drivers/usb_blaster: Group adapter commands
[openocd.git] / src / jtag / drivers / usb_blaster / usb_blaster.c
blobcc1d4758fc9956d06892b80bceaf748cd07a4671
1 /*
2 * Driver for USB-JTAG, Altera USB-Blaster and compatibles
4 * Inspired from original code from Kolja Waschk's USB-JTAG project
5 * (http://www.ixo.de/info/usb_jtag/), and from openocd project.
7 * Copyright (C) 2013 Franck Jullien franck.jullien@gmail.com
8 * Copyright (C) 2012 Robert Jarzmik robert.jarzmik@free.fr
9 * Copyright (C) 2011 Ali Lown ali@lown.me.uk
10 * Copyright (C) 2009 Catalin Patulea cat@vv.carleton.ca
11 * Copyright (C) 2006 Kolja Waschk usbjtag@ixo.de
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program. If not, see <http://www.gnu.org/licenses/>.
29 * The following information is originally from Kolja Waschk's USB-JTAG,
30 * where it was obtained by reverse engineering an Altera USB-Blaster.
31 * See http://www.ixo.de/info/usb_jtag/ for USB-Blaster block diagram and
32 * usb_jtag-20080705-1200.zip#usb_jtag/host/openocd for protocol.
34 * The same information is also on the UrJTAG mediawiki, with some additional
35 * notes on bits marked as "unknown" by usb_jtag.
36 * (http://sourceforge.net/apps/mediawiki/urjtag/index.php?
37 * title=Cable_Altera_USB-Blaster)
39 * USB-JTAG, Altera USB-Blaster and compatibles are typically implemented as
40 * an FTDIChip FT245 followed by a CPLD which handles a two-mode protocol:
42 * _________
43 * | |
44 * | AT93C46 |
45 * |_________|
46 * __|__________ _________
47 * | | | |
48 * USB__| FTDI 245BM |__| EPM7064 |__JTAG (B_TDO,B_TDI,B_TMS,B_TCK)
49 * |_____________| |_________|
50 * __|__________ _|___________
51 * | | | |
52 * | 6 MHz XTAL | | 24 MHz Osc. |
53 * |_____________| |_____________|
55 * USB-JTAG, Altera USB-Blaster II are typically implemented as a Cypress
56 * EZ-USB FX2LP followed by a CPLD.
57 * _____________ _________
58 * | | | |
59 * USB__| EZ-USB FX2 |__| EPM570 |__JTAG (B_TDO,B_TDI,B_TMS,B_TCK)
60 * |_____________| |_________|
61 * __|__________
62 * | |
63 * | 24 MHz XTAL |
64 * |_____________|
67 #ifdef HAVE_CONFIG_H
68 #include "config.h"
69 #endif
71 #if IS_CYGWIN == 1
72 #include "windows.h"
73 #undef LOG_ERROR
74 #endif
76 /* project specific includes */
77 #include <jtag/interface.h>
78 #include <jtag/commands.h>
79 #include <helper/time_support.h>
80 #include <helper/replacements.h>
81 #include "ublast_access.h"
83 /* system includes */
84 #include <string.h>
85 #include <stdlib.h>
86 #include <unistd.h>
87 #include <sys/time.h>
88 #include <time.h>
90 /* Size of USB endpoint max packet size, ie. 64 bytes */
91 #define MAX_PACKET_SIZE 64
93 * Size of data buffer that holds bytes in byte-shift mode.
94 * This buffer can hold multiple USB packets aligned to
95 * MAX_PACKET_SIZE bytes boundaries.
96 * BUF_LEN must be grater than or equal MAX_PACKET_SIZE.
98 #define BUF_LEN 4096
100 /* USB-Blaster II specific command */
101 #define CMD_COPY_TDO_BUFFER 0x5F
103 enum gpio_steer {
104 FIXED_0 = 0,
105 FIXED_1,
106 SRST,
107 TRST,
110 struct ublast_info {
111 enum gpio_steer pin6;
112 enum gpio_steer pin8;
113 int tms;
114 int tdi;
115 bool trst_asserted;
116 bool srst_asserted;
117 uint8_t buf[BUF_LEN];
118 int bufidx;
120 char *lowlevel_name;
121 struct ublast_lowlevel *drv;
122 char *ublast_device_desc;
123 uint16_t ublast_vid, ublast_pid;
124 uint16_t ublast_vid_uninit, ublast_pid_uninit;
125 int flags;
126 char *firmware_path;
130 * Global device control
132 static struct ublast_info info = {
133 .ublast_vid = 0x09fb, /* Altera */
134 .ublast_pid = 0x6001, /* USB-Blaster */
135 .lowlevel_name = NULL,
136 .srst_asserted = false,
137 .trst_asserted = false,
138 .pin6 = FIXED_1,
139 .pin8 = FIXED_1,
143 * Available lowlevel drivers (FTDI, FTD2xx, ...)
