arm_adi_v5: error propagation fixes
[openocd.git] / src / target / cortex_a8.c
blob933b42e4ce004719a4c0bbec3129909efe2edf43
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
13 * *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
18 * *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
23 * *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program; if not, write to the *
26 * Free Software Foundation, Inc., *
27 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
28 * *
29 * Cortex-A8(tm) TRM, ARM DDI 0344H *
30 * *
31 ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
36 #include "breakpoints.h"
37 #include "cortex_a8.h"
38 #include "register.h"
39 #include "target_request.h"
40 #include "target_type.h"
41 #include "arm_opcodes.h"
43 static int cortex_a8_poll(struct target *target);
44 static int cortex_a8_debug_entry(struct target *target);
45 static int cortex_a8_restore_context(struct target *target, bool bpwp);
46 static int cortex_a8_set_breakpoint(struct target *target,
47 struct breakpoint *breakpoint, uint8_t matchmode);
48 static int cortex_a8_unset_breakpoint(struct target *target,
49 struct breakpoint *breakpoint);
50 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
51 uint32_t *value, int regnum);
52 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
53 uint32_t value, int regnum);
54 static int cortex_a8_mmu(struct target *target, int *enabled);
55 static int cortex_a8_virt2phys(struct target *target,
56 uint32_t virt, uint32_t *phys);
57 static void cortex_a8_disable_mmu_caches(struct target *target, int mmu,
58 int d_u_cache, int i_cache);
59 static void cortex_a8_enable_mmu_caches(struct target *target, int mmu,
60 int d_u_cache, int i_cache);
61 static uint32_t cortex_a8_get_ttb(struct target *target);
65 * FIXME do topology discovery using the ROM; don't
66 * assume this is an OMAP3. Also, allow for multiple ARMv7-A
67 * cores, with different AP numbering ... don't use a #define
68 * for these numbers, use per-core armv7a state.
70 #define swjdp_memoryap 0
71 #define swjdp_debugap 1
72 #define OMAP3530_DEBUG_BASE 0x54011000
75 * Cortex-A8 Basic debug access, very low level assumes state is saved
77 static int cortex_a8_init_debug_access(struct target *target)
79 struct armv7a_common *armv7a = target_to_armv7a(target);
80 struct adiv5_dap *swjdp = &armv7a->dap;
82 int retval;
83 uint32_t dummy;
85 LOG_DEBUG(" ");
87 /* Unlocking the debug registers for modification */
88 /* The debugport might be uninitialised so try twice */
89 retval = mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
90 if (retval != ERROR_OK)
91 mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_LOCKACCESS, 0xC5ACCE55);
92 /* Clear Sticky Power Down status Bit in PRSR to enable access to
93 the registers in the Core Power Domain */
94 retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_PRSR, &dummy);
95 /* Enabling of instruction execution in debug mode is done in debug_entry code */
97 /* Resync breakpoint registers */
99 /* Since this is likley called from init or reset, update targtet state information*/
100 cortex_a8_poll(target);
102 return retval;
105 /* To reduce needless round-trips, pass in a pointer to the current
106 * DSCR value. Initialize it to zero if you just need to know the
107 * value on return from this function; or DSCR_INSTR_COMP if you
108 * happen to know that no instruction is pending.
110 static int cortex_a8_exec_opcode(struct target *target,
111 uint32_t opcode, uint32_t *dscr_p)
113 uint32_t dscr;
114 int retval;
115 struct armv7a_common *armv7a = target_to_armv7a(target);
116 struct adiv5_dap *swjdp = &armv7a->dap;
118 dscr = dscr_p ? *dscr_p : 0;
120 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
122 /* Wait for InstrCompl bit to be set */
123 while ((dscr & DSCR_INSTR_COMP) == 0)
125 retval = mem_ap_read_atomic_u32(swjdp,
126 armv7a->debug_base + CPUDBG_DSCR, &dscr);
127 if (retval != ERROR_OK)
129 LOG_ERROR("Could not read DSCR register, opcode = 0x%08" PRIx32, opcode);
130 return retval;
134 mem_ap_write_u32(swjdp, armv7a->debug_base + CPUDBG_ITR, opcode);
138 retval = mem_ap_read_atomic_u32(swjdp,
139 armv7a->debug_base + CPUDBG_DSCR, &dscr);
140 if (retval != ERROR_OK)
142 LOG_ERROR("Could not read DSCR register");
143 return retval;
146 while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
148 if (dscr_p)
149 *dscr_p = dscr;
151 return retval;
154 /**************************************************************************
155 Read core register with very few exec_opcode, fast but needs work_area.
156 This can cause problems with MMU active.
157 **************************************************************************/
158 static int cortex_a8_read_regs_through_mem(struct target *target, uint32_t address,
159 uint32_t * regfile)
161 int retval = ERROR_OK;
162 struct armv7a_common *armv7a = target_to_armv7a(target);
163 struct adiv5_dap *swjdp = &armv7a->dap;
165 cortex_a8_dap_read_coreregister_u32(target, regfile, 0);
166 cortex_a8_dap_write_coreregister_u32(target, address, 0);
167 cortex_a8_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
168 dap_ap_select(swjdp, swjdp_memoryap);
169 mem_ap_read_buf_u32(swjdp, (uint8_t *)(&regfile[1]), 4*15, address);
170 dap_ap_select(swjdp, swjdp_debugap);
172 return retval;
175 static int cortex_a8_dap_read_coreregister_u32(struct target *target,
176 uint32_t *value, int regnum)
178 int retval = ERROR_OK;
179 uint8_t reg = regnum&0xFF;
180 uint32_t dscr = 0;
181 struct armv7a_common *armv7a = target_to_armv7a(target);
182 struct adiv5_dap *swjdp = &armv7a->dap;
184 if (reg > 17)
185 return retval;
187 if (reg < 15)
189 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0" 0xEE00nE15 */
190 cortex_a8_exec_opcode(target,
191 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
192 &dscr);
194 else if (reg == 15)
196 /* "MOV r0, r15"; then move r0 to DCCTX */
197 cortex_a8_exec_opcode(target, 0xE1A0000F, &dscr);
198 cortex_a8_exec_opcode(target,
199 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
200 &dscr);
202 else
204 /* "MRS r0, CPSR" or "MRS r0, SPSR"
205 * then move r0 to DCCTX
207 cortex_a8_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
208 cortex_a8_exec_opcode(target,
209 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
210 &dscr);
213 /* Wait for DTRRXfull then read DTRRTX */
214 while ((dscr & DSCR_DTR_TX_FULL) == 0)
216 retval = mem_ap_read_atomic_u32(swjdp,
217 armv7a->debug_base + CPUDBG_DSCR, &dscr);
220 retval = mem_ap_read_atomic_u32(swjdp,
221 armv7a->debug_base + CPUDBG_DTRTX, value);
222 LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
224 return retval;
227 static int cortex_a8_dap_write_coreregister_u32(struct target *target,
228 uint32_t value, int regnum)
230 int retval = ERROR_OK;
231 uint8_t Rd = regnum&0xFF;
232 uint32_t dscr;
233 struct armv7a_common *armv7a = target_to_armv7a(target);
234 struct adiv5_dap *swjdp = &armv7a->dap;
236 LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
238 /* Check that DCCRX is not full */
239 retval = mem_ap_read_atomic_u32(swjdp,
240 armv7a->debug_base + CPUDBG_DSCR, &dscr);
241 if (dscr & DSCR_DTR_RX_FULL)
243 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
244 /* Clear DCCRX with MCR(p14, 0, Rd, c0, c5, 0), opcode 0xEE000E15 */
245 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
246 &dscr);
249 if (Rd > 17)
250 return retval;
252 /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
253 LOG_DEBUG("write DCC 0x%08" PRIx32, value);
254 retval = mem_ap_write_u32(swjdp,
255 armv7a->debug_base + CPUDBG_DTRRX, value);
257 if (Rd < 15)
259 /* DCCRX to Rn, "MCR p14, 0, Rn, c0, c5, 0", 0xEE00nE15 */
260 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
261 &dscr);
263 else if (Rd == 15)
265 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
266 * then "mov r15, r0"
268 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
269 &dscr);
270 cortex_a8_exec_opcode(target, 0xE1A0F000, &dscr);
272 else
274 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15
275 * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
277 cortex_a8_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
278 &dscr);
279 cortex_a8_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
280 &dscr);
282 /* "Prefetch flush" after modifying execution status in CPSR */
283 if (Rd == 16)
284 cortex_a8_exec_opcode(target,
285 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
286 &dscr);
289 return retval;
292 /* Write to memory mapped registers directly with no cache or mmu handling */
293 static int cortex_a8_dap_write_memap_register_u32(struct target *target, uint32_t address, uint32_t value)
295 int retval;
296 struct armv7a_common *armv7a = target_to_armv7a(target);
297 struct adiv5_dap *swjdp = &armv7a->dap;
299 retval = mem_ap_write_atomic_u32(swjdp, address, value);
301 return retval;
305 * Cortex-A8 implementation of Debug Programmer's Model
307 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
308 * so there's no need to poll for it before executing an instruction.
