout_ms,
774 void *arch_info)
776 int retval = ERROR_FAIL;
778 if (!target->type->wait_algorithm) {
779 LOG_ERROR("Target type '%s' does not support %s",
780 target_type_name(target), __func__);
781 goto done;
783 if (!target->running_alg) {
784 LOG_ERROR("Target is not running an algorithm");
785 goto done;
788 retval = target->type->wait_algorithm(target,
789 num_mem_params, mem_params,
790 num_reg_params, reg_params,
791 exit_point, timeout_ms, arch_info);
792 if (retval != ERROR_TARGET_TIMEOUT)
793 target->running_alg = false;
795 done:
796 return retval;
800 int target_read_memory(struct target *target,
801 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
803 return target->type->read_memory(target, address, size, count, buffer);
806 static int target_read_phys_memory(struct target *target,
807 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
809 return target->type->read_phys_memory(target, address, size, count, buffer);
812 int target_write_memory(struct target *target,
813 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
815 return target->type->write_memory(target, address, size, count, buffer);
818 static int target_write_phys_memory(struct target *target,
819 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
821 return target->type->write_phys_memory(target, address, size, count, buffer);
824 int target_bulk_write_memory(struct target *target,
825 uint32_t address, uint32_t count, const uint8_t *buffer)
827 return target->type->bulk_write_memory(target, address, count, buffer);
830 int target_add_breakpoint(struct target *target,
831 struct breakpoint *breakpoint)
833 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
834 LOG_WARNING("target %s is not halted", target->cmd_name);
835 return ERROR_TARGET_NOT_HALTED;
837 return target->type->add_breakpoint(target, breakpoint);
840 int target_add_context_breakpoint(struct target *target,
841 struct breakpoint *breakpoint)
843 if (target->state != TARGET_HALTED) {
844 LOG_WARNING("target %s is not halted", target->cmd_name);
845 return ERROR_TARGET_NOT_HALTED;
847 return target->type->add_context_breakpoint(target, breakpoint);
850 int target_add_hybrid_breakpoint(struct target *target,
851 struct breakpoint *breakpoint)
853 if (target->state != TARGET_HALTED) {
854 LOG_WARNING("target %s is not halted", target->cmd_name);
855 return ERROR_TARGET_NOT_HALTED;
857 return target->type->add_hybrid_breakpoint(target, breakpoint);
860 int target_remove_breakpoint(struct target *target,
861 struct breakpoint *breakpoint)
863 return target->type->remove_breakpoint(target, breakpoint);
866 int target_add_watchpoint(struct target *target,
867 struct watchpoint *watchpoint)
869 if (target->state != TARGET_HALTED) {
870 LOG_WARNING("target %s is not halted", target->cmd_name);
871 return ERROR_TARGET_NOT_HALTED;
873 return target->type->add_watchpoint(target, watchpoint);
875 int target_remove_watchpoint(struct target *target,
876 struct watchpoint *watchpoint)
878 return target->type->remove_watchpoint(target, watchpoint);
881 int target_get_gdb_reg_list(struct target *target,
882 struct reg **reg_list[], int *reg_list_size)
884 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
886 int target_step(struct target *target,
887 int current, uint32_t address, int handle_breakpoints)
889 return target->type->step(target, current, address, handle_breakpoints);
893 * Reset the @c examined flag for the given target.
894 * Pure paranoia -- targets are zeroed on allocation.
896 static void target_reset_examined(struct target *target)
898 target->examined = false;
901 static int err_read_phys_memory(struct target *target, uint32_t address,
902 uint32_t size, uint32_t count, uint8_t *buffer)
904 LOG_ERROR("Not implemented: %s", __func__);
905 return ERROR_FAIL;
908 static int err_write_phys_memory(struct target *target, uint32_t address,
909 uint32_t size, uint32_t count, const uint8_t *buffer)
911 LOG_ERROR("Not implemented: %s", __func__);
912 return ERROR_FAIL;
915 static int handle_target(void *priv);
917 static int target_init_one(struct command_context *cmd_ctx,
918 struct target *target)
920 target_reset_examined(target);
922 struct target_type *type = target->type;
923 if (type->examine == NULL)
924 type->examine = default_examine;
926 if (type->check_reset == NULL)
927 type->check_reset = default_check_reset;
929 assert(type->init_target != NULL);
931 int retval = type->init_target(cmd_ctx, target);
932 if (ERROR_OK != retval) {
933 LOG_ERROR("target '%s' init failed", target_name(target));
934 return retval;
938 * @todo get rid of those *memory_imp() methods, now that all
939 * callers are using target_*_memory() accessors ... and make
940 * sure the "physical" paths handle the same issues.
942 /* a non-invasive way(in terms of patches) to add some code that
943 * runs before the type->write/read_memory implementation
945 type->write_memory_imp = target->type->write_memory;
946 type->write_memory = target_write_memory_imp;
948 type->read_memory_imp = target->type->read_memory;
949 type->read_memory = target_read_memory_imp;
951 type->soft_reset_halt_imp = target->type->soft_reset_halt;
952 type->soft_reset_halt = target_soft_reset_halt_imp;
954 /* Sanity-check MMU support ... stub in what we must, to help
955 * implement it in stages, but warn if we need to do so.
957 if (type->mmu) {
958 if (type->write_phys_memory == NULL) {
959 LOG_ERROR("type '%s' is missing write_phys_memory",
960 type->name);
961 type->write_phys_memory = err_write_phys_memory;
963 if (type->read_phys_memory == NULL) {
964 LOG_ERROR("type '%s' is missing read_phys_memory",
965 type->name);
966 type->read_phys_memory = err_read_phys_memory;
968 if (type->virt2phys == NULL) {
969 LOG_ERROR("type '%s' is missing virt2phys", type->name);
970 type->virt2phys = identity_virt2phys;
972 } else {
973 /* Make sure no-MMU targets all behave the same: make no
974 * distinction between physical and virtual addresses, and
975 * ensure that virt2phys() is always an identity mapping.
977 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
978 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
980 type->mmu = no_mmu;
981 type->write_phys_memory = type->write_memory;
982 type->read_phys_memory = type->read_memory;
983 type->virt2phys = identity_virt2phys;
986 if (target->type->read_buffer == NULL)
987 target->type->read_buffer = target_read_buffer_default;
989 if (target->type->write_buffer == NULL)
990 target->type->write_buffer = target_write_buffer_default;
992 return ERROR_OK;
995 static int target_init(struct command_context *cmd_ctx)
997 struct target *target;
998 int retval;
1000 for (target = all_targets; target; target = target->next) {
1001 retval = target_init_one(cmd_ctx, target);
1002 if (ERROR_OK != retval)
1003 return retval;
1006 if (!all_targets)
1007 return ERROR_OK;
1009 retval = target_register_user_commands(cmd_ctx);
1010 if (ERROR_OK != retval)
1011 return retval;
1013 retval = target_register_timer_callback(&handle_target,
1014 polling_interval, 1, cmd_ctx->interp);
1015 if (ERROR_OK != retval)
1016 return retval;
1018 return ERROR_OK;
1021 COMMAND_HANDLER(handle_target_init_command)
1023 int retval;
1025 if (CMD_ARGC != 0)
1026 return ERROR_COMMAND_SYNTAX_ERROR;
1028 static bool target_initialized;
1029 if (target_initialized) {
1030 LOG_INFO("'target init' has already been called");
1031 return ERROR_OK;
1033 target_initialized = true;
1035 retval = command_run_line(CMD_CTX, "init_targets");
1036 if (ERROR_OK != retval)
1037 return retval;
1039 retval = command_run_line(CMD_CTX, "init_board");
1040 if (ERROR_OK != retval)
1041 return retval;
1043 LOG_DEBUG("Initializing targets...");
1044 return target_init(CMD_CTX);
1047 int target_register_event_callback(int (*callback)(struct target *target,
1048 enum target_event event, void *priv), void *priv)
1050 struct target_event_callback **callbacks_p = &target_event_callbacks;
1052 if (callback == NULL)
1053 return ERROR_COMMAND_SYNTAX_ERROR;
1055 if (*callbacks_p) {
1056 while ((*callbacks_p)->next)
1057 callbacks_p = &((*callbacks_p)->next);
1058 callbacks_p = &((*callbacks_p)->next);
1061 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1062 (*callbacks_p)->callback = callback;
1063 (*callbacks_p)->priv = priv;
1064 (*callbacks_p)->next = NULL;
1066 return ERROR_OK;
1069 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1071 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1072 struct timeval now;
1074 if (callback == NULL)
1075 return ERROR_COMMAND_SYNTAX_ERROR;
1077 if (*callbacks_p) {
1078 while ((*callbacks_p)->next)
1079 callbacks_p = &((*callbacks_p)->next);
1080 callbacks_p = &((*callbacks_p)->next);
1083 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1084 (*callbacks_p)->callback = callback;
1085 (*callbacks_p)->periodic = periodic;
1086 (*callbacks_p)->time_ms = time_ms;
1088 gettimeofday(&now, NULL);
1089 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1090 time_ms -= (time_ms % 1000);
1091 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1092 if ((*callbacks_p)->when.tv_usec > 1000000) {
1093 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1094 (*callbacks_p)->when.tv_sec += 1;
1097 (*callbacks_p)->priv = priv;
1098 (*callbacks_p)->next = NULL;
1100 return ERROR_OK;
1103 int target_unregister_event_callback(int (*callback)(struct target *target,
1104 enum target_event event, void *priv), void *priv)
1106 struct target_event_callback **p = &target_event_callbacks;
1107 struct target_event_callback *c = target_event_callbacks;
1109 if (callback == NULL)
1110 return ERROR_COMMAND_SYNTAX_ERROR;
1112 while (c) {
1113 struct target_event_callback *next = c->next;
1114 if ((c->callback == callback) && (c->priv == priv)) {
1115 *p = next;
1116 free(c);
1117 return ERROR_OK;
1118 } else
1119 p = &(c->next);
1120 c = next;
1123 return ERROR_OK;
1126 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1128 struct target_timer_callback **p = &target_timer_callbacks;
1129 struct target_timer_callback *c = target_timer_callbacks;
1131 if (callback == NULL)
1132 return ERROR_COMMAND_SYNTAX_ERROR;
1134 while (c) {
1135 struct target_timer_callback *next = c->next;
1136 if ((c->callback == callback) && (c->priv == priv)) {
1137 *p = next;
1138 free(c);
1139 return ERROR_OK;
1140 } else
1141 p = &(c->next);
1142 c = next;
1145 return ERROR_OK;
1148 int target_call_event_callbacks(struct target *target, enum target_event event)
1150 struct target_event_callback *callback = target_event_callbacks;
1151 struct target_event_callback *next_callback;
1153 if (event == TARGET_EVENT_HALTED) {
1154 /* execute early halted first */
1155 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1158 LOG_DEBUG("target event %i (%s)", event,
1159 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1161 target_handle_event(target, event);
1163 while (callback) {
1164 next_callback = callback->next;
1165 callback->callback(target, event, callback->priv);
1166 callback = next_callback;
1169 return ERROR_OK;
1172 static int target_timer_callback_periodic_restart(
1173 struct target_timer_callback *cb, struct timeval *now)
1175 int time_ms = cb->time_ms;
1176 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1177 time_ms -= (time_ms % 1000);
1178 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1179 if (cb->when.tv_usec > 1000000) {
1180 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1181 cb->when.tv_sec += 1;
1183 return ERROR_OK;
1186 static int target_call_timer_callback(struct target_timer_callback *cb,
1187 struct timeval *now)
1189 cb->callback(cb->priv);
1191 if (cb->periodic)
1192 return target_timer_callback_periodic_restart(cb, now);
1194 return target_unregister_timer_callback(cb->callback, cb->priv);
1197 static int target_call_timer_callbacks_check_time(int checktime)
1199 keep_alive();
1201 struct timeval now;
1202 gettimeofday(&now, NULL);
1204 struct target_timer_callback *callback = target_timer_callbacks;
1205 while (callback) {
1206 /* cleaning up may unregister and free this callback */
1207 struct target_timer_callback *next_callback = callback->next;
1209 bool call_it = callback->callback &&
1210 ((!checktime && callback->periodic) ||
1211 now.tv_sec > callback->when.tv_sec ||
1212 (now.tv_sec == callback->when.tv_sec &&
1213 now.tv_usec >= callback->when.tv_usec));
1215 if (call_it) {
1216 int retval = target_call_timer_callback(callback, &now);
1217 if (retval != ERROR_OK)
1218 return retval;
1221 callback = next_callback;
1224 return ERROR_OK;
1227 int target_call_timer_callbacks(void)
1229 return target_call_timer_callbacks_check_time(1);
1232 /* invoke periodic callbacks immediately */
1233 int target_call_timer_callbacks_now(void)
1235 return target_call_timer_callbacks_check_time(0);
1238 /* Prints the working area layout for debug purposes */
1239 static void print_wa_layout(struct target *target)
1241 struct working_area *c = target->working_areas;
1243 while (c) {
1244 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1245 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1246 c->address, c->address + c->size - 1, c->size);
1247 c = c->next;
1251 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1252 static void target_split_working_area(struct working_area *area, uint32_t size)
1254 assert(area->free); /* Shouldn't split an allocated area */
1255 assert(size <= area->size); /* Caller should guarantee this */
1257 /* Split only if not already the right size */
1258 if (size < area->size) {
1259 struct working_area *new_wa = malloc(sizeof(*new_wa));
1261 if (new_wa == NULL)
1262 return;
1264 new_wa->next = area->next;
1265 new_wa->size = area->size - size;
1266 new_wa->address = area->address + size;
1267 new_wa->backup = NULL;
1268 new_wa->user = NULL;
1269 new_wa->free = true;
1271 area->next = new_wa;
1272 area->size = size;
1274 /* If backup memory was allocated to this area, it has the wrong size
1275 * now so free it and it will be reallocated if/when needed */
1276 if (area->backup) {
1277 free(area->backup);
1278 area->backup = NULL;
1283 /* Merge all adjacent free areas into one */
1284 static void target_merge_working_areas(struct target *target)
1286 struct working_area *c = target->working_areas;
1288 while (c && c->next) {
1289 assert(c->next->address == c->address + c->size); /* This is an invariant */
1291 /* Find two adjacent free areas */
1292 if (c->free && c->next->free) {
1293 /* Merge the last into the first */
1294 c->size += c->next->size;
1296 /* Remove the last */
1297 struct working_area *to_be_freed = c->next;
1298 c->next = c->next->next;
1299 if (to_be_freed->backup)
1300 free(to_be_freed->backup);
1301 free(to_be_freed);
1303 /* If backup memory was allocated to the remaining area, it's has
1304 * the wrong size now */
1305 if (c->backup) {
1306 free(c->backup);
1307 c->backup = NULL;
1309 } else {
1310 c = c->next;
1315 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1317 /* Reevaluate working area address based on MMU state*/
1318 if (target->working_areas == NULL) {
1319 int retval;
1320 int enabled;
1322 retval = target->type->mmu(target, &enabled);
1323 if (retval != ERROR_OK)
1324 return retval;
1326 if (!enabled) {
1327 if (target->working_area_phys_spec) {
1328 LOG_DEBUG("MMU disabled, using physical "
1329 "address for working memory 0x%08"PRIx32,
1330 target->working_area_phys);
1331 target->working_area = target->working_area_phys;
1332 } else {
1333 LOG_ERROR("No working memory available. "
1334 "Specify -work-area-phys to target.");
1335 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1337 } else {
1338 if (target->working_area_virt_spec) {
1339 LOG_DEBUG("MMU enabled, using virtual "
1340 "address for working memory 0x%08"PRIx32,
1341 target->working_area_virt);
1342 target->working_area = target->working_area_virt;
1343 } else {
1344 LOG_ERROR("No working memory available. "
1345 "Specify -work-area-virt to target.");
1346 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1350 /* Set up initial working area on first call */
1351 struct working_area *new_wa = malloc(sizeof(*new_wa));
1352 if (new_wa) {
1353 new_wa->next = NULL;
1354 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1355 new_wa->address = target->working_area;
1356 new_wa->backup = NULL;
1357 new_wa->user = NULL;
1358 new_wa->free = true;
1361 target->working_areas = new_wa;
1364 /* only allocate multiples of 4 byte */
1365 if (size % 4)
1366 size = (size + 3) & (~3UL);
1368 struct working_area *c = target->working_areas;
1370 /* Find the first large enough working area */
1371 while (c) {
1372 if (c->free && c->size >= size)
1373 break;
1374 c = c->next;
1377 if (c == NULL)
1378 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1380 /* Split the working area into the requested size */
1381 target_split_working_area(c, size);
1383 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1385 if (target->backup_working_area) {
1386 if (c->backup == NULL) {
1387 c->backup = malloc(c->size);
1388 if (c->backup == NULL)
1389 return ERROR_FAIL;
1392 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1393 if (retval != ERROR_OK)
1394 return retval;
1397 /* mark as used, and return the new (reused) area */
1398 c->free = false;
1399 *area = c;
1401 /* user pointer */
1402 c->user = area;
1404 print_wa_layout(target);
1406 return ERROR_OK;
1409 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1411 int retval;
1413 retval = target_alloc_working_area_try(target, size, area);
1414 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1415 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1416 return retval;
1420 static int target_restore_working_area(struct target *target, struct working_area *area)
1422 int retval = ERROR_OK;
1424 if (target->backup_working_area && area->backup != NULL) {
1425 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1426 if (retval != ERROR_OK)
1427 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1428 area->size, area->address);
1431 return retval;
1434 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1435 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1437 int retval = ERROR_OK;
1439 if (area->free)
1440 return retval;
1442 if (restore) {
1443 retval = target_restore_working_area(target, area);
1444 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1445 if (retval != ERROR_OK)
1446 return retval;
1449 area->free = true;
1451 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1452 area->size, area->address);
1454 /* mark user pointer invalid */
1455 /* TODO: Is this really safe? It points to some previous caller's memory.
