Changed SAM4S Erase for effective Sector erase
[openocd.git] / src / target / image.c
blob4a4a7cca99db2d3b107199c8c8978650e2d67203
1 /***************************************************************************
2 * Copyright (C) 2007 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Franck Hereson *
12 * franck.hereson@secad.fr *
13 * *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
18 * *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
23 * *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program; if not, write to the *
26 * Free Software Foundation, Inc., *
27 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
28 ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
34 #include "image.h"
35 #include "target.h"
36 #include <helper/log.h>
38 /* convert ELF header field to host endianness */
39 #define field16(elf, field) \
40 ((elf->endianness == ELFDATA2LSB) ? \
41 le_to_h_u16((uint8_t *)&field) : be_to_h_u16((uint8_t *)&field))
43 #define field32(elf, field) \
44 ((elf->endianness == ELFDATA2LSB) ? \
45 le_to_h_u32((uint8_t *)&field) : be_to_h_u32((uint8_t *)&field))
47 static int autodetect_image_type(struct image *image, const char *url)
49 int retval;
50 struct fileio fileio;
51 size_t read_bytes;
52 uint8_t buffer[9];
54 /* read the first 4 bytes of image */
55 retval = fileio_open(&fileio, url, FILEIO_READ, FILEIO_BINARY);
56 if (retval != ERROR_OK)
57 return retval;
58 retval = fileio_read(&fileio, 9, buffer, &read_bytes);
60 if (retval == ERROR_OK) {
61 if (read_bytes != 9)
62 retval = ERROR_FILEIO_OPERATION_FAILED;
64 fileio_close(&fileio);
66 if (retval != ERROR_OK)
67 return retval;
69 /* check header against known signatures */
70 if (strncmp((char *)buffer, ELFMAG, SELFMAG) == 0) {
71 LOG_DEBUG("ELF image detected.");
72 image->type = IMAGE_ELF;
73 } else if ((buffer[0] == ':') /* record start byte */
74 && (isxdigit(buffer[1]))
75 && (isxdigit(buffer[2]))
76 && (isxdigit(buffer[3]))
77 && (isxdigit(buffer[4]))
78 && (isxdigit(buffer[5]))
79 && (isxdigit(buffer[6]))
80 && (buffer[7] == '0') /* record type : 00 -> 05 */
81 && (buffer[8] >= '0') && (buffer[8] < '6')) {
82 LOG_DEBUG("IHEX image detected.");
83 image->type = IMAGE_IHEX;
84 } else if ((buffer[0] == 'S') /* record start byte */
85 && (isxdigit(buffer[1]))
86 && (isxdigit(buffer[2]))
87 && (isxdigit(buffer[3]))
88 && (buffer[1] >= '0') && (buffer[1] < '9')) {
89 LOG_DEBUG("S19 image detected.");
90 image->type = IMAGE_SRECORD;
91 } else
92 image->type = IMAGE_BINARY;
94 return ERROR_OK;
97 static int identify_image_type(struct image *image, const char *type_string, const char *url)
99 if (type_string) {
100 if (!strcmp(type_string, "bin"))
101 image->type = IMAGE_BINARY;
102 else if (!strcmp(type_string, "ihex"))
103 image->type = IMAGE_IHEX;
104 else if (!strcmp(type_string, "elf"))
105 image->type = IMAGE_ELF;
106 else if (!strcmp(type_string, "mem"))
107 image->type = IMAGE_MEMORY;
108 else if (!strcmp(type_string, "s19"))
109 image->type = IMAGE_SRECORD;
110 else if (!strcmp(type_string, "build"))
111 image->type = IMAGE_BUILDER;
112 else
113 return ERROR_IMAGE_TYPE_UNKNOWN;
114 } else
115 return autodetect_image_type(image, url);
117 return ERROR_OK;
120 static int image_ihex_buffer_complete_inner(struct image *image,
121 char *lpszLine,
122 struct imagesection *section)
124 struct image_ihex *ihex = image->type_private;
125 struct fileio *fileio = &ihex->fileio;
126 uint32_t full_address = 0x0;
127 uint32_t cooked_bytes;
128 int i;
130 /* we can't determine the number of sections that we'll have to create ahead of time,
131 * so we locally hold them until parsing is finished */
133 int filesize;
134 int retval;
135 retval = fileio_size(fileio, &filesize);
136 if (retval != ERROR_OK)
137 return retval;
139 ihex->buffer = malloc(filesize >> 1);
140 cooked_bytes = 0x0;
141 image->num_sections = 0;
142 section[image->num_sections].private = &ihex->buffer[cooked_bytes];