310 * NOTE that in several of these cases the "stall" mode might be useful.
311 * It'd let us queue a few operations together... prepare/finish might
312 * be the places to enable/disable that mode.
315 static inline struct cortex_a8_common *dpm_to_a8(struct arm_dpm *dpm)
317 return container_of(dpm, struct cortex_a8_common, armv7a_common.dpm);
320 static int cortex_a8_write_dcc(struct cortex_a8_common *a8, uint32_t data)
322 LOG_DEBUG("write DCC 0x%08" PRIx32, data);
323 return mem_ap_write_u32(&a8->armv7a_common.dap,
324 a8->armv7a_common.debug_base + CPUDBG_DTRRX, data);
327 static int cortex_a8_read_dcc(struct cortex_a8_common *a8, uint32_t *data,
328 uint32_t *dscr_p)
330 struct adiv5_dap *swjdp = &a8->armv7a_common.dap;
331 uint32_t dscr = DSCR_INSTR_COMP;
332 int retval;
334 if (dscr_p)
335 dscr = *dscr_p;
337 /* Wait for DTRRXfull */
338 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
339 retval = mem_ap_read_atomic_u32(swjdp,
340 a8->armv7a_common.debug_base + CPUDBG_DSCR,
341 &dscr);
344 retval = mem_ap_read_atomic_u32(swjdp,
345 a8->armv7a_common.debug_base + CPUDBG_DTRTX, data);
346 //LOG_DEBUG("read DCC 0x%08" PRIx32, *data);
348 if (dscr_p)
349 *dscr_p = dscr;
351 return retval;
354 static int cortex_a8_dpm_prepare(struct arm_dpm *dpm)
356 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
357 struct adiv5_dap *swjdp = &a8->armv7a_common.dap;
358 uint32_t dscr;
359 int retval;
361 /* set up invariant: INSTR_COMP is set after ever DPM operation */
362 do {
363 retval = mem_ap_read_atomic_u32(swjdp,
364 a8->armv7a_common.debug_base + CPUDBG_DSCR,
365 &dscr);
366 } while ((dscr & DSCR_INSTR_COMP) == 0);
368 /* this "should never happen" ... */
369 if (dscr & DSCR_DTR_RX_FULL) {
370 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
371 /* Clear DCCRX */
372 retval = cortex_a8_exec_opcode(
373 a8->armv7a_common.armv4_5_common.target,
374 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
375 &dscr);
378 return retval;
381 static int cortex_a8_dpm_finish(struct arm_dpm *dpm)
383 /* REVISIT what could be done here? */
384 return ERROR_OK;
387 static int cortex_a8_instr_write_data_dcc(struct arm_dpm *dpm,
388 uint32_t opcode, uint32_t data)
390 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
391 int retval;
392 uint32_t dscr = DSCR_INSTR_COMP;
394 retval = cortex_a8_write_dcc(a8, data);
396 return cortex_a8_exec_opcode(
397 a8->armv7a_common.armv4_5_common.target,
398 opcode,
399 &dscr);
402 static int cortex_a8_instr_write_data_r0(struct arm_dpm *dpm,
403 uint32_t opcode, uint32_t data)
405 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
406 uint32_t dscr = DSCR_INSTR_COMP;
407 int retval;
409 retval = cortex_a8_write_dcc(a8, data);
411 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
412 retval = cortex_a8_exec_opcode(
413 a8->armv7a_common.armv4_5_common.target,
414 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
415 &dscr);
417 /* then the opcode, taking data from R0 */
418 retval = cortex_a8_exec_opcode(
419 a8->armv7a_common.armv4_5_common.target,
420 opcode,
421 &dscr);
423 return retval;
426 static int cortex_a8_instr_cpsr_sync(struct arm_dpm *dpm)
428 struct target *target = dpm->arm->target;
429 uint32_t dscr = DSCR_INSTR_COMP;
431 /* "Prefetch flush" after modifying execution status in CPSR */
432 return cortex_a8_exec_opcode(target,
433 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
434 &dscr);
437 static int cortex_a8_instr_read_data_dcc(struct arm_dpm *dpm,
438 uint32_t opcode, uint32_t *data)
440 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
441 int retval;
442 uint32_t dscr = DSCR_INSTR_COMP;
444 /* the opcode, writing data to DCC */
445 retval = cortex_a8_exec_opcode(
446 a8->armv7a_common.armv4_5_common.target,
447 opcode,
448 &dscr);
450 return cortex_a8_read_dcc(a8, data, &dscr);
454 static int cortex_a8_instr_read_data_r0(struct arm_dpm *dpm,
455 uint32_t opcode, uint32_t *data)
457 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
458 uint32_t dscr = DSCR_INSTR_COMP;
459 int retval;
461 /* the opcode, writing data to R0 */
462 retval = cortex_a8_exec_opcode(
463 a8->armv7a_common.armv4_5_common.target,
464 opcode,
465 &dscr);
467 /* write R0 to DCC */
468 retval = cortex_a8_exec_opcode(
469 a8->armv7a_common.armv4_5_common.target,
470 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
471 &dscr);
473 return cortex_a8_read_dcc(a8, data, &dscr);
476 static int cortex_a8_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
477 uint32_t addr, uint32_t control)
479 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
480 uint32_t vr = a8->armv7a_common.debug_base;
481 uint32_t cr = a8->armv7a_common.debug_base;
482 int retval;
484 switch (index_t) {
485 case 0 ... 15: /* breakpoints */
486 vr += CPUDBG_BVR_BASE;
487 cr += CPUDBG_BCR_BASE;
488 break;
489 case 16 ... 31: /* watchpoints */
490 vr += CPUDBG_WVR_BASE;
491 cr += CPUDBG_WCR_BASE;
492 index_t -= 16;
493 break;
494 default:
495 return ERROR_FAIL;
497 vr += 4 * index_t;
498 cr += 4 * index_t;
500 LOG_DEBUG("A8: bpwp enable, vr %08x cr %08x",
501 (unsigned) vr, (unsigned) cr);
503 retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
504 vr, addr);
505 if (retval != ERROR_OK)
506 return retval;
507 retval = cortex_a8_dap_write_memap_register_u32(dpm->arm->target,
508 cr, control);
509 return retval;
512 static int cortex_a8_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
514 struct cortex_a8_common *a8 = dpm_to_a8(dpm);
515 uint32_t cr;
517 switch (index_t) {
518 case 0 ... 15:
519 cr = a8->armv7a_common.debug_base + CPUDBG_BCR_BASE;
520 break;
521 case 16 ... 31:
522 cr = a8->armv7a_common.debug_base + CPUDBG_WCR_BASE;
523 index_t -= 16;
524 break;
525 default:
526 return ERROR_FAIL;
528 cr += 4 * index_t;
530 LOG_DEBUG("A8: bpwp disable, cr %08x", (unsigned) cr);
532 /* clear control register */
533 return cortex_a8_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
536 static int cortex_a8_dpm_setup(struct cortex_a8_common *a8, uint32_t didr)