1456 * How could we know that the area pointer is still in that place and not
1457 * some other vital data? What's the purpose of this, anyway? */
1458 *area->user = NULL;
1459 area->user = NULL;
1461 target_merge_working_areas(target);
1463 print_wa_layout(target);
1465 return retval;
1468 int target_free_working_area(struct target *target, struct working_area *area)
1470 return target_free_working_area_restore(target, area, 1);
1473 /* free resources and restore memory, if restoring memory fails,
1474 * free up resources anyway
1476 static void target_free_all_working_areas_restore(struct target *target, int restore)
1478 struct working_area *c = target->working_areas;
1480 LOG_DEBUG("freeing all working areas");
1482 /* Loop through all areas, restoring the allocated ones and marking them as free */
1483 while (c) {
1484 if (!c->free) {
1485 if (restore)
1486 target_restore_working_area(target, c);
1487 c->free = true;
1488 *c->user = NULL; /* Same as above */
1489 c->user = NULL;
1491 c = c->next;
1494 /* Run a merge pass to combine all areas into one */
1495 target_merge_working_areas(target);
1497 print_wa_layout(target);
1500 void target_free_all_working_areas(struct target *target)
1502 target_free_all_working_areas_restore(target, 1);
1505 /* Find the largest number of bytes that can be allocated */
1506 uint32_t target_get_working_area_avail(struct target *target)
1508 struct working_area *c = target->working_areas;
1509 uint32_t max_size = 0;
1511 if (c == NULL)
1512 return target->working_area_size;
1514 while (c) {
1515 if (c->free && max_size < c->size)
1516 max_size = c->size;
1518 c = c->next;
1521 return max_size;
1524 int target_arch_state(struct target *target)
1526 int retval;
1527 if (target == NULL) {
1528 LOG_USER("No target has been configured");
1529 return ERROR_OK;
1532 LOG_USER("target state: %s", target_state_name(target));
1534 if (target->state != TARGET_HALTED)
1535 return ERROR_OK;
1537 retval = target->type->arch_state(target);
1538 return retval;
1541 /* Single aligned words are guaranteed to use 16 or 32 bit access
1542 * mode respectively, otherwise data is handled as quickly as
1543 * possible
1545 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1547 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1548 (int)size, (unsigned)address);
1550 if (!target_was_examined(target)) {
1551 LOG_ERROR("Target not examined yet");
1552 return ERROR_FAIL;
1555 if (size == 0)
1556 return ERROR_OK;
1558 if ((address + size - 1) < address) {
1559 /* GDB can request this when e.g. PC is 0xfffffffc*/
1560 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1561 (unsigned)address,
1562 (unsigned)size);
1563 return ERROR_FAIL;
1566 return target->type->write_buffer(target, address, size, buffer);
1569 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1571 int retval = ERROR_OK;
1573 if (((address % 2) == 0) && (size == 2))
1574 return target_write_memory(target, address, 2, 1, buffer);
1576 /* handle unaligned head bytes */
1577 if (address % 4) {
1578 uint32_t unaligned = 4 - (address % 4);
1580 if (unaligned > size)
1581 unaligned = size;
1583 retval = target_write_memory(target, address, 1, unaligned, buffer);
1584 if (retval != ERROR_OK)
1585 return retval;
1587 buffer += unaligned;
1588 address += unaligned;
1589 size -= unaligned;
1592 /* handle aligned words */
1593 if (size >= 4) {
1594 int aligned = size - (size % 4);
1596 /* use bulk writes above a certain limit. This may have to be changed */
1597 if (aligned > 128) {
1598 retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer);
1599 if (retval != ERROR_OK)
1600 return retval;
1601 } else {
1602 retval = target_write_memory(target, address, 4, aligned / 4, buffer);
1603 if (retval != ERROR_OK)
1604 return retval;
1607 buffer += aligned;
1608 address += aligned;
1609 size -= aligned;
1612 /* handle tail writes of less than 4 bytes */
1613 if (size > 0) {
1614 retval = target_write_memory(target, address, 1, size, buffer);
1615 if (retval != ERROR_OK)
1616 return retval;
1619 return retval;
1622 /* Single aligned words are guaranteed to use 16 or 32 bit access
1623 * mode respectively, otherwise data is handled as quickly as
1624 * possible
1626 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1628 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1629 (int)size, (unsigned)address);
1631 if (!target_was_examined(target)) {
1632 LOG_ERROR("Target not examined yet");
1633 return ERROR_FAIL;
1636 if (size == 0)
1637 return ERROR_OK;
1639 if ((address + size - 1) < address) {
1640 /* GDB can request this when e.g. PC is 0xfffffffc*/
1641 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1642 address,
1643 size);
1644 return ERROR_FAIL;
1647 return target->type->read_buffer(target, address, size, buffer);
1650 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1652 int retval = ERROR_OK;
1654 if (((address % 2) == 0) && (size == 2))
1655 return target_read_memory(target, address, 2, 1, buffer);
1657 /* handle unaligned head bytes */
1658 if (address % 4) {
1659 uint32_t unaligned = 4 - (address % 4);
1661 if (unaligned > size)
1662 unaligned = size;
1664 retval = target_read_memory(target, address, 1, unaligned, buffer);
1665 if (retval != ERROR_OK)
1666 return retval;
1668 buffer += unaligned;
1669 address += unaligned;
1670 size -= unaligned;
1673 /* handle aligned words */
1674 if (size >= 4) {
1675 int aligned = size - (size % 4);
1677 retval = target_read_memory(target, address, 4, aligned / 4, buffer);
1678 if (retval != ERROR_OK)
1679 return retval;
1681 buffer += aligned;
1682 address += aligned;
1683 size -= aligned;
1686 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1687 if (size >= 2) {
1688 int aligned = size - (size % 2);
1689 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1690 if (retval != ERROR_OK)
1691 return retval;
1693 buffer += aligned;
1694 address += aligned;
1695 size -= aligned;
1697 /* handle tail writes of less than 4 bytes */
1698 if (size > 0) {
1699 retval = target_read_memory(target, address, 1, size, buffer);
1700 if (retval != ERROR_OK)
1701 return retval;
1704 return ERROR_OK;
1707 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1709 uint8_t *buffer;
1710 int retval;
1711 uint32_t i;
1712 uint32_t checksum = 0;
1713 if (!target_was_examined(target)) {
1714 LOG_ERROR("Target not examined yet");
1715 return ERROR_FAIL;
1718 retval = target->type->checksum_memory(target, address, size, &checksum);
1719 if (retval != ERROR_OK) {
1720 buffer = malloc(size);
1721 if (buffer == NULL) {
1722 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1723 return ERROR_COMMAND_SYNTAX_ERROR;
1725 retval = target_read_buffer(target, address, size, buffer);
1726 if (retval != ERROR_OK) {
1727 free(buffer);
1728 return retval;
1731 /* convert to target endianness */
1732 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1733 uint32_t target_data;
1734 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1735 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1738 retval = image_calculate_checksum(buffer, size, &checksum);
1739 free(buffer);
1742 *crc = checksum;
1744 return retval;
1747 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1749 int retval;
1750 if (!target_was_examined(target)) {
1751 LOG_ERROR("Target not examined yet");
1752 return ERROR_FAIL;
1755 if (target->type->blank_check_memory == 0)
1756 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1758 retval = target->type->blank_check_memory(target, address, size, blank);
1760 return retval;
1763 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1765 uint8_t value_buf[4];
1766 if (!target_was_examined(target)) {
1767 LOG_ERROR("Target not examined yet");
1768 return ERROR_FAIL;
1771 int retval = target_read_memory(target, address, 4, 1, value_buf);
1773 if (retval == ERROR_OK) {
1774 *value = target_buffer_get_u32(target, value_buf);
1775 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1776 address,
1777 *value);
1778 } else {
1779 *value = 0x0;
1780 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1781 address);
1784 return retval;
1787 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1789 uint8_t value_buf[2];
1790 if (!target_was_examined(target)) {
1791 LOG_ERROR("Target not examined yet");
1792 return ERROR_FAIL;
1795 int retval = target_read_memory(target, address, 2, 1, value_buf);
1797 if (retval == ERROR_OK) {
1798 *value = target_buffer_get_u16(target, value_buf);
1799 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1800 address,
1801 *value);
1802 } else {
1803 *value = 0x0;
1804 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1805 address);
1808 return retval;
1811 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1813 int retval = target_read_memory(target, address, 1, 1, value);
1814 if (!target_was_examined(target)) {
1815 LOG_ERROR("Target not examined yet");
1816 return ERROR_FAIL;
1819 if (retval == ERROR_OK) {
1820 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1821 address,
1822 *value);
1823 } else {
1824 *value = 0x0;
1825 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1826 address);
1829 return retval;
1832 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1834 int retval;
1835 uint8_t value_buf[4];
1836 if (!target_was_examined(target)) {
1837 LOG_ERROR("Target not examined yet");
1838 return ERROR_FAIL;
1841 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1842 address,
1843 value);
1845 target_buffer_set_u32(target, value_buf, value);
1846 retval = target_write_memory(target, address, 4, 1, value_buf);
1847 if (retval != ERROR_OK)
1848 LOG_DEBUG("failed: %i", retval);
1850 return retval;
1853 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1855 int retval;
1856 uint8_t value_buf[2];
1857 if (!target_was_examined(target)) {
1858 LOG_ERROR("Target not examined yet");
1859 return ERROR_FAIL;
1862 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1863 address,
1864 value);
1866 target_buffer_set_u16(target, value_buf, value);
1867 retval = target_write_memory(target, address, 2, 1, value_buf);
1868 if (retval != ERROR_OK)
1869 LOG_DEBUG("failed: %i", retval);
1871 return retval;
1874 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1876 int retval;
1877 if (!target_was_examined(target)) {
1878 LOG_ERROR("Target not examined yet");
1879 return ERROR_FAIL;
1882 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1883 address, value);
1885 retval = target_write_memory(target, address, 1, 1, &value);
1886 if (retval != ERROR_OK)
1887 LOG_DEBUG("failed: %i", retval);
1889 return retval;
1892 static int find_target(struct command_context *cmd_ctx, const char *name)
1894 struct target *target = get_target(name);
1895 if (target == NULL) {
1896 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
1897 return ERROR_FAIL;
1899 if (!target->tap->enabled) {
1900 LOG_USER("Target: TAP %s is disabled, "
1901 "can't be the current target\n",
1902 target->tap->dotted_name);
1903 return ERROR_FAIL;
1906 cmd_ctx->current_target = target->target_number;
1907 return ERROR_OK;
1911 COMMAND_HANDLER(handle_targets_command)
1913 int retval = ERROR_OK;
1914 if (CMD_ARGC == 1) {
1915 retval = find_target(CMD_CTX, CMD_ARGV[0]);
1916 if (retval == ERROR_OK) {
1917 /* we're done! */
1918 return retval;
1922 struct target *target = all_targets;
1923 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
1924 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
1925 while (target) {
1926 const char *state;
1927 char marker = ' ';
1929 if (target->tap->enabled)
1930 state = target_state_name(target);
1931 else
1932 state = "tap-disabled";
1934 if (CMD_CTX->current_target == target->target_number)
1935 marker = '*';
1937 /* keep columns lined up to match the headers above */
1938 command_print(CMD_CTX,
1939 "%2d%c %-18s %-10s %-6s %-18s %s",
1940 target->target_number,
1941 marker,
1942 target_name(target),
1943 target_type_name(target),
1944 Jim_Nvp_value2name_simple(nvp_target_endian,
1945 target->endianness)->name,
1946 target->tap->dotted_name,
1947 state);
1948 target = target->next;
1951 return retval;
1954 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1956 static int powerDropout;
1957 static int srstAsserted;
1959 static int runPowerRestore;
1960 static int runPowerDropout;
1961 static int runSrstAsserted;
1962 static int runSrstDeasserted;
1964 static int sense_handler(void)
1966 static int prevSrstAsserted;
1967 static int prevPowerdropout;
1969 int retval = jtag_power_dropout(&powerDropout);
1970 if (retval != ERROR_OK)
1971 return retval;
1973 int powerRestored;
1974 powerRestored = prevPowerdropout && !powerDropout;
1975 if (powerRestored)
1976 runPowerRestore = 1;
1978 long long current = timeval_ms();
1979 static long long lastPower;
1980 int waitMore = lastPower + 2000 > current;
1981 if (powerDropout && !waitMore) {
1982 runPowerDropout = 1;
1983 lastPower = current;
1986 retval = jtag_srst_asserted(&srstAsserted);
1987 if (retval != ERROR_OK)
1988 return retval;
1990 int srstDeasserted;
1991 srstDeasserted = prevSrstAsserted && !srstAsserted;
1993 static long long lastSrst;
1994 waitMore = lastSrst + 2000 > current;
1995 if (srstDeasserted && !waitMore) {
1996 runSrstDeasserted = 1;
1997 lastSrst = current;
2000 if (!prevSrstAsserted && srstAsserted)
2001 runSrstAsserted = 1;
2003 prevSrstAsserted = srstAsserted;
2004 prevPowerdropout = powerDropout;
2006 if (srstDeasserted || powerRestored) {
2007 /* Other than logging the event we can't do anything here.