145 struct drvs_map {
146 char *name;
147 struct ublast_lowlevel *(*drv_register)(void);
150 static struct drvs_map lowlevel_drivers_map[] = {
151 #if BUILD_USB_BLASTER
152 { .name = "ftdi", .drv_register = ublast_register_ftdi },
153 #endif
154 #if BUILD_USB_BLASTER_2
155 { .name = "ublast2", .drv_register = ublast2_register_libusb },
156 #endif
157 { NULL, NULL },
161 * Access functions to lowlevel driver, agnostic of libftdi/libftdxx
163 static char *hexdump(uint8_t *buf, unsigned int size)
165 unsigned int i;
166 char *str = calloc(size * 2 + 1, 1);
168 for (i = 0; i < size; i++)
169 sprintf(str + 2*i, "%02x", buf[i]);
170 return str;
173 static int ublast_buf_read(uint8_t *buf, unsigned size, uint32_t *bytes_read)
175 int ret = info.drv->read(info.drv, buf, size, bytes_read);
176 char *str = hexdump(buf, *bytes_read);
178 LOG_DEBUG_IO("(size=%d, buf=[%s]) -> %" PRIu32, size, str,
179 *bytes_read);
180 free(str);
181 return ret;
184 static int ublast_buf_write(uint8_t *buf, int size, uint32_t *bytes_written)
186 int ret = info.drv->write(info.drv, buf, size, bytes_written);
187 char *str = hexdump(buf, *bytes_written);
189 LOG_DEBUG_IO("(size=%d, buf=[%s]) -> %" PRIu32, size, str,
190 *bytes_written);
191 free(str);
192 return ret;
195 static int nb_buf_remaining(void)
197 return BUF_LEN - info.bufidx;
200 static void ublast_flush_buffer(void)
202 uint32_t retlen;
203 int nb = info.bufidx, ret = ERROR_OK;
205 while (ret == ERROR_OK && nb > 0) {
206 ret = ublast_buf_write(info.buf, nb, &retlen);
207 nb -= retlen;
209 info.bufidx = 0;
213 * Actually, the USB-Blaster offers a byte-shift mode to transmit up to 504 data
214 * bits (bidirectional) in a single USB packet. A header byte has to be sent as
215 * the first byte in a packet with the following meaning:
217 * Bit 7 (0x80): Must be set to indicate byte-shift mode.
218 * Bit 6 (0x40): If set, the USB-Blaster will also read data, not just write.
219 * Bit 5..0: Define the number N of following bytes
221 * All N following bytes will then be clocked out serially on TDI. If Bit 6 was
222 * set, it will afterwards return N bytes with TDO data read while clocking out
223 * the TDI data. LSB of the first byte after the header byte will appear first
224 * on TDI.
227 /* Simple bit banging mode:
229 * Bit 7 (0x80): Must be zero (see byte-shift mode above)
230 * Bit 6 (0x40): If set, you will receive a byte indicating the state of TDO
231 * in return.
232 * Bit 5 (0x20): Output Enable/LED.
233 * Bit 4 (0x10): TDI Output.
234 * Bit 3 (0x08): nCS Output (not used in JTAG mode).
235 * Bit 2 (0x04): nCE Output (not used in JTAG mode).
236 * Bit 1 (0x02): TMS Output.
237 * Bit 0 (0x01): TCK Output.
239 * For transmitting a single data bit, you need to write two bytes (one for
240 * setting up TDI/TMS/TCK=0, and one to trigger TCK high with same TDI/TMS
241 * held). Up to 64 bytes can be combined in a single USB packet.
242 * It isn't possible to read a data without transmitting data.
245 #define TCK (1 << 0)
246 #define TMS (1 << 1)
247 #define NCE (1 << 2)
248 #define NCS (1 << 3)
249 #define TDI (1 << 4)
250 #define LED (1 << 5)
251 #define READ (1 << 6)
252 #define SHMODE (1 << 7)
253 #define READ_TDO (1 << 0)
256 * ublast_queue_byte - queue one 'bitbang mode' byte for USB Blaster
257 * @param abyte the byte to queue
259 * Queues one byte in 'bitbang mode' to the USB Blaster. The byte is not
260 * actually sent, but stored in a buffer. The write is performed once
261 * the buffer is filled, or if an explicit ublast_flush_buffer() is called.