143 section[image->num_sections].base_address = 0x0;
144 section[image->num_sections].size = 0x0;
145 section[image->num_sections].flags = 0;
147 while (fileio_fgets(fileio, 1023, lpszLine) == ERROR_OK) {
148 uint32_t count;
149 uint32_t address;
150 uint32_t record_type;
151 uint32_t checksum;
152 uint8_t cal_checksum = 0;
153 size_t bytes_read = 0;
155 if (sscanf(&lpszLine[bytes_read], ":%2" SCNx32 "%4" SCNx32 "%2" SCNx32, &count,
156 &address, &record_type) != 3)
157 return ERROR_IMAGE_FORMAT_ERROR;
158 bytes_read += 9;
160 cal_checksum += (uint8_t)count;
161 cal_checksum += (uint8_t)(address >> 8);
162 cal_checksum += (uint8_t)address;
163 cal_checksum += (uint8_t)record_type;
165 if (record_type == 0) { /* Data Record */
166 if ((full_address & 0xffff) != address) {
167 /* we encountered a nonconsecutive location, create a new section,
168 * unless the current section has zero size, in which case this specifies
169 * the current section's base address
171 if (section[image->num_sections].size != 0) {
172 image->num_sections++;
173 if (image->num_sections >= IMAGE_MAX_SECTIONS) {
174 /* too many sections */
175 LOG_ERROR("Too many sections found in IHEX file");
176 return ERROR_IMAGE_FORMAT_ERROR;
178 section[image->num_sections].size = 0x0;
179 section[image->num_sections].flags = 0;
180 section[image->num_sections].private =
181 &ihex->buffer[cooked_bytes];
183 section[image->num_sections].base_address =
184 (full_address & 0xffff0000) | address;
185 full_address = (full_address & 0xffff0000) | address;
188 while (count-- > 0) {
189 unsigned value;
190 sscanf(&lpszLine[bytes_read], "%2x", &value);
191 ihex->buffer[cooked_bytes] = (uint8_t)value;
192 cal_checksum += (uint8_t)ihex->buffer[cooked_bytes];
193 bytes_read += 2;
194 cooked_bytes += 1;
195 section[image->num_sections].size += 1;
196 full_address++;
198 } else if (record_type == 1) { /* End of File Record */
199 /* finish the current section */
200 image->num_sections++;
202 /* copy section information */
203 image->sections = malloc(sizeof(struct imagesection) * image->num_sections);
204 for (i = 0; i < image->num_sections; i++) {
205 image->sections[i].private = section[i].private;
206 image->sections[i].base_address = section[i].base_address;
207 image->sections[i].size = section[i].size;
208 image->sections[i].flags = section[i].flags;
211 return ERROR_OK;
212 } else if (record_type == 2) { /* Linear Address Record */
213 uint16_t upper_address;
215 sscanf(&lpszLine[bytes_read], "%4hx", &upper_address);
216 cal_checksum += (uint8_t)(upper_address >> 8);
217 cal_checksum += (uint8_t)upper_address;
218 bytes_read += 4;
220 if ((full_address >> 4) != upper_address) {
221 /* we encountered a nonconsecutive location, create a new section,
222 * unless the current section has zero size, in which case this specifies
223 * the current section's base address
225 if (section[image->num_sections].size != 0) {
226 image->num_sections++;
227 if (image->num_sections >= IMAGE_MAX_SECTIONS) {
228 /* too many sections */
229 LOG_ERROR("Too many sections found in IHEX file");
230 return ERROR_IMAGE_FORMAT_ERROR;
232 section[image->num_sections].size = 0x0;
233 section[image->num_sections].flags = 0;
234 section[image->num_sections].private =
235 &ihex->buffer[cooked_bytes];
237 section[image->num_sections].base_address =
238 (full_address & 0xffff) | (upper_address << 4);
239 full_address = (full_address & 0xffff) | (upper_address << 4);
241 } else if (record_type == 3) { /* Start Segment Address Record */
242 uint32_t dummy;
244 /* "Start Segment Address Record" will not be supported
245 * but we must consume it, and do not create an error. */
246 while (count-- > 0) {
247 sscanf(&lpszLine[bytes_read], "%2" SCNx32, &dummy);
248 cal_checksum += (uint8_t)dummy;
249 bytes_read += 2;
251 } else if (record_type == 4) { /* Extended Linear Address Record */
252 uint16_t upper_address;