2008 * Issuing a reset is a particularly bad idea as we might
2009 * be inside a reset already.
2013 return ERROR_OK;
2016 static int backoff_times;
2017 static int backoff_count;
2019 /* process target state changes */
2020 static int handle_target(void *priv)
2022 Jim_Interp *interp = (Jim_Interp *)priv;
2023 int retval = ERROR_OK;
2025 if (!is_jtag_poll_safe()) {
2026 /* polling is disabled currently */
2027 return ERROR_OK;
2030 /* we do not want to recurse here... */
2031 static int recursive;
2032 if (!recursive) {
2033 recursive = 1;
2034 sense_handler();
2035 /* danger! running these procedures can trigger srst assertions and power dropouts.
2036 * We need to avoid an infinite loop/recursion here and we do that by
2037 * clearing the flags after running these events.
2039 int did_something = 0;
2040 if (runSrstAsserted) {
2041 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2042 Jim_Eval(interp, "srst_asserted");
2043 did_something = 1;
2045 if (runSrstDeasserted) {
2046 Jim_Eval(interp, "srst_deasserted");
2047 did_something = 1;
2049 if (runPowerDropout) {
2050 LOG_INFO("Power dropout detected, running power_dropout proc.");
2051 Jim_Eval(interp, "power_dropout");
2052 did_something = 1;
2054 if (runPowerRestore) {
2055 Jim_Eval(interp, "power_restore");
2056 did_something = 1;
2059 if (did_something) {
2060 /* clear detect flags */
2061 sense_handler();
2064 /* clear action flags */
2066 runSrstAsserted = 0;
2067 runSrstDeasserted = 0;
2068 runPowerRestore = 0;
2069 runPowerDropout = 0;
2071 recursive = 0;
2074 if (backoff_times > backoff_count) {
2075 /* do not poll this time as we failed previously */
2076 backoff_count++;
2077 return ERROR_OK;
2079 backoff_count = 0;
2081 /* Poll targets for state changes unless that's globally disabled.
2082 * Skip targets that are currently disabled.
2084 for (struct target *target = all_targets;
2085 is_jtag_poll_safe() && target;
2086 target = target->next) {
2087 if (!target->tap->enabled)
2088 continue;
2090 /* only poll target if we've got power and srst isn't asserted */
2091 if (!powerDropout && !srstAsserted) {
2092 /* polling may fail silently until the target has been examined */
2093 retval = target_poll(target);
2094 if (retval != ERROR_OK) {
2095 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2096 if (backoff_times * polling_interval < 5000) {
2097 backoff_times *= 2;
2098 backoff_times++;
2100 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms",
2101 backoff_times * polling_interval);
2103 /* Tell GDB to halt the debugger. This allows the user to
2104 * run monitor commands to handle the situation.
2106 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2107 return retval;
2109 /* Since we succeeded, we reset backoff count */
2110 if (backoff_times > 0)
2111 LOG_USER("Polling succeeded again");
2112 backoff_times = 0;
2116 return retval;
2119 COMMAND_HANDLER(handle_reg_command)
2121 struct target *target;
2122 struct reg *reg = NULL;
2123 unsigned count = 0;
2124 char *value;
2126 LOG_DEBUG("-");
2128 target = get_current_target(CMD_CTX);
2130 /* list all available registers for the current target */
2131 if (CMD_ARGC == 0) {
2132 struct reg_cache *cache = target->reg_cache;
2134 count = 0;
2135 while (cache) {
2136 unsigned i;
2138 command_print(CMD_CTX, "===== %s", cache->name);
2140 for (i = 0, reg = cache->reg_list;
2141 i < cache->num_regs;
2142 i++, reg++, count++) {
2143 /* only print cached values if they are valid */
2144 if (reg->valid) {
2145 value = buf_to_str(reg->value,
2146 reg->size, 16);
2147 command_print(CMD_CTX,
2148 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2149 count, reg->name,
2150 reg->size, value,
2151 reg->dirty
2152 ? " (dirty)"
2153 : "");
2154 free(value);
2155 } else {
2156 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2157 count, reg->name,
2158 reg->size) ;
2161 cache = cache->next;
2164 return ERROR_OK;
2167 /* access a single register by its ordinal number */
2168 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2169 unsigned num;
2170 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2172 struct reg_cache *cache = target->reg_cache;
2173 count = 0;
2174 while (cache) {
2175 unsigned i;
2176 for (i = 0; i < cache->num_regs; i++) {
2177 if (count++ == num) {
2178 reg = &cache->reg_list[i];
2179 break;
2182 if (reg)
2183 break;
2184 cache = cache->next;
2187 if (!reg) {
2188 command_print(CMD_CTX, "%i is out of bounds, the current target "
2189 "has only %i registers (0 - %i)", num, count, count - 1);
2190 return ERROR_OK;
2192 } else {
2193 /* access a single register by its name */
2194 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2196 if (!reg) {
2197 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2198 return ERROR_OK;
2202 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2204 /* display a register */
2205 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2206 && (CMD_ARGV[1][0] <= '9')))) {
2207 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2208 reg->valid = 0;
2210 if (reg->valid == 0)
2211 reg->type->get(reg);
2212 value = buf_to_str(reg->value, reg->size, 16);
2213 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2214 free(value);
2215 return ERROR_OK;
2218 /* set register value */
2219 if (CMD_ARGC == 2) {
2220 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2221 if (buf == NULL)
2222 return ERROR_FAIL;
2223 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2225 reg->type->set(reg, buf);
2227 value = buf_to_str(reg->value, reg->size, 16);
2228 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2229 free(value);
2231 free(buf);
2233 return ERROR_OK;
2236 return ERROR_COMMAND_SYNTAX_ERROR;
2239 COMMAND_HANDLER(handle_poll_command)
2241 int retval = ERROR_OK;
2242 struct target *target = get_current_target(CMD_CTX);
2244 if (CMD_ARGC == 0) {
2245 command_print(CMD_CTX, "background polling: %s",
2246 jtag_poll_get_enabled() ? "on" : "off");
2247 command_print(CMD_CTX, "TAP: %s (%s)",
2248 target->tap->dotted_name,
2249 target->tap->enabled ? "enabled" : "disabled");
2250 if (!target->tap->enabled)
2251 return ERROR_OK;
2252 retval = target_poll(target);
2253 if (retval != ERROR_OK)
2254 return retval;
2255 retval = target_arch_state(target);
2256 if (retval != ERROR_OK)
2257 return retval;
2258 } else if (CMD_ARGC == 1) {
2259 bool enable;
2260 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2261 jtag_poll_set_enabled(enable);
2262 } else
2263 return ERROR_COMMAND_SYNTAX_ERROR;
2265 return retval;
2268 COMMAND_HANDLER(handle_wait_halt_command)
2270 if (CMD_ARGC > 1)
2271 return ERROR_COMMAND_SYNTAX_ERROR;
2273 unsigned ms = 5000;
2274 if (1 == CMD_ARGC) {
2275 int retval = parse_uint(CMD_ARGV[0], &ms);
2276 if (ERROR_OK != retval)
2277 return ERROR_COMMAND_SYNTAX_ERROR;
2278 /* convert seconds (given) to milliseconds (needed) */
2279 ms *= 1000;
2282 struct target *target = get_current_target(CMD_CTX);
2283 return target_wait_state(target, TARGET_HALTED, ms);
2286 /* wait for target state to change. The trick here is to have a low
2287 * latency for short waits and not to suck up all the CPU time
2288 * on longer waits.
2290 * After 500ms, keep_alive() is invoked
2292 int target_wait_state(struct target *target, enum target_state state, int ms)
2294 int retval;
2295 long long then = 0, cur;
2296 int once = 1;
2298 for (;;) {
2299 retval = target_poll(target);
2300 if (retval != ERROR_OK)
2301 return retval;
2302 if (target->state == state)
2303 break;
2304 cur = timeval_ms();
2305 if (once) {
2306 once = 0;
2307 then = timeval_ms();
2308 LOG_DEBUG("waiting for target %s...",
2309 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2312 if (cur-then > 500)
2313 keep_alive();
2315 if ((cur-then) > ms) {
2316 LOG_ERROR("timed out while waiting for target %s",
2317 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2318 return ERROR_FAIL;
2322 return ERROR_OK;
2325 COMMAND_HANDLER(handle_halt_command)
2327 LOG_DEBUG("-");
2329 struct target *target = get_current_target(CMD_CTX);
2330 int retval = target_halt(target);
2331 if (ERROR_OK != retval)
2332 return retval;
2334 if (CMD_ARGC == 1) {
2335 unsigned wait_local;
2336 retval = parse_uint(CMD_ARGV[0], &wait_local);
2337 if (ERROR_OK != retval)
2338 return ERROR_COMMAND_SYNTAX_ERROR;
2339 if (!wait_local)
2340 return ERROR_OK;
2343 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2346 COMMAND_HANDLER(handle_soft_reset_halt_command)
2348 struct target *target = get_current_target(CMD_CTX);
2350 LOG_USER("requesting target halt and executing a soft reset");
2352 target->type->soft_reset_halt(target);
2354 return ERROR_OK;
2357 COMMAND_HANDLER(handle_reset_command)
2359 if (CMD_ARGC > 1)
2360 return ERROR_COMMAND_SYNTAX_ERROR;
2362 enum target_reset_mode reset_mode = RESET_RUN;
2363 if (CMD_ARGC == 1) {
2364 const Jim_Nvp *n;
2365 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2366 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2367 return ERROR_COMMAND_SYNTAX_ERROR;
2368 reset_mode = n->value;
2371 /* reset *all* targets */
2372 return target_process_reset(CMD_CTX, reset_mode);
2376 COMMAND_HANDLER(handle_resume_command)
2378 int current = 1;
2379 if (CMD_ARGC > 1)
2380 return ERROR_COMMAND_SYNTAX_ERROR;
2382 struct target *target = get_current_target(CMD_CTX);
2383 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2385 /* with no CMD_ARGV, resume from current pc, addr = 0,
2386 * with one arguments, addr = CMD_ARGV[0],
2387 * handle breakpoints, not debugging */
2388 uint32_t addr = 0;
2389 if (CMD_ARGC == 1) {
2390 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2391 current = 0;
2394 return target_resume(target, current, addr, 1, 0);
2397 COMMAND_HANDLER(handle_step_command)
2399 if (CMD_ARGC > 1)
2400 return ERROR_COMMAND_SYNTAX_ERROR;
2402 LOG_DEBUG("-");
2404 /* with no CMD_ARGV, step from current pc, addr = 0,
2405 * with one argument addr = CMD_ARGV[0],
2406 * handle breakpoints, debugging */
2407 uint32_t addr = 0;
2408 int current_pc = 1;
2409 if (CMD_ARGC == 1) {
2410 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2411 current_pc = 0;
2414 struct target *target = get_current_target(CMD_CTX);
2416 return target->type->step(target, current_pc, addr, 1);
2419 static void handle_md_output(struct command_context *cmd_ctx,
2420 struct target *target, uint32_t address, unsigned size,
2421 unsigned count, const uint8_t *buffer)
2423 const unsigned line_bytecnt = 32;
2424 unsigned line_modulo = line_bytecnt / size;
2426 char output[line_bytecnt * 4 + 1];
2427 unsigned output_len = 0;
2429 const char *value_fmt;
2430 switch (size) {
2431 case 4:
2432 value_fmt = "%8.8x ";
2433 break;
2434 case 2:
2435 value_fmt = "%4.4x ";
2436 break;
2437 case 1:
2438 value_fmt = "%2.2x ";
2439 break;
2440 default:
2441 /* "can't happen", caller checked */
2442 LOG_ERROR("invalid memory read size: %u", size);
2443 return;
2446 for (unsigned i = 0; i < count; i++) {
2447 if (i % line_modulo == 0) {
2448 output_len += snprintf(output + output_len,
2449 sizeof(output) - output_len,
2450 "0x%8.8x: ",
2451 (unsigned)(address + (i*size)));
2454 uint32_t value = 0;
2455 const uint8_t *value_ptr = buffer + i * size;
2456 switch (size) {
2457 case 4:
2458 value = target_buffer_get_u32(target, value_ptr);
2459 break;
2460 case 2:
2461 value = target_buffer_get_u16(target, value_ptr);
2462 break;
2463 case 1:
2464 value = *value_ptr;
2466 output_len += snprintf(output + output_len,
2467 sizeof(output) - output_len,
2468 value_fmt, value);
2470 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2471 command_print(cmd_ctx, "%s", output);
2472 output_len = 0;
2477 COMMAND_HANDLER(handle_md_command)
2479 if (CMD_ARGC < 1)
2480 return ERROR_COMMAND_SYNTAX_ERROR;
2482 unsigned size = 0;
2483 switch (CMD_NAME[2]) {
2484 case 'w':
2485 size = 4;
2486 break;
2487 case 'h':
2488 size = 2;
2489 break;
2490 case 'b':
2491 size = 1;
2492 break;
2493 default:
2494 return ERROR_COMMAND_SYNTAX_ERROR;
2497 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2498 int (*fn)(struct target *target,
2499 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2500 if (physical) {
2501 CMD_ARGC--;
2502 CMD_ARGV++;
2503 fn = target_read_phys_memory;
2504 } else
2505 fn = target_read_memory;
2506 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2507 return ERROR_COMMAND_SYNTAX_ERROR;
2509 uint32_t address;
2510 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2512 unsigned count = 1;
2513 if (CMD_ARGC == 2)
2514 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2516 uint8_t *buffer = calloc(count, size);
2518 struct target *target = get_current_target(CMD_CTX);
2519 int retval = fn(target, address, size, count, buffer);
2520 if (ERROR_OK == retval)
2521 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2523 free(buffer);
2525 return retval;
2528 typedef int (*target_write_fn)(struct target *target,
2529 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2531 static int target_write_memory_fast(struct target *target,
2532 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2534 return target_write_buffer(target, address, size * count, buffer);
2537 static int target_fill_mem(struct target *target,
2538 uint32_t address,
2539 target_write_fn fn,
2540 unsigned data_size,
2541 /* value */
2542 uint32_t b,
2543 /* count */
2544 unsigned c)
2546 /* We have to write in reasonably large chunks to be able
2547 * to fill large memory areas with any sane speed */
2548 const unsigned chunk_size = 16384;
2549 uint8_t *target_buf = malloc(chunk_size * data_size);
2550 if (target_buf == NULL) {
2551 LOG_ERROR("Out of memory");
2552 return ERROR_FAIL;
2555 for (unsigned i = 0; i < chunk_size; i++) {
2556 switch (data_size) {
2557 case 4:
2558 target_buffer_set_u32(target, target_buf + i * data_size, b);
2559 break;
2560 case 2:
2561 target_buffer_set_u16(target, target_buf + i * data_size, b);
2562 break;
2563 case 1:
2564 target_buffer_set_u8(target, target_buf + i * data_size, b);
2565 break;
2566 default:
2567 exit(-1);
2571 int retval = ERROR_OK;
2573 for (unsigned x = 0; x < c; x += chunk_size) {
2574 unsigned current;
2575 current = c - x;
2576 if (current > chunk_size)
2577 current = chunk_size;
2578 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2579 if (retval != ERROR_OK)
2580 break;
2581 /* avoid GDB timeouts */
2582 keep_alive();
2584 free(target_buf);
2586 return retval;
2590 COMMAND_HANDLER(handle_mw_command)
2592 if (CMD_ARGC < 2)
2593 return ERROR_COMMAND_SYNTAX_ERROR;
2594 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2595 target_write_fn fn;
2596 if (physical) {
2597 CMD_ARGC--;