538 struct arm_dpm *dpm = &a8->armv7a_common.dpm;
539 int retval;
541 dpm->arm = &a8->armv7a_common.armv4_5_common;
542 dpm->didr = didr;
544 dpm->prepare = cortex_a8_dpm_prepare;
545 dpm->finish = cortex_a8_dpm_finish;
547 dpm->instr_write_data_dcc = cortex_a8_instr_write_data_dcc;
548 dpm->instr_write_data_r0 = cortex_a8_instr_write_data_r0;
549 dpm->instr_cpsr_sync = cortex_a8_instr_cpsr_sync;
551 dpm->instr_read_data_dcc = cortex_a8_instr_read_data_dcc;
552 dpm->instr_read_data_r0 = cortex_a8_instr_read_data_r0;
554 dpm->bpwp_enable = cortex_a8_bpwp_enable;
555 dpm->bpwp_disable = cortex_a8_bpwp_disable;
557 retval = arm_dpm_setup(dpm);
558 if (retval == ERROR_OK)
559 retval = arm_dpm_initialize(dpm);
561 return retval;
566 * Cortex-A8 Run control
569 static int cortex_a8_poll(struct target *target)
571 int retval = ERROR_OK;
572 uint32_t dscr;
573 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
574 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
575 struct adiv5_dap *swjdp = &armv7a->dap;
576 enum target_state prev_target_state = target->state;
577 uint8_t saved_apsel = dap_ap_get_select(swjdp);
579 dap_ap_select(swjdp, swjdp_debugap);
580 retval = mem_ap_read_atomic_u32(swjdp,
581 armv7a->debug_base + CPUDBG_DSCR, &dscr);
582 if (retval != ERROR_OK)
584 dap_ap_select(swjdp, saved_apsel);
585 return retval;
587 cortex_a8->cpudbg_dscr = dscr;
589 if ((dscr & 0x3) == 0x3)
591 if (prev_target_state != TARGET_HALTED)
593 /* We have a halting debug event */
594 LOG_DEBUG("Target halted");
595 target->state = TARGET_HALTED;
596 if ((prev_target_state == TARGET_RUNNING)
597 || (prev_target_state == TARGET_RESET))
599 retval = cortex_a8_debug_entry(target);
600 if (retval != ERROR_OK)
601 return retval;
603 target_call_event_callbacks(target,
604 TARGET_EVENT_HALTED);
606 if (prev_target_state == TARGET_DEBUG_RUNNING)
608 LOG_DEBUG(" ");
610 retval = cortex_a8_debug_entry(target);
611 if (retval != ERROR_OK)
612 return retval;
614 target_call_event_callbacks(target,
615 TARGET_EVENT_DEBUG_HALTED);
619 else if ((dscr & 0x3) == 0x2)
621 target->state = TARGET_RUNNING;
623 else
625 LOG_DEBUG("Unknown target state dscr = 0x%08" PRIx32, dscr);
626 target->state = TARGET_UNKNOWN;
629 dap_ap_select(swjdp, saved_apsel);
631 return retval;
634 static int cortex_a8_halt(struct target *target)
636 int retval = ERROR_OK;
637 uint32_t dscr;
638 struct armv7a_common *armv7a = target_to_armv7a(target);
639 struct adiv5_dap *swjdp = &armv7a->dap;
640 uint8_t saved_apsel = dap_ap_get_select(swjdp);
641 dap_ap_select(swjdp, swjdp_debugap);
644 * Tell the core to be halted by writing DRCR with 0x1
645 * and then wait for the core to be halted.
647 retval = mem_ap_write_atomic_u32(swjdp,
648 armv7a->debug_base + CPUDBG_DRCR, 0x1);
651 * enter halting debug mode
653 mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DSCR, &dscr);
654 retval = mem_ap_write_atomic_u32(swjdp,
655 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
657 if (retval != ERROR_OK)
658 goto out;
660 do {
661 mem_ap_read_atomic_u32(swjdp,
662 armv7a->debug_base + CPUDBG_DSCR, &dscr);
663 } while ((dscr & DSCR_CORE_HALTED) == 0);
665 target->debug_reason = DBG_REASON_DBGRQ;
667 out:
668 dap_ap_select(swjdp, saved_apsel);
669 return retval;
672 static int cortex_a8_resume(struct target *target, int current,
673 uint32_t address, int handle_breakpoints, int debug_execution)
675 struct armv7a_common *armv7a = target_to_armv7a(target);
676 struct arm *armv4_5 = &armv7a->armv4_5_common;
677 struct adiv5_dap *swjdp = &armv7a->dap;
679 // struct breakpoint *breakpoint = NULL;
680 uint32_t resume_pc, dscr;
682 uint8_t saved_apsel = dap_ap_get_select(swjdp);
683 dap_ap_select(swjdp, swjdp_debugap);
685 if (!debug_execution)
686 target_free_all_working_areas(target);
688 #if 0
689 if (debug_execution)
691 /* Disable interrupts */
692 /* We disable interrupts in the PRIMASK register instead of
693 * masking with C_MASKINTS,
694 * This is probably the same issue as Cortex-M3 Errata 377493:
695 * C_MASKINTS in parallel with disabled interrupts can cause
696 * local faults to not be taken. */
697 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
698 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
699 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
701 /* Make sure we are in Thumb mode */
702 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
703 buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
704 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
705 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
707 #endif
709 /* current = 1: continue on current pc, otherwise continue at <address> */
710 resume_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
711 if (!current)
712 resume_pc = address;
714 /* Make sure that the Armv7 gdb thumb fixups does not
715 * kill the return address
717 switch (armv4_5->core_state)
719 case ARM_STATE_ARM:
720 resume_pc &= 0xFFFFFFFC;
721 break;
722 case ARM_STATE_THUMB:
723 case ARM_STATE_THUMB_EE:
724 /* When the return address is loaded into PC
725 * bit 0 must be 1 to stay in Thumb state
727 resume_pc |= 0x1;
728 break;
729 case ARM_STATE_JAZELLE:
730 LOG_ERROR("How do I resume into Jazelle state??");
731 return ERROR_FAIL;
733 LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
734 buf_set_u32(armv4_5->pc->value, 0, 32, resume_pc);
735 armv4_5->pc->dirty = 1;
736 armv4_5->pc->valid = 1;
738 cortex_a8_restore_context(target, handle_breakpoints);
740 #if 0
741 /* the front-end may request us not to handle breakpoints */
742 if (handle_breakpoints)
744 /* Single step past breakpoint at current address */
745 if ((breakpoint = breakpoint_find(target, resume_pc)))
747 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
748 cortex_m3_unset_breakpoint(target, breakpoint);
749 cortex_m3_single_step_core(target);
750 cortex_m3_set_breakpoint(target, breakpoint);
754 #endif
755 /* Restart core and wait for it to be started
756 * NOTE: this clears DSCR_ITR_EN and other bits.