254 sscanf(&lpszLine[bytes_read], "%4hx", &upper_address);
255 cal_checksum += (uint8_t)(upper_address >> 8);
256 cal_checksum += (uint8_t)upper_address;
257 bytes_read += 4;
259 if ((full_address >> 16) != upper_address) {
260 /* we encountered a nonconsecutive location, create a new section,
261 * unless the current section has zero size, in which case this specifies
262 * the current section's base address
264 if (section[image->num_sections].size != 0) {
265 image->num_sections++;
266 if (image->num_sections >= IMAGE_MAX_SECTIONS) {
267 /* too many sections */
268 LOG_ERROR("Too many sections found in IHEX file");
269 return ERROR_IMAGE_FORMAT_ERROR;
271 section[image->num_sections].size = 0x0;
272 section[image->num_sections].flags = 0;
273 section[image->num_sections].private =
274 &ihex->buffer[cooked_bytes];
276 section[image->num_sections].base_address =
277 (full_address & 0xffff) | (upper_address << 16);
278 full_address = (full_address & 0xffff) | (upper_address << 16);
280 } else if (record_type == 5) { /* Start Linear Address Record */
281 uint32_t start_address;
283 sscanf(&lpszLine[bytes_read], "%8" SCNx32, &start_address);
284 cal_checksum += (uint8_t)(start_address >> 24);
285 cal_checksum += (uint8_t)(start_address >> 16);
286 cal_checksum += (uint8_t)(start_address >> 8);
287 cal_checksum += (uint8_t)start_address;
288 bytes_read += 8;
290 image->start_address_set = 1;
291 image->start_address = be_to_h_u32((uint8_t *)&start_address);
292 } else {
293 LOG_ERROR("unhandled IHEX record type: %i", (int)record_type);
294 return ERROR_IMAGE_FORMAT_ERROR;
297 sscanf(&lpszLine[bytes_read], "%2" SCNx32, &checksum);
299 if ((uint8_t)checksum != (uint8_t)(~cal_checksum + 1)) {
300 /* checksum failed */
301 LOG_ERROR("incorrect record checksum found in IHEX file");
302 return ERROR_IMAGE_CHECKSUM;
306 LOG_ERROR("premature end of IHEX file, no end-of-file record found");
307 return ERROR_IMAGE_FORMAT_ERROR;
311 * Allocate memory dynamically instead of on the stack. This
312 * is important w/embedded hosts.
314 static int image_ihex_buffer_complete(struct image *image)
316 char *lpszLine = malloc(1023);
317 if (lpszLine == NULL) {
318 LOG_ERROR("Out of memory");
319 return ERROR_FAIL;
321 struct imagesection *section = malloc(sizeof(struct imagesection) * IMAGE_MAX_SECTIONS);
322 if (section == NULL) {
323 free(lpszLine);
324 LOG_ERROR("Out of memory");
325 return ERROR_FAIL;
327 int retval;
329 retval = image_ihex_buffer_complete_inner(image, lpszLine, section);
331 free(section);
332 free(lpszLine);
334 return retval;
337 static int image_elf_read_headers(struct image *image)
339 struct image_elf *elf = image->type_private;
340 size_t read_bytes;
341 uint32_t i, j;
342 int retval;
343 uint32_t nload, load_to_vaddr = 0;
345 elf->header = malloc(sizeof(Elf32_Ehdr));
347 if (elf->header == NULL) {
348 LOG_ERROR("insufficient memory to perform operation ");
349 return ERROR_FILEIO_OPERATION_FAILED;
352 retval = fileio_read(&elf->fileio, sizeof(Elf32_Ehdr), (uint8_t *)elf->header, &read_bytes);
353 if (retval != ERROR_OK) {
354 LOG_ERROR("cannot read ELF file header, read failed");
355 return ERROR_FILEIO_OPERATION_FAILED;
357 if (read_bytes != sizeof(Elf32_Ehdr)) {
358 LOG_ERROR("cannot read ELF file header, only partially read");
359 return ERROR_FILEIO_OPERATION_FAILED;
362 if (strncmp((char *)elf->header->e_ident, ELFMAG, SELFMAG) != 0) {
363 LOG_ERROR("invalid ELF file, bad magic number");
364 return ERROR_IMAGE_FORMAT_ERROR;
366 if (elf->header->e_ident[EI_CLASS] != ELFCLASS32) {
367 LOG_ERROR("invalid ELF file, only 32bits files are supported");
368 return ERROR_IMAGE_FORMAT_ERROR;
371 elf->endianness = elf->header->e_ident[EI_DATA];
372 if ((elf->endianness != ELFDATA2LSB)
373 && (elf->endianness != ELFDATA2MSB)) {
374 LOG_ERROR("invalid ELF file, unknown endianness setting");
375 return ERROR_IMAGE_FORMAT_ERROR;