2598 CMD_ARGV++;
2599 fn = target_write_phys_memory;
2600 } else
2601 fn = target_write_memory_fast;
2602 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2603 return ERROR_COMMAND_SYNTAX_ERROR;
2605 uint32_t address;
2606 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2608 uint32_t value;
2609 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2611 unsigned count = 1;
2612 if (CMD_ARGC == 3)
2613 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2615 struct target *target = get_current_target(CMD_CTX);
2616 unsigned wordsize;
2617 switch (CMD_NAME[2]) {
2618 case 'w':
2619 wordsize = 4;
2620 break;
2621 case 'h':
2622 wordsize = 2;
2623 break;
2624 case 'b':
2625 wordsize = 1;
2626 break;
2627 default:
2628 return ERROR_COMMAND_SYNTAX_ERROR;
2631 return target_fill_mem(target, address, fn, wordsize, value, count);
2634 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2635 uint32_t *min_address, uint32_t *max_address)
2637 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2638 return ERROR_COMMAND_SYNTAX_ERROR;
2640 /* a base address isn't always necessary,
2641 * default to 0x0 (i.e. don't relocate) */
2642 if (CMD_ARGC >= 2) {
2643 uint32_t addr;
2644 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2645 image->base_address = addr;
2646 image->base_address_set = 1;
2647 } else
2648 image->base_address_set = 0;
2650 image->start_address_set = 0;
2652 if (CMD_ARGC >= 4)
2653 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2654 if (CMD_ARGC == 5) {
2655 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2656 /* use size (given) to find max (required) */
2657 *max_address += *min_address;
2660 if (*min_address > *max_address)
2661 return ERROR_COMMAND_SYNTAX_ERROR;
2663 return ERROR_OK;
2666 COMMAND_HANDLER(handle_load_image_command)
2668 uint8_t *buffer;
2669 size_t buf_cnt;
2670 uint32_t image_size;
2671 uint32_t min_address = 0;
2672 uint32_t max_address = 0xffffffff;
2673 int i;
2674 struct image image;
2676 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2677 &image, &min_address, &max_address);
2678 if (ERROR_OK != retval)
2679 return retval;
2681 struct target *target = get_current_target(CMD_CTX);
2683 struct duration bench;
2684 duration_start(&bench);
2686 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2687 return ERROR_OK;
2689 image_size = 0x0;
2690 retval = ERROR_OK;
2691 for (i = 0; i < image.num_sections; i++) {
2692 buffer = malloc(image.sections[i].size);
2693 if (buffer == NULL) {
2694 command_print(CMD_CTX,
2695 "error allocating buffer for section (%d bytes)",
2696 (int)(image.sections[i].size));
2697 break;
2700 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2701 if (retval != ERROR_OK) {
2702 free(buffer);
2703 break;
2706 uint32_t offset = 0;
2707 uint32_t length = buf_cnt;
2709 /* DANGER!!! beware of unsigned comparision here!!! */
2711 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2712 (image.sections[i].base_address < max_address)) {
2714 if (image.sections[i].base_address < min_address) {
2715 /* clip addresses below */
2716 offset += min_address-image.sections[i].base_address;
2717 length -= offset;
2720 if (image.sections[i].base_address + buf_cnt > max_address)
2721 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2723 retval = target_write_buffer(target,
2724 image.sections[i].base_address + offset, length, buffer + offset);
2725 if (retval != ERROR_OK) {
2726 free(buffer);
2727 break;
2729 image_size += length;
2730 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2731 (unsigned int)length,
2732 image.sections[i].base_address + offset);
2735 free(buffer);
2738 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2739 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2740 "in %fs (%0.3f KiB/s)", image_size,
2741 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2744 image_close(&image);
2746 return retval;
2750 COMMAND_HANDLER(handle_dump_image_command)
2752 struct fileio fileio;
2753 uint8_t *buffer;
2754 int retval, retvaltemp;
2755 uint32_t address, size;
2756 struct duration bench;
2757 struct target *target = get_current_target(CMD_CTX);
2759 if (CMD_ARGC != 3)
2760 return ERROR_COMMAND_SYNTAX_ERROR;
2762 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2763 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2765 uint32_t buf_size = (size > 4096) ? 4096 : size;
2766 buffer = malloc(buf_size);
2767 if (!buffer)
2768 return ERROR_FAIL;
2770 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2771 if (retval != ERROR_OK) {
2772 free(buffer);
2773 return retval;
2776 duration_start(&bench);
2778 while (size > 0) {
2779 size_t size_written;
2780 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2781 retval = target_read_buffer(target, address, this_run_size, buffer);
2782 if (retval != ERROR_OK)
2783 break;
2785 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2786 if (retval != ERROR_OK)
2787 break;
2789 size -= this_run_size;
2790 address += this_run_size;
2793 free(buffer);
2795 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2796 int filesize;
2797 retval = fileio_size(&fileio, &filesize);
2798 if (retval != ERROR_OK)
2799 return retval;
2800 command_print(CMD_CTX,
2801 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2802 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2805 retvaltemp = fileio_close(&fileio);
2806 if (retvaltemp != ERROR_OK)
2807 return retvaltemp;
2809 return retval;
2812 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2814 uint8_t *buffer;
2815 size_t buf_cnt;
2816 uint32_t image_size;
2817 int i;
2818 int retval;
2819 uint32_t checksum = 0;
2820 uint32_t mem_checksum = 0;
2822 struct image image;
2824 struct target *target = get_current_target(CMD_CTX);
2826 if (CMD_ARGC < 1)
2827 return ERROR_COMMAND_SYNTAX_ERROR;
2829 if (!target) {
2830 LOG_ERROR("no target selected");
2831 return ERROR_FAIL;
2834 struct duration bench;
2835 duration_start(&bench);
2837 if (CMD_ARGC >= 2) {
2838 uint32_t addr;
2839 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2840 image.base_address = addr;
2841 image.base_address_set = 1;
2842 } else {
2843 image.base_address_set = 0;
2844 image.base_address = 0x0;
2847 image.start_address_set = 0;
2849 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
2850 if (retval != ERROR_OK)
2851 return retval;
2853 image_size = 0x0;
2854 int diffs = 0;
2855 retval = ERROR_OK;
2856 for (i = 0; i < image.num_sections; i++) {
2857 buffer = malloc(image.sections[i].size);
2858 if (buffer == NULL) {
2859 command_print(CMD_CTX,
2860 "error allocating buffer for section (%d bytes)",
2861 (int)(image.sections[i].size));
2862 break;
2864 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2865 if (retval != ERROR_OK) {
2866 free(buffer);
2867 break;
2870 if (verify) {
2871 /* calculate checksum of image */
2872 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
2873 if (retval != ERROR_OK) {
2874 free(buffer);
2875 break;
2878 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2879 if (retval != ERROR_OK) {
2880 free(buffer);
2881 break;
2884 if (checksum != mem_checksum) {
2885 /* failed crc checksum, fall back to a binary compare */
2886 uint8_t *data;
2888 if (diffs == 0)
2889 LOG_ERROR("checksum mismatch - attempting binary compare");
2891 data = (uint8_t *)malloc(buf_cnt);
2893 /* Can we use 32bit word accesses? */
2894 int size = 1;
2895 int count = buf_cnt;
2896 if ((count % 4) == 0) {
2897 size *= 4;
2898 count /= 4;
2900 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2901 if (retval == ERROR_OK) {
2902 uint32_t t;
2903 for (t = 0; t < buf_cnt; t++) {
2904 if (data[t] != buffer[t]) {
2905 command_print(CMD_CTX,
2906 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
2907 diffs,
2908 (unsigned)(t + image.sections[i].base_address),
2909 data[t],
2910 buffer[t]);
2911 if (diffs++ >= 127) {
2912 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
2913 free(data);
2914 free(buffer);
2915 goto done;
2918 keep_alive();
2921 free(data);
2923 } else {
2924 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2925 image.sections[i].base_address,
2926 buf_cnt);
2929 free(buffer);
2930 image_size += buf_cnt;
2932 if (diffs > 0)
2933 command_print(CMD_CTX, "No more differences found.");
2934 done:
2935 if (diffs > 0)
2936 retval = ERROR_FAIL;
2937 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2938 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2939 "in %fs (%0.3f KiB/s)", image_size,
2940 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2943 image_close(&image);
2945 return retval;
2948 COMMAND_HANDLER(handle_verify_image_command)
2950 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2953 COMMAND_HANDLER(handle_test_image_command)
2955 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2958 static int handle_bp_command_list(struct command_context *cmd_ctx)
2960 struct target *target = get_current_target(cmd_ctx);
2961 struct breakpoint *breakpoint = target->breakpoints;
2962 while (breakpoint) {
2963 if (breakpoint->type == BKPT_SOFT) {
2964 char *buf = buf_to_str(breakpoint->orig_instr,
2965 breakpoint->length, 16);
2966 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2967 breakpoint->address,
2968 breakpoint->length,
2969 breakpoint->set, buf);
2970 free(buf);
2971 } else {
2972 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
2973 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
2974 breakpoint->asid,
2975 breakpoint->length, breakpoint->set);
2976 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
2977 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
2978 breakpoint->address,
2979 breakpoint->length, breakpoint->set);
2980 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
2981 breakpoint->asid);
2982 } else
2983 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
2984 breakpoint->address,
2985 breakpoint->length, breakpoint->set);
2988 breakpoint = breakpoint->next;
2990 return ERROR_OK;
2993 static int handle_bp_command_set(struct command_context *cmd_ctx,
2994 uint32_t addr, uint32_t asid, uint32_t length, int hw)
2996 struct target *target = get_current_target(cmd_ctx);
2998 if (asid == 0) {
2999 int retval = breakpoint_add(target, addr, length, hw);
3000 if (ERROR_OK == retval)
3001 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3002 else {
3003 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3004 return retval;
3006 } else if (addr == 0) {
3007 int retval = context_breakpoint_add(target, asid, length, hw);
3008 if (ERROR_OK == retval)
3009 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3010 else {
3011 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3012 return retval;
3014 } else {
3015 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3016 if (ERROR_OK == retval)
3017 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3018 else {
3019 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3020 return retval;
3023 return ERROR_OK;
3026 COMMAND_HANDLER(handle_bp_command)
3028 uint32_t addr;
3029 uint32_t asid;
3030 uint32_t length;
3031 int hw = BKPT_SOFT;
3033 switch (CMD_ARGC) {
3034 case 0:
3035 return handle_bp_command_list(CMD_CTX);
3037 case 2:
3038 asid = 0;
3039 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3040 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3041 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3043 case 3:
3044 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3045 hw = BKPT_HARD;
3046 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3048 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3050 asid = 0;
3051 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3052 } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3053 hw = BKPT_HARD;
3054 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3055 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3056 addr = 0;
3057 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3060 case 4:
3061 hw = BKPT_HARD;
3062 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3063 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3064 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3065 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3067 default:
3068 return ERROR_COMMAND_SYNTAX_ERROR;
3072 COMMAND_HANDLER(handle_rbp_command)
3074 if (CMD_ARGC != 1)
3075 return ERROR_COMMAND_SYNTAX_ERROR;
3077 uint32_t addr;
3078 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3080 struct target *target = get_current_target(CMD_CTX);
3081 breakpoint_remove(target, addr);
3083 return ERROR_OK;
3086 COMMAND_HANDLER(handle_wp_command)
3088 struct target *target = get_current_target(CMD_CTX);
3090 if (CMD_ARGC == 0) {
3091 struct watchpoint *watchpoint = target->watchpoints;
3093 while (watchpoint) {
3094 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3095 ", len: 0x%8.8" PRIx32
3096 ", r/w/a: %i, value: 0x%8.8" PRIx32
3097 ", mask: 0x%8.8" PRIx32,
3098 watchpoint->address,
3099 watchpoint->length,
3100 (int)watchpoint->rw,
3101 watchpoint->value,
3102 watchpoint->mask);
3103 watchpoint = watchpoint->next;
3105 return ERROR_OK;
3108 enum watchpoint_rw type = WPT_ACCESS;
3109 uint32_t addr = 0;
3110 uint32_t length = 0;
3111 uint32_t data_value = 0x0;
3112 uint32_t data_mask = 0xffffffff;
3114 switch (CMD_ARGC) {
3115 case 5:
3116 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3117 /* fall through */
3118 case 4:
3119 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3120 /* fall through */
3121 case 3:
3122 switch (CMD_ARGV[2][0]) {
3123 case 'r':
3124 type = WPT_READ;
3125 break;
3126 case 'w':
3127 type = WPT_WRITE;
3128 break;
3129 case 'a':
3130 type = WPT_ACCESS;
3131 break;
3132 default:
3133 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3134 return ERROR_COMMAND_SYNTAX_ERROR;
3136 /* fall through */
3137 case 2:
3138 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3139 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3140 break;
3142 default:
3143 return ERROR_COMMAND_SYNTAX_ERROR;
3146 int retval = watchpoint_add(target, addr, length, type,
3147 data_value, data_mask);
3148 if (ERROR_OK != retval)
3149 LOG_ERROR("Failure setting watchpoints");
3151 return retval;
3154 COMMAND_HANDLER(handle_rwp_command)
3156 if (CMD_ARGC != 1)
3157 return ERROR_COMMAND_SYNTAX_ERROR;
3159 uint32_t addr;
3160 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3162 struct target *target = get_current_target(CMD_CTX);
3163 watchpoint_remove(target, addr);
3165 return ERROR_OK;
3169 * Translate a virtual address to a physical address.
3171 * The low-level target implementation must have logged a detailed error
3172 * which is forwarded to telnet/GDB session.