758 * REVISIT: for single stepping, we probably want to
759 * disable IRQs by default, with optional override...
761 mem_ap_write_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_DRCR, 0x2);
763 do {
764 mem_ap_read_atomic_u32(swjdp,
765 armv7a->debug_base + CPUDBG_DSCR, &dscr);
766 } while ((dscr & DSCR_CORE_RESTARTED) == 0);
768 target->debug_reason = DBG_REASON_NOTHALTED;
769 target->state = TARGET_RUNNING;
771 /* registers are now invalid */
772 register_cache_invalidate(armv4_5->core_cache);
774 if (!debug_execution)
776 target->state = TARGET_RUNNING;
777 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
778 LOG_DEBUG("target resumed at 0x%" PRIx32, resume_pc);
780 else
782 target->state = TARGET_DEBUG_RUNNING;
783 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
784 LOG_DEBUG("target debug resumed at 0x%" PRIx32, resume_pc);
787 dap_ap_select(swjdp, saved_apsel);
789 return ERROR_OK;
792 static int cortex_a8_debug_entry(struct target *target)
794 int i;
795 uint32_t regfile[16], cpsr, dscr;
796 int retval = ERROR_OK;
797 struct working_area *regfile_working_area = NULL;
798 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
799 struct armv7a_common *armv7a = target_to_armv7a(target);
800 struct arm *armv4_5 = &armv7a->armv4_5_common;
801 struct adiv5_dap *swjdp = &armv7a->dap;
802 struct reg *reg;
804 LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a8->cpudbg_dscr);
806 /* REVISIT surely we should not re-read DSCR !! */
807 mem_ap_read_atomic_u32(swjdp,
808 armv7a->debug_base + CPUDBG_DSCR, &dscr);
810 /* REVISIT see A8 TRM 12.11.4 steps 2..3 -- make sure that any
811 * imprecise data aborts get discarded by issuing a Data
812 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
815 /* Enable the ITR execution once we are in debug mode */
816 dscr |= DSCR_ITR_EN;
817 retval = mem_ap_write_atomic_u32(swjdp,
818 armv7a->debug_base + CPUDBG_DSCR, dscr);
820 /* Examine debug reason */
821 arm_dpm_report_dscr(&armv7a->dpm, cortex_a8->cpudbg_dscr);
823 /* save address of instruction that triggered the watchpoint? */
824 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
825 uint32_t wfar;
827 retval = mem_ap_read_atomic_u32(swjdp,
828 armv7a->debug_base + CPUDBG_WFAR,
829 &wfar);
830 arm_dpm_report_wfar(&armv7a->dpm, wfar);
833 /* REVISIT fast_reg_read is never set ... */
835 /* Examine target state and mode */
836 if (cortex_a8->fast_reg_read)
837 target_alloc_working_area(target, 64, &regfile_working_area);
839 /* First load register acessible through core debug port*/
840 if (!regfile_working_area)
842 retval = arm_dpm_read_current_registers(&armv7a->dpm);
844 else
846 dap_ap_select(swjdp, swjdp_memoryap);
847 cortex_a8_read_regs_through_mem(target,
848 regfile_working_area->address, regfile);
849 dap_ap_select(swjdp, swjdp_memoryap);
850 target_free_working_area(target, regfile_working_area);
852 /* read Current PSR */
853 cortex_a8_dap_read_coreregister_u32(target, &cpsr, 16);
854 dap_ap_select(swjdp, swjdp_debugap);
855 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
857 arm_set_cpsr(armv4_5, cpsr);
859 /* update cache */
860 for (i = 0; i <= ARM_PC; i++)
862 reg = arm_reg_current(armv4_5, i);
864 buf_set_u32(reg->value, 0, 32, regfile[i]);
865 reg->valid = 1;
866 reg->dirty = 0;
869 /* Fixup PC Resume Address */
870 if (cpsr & (1 << 5))
872 // T bit set for Thumb or ThumbEE state
873 regfile[ARM_PC] -= 4;
875 else
877 // ARM state
878 regfile[ARM_PC] -= 8;
881 reg = armv4_5->pc;
882 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
883 reg->dirty = reg->valid;
886 #if 0
887 /* TODO, Move this */
888 uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
889 cortex_a8_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
890 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
892 cortex_a8_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
893 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
895 cortex_a8_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
896 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
897 #endif
899 /* Are we in an exception handler */
900 // armv4_5->exception_number = 0;
901 if (armv7a->post_debug_entry)
902 armv7a->post_debug_entry(target);
904 return retval;
907 static void cortex_a8_post_debug_entry(struct target *target)
909 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
910 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
911 int retval;
913 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
914 retval = armv7a->armv4_5_common.mrc(target, 15,
915 0, 0, /* op1, op2 */
916 1, 0, /* CRn, CRm */
917 &cortex_a8->cp15_control_reg);
918 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a8->cp15_control_reg);
920 if (armv7a->armv4_5_mmu.armv4_5_cache.ctype == -1)
922 uint32_t cache_type_reg;
924 /* MRC p15,0,<Rt>,c0,c0,1 ; Read CP15 Cache Type Register */
925 retval = armv7a->armv4_5_common.mrc(target, 15,
926 0, 1, /* op1, op2 */
927 0, 0, /* CRn, CRm */
928 &cache_type_reg);
929 LOG_DEBUG("cp15 cache type: %8.8x", (unsigned) cache_type_reg);
931 /* FIXME the armv4_4 cache info DOES NOT APPLY to Cortex-A8 */
932 armv4_5_identify_cache(cache_type_reg,
933 &armv7a->armv4_5_mmu.armv4_5_cache);
936 armv7a->armv4_5_mmu.mmu_enabled =
937 (cortex_a8->cp15_control_reg & 0x1U) ? 1 : 0;
938 armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
939 (cortex_a8->cp15_control_reg & 0x4U) ? 1 : 0;
940 armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
941 (cortex_a8->cp15_control_reg & 0x1000U) ? 1 : 0;
946 static int cortex_a8_step(struct target *target, int current, uint32_t address,
947 int handle_breakpoints)
949 struct armv7a_common *armv7a = target_to_armv7a(target);
950 struct arm *armv4_5 = &armv7a->armv4_5_common;
951 struct breakpoint *breakpoint = NULL;
952 struct breakpoint stepbreakpoint;
953 struct reg *r;
955 int timeout = 100;
957 if (target->state != TARGET_HALTED)
959 LOG_WARNING("target not halted");
960 return ERROR_TARGET_NOT_HALTED;
963 /* current = 1: continue on current pc, otherwise continue at <address> */
964 r = armv4_5->pc;
965 if (!current)
967 buf_set_u32(r->value, 0, 32, address);
969 else
971 address = buf_get_u32(r->value, 0, 32);
974 /* The front-end may request us not to handle breakpoints.
975 * But since Cortex-A8 uses breakpoint for single step,
976 * we MUST handle breakpoints.