378 elf->segment_count = field16(elf, elf->header->e_phnum);
379 if (elf->segment_count == 0) {
380 LOG_ERROR("invalid ELF file, no program headers");
381 return ERROR_IMAGE_FORMAT_ERROR;
384 retval = fileio_seek(&elf->fileio, field32(elf, elf->header->e_phoff));
385 if (retval != ERROR_OK) {
386 LOG_ERROR("cannot seek to ELF program header table, read failed");
387 return retval;
390 elf->segments = malloc(elf->segment_count*sizeof(Elf32_Phdr));
391 if (elf->segments == NULL) {
392 LOG_ERROR("insufficient memory to perform operation ");
393 return ERROR_FILEIO_OPERATION_FAILED;
396 retval = fileio_read(&elf->fileio, elf->segment_count*sizeof(Elf32_Phdr),
397 (uint8_t *)elf->segments, &read_bytes);
398 if (retval != ERROR_OK) {
399 LOG_ERROR("cannot read ELF segment headers, read failed");
400 return retval;
402 if (read_bytes != elf->segment_count*sizeof(Elf32_Phdr)) {
403 LOG_ERROR("cannot read ELF segment headers, only partially read");
404 return ERROR_FILEIO_OPERATION_FAILED;
407 /* count useful segments (loadable), ignore BSS section */
408 image->num_sections = 0;
409 for (i = 0; i < elf->segment_count; i++)
410 if ((field32(elf,
411 elf->segments[i].p_type) == PT_LOAD) &&
412 (field32(elf, elf->segments[i].p_filesz) != 0))
413 image->num_sections++;
415 assert(image->num_sections > 0);
418 * some ELF linkers produce binaries with *all* the program header
419 * p_paddr fields zero (there can be however one loadable segment
420 * that has valid physical address 0x0).
421 * If we have such a binary with more than
422 * one PT_LOAD header, then use p_vaddr instead of p_paddr
423 * (ARM ELF standard demands p_paddr = 0 anyway, and BFD
424 * library uses this approach to workaround zero-initialized p_paddrs
425 * when obtaining lma - look at elf.c of BDF)
427 for (nload = 0, i = 0; i < elf->segment_count; i++)
428 if (elf->segments[i].p_paddr != 0)
429 break;
430 else if ((field32(elf,
431 elf->segments[i].p_type) == PT_LOAD) &&
432 (field32(elf, elf->segments[i].p_memsz) != 0))
433 ++nload;
435 if (i >= elf->segment_count && nload > 1)
436 load_to_vaddr = 1;
438 /* alloc and fill sections array with loadable segments */
439 image->sections = malloc(image->num_sections * sizeof(struct imagesection));
440 for (i = 0, j = 0; i < elf->segment_count; i++) {
441 if ((field32(elf,
442 elf->segments[i].p_type) == PT_LOAD) &&
443 (field32(elf, elf->segments[i].p_filesz) != 0)) {
444 image->sections[j].size = field32(elf, elf->segments[i].p_filesz);
445 if (load_to_vaddr)
446 image->sections[j].base_address = field32(elf,
447 elf->segments[i].p_vaddr);
448 else
449 image->sections[j].base_address = field32(elf,
450 elf->segments[i].p_paddr);
451 image->sections[j].private = &elf->segments[i];
452 image->sections[j].flags = field32(elf, elf->segments[i].p_flags);
453 j++;
457 image->start_address_set = 1;
458 image->start_address = field32(elf, elf->header->e_entry);
460 return ERROR_OK;
463 static int image_elf_read_section(struct image *image,
464 int section,
465 uint32_t offset,
466 uint32_t size,
467 uint8_t *buffer,
468 size_t *size_read)
470 struct image_elf *elf = image->type_private;
471 Elf32_Phdr *segment = (Elf32_Phdr *)image->sections[section].private;
472 size_t read_size, really_read;
473 int retval;
475 *size_read = 0;
477 LOG_DEBUG("load segment %d at 0x%" PRIx32 " (sz = 0x%" PRIx32 ")", section, offset, size);
479 /* read initialized data in current segment if any */
480 if (offset < field32(elf, segment->p_filesz)) {
481 /* maximal size present in file for the current segment */
482 read_size = MIN(size, field32(elf, segment->p_filesz) - offset);
483 LOG_DEBUG("read elf: size = 0x%zu at 0x%" PRIx32 "", read_size,
484 field32(elf, segment->p_offset) + offset);
485 /* read initialized area of the segment */
486 retval = fileio_seek(&elf->fileio, field32(elf, segment->p_offset) + offset);
487 if (retval != ERROR_OK) {
488 LOG_ERROR("cannot find ELF segment content, seek failed");