3174 COMMAND_HANDLER(handle_virt2phys_command)
3176 if (CMD_ARGC != 1)
3177 return ERROR_COMMAND_SYNTAX_ERROR;
3179 uint32_t va;
3180 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3181 uint32_t pa;
3183 struct target *target = get_current_target(CMD_CTX);
3184 int retval = target->type->virt2phys(target, va, &pa);
3185 if (retval == ERROR_OK)
3186 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3188 return retval;
3191 static void writeData(FILE *f, const void *data, size_t len)
3193 size_t written = fwrite(data, 1, len, f);
3194 if (written != len)
3195 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3198 static void writeLong(FILE *f, int l)
3200 int i;
3201 for (i = 0; i < 4; i++) {
3202 char c = (l >> (i*8))&0xff;
3203 writeData(f, &c, 1);
3208 static void writeString(FILE *f, char *s)
3210 writeData(f, s, strlen(s));
3213 /* Dump a gmon.out histogram file. */
3214 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3216 uint32_t i;
3217 FILE *f = fopen(filename, "w");
3218 if (f == NULL)
3219 return;
3220 writeString(f, "gmon");
3221 writeLong(f, 0x00000001); /* Version */
3222 writeLong(f, 0); /* padding */
3223 writeLong(f, 0); /* padding */
3224 writeLong(f, 0); /* padding */
3226 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
3227 writeData(f, &zero, 1);
3229 /* figure out bucket size */
3230 uint32_t min = samples[0];
3231 uint32_t max = samples[0];
3232 for (i = 0; i < sampleNum; i++) {
3233 if (min > samples[i])
3234 min = samples[i];
3235 if (max < samples[i])
3236 max = samples[i];
3239 int addressSpace = (max - min + 1);
3240 assert(addressSpace >= 2);
3242 static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3243 uint32_t length = addressSpace;
3244 if (length > maxBuckets)
3245 length = maxBuckets;
3246 int *buckets = malloc(sizeof(int)*length);
3247 if (buckets == NULL) {
3248 fclose(f);
3249 return;
3251 memset(buckets, 0, sizeof(int) * length);
3252 for (i = 0; i < sampleNum; i++) {
3253 uint32_t address = samples[i];
3254 long long a = address - min;
3255 long long b = length - 1;
3256 long long c = addressSpace - 1;
3257 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3258 buckets[index_t]++;
3261 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3262 writeLong(f, min); /* low_pc */
3263 writeLong(f, max); /* high_pc */
3264 writeLong(f, length); /* # of samples */
3265 writeLong(f, 100); /* KLUDGE! We lie, ca. 100Hz best case. */
3266 writeString(f, "seconds");
3267 for (i = 0; i < (15-strlen("seconds")); i++)
3268 writeData(f, &zero, 1);
3269 writeString(f, "s");
3271 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3273 char *data = malloc(2 * length);
3274 if (data != NULL) {
3275 for (i = 0; i < length; i++) {
3276 int val;
3277 val = buckets[i];
3278 if (val > 65535)
3279 val = 65535;
3280 data[i * 2] = val&0xff;
3281 data[i * 2 + 1] = (val >> 8) & 0xff;
3283 free(buckets);
3284 writeData(f, data, length * 2);
3285 free(data);
3286 } else
3287 free(buckets);
3289 fclose(f);
3292 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3293 * which will be used as a random sampling of PC */
3294 COMMAND_HANDLER(handle_profile_command)
3296 struct target *target = get_current_target(CMD_CTX);
3297 struct timeval timeout, now;
3299 gettimeofday(&timeout, NULL);
3300 if (CMD_ARGC != 2)
3301 return ERROR_COMMAND_SYNTAX_ERROR;
3302 unsigned offset;
3303 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3305 timeval_add_time(&timeout, offset, 0);
3308 * @todo: Some cores let us sample the PC without the
3309 * annoying halt/resume step; for example, ARMv7 PCSR.
3310 * Provide a way to use that more efficient mechanism.
3313 command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3315 static const int maxSample = 10000;
3316 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3317 if (samples == NULL)
3318 return ERROR_OK;
3320 int numSamples = 0;
3321 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3322 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3324 int retval = ERROR_OK;
3325 for (;;) {
3326 target_poll(target);
3327 if (target->state == TARGET_HALTED) {
3328 uint32_t t = *((uint32_t *)reg->value);
3329 samples[numSamples++] = t;
3330 /* current pc, addr = 0, do not handle breakpoints, not debugging */
3331 retval = target_resume(target, 1, 0, 0, 0);
3332 target_poll(target);
3333 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3334 } else if (target->state == TARGET_RUNNING) {
3335 /* We want to quickly sample the PC. */
3336 retval = target_halt(target);
3337 if (retval != ERROR_OK) {
3338 free(samples);
3339 return retval;
3341 } else {
3342 command_print(CMD_CTX, "Target not halted or running");
3343 retval = ERROR_OK;
3344 break;
3346 if (retval != ERROR_OK)
3347 break;
3349 gettimeofday(&now, NULL);
3350 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec)
3351 && (now.tv_usec >= timeout.tv_usec))) {
3352 command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3353 retval = target_poll(target);
3354 if (retval != ERROR_OK) {
3355 free(samples);
3356 return retval;
3358 if (target->state == TARGET_HALTED) {
3359 /* current pc, addr = 0, do not handle
3360 * breakpoints, not debugging */
3361 target_resume(target, 1, 0, 0, 0);
3363 retval = target_poll(target);
3364 if (retval != ERROR_OK) {
3365 free(samples);
3366 return retval;
3368 writeGmon(samples, numSamples, CMD_ARGV[1]);
3369 command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3370 break;
3373 free(samples);
3375 return retval;
3378 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3380 char *namebuf;
3381 Jim_Obj *nameObjPtr, *valObjPtr;
3382 int result;
3384 namebuf = alloc_printf("%s(%d)", varname, idx);
3385 if (!namebuf)
3386 return JIM_ERR;
3388 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3389 valObjPtr = Jim_NewIntObj(interp, val);
3390 if (!nameObjPtr || !valObjPtr) {
3391 free(namebuf);
3392 return JIM_ERR;
3395 Jim_IncrRefCount(nameObjPtr);
3396 Jim_IncrRefCount(valObjPtr);
3397 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3398 Jim_DecrRefCount(interp, nameObjPtr);
3399 Jim_DecrRefCount(interp, valObjPtr);
3400 free(namebuf);
3401 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3402 return result;
3405 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3407 struct command_context *context;
3408 struct target *target;
3410 context = current_command_context(interp);
3411 assert(context != NULL);
3413 target = get_current_target(context);
3414 if (target == NULL) {
3415 LOG_ERROR("mem2array: no current target");
3416 return JIM_ERR;
3419 return target_mem2array(interp, target, argc - 1, argv + 1);
3422 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3424 long l;
3425 uint32_t width;
3426 int len;
3427 uint32_t addr;
3428 uint32_t count;
3429 uint32_t v;
3430 const char *varname;
3431 int n, e, retval;
3432 uint32_t i;
3434 /* argv[1] = name of array to receive the data
3435 * argv[2] = desired width
3436 * argv[3] = memory address
3437 * argv[4] = count of times to read
3439 if (argc != 4) {
3440 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3441 return JIM_ERR;
3443 varname = Jim_GetString(argv[0], &len);
3444 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3446 e = Jim_GetLong(interp, argv[1], &l);
3447 width = l;
3448 if (e != JIM_OK)
3449 return e;
3451 e = Jim_GetLong(interp, argv[2], &l);
3452 addr = l;
3453 if (e != JIM_OK)
3454 return e;
3455 e = Jim_GetLong(interp, argv[3], &l);
3456 len = l;
3457 if (e != JIM_OK)
3458 return e;
3459 switch (width) {
3460 case 8:
3461 width = 1;
3462 break;
3463 case 16:
3464 width = 2;
3465 break;
3466 case 32:
3467 width = 4;
3468 break;
3469 default:
3470 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3471 Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3472 return JIM_ERR;
3474 if (len == 0) {
3475 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3476 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3477 return JIM_ERR;
3479 if ((addr + (len * width)) < addr) {
3480 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3481 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3482 return JIM_ERR;
3484 /* absurd transfer size? */
3485 if (len > 65536) {
3486 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3487 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3488 return JIM_ERR;
3491 if ((width == 1) ||
3492 ((width == 2) && ((addr & 1) == 0)) ||
3493 ((width == 4) && ((addr & 3) == 0))) {
3494 /* all is well */
3495 } else {
3496 char buf[100];
3497 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3498 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3499 addr,
3500 width);
3501 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3502 return JIM_ERR;
3505 /* Transfer loop */
3507 /* index counter */
3508 n = 0;
3510 size_t buffersize = 4096;
3511 uint8_t *buffer = malloc(buffersize);
3512 if (buffer == NULL)
3513 return JIM_ERR;
3515 /* assume ok */
3516 e = JIM_OK;
3517 while (len) {
3518 /* Slurp... in buffer size chunks */
3520 count = len; /* in objects.. */
3521 if (count > (buffersize / width))
3522 count = (buffersize / width);
3524 retval = target_read_memory(target, addr, width, count, buffer);
3525 if (retval != ERROR_OK) {
3526 /* BOO !*/
3527 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3528 (unsigned int)addr,
3529 (int)width,
3530 (int)count);
3531 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3532 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3533 e = JIM_ERR;
3534 break;
3535 } else {
3536 v = 0; /* shut up gcc */
3537 for (i = 0; i < count ; i++, n++) {
3538 switch (width) {
3539 case 4:
3540 v = target_buffer_get_u32(target, &buffer[i*width]);
3541 break;
3542 case 2:
3543 v = target_buffer_get_u16(target, &buffer[i*width]);
3544 break;
3545 case 1:
3546 v = buffer[i] & 0x0ff;
3547 break;
3549 new_int_array_element(interp, varname, n, v);
3551 len -= count;
3555 free(buffer);
3557 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3559 return e;
3562 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3564 char *namebuf;
3565 Jim_Obj *nameObjPtr, *valObjPtr;
3566 int result;
3567 long l;
3569 namebuf = alloc_printf("%s(%d)", varname, idx);
3570 if (!namebuf)
3571 return JIM_ERR;
3573 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3574 if (!nameObjPtr) {
3575 free(namebuf);
3576 return JIM_ERR;
3579 Jim_IncrRefCount(nameObjPtr);
3580 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3581 Jim_DecrRefCount(interp, nameObjPtr);
3582 free(namebuf);
3583 if (valObjPtr == NULL)
3584 return JIM_ERR;
3586 result = Jim_GetLong(interp, valObjPtr, &l);
3587 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3588 *val = l;
3589 return result;
3592 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3594 struct command_context *context;
3595 struct target *target;
3597 context = current_command_context(interp);
3598 assert(context != NULL);
3600 target = get_current_target(context);
3601 if (target == NULL) {
3602 LOG_ERROR("array2mem: no current target");
3603 return JIM_ERR;
3606 return target_array2mem(interp, target, argc-1, argv + 1);
3609 static int target_array2mem(Jim_Interp *interp, struct target *target,
3610 int argc, Jim_Obj *const *argv)
3612 long l;
3613 uint32_t width;
3614 int len;
3615 uint32_t addr;
3616 uint32_t count;
3617 uint32_t v;
3618 const char *varname;
3619 int n, e, retval;
3620 uint32_t i;
3622 /* argv[1] = name of array to get the data
3623 * argv[2] = desired width
3624 * argv[3] = memory address
3625 * argv[4] = count to write
3627 if (argc != 4) {
3628 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3629 return JIM_ERR;
3631 varname = Jim_GetString(argv[0], &len);
3632 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3634 e = Jim_GetLong(interp, argv[1], &l);
3635 width = l;
3636 if (e != JIM_OK)
3637 return e;
3639 e = Jim_GetLong(interp, argv[2], &l);
3640 addr = l;
3641 if (e != JIM_OK)
3642 return e;
3643 e = Jim_GetLong(interp, argv[3], &l);
3644 len = l;
3645 if (e != JIM_OK)
3646 return e;
3647 switch (width) {
3648 case 8:
3649 width = 1;
3650 break;
3651 case 16:
3652 width = 2;
3653 break;
3654 case 32:
3655 width = 4;
3656 break;
3657 default:
3658 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3659 Jim_AppendStrings(interp, Jim_GetResult(interp),
3660 "Invalid width param, must be 8/16/32", NULL);
3661 return JIM_ERR;
3663 if (len == 0) {
3664 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3665 Jim_AppendStrings(interp, Jim_GetResult(interp),
3666 "array2mem: zero width read?", NULL);
3667 return JIM_ERR;
3669 if ((addr + (len * width)) < addr) {
3670 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3671 Jim_AppendStrings(interp, Jim_GetResult(interp),
3672 "array2mem: addr + len - wraps to zero?", NULL);
3673 return JIM_ERR;
3675 /* absurd transfer size? */
3676 if (len > 65536) {
3677 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3678 Jim_AppendStrings(interp, Jim_GetResult(interp),
3679 "array2mem: absurd > 64K item request", NULL);
3680 return JIM_ERR;
3683 if ((width == 1) ||
3684 ((width == 2) && ((addr & 1) == 0)) ||
3685 ((width == 4) && ((addr & 3) == 0))) {
3686 /* all is well */
3687 } else {
3688 char buf[100];
3689 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3690 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3691 (unsigned int)addr,
3692 (int)width);
3693 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3694 return JIM_ERR;
3697 /* Transfer loop */
3699 /* index counter */
3700 n = 0;
3701 /* assume ok */
3702 e = JIM_OK;
3704 size_t buffersize = 4096;
3705 uint8_t *buffer = malloc(buffersize);
3706 if (buffer == NULL)
3707 return JIM_ERR;
3709 while (len) {
3710 /* Slurp... in buffer size chunks */
3712 count = len; /* in objects.. */
3713 if (count > (buffersize / width))
3714 count = (buffersize / width);
3716 v = 0; /* shut up gcc */
3717 for (i = 0; i < count; i++, n++) {
3718 get_int_array_element(interp, varname, n, &v);
3719 switch (width) {
3720 case 4:
3721 target_buffer_set_u32(target, &buffer[i * width], v);
3722 break;
3723 case 2:
3724 target_buffer_set_u16(target, &buffer[i * width], v);
3725 break;
3726 case 1:
3727 buffer[i] = v & 0x0ff;
3728 break;
3731 len -= count;
3733 retval = target_write_memory(target, addr, width, count, buffer);
3734 if (retval != ERROR_OK) {
3735 /* BOO !*/
3736 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3737 (unsigned int)addr,
3738 (int)width,
3739 (int)count);
3740 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3741 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3742 e = JIM_ERR;
3743 break;
3747 free(buffer);
3749 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3751 return e;
3754 /* FIX? should we propagate errors here rather than printing them
3755 * and continuing?
3757 void target_handle_event(struct target *target, enum target_event e)
3759 struct target_event_action *teap;
3761 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3762 if (teap->event == e) {
3763 LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3764 target->target_number,
3765 target_name(target),
3766 target_type_name(target),
3768 Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3769 Jim_GetString(teap->body, NULL));
3770 if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
3771 Jim_MakeErrorMessage(teap->interp);
3772 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3779 * Returns true only if the target has a handler for the specified event.
3781 bool target_has_event_action(struct target *target, enum target_event event)
3783 struct target_event_action *teap;
3785 for (teap = target->event_action; teap != NULL; teap = teap->next) {
3786 if (teap->event == event)
3787 return true;
3789 return false;
3792 enum target_cfg_param {
3793 TCFG_TYPE,
3794 TCFG_EVENT,
3795 TCFG_WORK_AREA_VIRT,
3796 TCFG_WORK_AREA_PHYS,
3797 TCFG_WORK_AREA_SIZE,
3798 TCFG_WORK_AREA_BACKUP,
3799 TCFG_ENDIAN,
3800 TCFG_VARIANT,
3801 TCFG_COREID,
3802 TCFG_CHAIN_POSITION,
3803 TCFG_DBGBASE,
3804 TCFG_RTOS,
3807 static Jim_Nvp nvp_config_opts[] = {
3808 { .name = "-type", .value = TCFG_TYPE },
3809 { .name = "-event", .value = TCFG_EVENT },
3810 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
3811 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
3812 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
3813 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3814 { .name = "-endian" , .value = TCFG_ENDIAN },
3815 { .name = "-variant", .value = TCFG_VARIANT },
3816 { .name = "-coreid", .value = TCFG_COREID },
3817 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
3818 { .name = "-dbgbase", .value = TCFG_DBGBASE },
3819 { .name = "-rtos", .value = TCFG_RTOS },
3820 { .name = NULL, .value = -1 }
3823 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3825 Jim_Nvp *n;
3826 Jim_Obj *o;
3827 jim_wide w;
3828 char *cp;
3829 int e;
3831 /* parse config or cget options ... */
3832 while (goi->argc > 0) {
3833 Jim_SetEmptyResult(goi->interp);
3834 /* Jim_GetOpt_Debug(goi); */
3836 if (target->type->target_jim_configure) {
3837 /* target defines a configure function */
3838 /* target gets first dibs on parameters */
3839 e = (*(target->type->target_jim_configure))(target, goi);
3840 if (e == JIM_OK) {
3841 /* more? */
3842 continue;
3844 if (e == JIM_ERR) {
3845 /* An error */
3846 return e;
3848 /* otherwise we 'continue' below */
3850 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3851 if (e != JIM_OK) {
3852 Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3853 return e;
3855 switch (n->value) {
3856 case TCFG_TYPE:
3857 /* not setable */
3858 if (goi->isconfigure) {
3859 Jim_SetResultFormatted(goi->interp,
3860 "not settable: %s", n->name);
3861 return JIM_ERR;
3862 } else {
3863 no_params:
3864 if (goi->argc != 0) {
3865 Jim_WrongNumArgs(goi->interp,
3866 goi->argc, goi->argv,
3867 "NO PARAMS");
3868 return JIM_ERR;
3871 Jim_SetResultString(goi->interp,
3872 target_type_name(target), -1);
3873 /* loop for more */
3874 break;
3875 case TCFG_EVENT:
3876 if (goi->argc == 0) {
3877 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3878 return JIM_ERR;
3881 e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3882 if (e != JIM_OK) {
3883 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3884 return e;
3887 if (goi->isconfigure) {
3888 if (goi->argc != 1) {
3889 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3890 return JIM_ERR;
3892 } else {
3893 if (goi->argc != 0) {
3894 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3895 return JIM_ERR;
3900 struct target_event_action *teap;
3902 teap = target->event_action;
3903 /* replace existing? */
3904 while (teap) {
3905 if (teap->event == (enum target_event)n->value)
3906 break;
3907 teap = teap->next;
3910 if (goi->isconfigure) {
3911 bool replace = true;
3912 if (teap == NULL) {
3913 /* create new */
3914 teap = calloc(1, sizeof(*teap));
3915 replace = false;
3917 teap->event = n->value;
3918 teap->interp = goi->interp;
3919 Jim_GetOpt_Obj(goi, &o);
3920 if (teap->body)
3921 Jim_DecrRefCount(teap->interp, teap->body);
3922 teap->body = Jim_DuplicateObj(goi->interp, o);
3924 * FIXME:
3925 * Tcl/TK - "tk events" have a nice feature.