263 static void ublast_queue_byte(uint8_t abyte)
265 if (nb_buf_remaining() < 1)
266 ublast_flush_buffer();
267 info.buf[info.bufidx++] = abyte;
268 if (nb_buf_remaining() == 0)
269 ublast_flush_buffer();
270 LOG_DEBUG_IO("(byte=0x%02x)", abyte);
274 * ublast_compute_pin - compute if gpio should be asserted
275 * @param steer control (ie. TRST driven, SRST driven, of fixed)
277 * Returns pin value (1 means driven high, 0 mean driven low)
279 static bool ublast_compute_pin(enum gpio_steer steer)
281 switch (steer) {
282 case FIXED_0:
283 return 0;
284 case FIXED_1:
285 return 1;
286 case SRST:
287 return !info.srst_asserted;
288 case TRST:
289 return !info.trst_asserted;
290 default:
291 return 1;
296 * ublast_build_out - build bitbang mode output byte
297 * @param type says if reading back TDO is required
299 * Returns the compute bitbang mode byte
301 static uint8_t ublast_build_out(enum scan_type type)
303 uint8_t abyte = 0;
305 abyte |= info.tms ? TMS : 0;
306 abyte |= ublast_compute_pin(info.pin6) ? NCE : 0;
307 abyte |= ublast_compute_pin(info.pin8) ? NCS : 0;
308 abyte |= info.tdi ? TDI : 0;
309 abyte |= LED;
310 if (type == SCAN_IN || type == SCAN_IO)
311 abyte |= READ;
312 return abyte;
316 * ublast_reset - reset the JTAG device is possible
317 * @param trst 1 if TRST is to be asserted
318 * @param srst 1 if SRST is to be asserted
320 static void ublast_reset(int trst, int srst)
322 uint8_t out_value;
324 info.trst_asserted = trst;
325 info.srst_asserted = srst;
326 out_value = ublast_build_out(SCAN_OUT);
327 ublast_queue_byte(out_value);
328 ublast_flush_buffer();
332 * ublast_clock_tms - clock a TMS transition
333 * @param tms the TMS to be sent
335 * Triggers a TMS transition (ie. one JTAG TAP state move).
337 static void ublast_clock_tms(int tms)
339 uint8_t out;
341 LOG_DEBUG_IO("(tms=%d)", !!tms);
342 info.tms = !!tms;
343 info.tdi = 0;
344 out = ublast_build_out(SCAN_OUT);
345 ublast_queue_byte(out);
346 ublast_queue_byte(out | TCK);
350 * ublast_idle_clock - put back TCK to low level
352 * See ublast_queue_tdi() comment for the usage of this function.
354 static void ublast_idle_clock(void)
356 uint8_t out = ublast_build_out(SCAN_OUT);
358 LOG_DEBUG_IO(".");
359 ublast_queue_byte(out);
363 * ublast_clock_tdi - Output a TDI with bitbang mode
364 * @param tdi the TDI bit to be shifted out
365 * @param type scan type (ie. does a readback of TDO is required)
367 * Output a TDI bit and assert clock to push it into the JTAG device :
368 * - writing out TCK=0, TMS=\<old_state>=0, TDI=\<tdi>
369 * - writing out TCK=1, TMS=\<new_state>, TDI=\<tdi> which triggers the JTAG
370 * device acquiring the data.
372 * If a TDO is to be read back, the required read is requested (bitbang mode),
373 * and the USB Blaster will send back a byte with bit0 representing the TDO.