489 return retval;
491 retval = fileio_read(&elf->fileio, read_size, buffer, &really_read);
492 if (retval != ERROR_OK) {
493 LOG_ERROR("cannot read ELF segment content, read failed");
494 return retval;
496 size -= read_size;
497 *size_read += read_size;
498 /* need more data ? */
499 if (!size)
500 return ERROR_OK;
503 return ERROR_OK;
506 static int image_mot_buffer_complete_inner(struct image *image,
507 char *lpszLine,
508 struct imagesection *section)
510 struct image_mot *mot = image->type_private;
511 struct fileio *fileio = &mot->fileio;
512 uint32_t full_address = 0x0;
513 uint32_t cooked_bytes;
514 int i;
516 /* we can't determine the number of sections that we'll have to create ahead of time,
517 * so we locally hold them until parsing is finished */
519 int retval;
520 int filesize;
521 retval = fileio_size(fileio, &filesize);
522 if (retval != ERROR_OK)
523 return retval;
525 mot->buffer = malloc(filesize >> 1);
526 cooked_bytes = 0x0;
527 image->num_sections = 0;
528 section[image->num_sections].private = &mot->buffer[cooked_bytes];
529 section[image->num_sections].base_address = 0x0;
530 section[image->num_sections].size = 0x0;
531 section[image->num_sections].flags = 0;
533 while (fileio_fgets(fileio, 1023, lpszLine) == ERROR_OK) {
534 uint32_t count;
535 uint32_t address;
536 uint32_t record_type;
537 uint32_t checksum;
538 uint8_t cal_checksum = 0;
539 uint32_t bytes_read = 0;
541 /* get record type and record length */
542 if (sscanf(&lpszLine[bytes_read], "S%1" SCNx32 "%2" SCNx32, &record_type,
543 &count) != 2)
544 return ERROR_IMAGE_FORMAT_ERROR;
546 bytes_read += 4;
547 cal_checksum += (uint8_t)count;
549 /* skip checksum byte */
550 count -= 1;
552 if (record_type == 0) {
553 /* S0 - starting record (optional) */
554 int iValue;
556 while (count-- > 0) {
557 sscanf(&lpszLine[bytes_read], "%2x", &iValue);
558 cal_checksum += (uint8_t)iValue;
559 bytes_read += 2;
561 } else if (record_type >= 1 && record_type <= 3) {
562 switch (record_type) {
563 case 1:
564 /* S1 - 16 bit address data record */
565 sscanf(&lpszLine[bytes_read], "%4" SCNx32, &address);
566 cal_checksum += (uint8_t)(address >> 8);
567 cal_checksum += (uint8_t)address;
568 bytes_read += 4;
569 count -= 2;
570 break;
572 case 2:
573 /* S2 - 24 bit address data record */
574 sscanf(&lpszLine[bytes_read], "%6" SCNx32, &address);
575 cal_checksum += (uint8_t)(address >> 16);
576 cal_checksum += (uint8_t)(address >> 8);
577 cal_checksum += (uint8_t)address;
578 bytes_read += 6;
579 count -= 3;
580 break;
582 case 3:
583 /* S3 - 32 bit address data record */
584 sscanf(&lpszLine[bytes_read], "%8" SCNx32, &address);
585 cal_checksum += (uint8_t)(address >> 24);
586 cal_checksum += (uint8_t)(address >> 16);
587 cal_checksum += (uint8_t)(address >> 8);
588 cal_checksum += (uint8_t)address;
589 bytes_read += 8;
590 count -= 4;
591 break;
595 if (full_address != address) {
596 /* we encountered a nonconsecutive location, create a new section,
597 * unless the current section has zero size, in which case this specifies
598 * the current section's base address
600 if (section[image->num_sections].size != 0) {
601 image->num_sections++;
602 section[image->num_sections].size = 0x0;
603 section[image->num_sections].flags = 0;
604 section[image->num_sections].private =
605 &mot->buffer[cooked_bytes];
607 section[image->num_sections].base_address = address;
608 full_address = address;
611 while (count-- > 0) {
612 unsigned value;
613 sscanf(&lpszLine[bytes_read], "%2x", &value);
614 mot->buffer[cooked_bytes] = (uint8_t)value;
615 cal_checksum += (uint8_t)mot->buffer[cooked_bytes];
616 bytes_read += 2;
617 cooked_bytes += 1;
618 section[image->num_sections].size += 1;
619 full_address++;
621 } else if (record_type == 5) {
622 /* S5 is the data count record, we ignore it */
623 uint32_t dummy;
625 while (count-- > 0) {
626 sscanf(&lpszLine[bytes_read], "%2" SCNx32, &dummy);