3926 * See the "BIND" command.
3927 * We should support that here.
3928 * You can specify %X and %Y in the event code.
3929 * The idea is: %T - target name.
3930 * The idea is: %N - target number
3931 * The idea is: %E - event name.
3933 Jim_IncrRefCount(teap->body);
3935 if (!replace) {
3936 /* add to head of event list */
3937 teap->next = target->event_action;
3938 target->event_action = teap;
3940 Jim_SetEmptyResult(goi->interp);
3941 } else {
3942 /* get */
3943 if (teap == NULL)
3944 Jim_SetEmptyResult(goi->interp);
3945 else
3946 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3949 /* loop for more */
3950 break;
3952 case TCFG_WORK_AREA_VIRT:
3953 if (goi->isconfigure) {
3954 target_free_all_working_areas(target);
3955 e = Jim_GetOpt_Wide(goi, &w);
3956 if (e != JIM_OK)
3957 return e;
3958 target->working_area_virt = w;
3959 target->working_area_virt_spec = true;
3960 } else {
3961 if (goi->argc != 0)
3962 goto no_params;
3964 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3965 /* loop for more */
3966 break;
3968 case TCFG_WORK_AREA_PHYS:
3969 if (goi->isconfigure) {
3970 target_free_all_working_areas(target);
3971 e = Jim_GetOpt_Wide(goi, &w);
3972 if (e != JIM_OK)
3973 return e;
3974 target->working_area_phys = w;
3975 target->working_area_phys_spec = true;
3976 } else {
3977 if (goi->argc != 0)
3978 goto no_params;
3980 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3981 /* loop for more */
3982 break;
3984 case TCFG_WORK_AREA_SIZE:
3985 if (goi->isconfigure) {
3986 target_free_all_working_areas(target);
3987 e = Jim_GetOpt_Wide(goi, &w);
3988 if (e != JIM_OK)
3989 return e;
3990 target->working_area_size = w;
3991 } else {
3992 if (goi->argc != 0)
3993 goto no_params;
3995 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3996 /* loop for more */
3997 break;
3999 case TCFG_WORK_AREA_BACKUP:
4000 if (goi->isconfigure) {
4001 target_free_all_working_areas(target);
4002 e = Jim_GetOpt_Wide(goi, &w);
4003 if (e != JIM_OK)
4004 return e;
4005 /* make this exactly 1 or 0 */
4006 target->backup_working_area = (!!w);
4007 } else {
4008 if (goi->argc != 0)
4009 goto no_params;
4011 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4012 /* loop for more e*/
4013 break;
4016 case TCFG_ENDIAN:
4017 if (goi->isconfigure) {
4018 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4019 if (e != JIM_OK) {
4020 Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4021 return e;
4023 target->endianness = n->value;
4024 } else {
4025 if (goi->argc != 0)
4026 goto no_params;
4028 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4029 if (n->name == NULL) {
4030 target->endianness = TARGET_LITTLE_ENDIAN;
4031 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4033 Jim_SetResultString(goi->interp, n->name, -1);
4034 /* loop for more */
4035 break;
4037 case TCFG_VARIANT:
4038 if (goi->isconfigure) {
4039 if (goi->argc < 1) {
4040 Jim_SetResultFormatted(goi->interp,
4041 "%s ?STRING?",
4042 n->name);
4043 return JIM_ERR;
4045 if (target->variant)
4046 free((void *)(target->variant));
4047 e = Jim_GetOpt_String(goi, &cp, NULL);
4048 if (e != JIM_OK)
4049 return e;
4050 target->variant = strdup(cp);
4051 } else {
4052 if (goi->argc != 0)
4053 goto no_params;
4055 Jim_SetResultString(goi->interp, target->variant, -1);
4056 /* loop for more */
4057 break;
4059 case TCFG_COREID:
4060 if (goi->isconfigure) {
4061 e = Jim_GetOpt_Wide(goi, &w);
4062 if (e != JIM_OK)
4063 return e;
4064 target->coreid = (int32_t)w;
4065 } else {
4066 if (goi->argc != 0)
4067 goto no_params;
4069 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4070 /* loop for more */
4071 break;
4073 case TCFG_CHAIN_POSITION:
4074 if (goi->isconfigure) {
4075 Jim_Obj *o_t;
4076 struct jtag_tap *tap;
4077 target_free_all_working_areas(target);
4078 e = Jim_GetOpt_Obj(goi, &o_t);
4079 if (e != JIM_OK)
4080 return e;
4081 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4082 if (tap == NULL)
4083 return JIM_ERR;
4084 /* make this exactly 1 or 0 */
4085 target->tap = tap;
4086 } else {
4087 if (goi->argc != 0)
4088 goto no_params;
4090 Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4091 /* loop for more e*/
4092 break;
4093 case TCFG_DBGBASE:
4094 if (goi->isconfigure) {
4095 e = Jim_GetOpt_Wide(goi, &w);
4096 if (e != JIM_OK)
4097 return e;
4098 target->dbgbase = (uint32_t)w;
4099 target->dbgbase_set = true;
4100 } else {
4101 if (goi->argc != 0)
4102 goto no_params;
4104 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4105 /* loop for more */
4106 break;
4108 case TCFG_RTOS:
4109 /* RTOS */
4111 int result = rtos_create(goi, target);
4112 if (result != JIM_OK)
4113 return result;
4115 /* loop for more */
4116 break;
4118 } /* while (goi->argc) */
4121 /* done - we return */
4122 return JIM_OK;
4125 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4127 Jim_GetOptInfo goi;
4129 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4130 goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4131 int need_args = 1 + goi.isconfigure;
4132 if (goi.argc < need_args) {
4133 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4134 goi.isconfigure
4135 ? "missing: -option VALUE ..."
4136 : "missing: -option ...");
4137 return JIM_ERR;
4139 struct target *target = Jim_CmdPrivData(goi.interp);
4140 return target_configure(&goi, target);
4143 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4145 const char *cmd_name = Jim_GetString(argv[0], NULL);
4147 Jim_GetOptInfo goi;
4148 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4150 if (goi.argc < 2 || goi.argc > 4) {
4151 Jim_SetResultFormatted(goi.interp,
4152 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4153 return JIM_ERR;
4156 target_write_fn fn;
4157 fn = target_write_memory_fast;
4159 int e;
4160 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4161 /* consume it */
4162 struct Jim_Obj *obj;
4163 e = Jim_GetOpt_Obj(&goi, &obj);
4164 if (e != JIM_OK)
4165 return e;
4167 fn = target_write_phys_memory;
4170 jim_wide a;
4171 e = Jim_GetOpt_Wide(&goi, &a);
4172 if (e != JIM_OK)
4173 return e;
4175 jim_wide b;
4176 e = Jim_GetOpt_Wide(&goi, &b);
4177 if (e != JIM_OK)
4178 return e;
4180 jim_wide c = 1;
4181 if (goi.argc == 1) {
4182 e = Jim_GetOpt_Wide(&goi, &c);
4183 if (e != JIM_OK)
4184 return e;
4187 /* all args must be consumed */
4188 if (goi.argc != 0)
4189 return JIM_ERR;
4191 struct target *target = Jim_CmdPrivData(goi.interp);
4192 unsigned data_size;
4193 if (strcasecmp(cmd_name, "mww") == 0)
4194 data_size = 4;
4195 else if (strcasecmp(cmd_name, "mwh") == 0)
4196 data_size = 2;
4197 else if (strcasecmp(cmd_name, "mwb") == 0)
4198 data_size = 1;
4199 else {
4200 LOG_ERROR("command '%s' unknown: ", cmd_name);
4201 return JIM_ERR;
4204 return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4207 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4209 const char *cmd_name = Jim_GetString(argv[0], NULL);
4211 Jim_GetOptInfo goi;
4212 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4214 if ((goi.argc < 1) || (goi.argc > 3)) {
4215 Jim_SetResultFormatted(goi.interp,
4216 "usage: %s [phys] <address> [<count>]", cmd_name);
4217 return JIM_ERR;
4220 int (*fn)(struct target *target,
4221 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4222 fn = target_read_memory;
4224 int e;
4225 if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4226 /* consume it */
4227 struct Jim_Obj *obj;
4228 e = Jim_GetOpt_Obj(&goi, &obj);
4229 if (e != JIM_OK)
4230 return e;
4232 fn = target_read_phys_memory;
4235 jim_wide a;
4236 e = Jim_GetOpt_Wide(&goi, &a);
4237 if (e != JIM_OK)
4238 return JIM_ERR;
4239 jim_wide c;
4240 if (goi.argc == 1) {
4241 e = Jim_GetOpt_Wide(&goi, &c);
4242 if (e != JIM_OK)
4243 return JIM_ERR;
4244 } else
4245 c = 1;
4247 /* all args must be consumed */
4248 if (goi.argc != 0)
4249 return JIM_ERR;
4251 jim_wide b = 1; /* shut up gcc */
4252 if (strcasecmp(cmd_name, "mdw") == 0)
4253 b = 4;
4254 else if (strcasecmp(cmd_name, "mdh") == 0)
4255 b = 2;
4256 else if (strcasecmp(cmd_name, "mdb") == 0)
4257 b = 1;
4258 else {
4259 LOG_ERROR("command '%s' unknown: ", cmd_name);
4260 return JIM_ERR;
4263 /* convert count to "bytes" */
4264 c = c * b;
4266 struct target *target = Jim_CmdPrivData(goi.interp);
4267 uint8_t target_buf[32];
4268 jim_wide x, y, z;
4269 while (c > 0) {
4270 y = c;
4271 if (y > 16)
4272 y = 16;
4273 e = fn(target, a, b, y / b, target_buf);
4274 if (e != ERROR_OK) {
4275 char tmp[10];
4276 snprintf(tmp, sizeof(tmp), "%08lx", (long)a);
4277 Jim_SetResultFormatted(interp, "error reading target @ 0x%s", tmp);
4278 return JIM_ERR;
4281 command_print(NULL, "0x%08x ", (int)(a));
4282 switch (b) {
4283 case 4:
4284 for (x = 0; x < 16 && x < y; x += 4) {
4285 z = target_buffer_get_u32(target, &(target_buf[x]));
4286 command_print(NULL, "%08x ", (int)(z));
4288 for (; (x < 16) ; x += 4)
4289 command_print(NULL, " ");
4290 break;
4291 case 2:
4292 for (x = 0; x < 16 && x < y; x += 2) {
4293 z = target_buffer_get_u16(target, &(target_buf[x]));
4294 command_print(NULL, "%04x ", (int)(z));
4296 for (; (x < 16) ; x += 2)
4297 command_print(NULL, " ");
4298 break;
4299 case 1:
4300 default:
4301 for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4302 z = target_buffer_get_u8(target, &(target_buf[x]));
4303 command_print(NULL, "%02x ", (int)(z));
4305 for (; (x < 16) ; x += 1)
4306 command_print(NULL, " ");
4307 break;
4309 /* ascii-ify the bytes */
4310 for (x = 0 ; x < y ; x++) {
4311 if ((target_buf[x] >= 0x20) &&
4312 (target_buf[x] <= 0x7e)) {
4313 /* good */
4314 } else {
4315 /* smack it */
4316 target_buf[x] = '.';
4319 /* space pad */
4320 while (x < 16) {
4321 target_buf[x] = ' ';
4322 x++;
4324 /* terminate */
4325 target_buf[16] = 0;
4326 /* print - with a newline */
4327 command_print(NULL, "%s\n", target_buf);
4328 /* NEXT... */
4329 c -= 16;
4330 a += 16;
4332 return JIM_OK;
4335 static int jim_target_mem2array(Jim_Interp *interp,
4336 int argc, Jim_Obj *const *argv)
4338 struct target *target = Jim_CmdPrivData(interp);
4339 return target_mem2array(interp, target, argc - 1, argv + 1);
4342 static int jim_target_array2mem(Jim_Interp *interp,
4343 int argc, Jim_Obj *const *argv)
4345 struct target *target = Jim_CmdPrivData(interp);
4346 return target_array2mem(interp, target, argc - 1, argv + 1);
4349 static int jim_target_tap_disabled(Jim_Interp *interp)
4351 Jim_SetResultFormatted(interp, "[TAP is disabled]");
4352 return JIM_ERR;
4355 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4357 if (argc != 1) {
4358 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4359 return JIM_ERR;
4361 struct target *target = Jim_CmdPrivData(interp);
4362 if (!target->tap->enabled)
4363 return jim_target_tap_disabled(interp);
4365 int e = target->type->examine(target);
4366 if (e != ERROR_OK)
4367 return JIM_ERR;
4368 return JIM_OK;
4371 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4373 if (argc != 1) {
4374 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4375 return JIM_ERR;
4377 struct target *target = Jim_CmdPrivData(interp);
4379 if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4380 return JIM_ERR;
4382 return JIM_OK;
4385 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4387 if (argc != 1) {
4388 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4389 return JIM_ERR;
4391 struct target *target = Jim_CmdPrivData(interp);
4392 if (!target->tap->enabled)
4393 return jim_target_tap_disabled(interp);
4395 int e;
4396 if (!(target_was_examined(target)))
4397 e = ERROR_TARGET_NOT_EXAMINED;
4398 else
4399 e = target->type->poll(target);
4400 if (e != ERROR_OK)
4401 return JIM_ERR;
4402 return JIM_OK;
4405 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4407 Jim_GetOptInfo goi;
4408 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4410 if (goi.argc != 2) {
4411 Jim_WrongNumArgs(interp, 0, argv,
4412 "([tT]|[fF]|assert|deassert) BOOL");
4413 return JIM_ERR;
4416 Jim_Nvp *n;
4417 int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4418 if (e != JIM_OK) {
4419 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4420 return e;
4422 /* the halt or not param */
4423 jim_wide a;
4424 e = Jim_GetOpt_Wide(&goi, &a);
4425 if (e != JIM_OK)
4426 return e;
4428 struct target *target = Jim_CmdPrivData(goi.interp);
4429 if (!target->tap->enabled)
4430 return jim_target_tap_disabled(interp);
4431 if (!(target_was_examined(target))) {
4432 LOG_ERROR("Target not examined yet");
4433 return ERROR_TARGET_NOT_EXAMINED;
4435 if (!target->type->assert_reset || !target->type->deassert_reset) {
4436 Jim_SetResultFormatted(interp,
4437 "No target-specific reset for %s",
4438 target_name(target));
4439 return JIM_ERR;
4441 /* determine if we should halt or not. */
4442 target->reset_halt = !!a;
4443 /* When this happens - all workareas are invalid. */
4444 target_free_all_working_areas_restore(target, 0);
4446 /* do the assert */
4447 if (n->value == NVP_ASSERT)
4448 e = target->type->assert_reset(target);
4449 else
4450 e = target->type->deassert_reset(target);
4451 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4454 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4456 if (argc != 1) {
4457 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4458 return JIM_ERR;
4460 struct target *target = Jim_CmdPrivData(interp);
4461 if (!target->tap->enabled)
4462 return jim_target_tap_disabled(interp);
4463 int e = target->type->halt(target);
4464 return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4467 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4469 Jim_GetOptInfo goi;
4470 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4472 /* params: <name> statename timeoutmsecs */
4473 if (goi.argc != 2) {
4474 const char *cmd_name = Jim_GetString(argv[0], NULL);
4475 Jim_SetResultFormatted(goi.interp,
4476 "%s <state_name> <timeout_in_msec>", cmd_name);
4477 return JIM_ERR;
4480 Jim_Nvp *n;
4481 int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4482 if (e != JIM_OK) {
4483 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4484 return e;
4486 jim_wide a;
4487 e = Jim_GetOpt_Wide(&goi, &a);
4488 if (e != JIM_OK)
4489 return e;
4490 struct target *target = Jim_CmdPrivData(interp);
4491 if (!target->tap->enabled)
4492 return jim_target_tap_disabled(interp);
4494 e = target_wait_state(target, n->value, a);
4495 if (e != ERROR_OK) {
4496 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4497 Jim_SetResultFormatted(goi.interp,
4498 "target: %s wait %s fails (%#s) %s",
4499 target_name(target), n->name,
4500 eObj, target_strerror_safe(e));
4501 Jim_FreeNewObj(interp, eObj);
4502 return JIM_ERR;
4504 return JIM_OK;
4506 /* List for human, Events defined for this target.