978 handle_breakpoints = 1;
979 if (handle_breakpoints) {
980 breakpoint = breakpoint_find(target, address);
981 if (breakpoint)
982 cortex_a8_unset_breakpoint(target, breakpoint);
985 /* Setup single step breakpoint */
986 stepbreakpoint.address = address;
987 stepbreakpoint.length = (armv4_5->core_state == ARM_STATE_THUMB)
988 ? 2 : 4;
989 stepbreakpoint.type = BKPT_HARD;
990 stepbreakpoint.set = 0;
992 /* Break on IVA mismatch */
993 cortex_a8_set_breakpoint(target, &stepbreakpoint, 0x04);
995 target->debug_reason = DBG_REASON_SINGLESTEP;
997 cortex_a8_resume(target, 1, address, 0, 0);
999 while (target->state != TARGET_HALTED)
1001 cortex_a8_poll(target);
1002 if (--timeout == 0)
1004 LOG_WARNING("timeout waiting for target halt");
1005 break;
1009 cortex_a8_unset_breakpoint(target, &stepbreakpoint);
1010 if (timeout > 0)
1011 target->debug_reason = DBG_REASON_BREAKPOINT;
1013 if (breakpoint)
1014 cortex_a8_set_breakpoint(target, breakpoint, 0);
1016 if (target->state != TARGET_HALTED)
1017 LOG_DEBUG("target stepped");
1019 return ERROR_OK;
1022 static int cortex_a8_restore_context(struct target *target, bool bpwp)
1024 struct armv7a_common *armv7a = target_to_armv7a(target);
1026 LOG_DEBUG(" ");
1028 if (armv7a->pre_restore_context)
1029 armv7a->pre_restore_context(target);
1031 arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1033 return ERROR_OK;
1038 * Cortex-A8 Breakpoint and watchpoint fuctions
1041 /* Setup hardware Breakpoint Register Pair */
1042 static int cortex_a8_set_breakpoint(struct target *target,
1043 struct breakpoint *breakpoint, uint8_t matchmode)
1045 int retval;
1046 int brp_i=0;
1047 uint32_t control;
1048 uint8_t byte_addr_select = 0x0F;
1049 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1050 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1051 struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1053 if (breakpoint->set)
1055 LOG_WARNING("breakpoint already set");
1056 return ERROR_OK;
1059 if (breakpoint->type == BKPT_HARD)
1061 while (brp_list[brp_i].used && (brp_i < cortex_a8->brp_num))
1062 brp_i++ ;
1063 if (brp_i >= cortex_a8->brp_num)
1065 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1066 return ERROR_FAIL;
1068 breakpoint->set = brp_i + 1;
1069 if (breakpoint->length == 2)
1071 byte_addr_select = (3 << (breakpoint->address & 0x02));
1073 control = ((matchmode & 0x7) << 20)
1074 | (byte_addr_select << 5)
1075 | (3 << 1) | 1;
1076 brp_list[brp_i].used = 1;
1077 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1078 brp_list[brp_i].control = control;
1079 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1080 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1081 brp_list[brp_i].value);
1082 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1083 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1084 brp_list[brp_i].control);
1085 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1086 brp_list[brp_i].control,
1087 brp_list[brp_i].value);
1089 else if (breakpoint->type == BKPT_SOFT)
1091 uint8_t code[4];
1092 if (breakpoint->length == 2)
1094 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1096 else
1098 buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1100 retval = target->type->read_memory(target,
1101 breakpoint->address & 0xFFFFFFFE,
1102 breakpoint->length, 1,
1103 breakpoint->orig_instr);
1104 if (retval != ERROR_OK)
1105 return retval;
1106 retval = target->type->write_memory(target,
1107 breakpoint->address & 0xFFFFFFFE,
1108 breakpoint->length, 1, code);
1109 if (retval != ERROR_OK)
1110 return retval;
1111 breakpoint->set = 0x11; /* Any nice value but 0 */
1114 return ERROR_OK;
1117 static int cortex_a8_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1119 int retval;
1120 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1121 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1122 struct cortex_a8_brp * brp_list = cortex_a8->brp_list;
1124 if (!breakpoint->set)
1126 LOG_WARNING("breakpoint not set");
1127 return ERROR_OK;
1130 if (breakpoint->type == BKPT_HARD)
1132 int brp_i = breakpoint->set - 1;
1133 if ((brp_i < 0) || (brp_i >= cortex_a8->brp_num))
1135 LOG_DEBUG("Invalid BRP number in breakpoint");
1136 return ERROR_OK;
1138 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1139 brp_list[brp_i].control, brp_list[brp_i].value);
1140 brp_list[brp_i].used = 0;
1141 brp_list[brp_i].value = 0;
1142 brp_list[brp_i].control = 0;
1143 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1144 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1145 brp_list[brp_i].control);
1146 cortex_a8_dap_write_memap_register_u32(target, armv7a->debug_base
1147 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1148 brp_list[brp_i].value);
1150 else
1152 /* restore original instruction (kept in target endianness) */
1153 if (breakpoint->length == 4)
1155 retval = target->type->write_memory(target,
1156 breakpoint->address & 0xFFFFFFFE,
1157 4, 1, breakpoint->orig_instr);
1158 if (retval != ERROR_OK)
1159 return retval;
1161 else
1163 retval = target->type->write_memory(target,
1164 breakpoint->address & 0xFFFFFFFE,
1165 2, 1, breakpoint->orig_instr);
1166 if (retval != ERROR_OK)
1167 return retval;
1170 breakpoint->set = 0;
1172 return ERROR_OK;
1175 static int cortex_a8_add_breakpoint(struct target *target,
1176 struct breakpoint *breakpoint)
1178 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1180 if ((breakpoint->type == BKPT_HARD) && (cortex_a8->brp_num_available < 1))
1182 LOG_INFO("no hardware breakpoint available");
1183 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1186 if (breakpoint->type == BKPT_HARD)
1187 cortex_a8->brp_num_available--;
1188 cortex_a8_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1190 return ERROR_OK;
1193 static int cortex_a8_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1195 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1197 #if 0
1198 /* It is perfectly possible to remove brakpoints while the taget is running */
1199 if (target->state != TARGET_HALTED)
1201 LOG_WARNING("target not halted");
1202 return ERROR_TARGET_NOT_HALTED;
1204 #endif
1206 if (breakpoint->set)
1208 cortex_a8_unset_breakpoint(target, breakpoint);
1209 if (breakpoint->type == BKPT_HARD)
1210 cortex_a8->brp_num_available++ ;
1214 return ERROR_OK;
1220 * Cortex-A8 Reset fuctions
1223 static int cortex_a8_assert_reset(struct target *target)
1225 struct armv7a_common *armv7a = target_to_armv7a(target);
1227 LOG_DEBUG(" ");
1229 /* FIXME when halt is requested, make it work somehow... */
1231 /* Issue some kind of warm reset. */
1232 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
1233 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1234 } else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1235 /* REVISIT handle "pulls" cases, if there's
1236 * hardware that needs them to work.