627 cal_checksum += (uint8_t)dummy;
628 bytes_read += 2;
630 } else if (record_type >= 7 && record_type <= 9) {
631 /* S7, S8, S9 - ending records for 32, 24 and 16bit */
632 image->num_sections++;
634 /* copy section information */
635 image->sections = malloc(sizeof(struct imagesection) * image->num_sections);
636 for (i = 0; i < image->num_sections; i++) {
637 image->sections[i].private = section[i].private;
638 image->sections[i].base_address = section[i].base_address;
639 image->sections[i].size = section[i].size;
640 image->sections[i].flags = section[i].flags;
643 return ERROR_OK;
644 } else {
645 LOG_ERROR("unhandled S19 record type: %i", (int)(record_type));
646 return ERROR_IMAGE_FORMAT_ERROR;
649 /* account for checksum, will always be 0xFF */
650 sscanf(&lpszLine[bytes_read], "%2" SCNx32, &checksum);
651 cal_checksum += (uint8_t)checksum;
653 if (cal_checksum != 0xFF) {
654 /* checksum failed */
655 LOG_ERROR("incorrect record checksum found in S19 file");
656 return ERROR_IMAGE_CHECKSUM;
660 LOG_ERROR("premature end of S19 file, no end-of-file record found");
661 return ERROR_IMAGE_FORMAT_ERROR;
665 * Allocate memory dynamically instead of on the stack. This
666 * is important w/embedded hosts.
668 static int image_mot_buffer_complete(struct image *image)
670 char *lpszLine = malloc(1023);
671 if (lpszLine == NULL) {
672 LOG_ERROR("Out of memory");
673 return ERROR_FAIL;
675 struct imagesection *section = malloc(sizeof(struct imagesection) * IMAGE_MAX_SECTIONS);
676 if (section == NULL) {
677 free(lpszLine);
678 LOG_ERROR("Out of memory");
679 return ERROR_FAIL;
681 int retval;
683 retval = image_mot_buffer_complete_inner(image, lpszLine, section);
685 free(section);
686 free(lpszLine);
688 return retval;
691 int image_open(struct image *image, const char *url, const char *type_string)
693 int retval = ERROR_OK;
695 retval = identify_image_type(image, type_string, url);
696 if (retval != ERROR_OK)
697 return retval;
699 if (image->type == IMAGE_BINARY) {
700 struct image_binary *image_binary;
702 image_binary = image->type_private = malloc(sizeof(struct image_binary));
704 retval = fileio_open(&image_binary->fileio, url, FILEIO_READ, FILEIO_BINARY);
705 if (retval != ERROR_OK)
706 return retval;
707 int filesize;
708 retval = fileio_size(&image_binary->fileio, &filesize);
709 if (retval != ERROR_OK) {
710 fileio_close(&image_binary->fileio);
711 return retval;
714 image->num_sections = 1;
715 image->sections = malloc(sizeof(struct imagesection));
716 image->sections[0].base_address = 0x0;
717 image->sections[0].size = filesize;
718 image->sections[0].flags = 0;
719 } else if (image->type == IMAGE_IHEX) {
720 struct image_ihex *image_ihex;
722 image_ihex = image->type_private = malloc(sizeof(struct image_ihex));
724 retval = fileio_open(&image_ihex->fileio, url, FILEIO_READ, FILEIO_TEXT);
725 if (retval != ERROR_OK)
726 return retval;
728 retval = image_ihex_buffer_complete(image);
729 if (retval != ERROR_OK) {
730 LOG_ERROR(
731 "failed buffering IHEX image, check daemon output for additional information");
732 fileio_close(&image_ihex->fileio);
733 return retval;
735 } else if (image->type == IMAGE_ELF) {
736 struct image_elf *image_elf;
738 image_elf = image->type_private = malloc(sizeof(struct image_elf));
740 retval = fileio_open(&image_elf->fileio, url, FILEIO_READ, FILEIO_BINARY);
741 if (retval != ERROR_OK)
742 return retval;
744 retval = image_elf_read_headers(image);
745 if (retval != ERROR_OK) {
746 fileio_close(&image_elf->fileio);
747 return retval;
749 } else if (image->type == IMAGE_MEMORY) {
750 struct target *target = get_target(url);
752 if (target == NULL) {
753 LOG_ERROR("target '%s' not defined", url);
754 return ERROR_FAIL;
757 struct image_memory *image_memory;
759 image->num_sections = 1;
760 image->sections = malloc(sizeof(struct imagesection));
761 image->sections[0].base_address = 0x0;
762 image->sections[0].size = 0xffffffff;