4507 * scripts/programs should use 'name cget -event NAME'
4509 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4511 struct command_context *cmd_ctx = current_command_context(interp);
4512 assert(cmd_ctx != NULL);
4514 struct target *target = Jim_CmdPrivData(interp);
4515 struct target_event_action *teap = target->event_action;
4516 command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4517 target->target_number,
4518 target_name(target));
4519 command_print(cmd_ctx, "%-25s | Body", "Event");
4520 command_print(cmd_ctx, "------------------------- | "
4521 "----------------------------------------");
4522 while (teap) {
4523 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4524 command_print(cmd_ctx, "%-25s | %s",
4525 opt->name, Jim_GetString(teap->body, NULL));
4526 teap = teap->next;
4528 command_print(cmd_ctx, "***END***");
4529 return JIM_OK;
4531 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4533 if (argc != 1) {
4534 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4535 return JIM_ERR;
4537 struct target *target = Jim_CmdPrivData(interp);
4538 Jim_SetResultString(interp, target_state_name(target), -1);
4539 return JIM_OK;
4541 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4543 Jim_GetOptInfo goi;
4544 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4545 if (goi.argc != 1) {
4546 const char *cmd_name = Jim_GetString(argv[0], NULL);
4547 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4548 return JIM_ERR;
4550 Jim_Nvp *n;
4551 int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4552 if (e != JIM_OK) {
4553 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4554 return e;
4556 struct target *target = Jim_CmdPrivData(interp);
4557 target_handle_event(target, n->value);
4558 return JIM_OK;
4561 static const struct command_registration target_instance_command_handlers[] = {
4563 .name = "configure",
4564 .mode = COMMAND_CONFIG,
4565 .jim_handler = jim_target_configure,
4566 .help = "configure a new target for use",
4567 .usage = "[target_attribute ...]",
4570 .name = "cget",
4571 .mode = COMMAND_ANY,
4572 .jim_handler = jim_target_configure,
4573 .help = "returns the specified target attribute",
4574 .usage = "target_attribute",
4577 .name = "mww",
4578 .mode = COMMAND_EXEC,
4579 .jim_handler = jim_target_mw,
4580 .help = "Write 32-bit word(s) to target memory",
4581 .usage = "address data [count]",
4584 .name = "mwh",
4585 .mode = COMMAND_EXEC,
4586 .jim_handler = jim_target_mw,
4587 .help = "Write 16-bit half-word(s) to target memory",
4588 .usage = "address data [count]",
4591 .name = "mwb",
4592 .mode = COMMAND_EXEC,
4593 .jim_handler = jim_target_mw,
4594 .help = "Write byte(s) to target memory",
4595 .usage = "address data [count]",
4598 .name = "mdw",
4599 .mode = COMMAND_EXEC,
4600 .jim_handler = jim_target_md,
4601 .help = "Display target memory as 32-bit words",
4602 .usage = "address [count]",
4605 .name = "mdh",
4606 .mode = COMMAND_EXEC,
4607 .jim_handler = jim_target_md,
4608 .help = "Display target memory as 16-bit half-words",
4609 .usage = "address [count]",
4612 .name = "mdb",
4613 .mode = COMMAND_EXEC,
4614 .jim_handler = jim_target_md,
4615 .help = "Display target memory as 8-bit bytes",
4616 .usage = "address [count]",
4619 .name = "array2mem",
4620 .mode = COMMAND_EXEC,
4621 .jim_handler = jim_target_array2mem,
4622 .help = "Writes Tcl array of 8/16/32 bit numbers "
4623 "to target memory",
4624 .usage = "arrayname bitwidth address count",
4627 .name = "mem2array",
4628 .mode = COMMAND_EXEC,
4629 .jim_handler = jim_target_mem2array,
4630 .help = "Loads Tcl array of 8/16/32 bit numbers "
4631 "from target memory",
4632 .usage = "arrayname bitwidth address count",
4635 .name = "eventlist",
4636 .mode = COMMAND_EXEC,
4637 .jim_handler = jim_target_event_list,
4638 .help = "displays a table of events defined for this target",
4641 .name = "curstate",
4642 .mode = COMMAND_EXEC,
4643 .jim_handler = jim_target_current_state,
4644 .help = "displays the current state of this target",
4647 .name = "arp_examine",
4648 .mode = COMMAND_EXEC,
4649 .jim_handler = jim_target_examine,
4650 .help = "used internally for reset processing",
4653 .name = "arp_halt_gdb",
4654 .mode = COMMAND_EXEC,
4655 .jim_handler = jim_target_halt_gdb,
4656 .help = "used internally for reset processing to halt GDB",
4659 .name = "arp_poll",
4660 .mode = COMMAND_EXEC,
4661 .jim_handler = jim_target_poll,
4662 .help = "used internally for reset processing",
4665 .name = "arp_reset",
4666 .mode = COMMAND_EXEC,
4667 .jim_handler = jim_target_reset,
4668 .help = "used internally for reset processing",
4671 .name = "arp_halt",
4672 .mode = COMMAND_EXEC,
4673 .jim_handler = jim_target_halt,
4674 .help = "used internally for reset processing",
4677 .name = "arp_waitstate",
4678 .mode = COMMAND_EXEC,
4679 .jim_handler = jim_target_wait_state,
4680 .help = "used internally for reset processing",
4683 .name = "invoke-event",
4684 .mode = COMMAND_EXEC,
4685 .jim_handler = jim_target_invoke_event,
4686 .help = "invoke handler for specified event",
4687 .usage = "event_name",
4689 COMMAND_REGISTRATION_DONE
4692 static int target_create(Jim_GetOptInfo *goi)
4694 Jim_Obj *new_cmd;
4695 Jim_Cmd *cmd;
4696 const char *cp;
4697 char *cp2;
4698 int e;
4699 int x;
4700 struct target *target;
4701 struct command_context *cmd_ctx;
4703 cmd_ctx = current_command_context(goi->interp);
4704 assert(cmd_ctx != NULL);
4706 if (goi->argc < 3) {
4707 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4708 return JIM_ERR;
4711 /* COMMAND */
4712 Jim_GetOpt_Obj(goi, &new_cmd);
4713 /* does this command exist? */
4714 cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4715 if (cmd) {
4716 cp = Jim_GetString(new_cmd, NULL);
4717 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4718 return JIM_ERR;
4721 /* TYPE */
4722 e = Jim_GetOpt_String(goi, &cp2, NULL);
4723 if (e != JIM_OK)
4724 return e;
4725 cp = cp2;
4726 /* now does target type exist */
4727 for (x = 0 ; target_types[x] ; x++) {
4728 if (0 == strcmp(cp, target_types[x]->name)) {
4729 /* found */
4730 break;
4733 if (target_types[x] == NULL) {
4734 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4735 for (x = 0 ; target_types[x] ; x++) {
4736 if (target_types[x + 1]) {
4737 Jim_AppendStrings(goi->interp,
4738 Jim_GetResult(goi->interp),
4739 target_types[x]->name,
4740 ", ", NULL);
4741 } else {
4742 Jim_AppendStrings(goi->interp,
4743 Jim_GetResult(goi->interp),
4744 " or ",
4745 target_types[x]->name, NULL);
4748 return JIM_ERR;
4751 /* Create it */
4752 target = calloc(1, sizeof(struct target));
4753 /* set target number */
4754 target->target_number = new_target_number();
4756 /* allocate memory for each unique target type */
4757 target->type = (struct target_type *)calloc(1, sizeof(struct target_type));
4759 memcpy(target->type, target_types[x], sizeof(struct target_type));
4761 /* will be set by "-endian" */
4762 target->endianness = TARGET_ENDIAN_UNKNOWN;
4764 /* default to first core, override with -coreid */
4765 target->coreid = 0;
4767 target->working_area = 0x0;
4768 target->working_area_size = 0x0;
4769 target->working_areas = NULL;
4770 target->backup_working_area = 0;
4772 target->state = TARGET_UNKNOWN;
4773 target->debug_reason = DBG_REASON_UNDEFINED;
4774 target->reg_cache = NULL;
4775 target->breakpoints = NULL;
4776 target->watchpoints = NULL;
4777 target->next = NULL;
4778 target->arch_info = NULL;
4780 target->display = 1;
4782 target->halt_issued = false;
4784 /* initialize trace information */
4785 target->trace_info = malloc(sizeof(struct trace));
4786 target->trace_info->num_trace_points = 0;
4787 target->trace_info->trace_points_size = 0;
4788 target->trace_info->trace_points = NULL;
4789 target->trace_info->trace_history_size = 0;
4790 target->trace_info->trace_history = NULL;
4791 target->trace_info->trace_history_pos = 0;
4792 target->trace_info->trace_history_overflowed = 0;
4794 target->dbgmsg = NULL;
4795 target->dbg_msg_enabled = 0;
4797 target->endianness = TARGET_ENDIAN_UNKNOWN;
4799 target->rtos = NULL;
4800 target->rtos_auto_detect = false;
4802 /* Do the rest as "configure" options */
4803 goi->isconfigure = 1;
4804 e = target_configure(goi, target);
4806 if (target->tap == NULL) {
4807 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4808 e = JIM_ERR;
4811 if (e != JIM_OK) {
4812 free(target->type);
4813 free(target);
4814 return e;
4817 if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4818 /* default endian to little if not specified */
4819 target->endianness = TARGET_LITTLE_ENDIAN;
4822 /* incase variant is not set */
4823 if (!target->variant)
4824 target->variant = strdup("");
4826 cp = Jim_GetString(new_cmd, NULL);
4827 target->cmd_name = strdup(cp);
4829 /* create the target specific commands */
4830 if (target->type->commands) {
4831 e = register_commands(cmd_ctx, NULL, target->type->commands);
4832 if (ERROR_OK != e)
4833 LOG_ERROR("unable to register '%s' commands", cp);
4835 if (target->type->target_create)
4836 (*(target->type->target_create))(target, goi->interp);
4838 /* append to end of list */
4840 struct target **tpp;
4841 tpp = &(all_targets);
4842 while (*tpp)
4843 tpp = &((*tpp)->next);
4844 *tpp = target;
4847 /* now - create the new target name command */
4848 const const struct command_registration target_subcommands[] = {
4850 .chain = target_instance_command_handlers,
4853 .chain = target->type->commands,
4855 COMMAND_REGISTRATION_DONE
4857 const const struct command_registration target_commands[] = {
4859 .name = cp,
4860 .mode = COMMAND_ANY,
4861 .help = "target command group",
4862 .usage = "",
4863 .chain = target_subcommands,
4865 COMMAND_REGISTRATION_DONE
4867 e = register_commands(cmd_ctx, NULL, target_commands);
4868 if (ERROR_OK != e)
4869 return JIM_ERR;
4871 struct command *c = command_find_in_context(cmd_ctx, cp);
4872 assert(c);
4873 command_set_handler_data(c, target);
4875 return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4878 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4880 if (argc != 1) {
4881 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4882 return JIM_ERR;
4884 struct command_context *cmd_ctx = current_command_context(interp);
4885 assert(cmd_ctx != NULL);
4887 Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4888 return JIM_OK;
4891 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4893 if (argc != 1) {
4894 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4895 return JIM_ERR;
4897 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4898 for (unsigned x = 0; NULL != target_types[x]; x++) {
4899 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4900 Jim_NewStringObj(interp, target_types[x]->name, -1));
4902 return JIM_OK;
4905 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4907 if (argc != 1) {
4908 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4909 return JIM_ERR;
4911 Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4912 struct target *target = all_targets;
4913 while (target) {
4914 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4915 Jim_NewStringObj(interp, target_name(target), -1));
4916 target = target->next;
4918 return JIM_OK;
4921 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4923 int i;
4924 const char *targetname;
4925 int retval, len;
4926 struct target *target = (struct target *) NULL;
4927 struct target_list *head, *curr, *new;
4928 curr = (struct target_list *) NULL;
4929 head = (struct target_list *) NULL;
4930 new = (struct target_list *) NULL;
4932 retval = 0;
4933 LOG_DEBUG("%d", argc);
4934 /* argv[1] = target to associate in smp
4935 * argv[2] = target to assoicate in smp
4936 * argv[3] ...