1238 jtag_add_reset(0, 1);
1239 } else {
1240 LOG_ERROR("%s: how to reset?", target_name(target));
1241 return ERROR_FAIL;
1244 /* registers are now invalid */
1245 register_cache_invalidate(armv7a->armv4_5_common.core_cache);
1247 target->state = TARGET_RESET;
1249 return ERROR_OK;
1252 static int cortex_a8_deassert_reset(struct target *target)
1254 int retval;
1256 LOG_DEBUG(" ");
1258 /* be certain SRST is off */
1259 jtag_add_reset(0, 0);
1261 retval = cortex_a8_poll(target);
1263 if (target->reset_halt) {
1264 if (target->state != TARGET_HALTED) {
1265 LOG_WARNING("%s: ran after reset and before halt ...",
1266 target_name(target));
1267 if ((retval = target_halt(target)) != ERROR_OK)
1268 return retval;
1272 return ERROR_OK;
1276 * Cortex-A8 Memory access
1278 * This is same Cortex M3 but we must also use the correct
1279 * ap number for every access.
1282 static int cortex_a8_read_phys_memory(struct target *target,
1283 uint32_t address, uint32_t size,
1284 uint32_t count, uint8_t *buffer)
1286 struct armv7a_common *armv7a = target_to_armv7a(target);
1287 struct adiv5_dap *swjdp = &armv7a->dap;
1288 int retval = ERROR_INVALID_ARGUMENTS;
1290 /* cortex_a8 handles unaligned memory access */
1292 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1293 LOG_DEBUG("Reading memory at real address 0x%x; size %d; count %d", address, size, count);
1294 if (count && buffer) {
1295 switch (size) {
1296 case 4:
1297 retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1298 break;
1299 case 2:
1300 retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1301 break;
1302 case 1:
1303 retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1304 break;
1308 return retval;
1311 static int cortex_a8_read_memory(struct target *target, uint32_t address,
1312 uint32_t size, uint32_t count, uint8_t *buffer)
1314 int enabled = 0;
1315 uint32_t virt, phys;
1317 /* cortex_a8 handles unaligned memory access */
1319 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1320 LOG_DEBUG("Reading memory at address 0x%x; size %d; count %d", address, size, count);
1321 cortex_a8_mmu(target, &enabled);
1322 if(enabled)
1324 virt = address;
1325 cortex_a8_virt2phys(target, virt, &phys);
1326 LOG_DEBUG("Reading at virtual address. Translating v:0x%x to r:0x%x", virt, phys);
1327 address = phys;
1330 return cortex_a8_read_phys_memory(target, address, size, count, buffer);
1333 static int cortex_a8_write_phys_memory(struct target *target,
1334 uint32_t address, uint32_t size,
1335 uint32_t count, uint8_t *buffer)
1337 struct armv7a_common *armv7a = target_to_armv7a(target);
1338 struct adiv5_dap *swjdp = &armv7a->dap;
1339 int retval = ERROR_INVALID_ARGUMENTS;
1341 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1343 LOG_DEBUG("Writing memory to real address 0x%x; size %d; count %d", address, size, count);
1344 if (count && buffer) {
1345 switch (size) {
1346 case 4:
1347 retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1348 break;
1349 case 2:
1350 retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1351 break;
1352 case 1:
1353 retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1354 break;
1358 /* REVISIT this op is generic ARMv7-A/R stuff */
1359 if (retval == ERROR_OK && target->state == TARGET_HALTED)
1361 struct arm_dpm *dpm = armv7a->armv4_5_common.dpm;
1363 retval = dpm->prepare(dpm);
1364 if (retval != ERROR_OK)
1365 return retval;
1367 /* The Cache handling will NOT work with MMU active, the
1368 * wrong addresses will be invalidated!
1370 * For both ICache and DCache, walk all cache lines in the
1371 * address range. Cortex-A8 has fixed 64 byte line length.
1373 * REVISIT per ARMv7, these may trigger watchpoints ...
1376 /* invalidate I-Cache */
1377 if (armv7a->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
1379 /* ICIMVAU - Invalidate Cache single entry
1380 * with MVA to PoU
1381 * MCR p15, 0, r0, c7, c5, 1
1383 for (uint32_t cacheline = address;
1384 cacheline < address + size * count;
1385 cacheline += 64) {
1386 retval = dpm->instr_write_data_r0(dpm,
1387 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
1388 cacheline);
1392 /* invalidate D-Cache */
1393 if (armv7a->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
1395 /* DCIMVAC - Invalidate data Cache line
1396 * with MVA to PoC
1397 * MCR p15, 0, r0, c7, c6, 1
1399 for (uint32_t cacheline = address;
1400 cacheline < address + size * count;
1401 cacheline += 64) {
1402 retval = dpm->instr_write_data_r0(dpm,
1403 ARMV4_5_MCR(15, 0, 0, 7, 6, 1),
1404 cacheline);
1408 /* (void) */ dpm->finish(dpm);
1411 return retval;
1414 static int cortex_a8_write_memory(struct target *target, uint32_t address,
1415 uint32_t size, uint32_t count, uint8_t *buffer)
1417 int enabled = 0;
1418 uint32_t virt, phys;
1420 // ??? dap_ap_select(swjdp, swjdp_memoryap);
1422 LOG_DEBUG("Writing memory to address 0x%x; size %d; count %d", address, size, count);
1423 cortex_a8_mmu(target, &enabled);
1424 if(enabled)
1426 virt = address;
1427 cortex_a8_virt2phys(target, virt, &phys);
1428 LOG_DEBUG("Writing to virtual address. Translating v:0x%x to r:0x%x", virt, phys);
1429 address = phys;
1432 return cortex_a8_write_phys_memory(target, address, size,
1433 count, buffer);
1436 static int cortex_a8_bulk_write_memory(struct target *target, uint32_t address,
1437 uint32_t count, uint8_t *buffer)
1439 return cortex_a8_write_memory(target, address, 4, count, buffer);
1443 static int cortex_a8_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1445 #if 0
1446 u16 dcrdr;
1448 mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1449 *ctrl = (uint8_t)dcrdr;
1450 *value = (uint8_t)(dcrdr >> 8);
1452 LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1454 /* write ack back to software dcc register
1455 * signify we have read data */
1456 if (dcrdr & (1 << 0))
1458 dcrdr = 0;
1459 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1461 #endif
1462 return ERROR_OK;
1466 static int cortex_a8_handle_target_request(void *priv)
1468 struct target *target = priv;
1469 struct armv7a_common *armv7a = target_to_armv7a(target);
1470 struct adiv5_dap *swjdp = &armv7a->dap;
1472 if (!target_was_examined(target))
1473 return ERROR_OK;
1474 if (!target->dbg_msg_enabled)
1475 return ERROR_OK;
1477 if (target->state == TARGET_RUNNING)
1479 uint8_t data = 0;
1480 uint8_t ctrl = 0;
1482 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1484 /* check if we have data */