763 image->sections[0].flags = 0;
765 image_memory = image->type_private = malloc(sizeof(struct image_memory));
767 image_memory->target = target;
768 image_memory->cache = NULL;
769 image_memory->cache_address = 0x0;
770 } else if (image->type == IMAGE_SRECORD) {
771 struct image_mot *image_mot;
773 image_mot = image->type_private = malloc(sizeof(struct image_mot));
775 retval = fileio_open(&image_mot->fileio, url, FILEIO_READ, FILEIO_TEXT);
776 if (retval != ERROR_OK)
777 return retval;
779 retval = image_mot_buffer_complete(image);
780 if (retval != ERROR_OK) {
781 LOG_ERROR(
782 "failed buffering S19 image, check daemon output for additional information");
783 fileio_close(&image_mot->fileio);
784 return retval;
786 } else if (image->type == IMAGE_BUILDER) {
787 image->num_sections = 0;
788 image->sections = NULL;
789 image->type_private = NULL;
792 if (image->base_address_set) {
793 /* relocate */
794 int section;
795 for (section = 0; section < image->num_sections; section++)
796 image->sections[section].base_address += image->base_address;
797 /* we're done relocating. The two statements below are mainly
798 * for documenation purposes: stop anyone from empirically
799 * thinking they should use these values henceforth. */
800 image->base_address = 0;
801 image->base_address_set = 0;
804 return retval;
807 int image_read_section(struct image *image,
808 int section,
809 uint32_t offset,
810 uint32_t size,
811 uint8_t *buffer,
812 size_t *size_read)
814 int retval;
816 /* don't read past the end of a section */
817 if (offset + size > image->sections[section].size) {
818 LOG_DEBUG(
819 "read past end of section: 0x%8.8" PRIx32 " + 0x%8.8" PRIx32 " > 0x%8.8" PRIx32 "",
820 offset,
821 size,
822 image->sections[section].size);
823 return ERROR_COMMAND_SYNTAX_ERROR;
826 if (image->type == IMAGE_BINARY) {
827 struct image_binary *image_binary = image->type_private;
829 /* only one section in a plain binary */
830 if (section != 0)
831 return ERROR_COMMAND_SYNTAX_ERROR;
833 /* seek to offset */
834 retval = fileio_seek(&image_binary->fileio, offset);
835 if (retval != ERROR_OK)
836 return retval;
838 /* return requested bytes */
839 retval = fileio_read(&image_binary->fileio, size, buffer, size_read);
840 if (retval != ERROR_OK)
841 return retval;
842 } else if (image->type == IMAGE_IHEX) {
843 memcpy(buffer, (uint8_t *)image->sections[section].private + offset, size);
844 *size_read = size;
846 return ERROR_OK;
847 } else if (image->type == IMAGE_ELF)
848 return image_elf_read_section(image, section, offset, size, buffer, size_read);
849 else if (image->type == IMAGE_MEMORY) {
850 struct image_memory *image_memory = image->type_private;
851 uint32_t address = image->sections[section].base_address + offset;
853 *size_read = 0;
855 while ((size - *size_read) > 0) {
856 uint32_t size_in_cache;
858 if (!image_memory->cache
859 || (address < image_memory->cache_address)
860 || (address >=
861 (image_memory->cache_address + IMAGE_MEMORY_CACHE_SIZE))) {
862 if (!image_memory->cache)
863 image_memory->cache = malloc(IMAGE_MEMORY_CACHE_SIZE);
865 if (target_read_buffer(image_memory->target, address &
866 ~(IMAGE_MEMORY_CACHE_SIZE - 1),
867 IMAGE_MEMORY_CACHE_SIZE, image_memory->cache) != ERROR_OK) {
868 free(image_memory->cache);
869 image_memory->cache = NULL;
870 return ERROR_IMAGE_TEMPORARILY_UNAVAILABLE;
872 image_memory->cache_address = address &
873 ~(IMAGE_MEMORY_CACHE_SIZE - 1);
876 size_in_cache =
877 (image_memory->cache_address + IMAGE_MEMORY_CACHE_SIZE) - address;
879 memcpy(buffer + *size_read,
880 image_memory->cache + (address - image_memory->cache_address),
881 (size_in_cache > size) ? size : size_in_cache
884 *size_read += (size_in_cache > size) ? size : size_in_cache;
885 address += (size_in_cache > size) ? size : size_in_cache;
887 } else if (image->type == IMAGE_SRECORD) {
888 memcpy(buffer, (uint8_t *)image->sections[section].private + offset, size);