375 static void ublast_clock_tdi(int tdi, enum scan_type type)
377 uint8_t out;
379 LOG_DEBUG_IO("(tdi=%d)", !!tdi);
380 info.tdi = !!tdi;
382 out = ublast_build_out(SCAN_OUT);
383 ublast_queue_byte(out);
385 out = ublast_build_out(type);
386 ublast_queue_byte(out | TCK);
390 * ublast_clock_tdi_flip_tms - Output a TDI with bitbang mode, change JTAG state
391 * @param tdi the TDI bit to be shifted out
392 * @param type scan type (ie. does a readback of TDO is required)
394 * This function is the same as ublast_clock_tdi(), but it changes also the TMS
395 * while output the TDI. This should be the last TDI output of a TDI
396 * sequence, which will change state from :
397 * - IRSHIFT -> IREXIT1
398 * - or DRSHIFT -> DREXIT1
400 static void ublast_clock_tdi_flip_tms(int tdi, enum scan_type type)
402 uint8_t out;
404 LOG_DEBUG_IO("(tdi=%d)", !!tdi);
405 info.tdi = !!tdi;
406 info.tms = !info.tms;
408 out = ublast_build_out(SCAN_OUT);
409 ublast_queue_byte(out);
411 out = ublast_build_out(type);
412 ublast_queue_byte(out | TCK);
414 out = ublast_build_out(SCAN_OUT);
415 ublast_queue_byte(out);
419 * ublast_queue_bytes - queue bytes for the USB Blaster
420 * @param bytes byte array
421 * @param nb_bytes number of bytes
423 * Queues bytes to be sent to the USB Blaster. The bytes are not
424 * actually sent, but stored in a buffer. The write is performed once
425 * the buffer is filled, or if an explicit ublast_flush_buffer() is called.
427 static void ublast_queue_bytes(uint8_t *bytes, int nb_bytes)
429 if (info.bufidx + nb_bytes > BUF_LEN) {
430 LOG_ERROR("buggy code, should never queue more that %d bytes",
431 info.bufidx + nb_bytes);
432 exit(-1);
434 LOG_DEBUG_IO("(nb_bytes=%d, bytes=[0x%02x, ...])", nb_bytes,
435 bytes ? bytes[0] : 0);
436 if (bytes)
437 memcpy(&info.buf[info.bufidx], bytes, nb_bytes);
438 else
439 memset(&info.buf[info.bufidx], 0, nb_bytes);
440 info.bufidx += nb_bytes;
441 if (nb_buf_remaining() == 0)
442 ublast_flush_buffer();
446 * ublast_tms_seq - write a TMS sequence transition to JTAG
447 * @param bits TMS bits to be written (bit0, bit1 .. bitN)
448 * @param nb_bits number of TMS bits (between 1 and 8)
449 * @param skip number of TMS bits to skip at the beginning of the series
451 * Write a series of TMS transitions, where each transition consists in :
452 * - writing out TCK=0, TMS=\<new_state>, TDI=\<???>
453 * - writing out TCK=1, TMS=\<new_state>, TDI=\<???> which triggers the transition
454 * The function ensures that at the end of the sequence, the clock (TCK) is put
455 * low.
457 static void ublast_tms_seq(const uint8_t *bits, int nb_bits, int skip)
459 int i;
461 LOG_DEBUG_IO("(bits=%02x..., nb_bits=%d)", bits[0], nb_bits);
462 for (i = skip; i < nb_bits; i++)
463 ublast_clock_tms((bits[i / 8] >> (i % 8)) & 0x01);
464 ublast_idle_clock();
468 * ublast_tms - write a tms command
469 * @param cmd tms command
471 static void ublast_tms(struct tms_command *cmd)
473 LOG_DEBUG_IO("(num_bits=%d)", cmd->num_bits);
474 ublast_tms_seq(cmd->bits, cmd->num_bits, 0);
478 * ublast_path_move - write a TMS sequence transition to JTAG
479 * @param cmd path transition
481 * Write a series of TMS transitions, where each transition consists in :
482 * - writing out TCK=0, TMS=\<new_state>, TDI=\<???>
483 * - writing out TCK=1, TMS=\<new_state>, TDI=\<???> which triggers the transition
484 * The function ensures that at the end of the sequence, the clock (TCK) is put
485 * low.
487 static void ublast_path_move(struct pathmove_command *cmd)
489 int i;
491 LOG_DEBUG_IO("(num_states=%d, last_state=%d)",
492 cmd->num_states, cmd->path[cmd->num_states - 1]);
493 for (i = 0; i < cmd->num_states; i++) {
494 if (tap_state_transition(tap_get_state(), false) == cmd->path[i])
495 ublast_clock_tms(0);
496 if (tap_state_transition(tap_get_state(), true) == cmd->path[i])
497 ublast_clock_tms(1);
498 tap_set_state(cmd->path[i]);
500 ublast_idle_clock();
504 * ublast_state_move - move JTAG state to the target state
505 * @param state the target state
506 * @param skip number of bits to skip at the beginning of the path
508 * Input the correct TMS sequence to the JTAG TAP so that we end up in the
509 * target state. This assumes the current state (tap_get_state()) is correct.