1485 if (ctrl & (1 << 0))
1487 uint32_t request;
1489 /* we assume target is quick enough */
1490 request = data;
1491 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1492 request |= (data << 8);
1493 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1494 request |= (data << 16);
1495 cortex_a8_dcc_read(swjdp, &data, &ctrl);
1496 request |= (data << 24);
1497 target_request(target, request);
1501 return ERROR_OK;
1505 * Cortex-A8 target information and configuration
1508 static int cortex_a8_examine_first(struct target *target)
1510 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1511 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1512 struct adiv5_dap *swjdp = &armv7a->dap;
1513 int i;
1514 int retval = ERROR_OK;
1515 uint32_t didr, ctypr, ttypr, cpuid;
1517 /* stop assuming this is an OMAP! */
1518 LOG_DEBUG("TODO - autoconfigure");
1520 /* Here we shall insert a proper ROM Table scan */
1521 armv7a->debug_base = OMAP3530_DEBUG_BASE;
1523 /* We do one extra read to ensure DAP is configured,
1524 * we call ahbap_debugport_init(swjdp) instead
1526 retval = ahbap_debugport_init(swjdp);
1527 if (retval != ERROR_OK)
1528 return retval;
1530 retval = mem_ap_read_atomic_u32(swjdp, armv7a->debug_base + CPUDBG_CPUID, &cpuid);
1531 if (retval != ERROR_OK)
1532 return retval;
1534 if ((retval = mem_ap_read_atomic_u32(swjdp,
1535 armv7a->debug_base + CPUDBG_CPUID, &cpuid)) != ERROR_OK)
1537 LOG_DEBUG("Examine %s failed", "CPUID");
1538 return retval;
1541 if ((retval = mem_ap_read_atomic_u32(swjdp,
1542 armv7a->debug_base + CPUDBG_CTYPR, &ctypr)) != ERROR_OK)
1544 LOG_DEBUG("Examine %s failed", "CTYPR");
1545 return retval;
1548 if ((retval = mem_ap_read_atomic_u32(swjdp,
1549 armv7a->debug_base + CPUDBG_TTYPR, &ttypr)) != ERROR_OK)
1551 LOG_DEBUG("Examine %s failed", "TTYPR");
1552 return retval;
1555 if ((retval = mem_ap_read_atomic_u32(swjdp,
1556 armv7a->debug_base + CPUDBG_DIDR, &didr)) != ERROR_OK)
1558 LOG_DEBUG("Examine %s failed", "DIDR");
1559 return retval;
1562 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
1563 LOG_DEBUG("ctypr = 0x%08" PRIx32, ctypr);
1564 LOG_DEBUG("ttypr = 0x%08" PRIx32, ttypr);
1565 LOG_DEBUG("didr = 0x%08" PRIx32, didr);
1567 armv7a->armv4_5_common.core_type = ARM_MODE_MON;
1568 retval = cortex_a8_dpm_setup(cortex_a8, didr);
1569 if (retval != ERROR_OK)
1570 return retval;
1572 /* Setup Breakpoint Register Pairs */
1573 cortex_a8->brp_num = ((didr >> 24) & 0x0F) + 1;
1574 cortex_a8->brp_num_context = ((didr >> 20) & 0x0F) + 1;
1575 cortex_a8->brp_num_available = cortex_a8->brp_num;
1576 cortex_a8->brp_list = calloc(cortex_a8->brp_num, sizeof(struct cortex_a8_brp));
1577 // cortex_a8->brb_enabled = ????;
1578 for (i = 0; i < cortex_a8->brp_num; i++)
1580 cortex_a8->brp_list[i].used = 0;
1581 if (i < (cortex_a8->brp_num-cortex_a8->brp_num_context))
1582 cortex_a8->brp_list[i].type = BRP_NORMAL;
1583 else
1584 cortex_a8->brp_list[i].type = BRP_CONTEXT;
1585 cortex_a8->brp_list[i].value = 0;
1586 cortex_a8->brp_list[i].control = 0;
1587 cortex_a8->brp_list[i].BRPn = i;
1590 LOG_DEBUG("Configured %i hw breakpoints", cortex_a8->brp_num);
1592 target_set_examined(target);
1593 return ERROR_OK;
1596 static int cortex_a8_examine(struct target *target)
1598 int retval = ERROR_OK;
1600 /* don't re-probe hardware after each reset */
1601 if (!target_was_examined(target))
1602 retval = cortex_a8_examine_first(target);
1604 /* Configure core debug access */
1605 if (retval == ERROR_OK)
1606 retval = cortex_a8_init_debug_access(target);
1608 return retval;
1612 * Cortex-A8 target creation and initialization
1615 static int cortex_a8_init_target(struct command_context *cmd_ctx,
1616 struct target *target)
1618 /* examine_first() does a bunch of this */
1619 return ERROR_OK;
1622 static int cortex_a8_init_arch_info(struct target *target,
1623 struct cortex_a8_common *cortex_a8, struct jtag_tap *tap)
1625 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1626 struct arm *armv4_5 = &armv7a->armv4_5_common;
1627 struct adiv5_dap *dap = &armv7a->dap;
1629 armv7a->armv4_5_common.dap = dap;
1631 /* Setup struct cortex_a8_common */
1632 cortex_a8->common_magic = CORTEX_A8_COMMON_MAGIC;
1633 armv4_5->arch_info = armv7a;
1635 /* prepare JTAG information for the new target */
1636 cortex_a8->jtag_info.tap = tap;
1637 cortex_a8->jtag_info.scann_size = 4;
1639 /* Leave (only) generic DAP stuff for debugport_init() */
1640 dap->jtag_info = &cortex_a8->jtag_info;
1641 dap->memaccess_tck = 80;
1643 /* Number of bits for tar autoincrement, impl. dep. at least 10 */
1644 dap->tar_autoincr_block = (1 << 10);
1646 cortex_a8->fast_reg_read = 0;
1648 /* Set default value */
1649 cortex_a8->current_address_mode = ARM_MODE_ANY;
1651 /* register arch-specific functions */
1652 armv7a->examine_debug_reason = NULL;
1654 armv7a->post_debug_entry = cortex_a8_post_debug_entry;
1656 armv7a->pre_restore_context = NULL;
1657 armv7a->armv4_5_mmu.armv4_5_cache.ctype = -1;
1658 armv7a->armv4_5_mmu.get_ttb = cortex_a8_get_ttb;
1659 armv7a->armv4_5_mmu.read_memory = cortex_a8_read_phys_memory;
1660 armv7a->armv4_5_mmu.write_memory = cortex_a8_write_phys_memory;
1661 armv7a->armv4_5_mmu.disable_mmu_caches = cortex_a8_disable_mmu_caches;
1662 armv7a->armv4_5_mmu.enable_mmu_caches = cortex_a8_enable_mmu_caches;
1663 armv7a->armv4_5_mmu.has_tiny_pages = 1;
1664 armv7a->armv4_5_mmu.mmu_enabled = 0;
1667 // arm7_9->handle_target_request = cortex_a8_handle_target_request;
1669 /* REVISIT v7a setup should be in a v7a-specific routine */
1670 arm_init_arch_info(target, armv4_5);
1671 armv7a->common_magic = ARMV7_COMMON_MAGIC;
1673 target_register_timer_callback(cortex_a8_handle_target_request, 1, 1, target);
1675 return ERROR_OK;
1678 static int cortex_a8_target_create(struct target *target, Jim_Interp *interp)
1680 struct cortex_a8_common *cortex_a8 = calloc(1, sizeof(struct cortex_a8_common));
1682 cortex_a8_init_arch_info(target, cortex_a8, target->tap);
1684 return ERROR_OK;
1687 static uint32_t cortex_a8_get_ttb(struct target *target)
1689 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1690 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1691 uint32_t ttb = 0, retval = ERROR_OK;
1693 /* current_address_mode is set inside cortex_a8_virt2phys()
1694 where we can determine if address belongs to user or kernel */
1695 if(cortex_a8->current_address_mode == ARM_MODE_SVC)