889 *size_read = size;
891 return ERROR_OK;
892 } else if (image->type == IMAGE_BUILDER) {
893 memcpy(buffer, (uint8_t *)image->sections[section].private + offset, size);
894 *size_read = size;
896 return ERROR_OK;
899 return ERROR_OK;
902 int image_add_section(struct image *image, uint32_t base, uint32_t size, int flags, uint8_t *data)
904 struct imagesection *section;
906 /* only image builder supports adding sections */
907 if (image->type != IMAGE_BUILDER)
908 return ERROR_COMMAND_SYNTAX_ERROR;
910 /* see if there's a previous section */
911 if (image->num_sections) {
912 section = &image->sections[image->num_sections - 1];
914 /* see if it's enough to extend the last section,
915 * adding data to previous sections or merging is not supported */
916 if (((section->base_address + section->size) == base) &&
917 (section->flags == flags)) {
918 section->private = realloc(section->private, section->size + size);
919 memcpy((uint8_t *)section->private + section->size, data, size);
920 section->size += size;
921 return ERROR_OK;
925 /* allocate new section */
926 image->num_sections++;
927 image->sections =
928 realloc(image->sections, sizeof(struct imagesection) * image->num_sections);
929 section = &image->sections[image->num_sections - 1];
930 section->base_address = base;
931 section->size = size;
932 section->flags = flags;
933 section->private = malloc(sizeof(uint8_t) * size);
934 memcpy((uint8_t *)section->private, data, size);
936 return ERROR_OK;
939 void image_close(struct image *image)
941 if (image->type == IMAGE_BINARY) {
942 struct image_binary *image_binary = image->type_private;
944 fileio_close(&image_binary->fileio);
945 } else if (image->type == IMAGE_IHEX) {
946 struct image_ihex *image_ihex = image->type_private;
948 fileio_close(&image_ihex->fileio);
950 if (image_ihex->buffer) {
951 free(image_ihex->buffer);
952 image_ihex->buffer = NULL;
954 } else if (image->type == IMAGE_ELF) {
955 struct image_elf *image_elf = image->type_private;
957 fileio_close(&image_elf->fileio);
959 if (image_elf->header) {
960 free(image_elf->header);
961 image_elf->header = NULL;
964 if (image_elf->segments) {
965 free(image_elf->segments);
966 image_elf->segments = NULL;
968 } else if (image->type == IMAGE_MEMORY) {
969 struct image_memory *image_memory = image->type_private;
971 if (image_memory->cache) {
972 free(image_memory->cache);
973 image_memory->cache = NULL;
975 } else if (image->type == IMAGE_SRECORD) {
976 struct image_mot *image_mot = image->type_private;
978 fileio_close(&image_mot->fileio);
980 if (image_mot->buffer) {
981 free(image_mot->buffer);
982 image_mot->buffer = NULL;
984 } else if (image->type == IMAGE_BUILDER) {
985 int i;
987 for (i = 0; i < image->num_sections; i++) {
988 free(image->sections[i].private);
989 image->sections[i].private = NULL;
993 if (image->type_private) {
994 free(image->type_private);
995 image->type_private = NULL;
998 if (image->sections) {
999 free(image->sections);
1000 image->sections = NULL;
1004 int image_calculate_checksum(uint8_t *buffer, uint32_t nbytes, uint32_t *checksum)
1006 uint32_t crc = 0xffffffff;
1007 LOG_DEBUG("Calculating checksum");
1009 static uint32_t crc32_table[256];
1011 static bool first_init;
1012 if (!first_init) {
1013 /* Initialize the CRC table and the decoding table. */
1014 int i, j;
1015 unsigned int c;
1016 for (i = 0; i < 256; i++) {
1017 /* as per gdb */
1018 for (c = i << 24, j = 8; j > 0; --j)
1019 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
1020 crc32_table[i] = c;
1023 first_init = true;
1026 while (nbytes > 0) {
1027 int run = nbytes;
1028 if (run > 32768)
1029 run = 32768;
1030 nbytes -= run;
1031 while (run--) {
1032 /* as per gdb */
1033 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buffer++) & 255];
1035 keep_alive();
1038 LOG_DEBUG("Calculating checksum done");
1040 *checksum = crc;
1041 return ERROR_OK;