511 static void ublast_state_move(tap_state_t state, int skip)
513 uint8_t tms_scan;
514 int tms_len;
516 LOG_DEBUG_IO("(from %s to %s)", tap_state_name(tap_get_state()),
517 tap_state_name(state));
518 if (tap_get_state() == state)
519 return;
520 tms_scan = tap_get_tms_path(tap_get_state(), state);
521 tms_len = tap_get_tms_path_len(tap_get_state(), state);
522 ublast_tms_seq(&tms_scan, tms_len, skip);
523 tap_set_state(state);
527 * ublast_read_byteshifted_tdos - read TDO of byteshift writes
528 * @param buf the buffer to store the bits
529 * @param nb_bytes the number of bytes
531 * Reads back from USB Blaster TDO bits, triggered by a 'byteshift write', ie. eight
532 * bits per received byte from USB interface, and store them in buffer.
534 * As the USB blaster stores the TDO bits in LSB (ie. first bit in (byte0,
535 * bit0), second bit in (byte0, bit1), ...), which is what we want to return,
536 * simply read bytes from USB interface and store them.
538 * Returns ERROR_OK if OK, ERROR_xxx if a read error occurred
540 static int ublast_read_byteshifted_tdos(uint8_t *buf, int nb_bytes)
542 uint32_t retlen;
543 int ret = ERROR_OK;
545 LOG_DEBUG_IO("%s(buf=%p, num_bits=%d)", __func__, buf, nb_bytes * 8);
546 ublast_flush_buffer();
547 while (ret == ERROR_OK && nb_bytes > 0) {
548 ret = ublast_buf_read(buf, nb_bytes, &retlen);
549 nb_bytes -= retlen;
551 return ret;
555 * ublast_read_bitbang_tdos - read TDO of bitbang writes
556 * @param buf the buffer to store the bits
557 * @param nb_bits the number of bits
559 * Reads back from USB Blaster TDO bits, triggered by a 'bitbang write', ie. one
560 * bit per received byte from USB interface, and store them in buffer, where :
561 * - first bit is stored in byte0, bit0 (LSB)
562 * - second bit is stored in byte0, bit 1
563 * ...
564 * - eight bit is stored in byte0, bit 7
565 * - ninth bit is stored in byte1, bit 0
566 * - etc ...
568 * Returns ERROR_OK if OK, ERROR_xxx if a read error occurred
570 static int ublast_read_bitbang_tdos(uint8_t *buf, int nb_bits)
572 int nb1 = nb_bits;
573 int i, ret = ERROR_OK;
574 uint32_t retlen;
575 uint8_t tmp[8];
577 LOG_DEBUG_IO("%s(buf=%p, num_bits=%d)", __func__, buf, nb_bits);
580 * Ensure all previous bitbang writes were issued to the dongle, so that
581 * it returns back the read values.
583 ublast_flush_buffer();
585 ret = ublast_buf_read(tmp, nb1, &retlen);
586 for (i = 0; ret == ERROR_OK && i < nb1; i++)
587 if (tmp[i] & READ_TDO)
588 *buf |= (1 << i);
589 else
590 *buf &= ~(1 << i);
591 return ret;
595 * ublast_queue_tdi - short description
596 * @param bits bits to be queued on TDI (or NULL if 0 are to be queued)
597 * @param nb_bits number of bits
598 * @param scan scan type (ie. if TDO read back is required or not)
600 * Outputs a series of TDI bits on TDI.
601 * As a side effect, the last TDI bit is sent along a TMS=1, and triggers a JTAG
602 * TAP state shift if input bits were non NULL.
604 * In order to not saturate the USB Blaster queues, this method reads back TDO
605 * if the scan type requests it, and stores them back in bits.
607 * As a side note, the state of TCK when entering this function *must* be
608 * low. This is because byteshift mode outputs TDI on rising TCK and reads TDO
609 * on falling TCK if and only if TCK is low before queuing byteshift mode bytes.
610 * If TCK was high, the USB blaster will queue TDI on falling edge, and read TDO
611 * on rising edge !!!
613 static void ublast_queue_tdi(uint8_t *bits, int nb_bits, enum scan_type scan)
615 int nb8 = nb_bits / 8;
616 int nb1 = nb_bits % 8;
617 int nbfree_in_packet, i, trans = 0, read_tdos;
618 uint8_t *tdos = calloc(1, nb_bits / 8 + 1);
619 static uint8_t byte0[BUF_LEN];
622 * As the last TDI bit should always be output in bitbang mode in order
623 * to activate the TMS=1 transition to EXIT_?R state. Therefore a
624 * situation where nb_bits is a multiple of 8 is handled as follows:
625 * - the number of TDI shifted out in "byteshift mode" is 8 less than
626 * nb_bits
627 * - nb1 = 8
628 * This ensures that nb1 is never 0, and allows the TMS transition.