1697 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1698 retval = armv7a->armv4_5_common.mrc(target, 15,
1699 0, 1, /* op1, op2 */
1700 2, 0, /* CRn, CRm */
1701 &ttb);
1703 else if(cortex_a8->current_address_mode == ARM_MODE_USR)
1705 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1706 retval = armv7a->armv4_5_common.mrc(target, 15,
1707 0, 0, /* op1, op2 */
1708 2, 0, /* CRn, CRm */
1709 &ttb);
1711 /* we don't know whose address is: user or kernel
1712 we assume that if we are in kernel mode then
1713 address belongs to kernel else if in user mode
1714 - to user */
1715 else if(armv7a->armv4_5_common.core_mode == ARM_MODE_SVC)
1717 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1718 retval = armv7a->armv4_5_common.mrc(target, 15,
1719 0, 1, /* op1, op2 */
1720 2, 0, /* CRn, CRm */
1721 &ttb);
1723 else if(armv7a->armv4_5_common.core_mode == ARM_MODE_USR)
1725 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1726 retval = armv7a->armv4_5_common.mrc(target, 15,
1727 0, 0, /* op1, op2 */
1728 2, 0, /* CRn, CRm */
1729 &ttb);
1731 /* finaly we don't know whose ttb to use: user or kernel */
1732 else
1733 LOG_ERROR("Don't know how to get ttb for current mode!!!");
1735 ttb &= 0xffffc000;
1737 return ttb;
1740 static void cortex_a8_disable_mmu_caches(struct target *target, int mmu,
1741 int d_u_cache, int i_cache)
1743 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1744 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1745 uint32_t cp15_control;
1747 /* read cp15 control register */
1748 armv7a->armv4_5_common.mrc(target, 15,
1749 0, 0, /* op1, op2 */
1750 1, 0, /* CRn, CRm */
1751 &cp15_control);
1754 if (mmu)
1755 cp15_control &= ~0x1U;
1757 if (d_u_cache)
1758 cp15_control &= ~0x4U;
1760 if (i_cache)
1761 cp15_control &= ~0x1000U;
1763 armv7a->armv4_5_common.mcr(target, 15,
1764 0, 0, /* op1, op2 */
1765 1, 0, /* CRn, CRm */
1766 cp15_control);
1769 static void cortex_a8_enable_mmu_caches(struct target *target, int mmu,
1770 int d_u_cache, int i_cache)
1772 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1773 struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1774 uint32_t cp15_control;
1776 /* read cp15 control register */
1777 armv7a->armv4_5_common.mrc(target, 15,
1778 0, 0, /* op1, op2 */
1779 1, 0, /* CRn, CRm */
1780 &cp15_control);
1782 if (mmu)
1783 cp15_control |= 0x1U;
1785 if (d_u_cache)
1786 cp15_control |= 0x4U;
1788 if (i_cache)
1789 cp15_control |= 0x1000U;
1791 armv7a->armv4_5_common.mcr(target, 15,
1792 0, 0, /* op1, op2 */
1793 1, 0, /* CRn, CRm */
1794 cp15_control);
1798 static int cortex_a8_mmu(struct target *target, int *enabled)
1800 if (target->state != TARGET_HALTED) {
1801 LOG_ERROR("%s: target not halted", __func__);
1802 return ERROR_TARGET_INVALID;
1805 *enabled = target_to_cortex_a8(target)->armv7a_common.armv4_5_mmu.mmu_enabled;
1806 return ERROR_OK;
1809 static int cortex_a8_virt2phys(struct target *target,
1810 uint32_t virt, uint32_t *phys)
1812 uint32_t cb;
1813 struct cortex_a8_common *cortex_a8 = target_to_cortex_a8(target);
1814 // struct armv7a_common *armv7a = &cortex_a8->armv7a_common;
1815 struct armv7a_common *armv7a = target_to_armv7a(target);
1817 /* We assume that virtual address is separated
1818 between user and kernel in Linux style:
1819 0x00000000-0xbfffffff - User space
1820 0xc0000000-0xffffffff - Kernel space */
1821 if( virt < 0xc0000000 ) /* Linux user space */
1822 cortex_a8->current_address_mode = ARM_MODE_USR;
1823 else /* Linux kernel */
1824 cortex_a8->current_address_mode = ARM_MODE_SVC;
1825 uint32_t ret;
1826 int retval = armv4_5_mmu_translate_va(target,
1827 &armv7a->armv4_5_mmu, virt, &cb, &ret);
1828 if (retval != ERROR_OK)
1829 return retval;
1830 /* Reset the flag. We don't want someone else to use it by error */
1831 cortex_a8->current_address_mode = ARM_MODE_ANY;
1833 *phys = ret;
1834 return ERROR_OK;
1837 COMMAND_HANDLER(cortex_a8_handle_cache_info_command)
1839 struct target *target = get_current_target(CMD_CTX);
1840 struct armv7a_common *armv7a = target_to_armv7a(target);
1842 return armv4_5_handle_cache_info_command(CMD_CTX,
1843 &armv7a->armv4_5_mmu.armv4_5_cache);
1847 COMMAND_HANDLER(cortex_a8_handle_dbginit_command)
1849 struct target *target = get_current_target(CMD_CTX);
1850 if (!target_was_examined(target))
1852 LOG_ERROR("target not examined yet");
1853 return ERROR_FAIL;
1856 return cortex_a8_init_debug_access(target);
1859 static const struct command_registration cortex_a8_exec_command_handlers[] = {
1861 .name = "cache_info",
1862 .handler = cortex_a8_handle_cache_info_command,
1863 .mode = COMMAND_EXEC,
1864 .help = "display information about target caches",
1867 .name = "dbginit",
1868 .handler = cortex_a8_handle_dbginit_command,
1869 .mode = COMMAND_EXEC,
1870 .help = "Initialize core debug",
1872 COMMAND_REGISTRATION_DONE
1874 static const struct command_registration cortex_a8_command_handlers[] = {
1876 .chain = arm_command_handlers,
1879 .chain = armv7a_command_handlers,
1882 .name = "cortex_a8",
1883 .mode = COMMAND_ANY,
1884 .help = "Cortex-A8 command group",
1885 .chain = cortex_a8_exec_command_handlers,
1887 COMMAND_REGISTRATION_DONE
1890 struct target_type cortexa8_target = {
1891 .name = "cortex_a8",
1893 .poll = cortex_a8_poll,
1894 .arch_state = armv7a_arch_state,
1896 .target_request_data = NULL,
1898 .halt = cortex_a8_halt,
1899 .resume = cortex_a8_resume,
1900 .step = cortex_a8_step,
1902 .assert_reset = cortex_a8_assert_reset,
1903 .deassert_reset = cortex_a8_deassert_reset,
1904 .soft_reset_halt = NULL,
1906 /* REVISIT allow exporting VFP3 registers ... */
1907 .get_gdb_reg_list = arm_get_gdb_reg_list,
1909 .read_memory = cortex_a8_read_memory,
1910 .write_memory = cortex_a8_write_memory,
1911 .bulk_write_memory = cortex_a8_bulk_write_memory,
1913 .checksum_memory = arm_checksum_memory,
1914 .blank_check_memory = arm_blank_check_memory,
1916 .run_algorithm = armv4_5_run_algorithm,
1918 .add_breakpoint = cortex_a8_add_breakpoint,
1919 .remove_breakpoint = cortex_a8_remove_breakpoint,
1920 .add_watchpoint = NULL,
1921 .remove_watchpoint = NULL,
1923 .commands = cortex_a8_command_handlers,
1924 .target_create = cortex_a8_target_create,
1925 .init_target = cortex_a8_init_target,
1926 .examine = cortex_a8_examine,
1928 .read_phys_memory = cortex_a8_read_phys_memory,
1929 .write_phys_memory = cortex_a8_write_phys_memory,
1930 .mmu = cortex_a8_mmu,
1931 .virt2phys = cortex_a8_virt2phys,