4939 for (i = 1; i < argc; i++) {
4941 targetname = Jim_GetString(argv[i], &len);
4942 target = get_target(targetname);
4943 LOG_DEBUG("%s ", targetname);
4944 if (target) {
4945 new = malloc(sizeof(struct target_list));
4946 new->target = target;
4947 new->next = (struct target_list *)NULL;
4948 if (head == (struct target_list *)NULL) {
4949 head = new;
4950 curr = head;
4951 } else {
4952 curr->next = new;
4953 curr = new;
4957 /* now parse the list of cpu and put the target in smp mode*/
4958 curr = head;
4960 while (curr != (struct target_list *)NULL) {
4961 target = curr->target;
4962 target->smp = 1;
4963 target->head = head;
4964 curr = curr->next;
4966 if (target->rtos)
4967 retval = rtos_smp_init(head->target);
4968 return retval;
4972 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4974 Jim_GetOptInfo goi;
4975 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4976 if (goi.argc < 3) {
4977 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4978 "<name> <target_type> [<target_options> ...]");
4979 return JIM_ERR;
4981 return target_create(&goi);
4984 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4986 Jim_GetOptInfo goi;
4987 Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4989 /* It's OK to remove this mechanism sometime after August 2010 or so */
4990 LOG_WARNING("don't use numbers as target identifiers; use names");
4991 if (goi.argc != 1) {
4992 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
4993 return JIM_ERR;
4995 jim_wide w;
4996 int e = Jim_GetOpt_Wide(&goi, &w);
4997 if (e != JIM_OK)
4998 return JIM_ERR;
5000 struct target *target;
5001 for (target = all_targets; NULL != target; target = target->next) {
5002 if (target->target_number != w)
5003 continue;
5005 Jim_SetResultString(goi.interp, target_name(target), -1);
5006 return JIM_OK;
5009 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5010 Jim_SetResultFormatted(goi.interp,
5011 "Target: number %#s does not exist", wObj);
5012 Jim_FreeNewObj(interp, wObj);
5014 return JIM_ERR;
5017 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5019 if (argc != 1) {
5020 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5021 return JIM_ERR;
5023 unsigned count = 0;
5024 struct target *target = all_targets;
5025 while (NULL != target) {
5026 target = target->next;
5027 count++;
5029 Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5030 return JIM_OK;
5033 static const struct command_registration target_subcommand_handlers[] = {
5035 .name = "init",
5036 .mode = COMMAND_CONFIG,
5037 .handler = handle_target_init_command,
5038 .help = "initialize targets",
5041 .name = "create",
5042 /* REVISIT this should be COMMAND_CONFIG ... */
5043 .mode = COMMAND_ANY,
5044 .jim_handler = jim_target_create,
5045 .usage = "name type '-chain-position' name [options ...]",
5046 .help = "Creates and selects a new target",
5049 .name = "current",
5050 .mode = COMMAND_ANY,
5051 .jim_handler = jim_target_current,
5052 .help = "Returns the currently selected target",
5055 .name = "types",
5056 .mode = COMMAND_ANY,
5057 .jim_handler = jim_target_types,
5058 .help = "Returns the available target types as "
5059 "a list of strings",
5062 .name = "names",
5063 .mode = COMMAND_ANY,
5064 .jim_handler = jim_target_names,
5065 .help = "Returns the names of all targets as a list of strings",
5068 .name = "number",
5069 .mode = COMMAND_ANY,
5070 .jim_handler = jim_target_number,
5071 .usage = "number",
5072 .help = "Returns the name of the numbered target "
5073 "(DEPRECATED)",
5076 .name = "count",
5077 .mode = COMMAND_ANY,
5078 .jim_handler = jim_target_count,
5079 .help = "Returns the number of targets as an integer "
5080 "(DEPRECATED)",
5083 .name = "smp",
5084 .mode = COMMAND_ANY,
5085 .jim_handler = jim_target_smp,
5086 .usage = "targetname1 targetname2 ...",
5087 .help = "gather several target in a smp list"
5090 COMMAND_REGISTRATION_DONE
5093 struct FastLoad {
5094 uint32_t address;
5095 uint8_t *data;
5096 int length;
5100 static int fastload_num;
5101 static struct FastLoad *fastload;
5103 static void free_fastload(void)
5105 if (fastload != NULL) {
5106 int i;
5107 for (i = 0; i < fastload_num; i++) {
5108 if (fastload[i].data)
5109 free(fastload[i].data);
5111 free(fastload);
5112 fastload = NULL;
5116 COMMAND_HANDLER(handle_fast_load_image_command)
5118 uint8_t *buffer;
5119 size_t buf_cnt;
5120 uint32_t image_size;
5121 uint32_t min_address = 0;
5122 uint32_t max_address = 0xffffffff;
5123 int i;
5125 struct image image;
5127 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5128 &image, &min_address, &max_address);
5129 if (ERROR_OK != retval)
5130 return retval;
5132 struct duration bench;
5133 duration_start(&bench);
5135 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5136 if (retval != ERROR_OK)
5137 return retval;
5139 image_size = 0x0;
5140 retval = ERROR_OK;
5141 fastload_num = image.num_sections;
5142 fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5143 if (fastload == NULL) {
5144 command_print(CMD_CTX, "out of memory");
5145 image_close(&image);
5146 return ERROR_FAIL;
5148 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5149 for (i = 0; i < image.num_sections; i++) {
5150 buffer = malloc(image.sections[i].size);
5151 if (buffer == NULL) {
5152 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5153 (int)(image.sections[i].size));
5154 retval = ERROR_FAIL;
5155 break;
5158 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5159 if (retval != ERROR_OK) {
5160 free(buffer);
5161 break;
5164 uint32_t offset = 0;
5165 uint32_t length = buf_cnt;
5167 /* DANGER!!! beware of unsigned comparision here!!! */
5169 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5170 (image.sections[i].base_address < max_address)) {
5171 if (image.sections[i].base_address < min_address) {
5172 /* clip addresses below */
5173 offset += min_address-image.sections[i].base_address;
5174 length -= offset;
5177 if (image.sections[i].base_address + buf_cnt > max_address)
5178 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5180 fastload[i].address = image.sections[i].base_address + offset;
5181 fastload[i].data = malloc(length);
5182 if (fastload[i].data == NULL) {
5183 free(buffer);
5184 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5185 length);
5186 retval = ERROR_FAIL;
5187 break;
5189 memcpy(fastload[i].data, buffer + offset, length);
5190 fastload[i].length = length;
5192 image_size += length;
5193 command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5194 (unsigned int)length,
5195 ((unsigned int)(image.sections[i].base_address + offset)));
5198 free(buffer);
5201 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5202 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5203 "in %fs (%0.3f KiB/s)", image_size,
5204 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5206 command_print(CMD_CTX,
5207 "WARNING: image has not been loaded to target!"
5208 "You can issue a 'fast_load' to finish loading.");
5211 image_close(&image);
5213 if (retval != ERROR_OK)
5214 free_fastload();
5216 return retval;
5219 COMMAND_HANDLER(handle_fast_load_command)
5221 if (CMD_ARGC > 0)
5222 return ERROR_COMMAND_SYNTAX_ERROR;
5223 if (fastload == NULL) {
5224 LOG_ERROR("No image in memory");
5225 return ERROR_FAIL;
5227 int i;
5228 int ms = timeval_ms();
5229 int size = 0;
5230 int retval = ERROR_OK;
5231 for (i = 0; i < fastload_num; i++) {
5232 struct target *target = get_current_target(CMD_CTX);
5233 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5234 (unsigned int)(fastload[i].address),
5235 (unsigned int)(fastload[i].length));
5236 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5237 if (retval != ERROR_OK)
5238 break;
5239 size += fastload[i].length;
5241 if (retval == ERROR_OK) {
5242 int after = timeval_ms();
5243 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5245 return retval;
5248 static const struct command_registration target_command_handlers[] = {
5250 .name = "targets",
5251 .handler = handle_targets_command,
5252 .mode = COMMAND_ANY,
5253 .help = "change current default target (one parameter) "
5254 "or prints table of all targets (no parameters)",
5255 .usage = "[target]",
5258 .name = "target",
5259 .mode = COMMAND_CONFIG,
5260 .help = "configure target",
5262 .chain = target_subcommand_handlers,
5264 COMMAND_REGISTRATION_DONE
5267 int target_register_commands(struct command_context *cmd_ctx)
5269 return register_commands(cmd_ctx, NULL, target_command_handlers);
5272 static bool target_reset_nag = true;
5274 bool get_target_reset_nag(void)
5276 return target_reset_nag;
5279 COMMAND_HANDLER(handle_target_reset_nag)
5281 return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5282 &target_reset_nag, "Nag after each reset about options to improve "
5283 "performance");
5286 COMMAND_HANDLER(handle_ps_command)
5288 struct target *target = get_current_target(CMD_CTX);
5289 char *display;
5290 if (target->state != TARGET_HALTED) {
5291 LOG_INFO("target not halted !!");
5292 return ERROR_OK;
5295 if ((target->rtos) && (target->rtos->type)
5296 && (target->rtos->type->ps_command)) {
5297 display = target->rtos->type->ps_command(target);
5298 command_print(CMD_CTX, "%s", display);
5299 free(display);
5300 return ERROR_OK;
5301 } else {
5302 LOG_INFO("failed");
5303 return ERROR_TARGET_FAILURE;
5307 static const struct command_registration target_exec_command_handlers[] = {
5309 .name = "fast_load_image",
5310 .handler = handle_fast_load_image_command,
5311 .mode = COMMAND_ANY,
5312 .help = "Load image into server memory for later use by "
5313 "fast_load; primarily for profiling",
5314 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5315 "[min_address [max_length]]",
5318 .name = "fast_load",
5319 .handler = handle_fast_load_command,
5320 .mode = COMMAND_EXEC,
5321 .help = "loads active fast load image to current target "
5322 "- mainly for profiling purposes",
5323 .usage = "",
5326 .name = "profile",
5327 .handler = handle_profile_command,
5328 .mode = COMMAND_EXEC,
5329 .usage = "seconds filename",
5330 .help = "profiling samples the CPU PC",
5332 /** @todo don't register virt2phys() unless target supports it */
5334 .name = "virt2phys",
5335 .handler = handle_virt2phys_command,
5336 .mode = COMMAND_ANY,
5337 .help = "translate a virtual address into a physical address",
5338 .usage = "virtual_address",
5341 .name = "reg",
5342 .handler = handle_reg_command,
5343 .mode = COMMAND_EXEC,
5344 .help = "display or set a register; with no arguments, "
5345 "displays all registers and their values",
5346 .usage = "[(register_name|register_number) [value]]",
5349 .name = "poll",
5350 .handler = handle_poll_command,
5351 .mode = COMMAND_EXEC,
5352 .help = "poll target state; or reconfigure background polling",
5353 .usage = "['on'|'off']",
5356 .name = "wait_halt",
5357 .handler = handle_wait_halt_command,
5358 .mode = COMMAND_EXEC,
5359 .help = "wait up to the specified number of milliseconds "
5360 "(default 5) for a previously requested halt",
5361 .usage = "[milliseconds]",
5364 .name = "halt",
5365 .handler = handle_halt_command,
5366 .mode = COMMAND_EXEC,
5367 .help = "request target to halt, then wait up to the specified"
5368 "number of milliseconds (default 5) for it to complete",
5369 .usage = "[milliseconds]",
5372 .name = "resume",
5373 .handler = handle_resume_command,
5374 .mode = COMMAND_EXEC,
5375 .help = "resume target execution from current PC or address",
5376 .usage = "[address]",
5379 .name = "reset",
5380 .handler = handle_reset_command,
5381 .mode = COMMAND_EXEC,
5382 .usage = "[run|halt|init]",
5383 .help = "Reset all targets into the specified mode."
5384 "Default reset mode is run, if not given.",
5387 .name = "soft_reset_halt",
5388 .handler = handle_soft_reset_halt_command,
5389 .mode = COMMAND_EXEC,
5390 .usage = "",
5391 .help = "halt the target and do a soft reset",
5394 .name = "step",
5395 .handler = handle_step_command,
5396 .mode = COMMAND_EXEC,
5397 .help = "step one instruction from current PC or address",
5398 .usage = "[address]",
5401 .name = "mdw",
5402 .handler = handle_md_command,
5403 .mode = COMMAND_EXEC,
5404 .help = "display memory words",
5405 .usage = "['phys'] address [count]",
5408 .name = "mdh",
5409 .handler = handle_md_command,
5410 .mode = COMMAND_EXEC,
5411 .help = "display memory half-words",
5412 .usage = "['phys'] address [count]",
5415 .name = "mdb",
5416 .handler = handle_md_command,
5417 .mode = COMMAND_EXEC,
5418 .help = "display memory bytes",
5419 .usage = "['phys'] address [count]",
5422 .name = "mww",
5423 .handler = handle_mw_command,
5424 .mode = COMMAND_EXEC,
5425 .help = "write memory word",
5426 .usage = "['phys'] address value [count]",
5429 .name = "mwh",
5430 .handler = handle_mw_command,
5431 .mode = COMMAND_EXEC,
5432 .help = "write memory half-word",
5433 .usage = "['phys'] address value [count]",
5436 .name = "mwb",
5437 .handler = handle_mw_command,
5438 .mode = COMMAND_EXEC,
5439 .help = "write memory byte",
5440 .usage = "['phys'] address value [count]",
5443 .name = "bp",
5444 .handler = handle_bp_command,
5445 .mode = COMMAND_EXEC,
5446 .help = "list or set hardware or software breakpoint",
5447 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5450 .name = "rbp",
5451 .handler = handle_rbp_command,
5452 .mode = COMMAND_EXEC,
5453 .help = "remove breakpoint",
5454 .usage = "address",
5457 .name = "wp",
5458 .handler = handle_wp_command,
5459 .mode = COMMAND_EXEC,
5460 .help = "list (no params) or create watchpoints",
5461 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5464 .name = "rwp",
5465 .handler = handle_rwp_command,
5466 .mode = COMMAND_EXEC,
5467 .help = "remove watchpoint",
5468 .usage = "address",
5471 .name = "load_image",
5472 .handler = handle_load_image_command,
5473 .mode = COMMAND_EXEC,
5474 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5475 "[min_address] [max_length]",
5478 .name = "dump_image",
5479 .handler = handle_dump_image_command,
5480 .mode = COMMAND_EXEC,
5481 .usage = "filename address size",
5484 .name = "verify_image",
5485 .handler = handle_verify_image_command,
5486 .mode = COMMAND_EXEC,
5487 .usage = "filename [offset [type]]",
5490 .name = "test_image",
5491 .handler = handle_test_image_command,
5492 .mode = COMMAND_EXEC,
5493 .usage = "filename [offset [type]]",
5496 .name = "mem2array",
5497 .mode = COMMAND_EXEC,
5498 .jim_handler = jim_mem2array,
5499 .help = "read 8/16/32 bit memory and return as a TCL array "
5500 "for script processing",
5501 .usage = "arrayname bitwidth address count",
5504 .name = "array2mem",
5505 .mode = COMMAND_EXEC,
5506 .jim_handler = jim_array2mem,
5507 .help = "convert a TCL array to memory locations "
5508 "and write the 8/16/32 bit values",
5509 .usage = "arrayname bitwidth address count",
5512 .name = "reset_nag",
5513 .handler = handle_target_reset_nag,
5514 .mode = COMMAND_ANY,
5515 .help = "Nag after each reset about options that could have been "
5516 "enabled to improve performance. ",
5517 .usage = "['enable'|'disable']",
5520 .name = "ps",
5521 .handler = handle_ps_command,
5522 .mode = COMMAND_EXEC,
5523 .help = "list all tasks ",
5524 .usage = " ",
5527 COMMAND_REGISTRATION_DONE
5529 static int target_register_user_commands(struct command_context *cmd_ctx)
5531 int retval = ERROR_OK;
5532 retval = target_request_register_commands(cmd_ctx);
5533 if (retval != ERROR_OK)
5534 return retval;
5536 retval = trace_register_commands(cmd_ctx);
5537 if (retval != ERROR_OK)
5538 return retval;
5541 return register_commands(cmd_ctx, NULL, target_exec_command_handlers);