630 if (nb8 > 0 && nb1 == 0) {
631 nb8--;
632 nb1 = 8;
635 read_tdos = (scan == SCAN_IN || scan == SCAN_IO);
636 for (i = 0; i < nb8; i += trans) {
638 * Calculate number of bytes to fill USB packet of size MAX_PACKET_SIZE
640 nbfree_in_packet = (MAX_PACKET_SIZE - (info.bufidx%MAX_PACKET_SIZE));
641 trans = MIN(nbfree_in_packet - 1, nb8 - i);
644 * Queue a byte-shift mode transmission, with as many bytes as
645 * is possible with regard to :
646 * - current filling level of write buffer
647 * - remaining bytes to write in byte-shift mode
649 if (read_tdos)
650 ublast_queue_byte(SHMODE | READ | trans);
651 else
652 ublast_queue_byte(SHMODE | trans);
653 if (bits)
654 ublast_queue_bytes(&bits[i], trans);
655 else
656 ublast_queue_bytes(byte0, trans);
657 if (read_tdos) {
658 if (info.flags & COPY_TDO_BUFFER)
659 ublast_queue_byte(CMD_COPY_TDO_BUFFER);
660 ublast_read_byteshifted_tdos(&tdos[i], trans);
665 * Queue the remaining TDI bits in bitbang mode.
667 for (i = 0; i < nb1; i++) {
668 int tdi = bits ? bits[nb8 + i / 8] & (1 << i) : 0;
669 if (bits && i == nb1 - 1)
670 ublast_clock_tdi_flip_tms(tdi, scan);
671 else
672 ublast_clock_tdi(tdi, scan);
674 if (nb1 && read_tdos) {
675 if (info.flags & COPY_TDO_BUFFER)
676 ublast_queue_byte(CMD_COPY_TDO_BUFFER);
677 ublast_read_bitbang_tdos(&tdos[nb8], nb1);
680 if (bits)
681 memcpy(bits, tdos, DIV_ROUND_UP(nb_bits, 8));
682 free(tdos);
685 * Ensure clock is in lower state
687 ublast_idle_clock();
690 static void ublast_runtest(int cycles, tap_state_t state)
692 LOG_DEBUG_IO("%s(cycles=%i, end_state=%d)", __func__, cycles, state);
694 ublast_state_move(TAP_IDLE, 0);
695 ublast_queue_tdi(NULL, cycles, SCAN_OUT);
696 ublast_state_move(state, 0);
699 static void ublast_stableclocks(int cycles)
701 LOG_DEBUG_IO("%s(cycles=%i)", __func__, cycles);
702 ublast_queue_tdi(NULL, cycles, SCAN_OUT);
706 * ublast_scan - launches a DR-scan or IR-scan
707 * @param cmd the command to launch
709 * Launch a JTAG IR-scan or DR-scan
711 * Returns ERROR_OK if OK, ERROR_xxx if a read/write error occurred.
713 static int ublast_scan(struct scan_command *cmd)
715 int scan_bits;
716 uint8_t *buf = NULL;
717 enum scan_type type;
718 int ret = ERROR_OK;
719 static const char * const type2str[] = { "", "SCAN_IN", "SCAN_OUT", "SCAN_IO" };
720 char *log_buf = NULL;
722 type = jtag_scan_type(cmd);
723 scan_bits = jtag_build_buffer(cmd, &buf);
725 if (cmd->ir_scan)
726 ublast_state_move(TAP_IRSHIFT, 0);
727 else
728 ublast_state_move(TAP_DRSHIFT, 0);
730 log_buf = hexdump(buf, DIV_ROUND_UP(scan_bits, 8));
731 LOG_DEBUG_IO("%s(scan=%s, type=%s, bits=%d, buf=[%s], end_state=%d)", __func__,
732 cmd->ir_scan ? "IRSCAN" : "DRSCAN",
733 type2str[type],
734 scan_bits, log_buf, cmd->end_state);
735 free(log_buf);
737 ublast_queue_tdi(buf, scan_bits, type);
739 ret = jtag_read_buffer(buf, cmd);
740 free(buf);
742 * ublast_queue_tdi sends the last bit with TMS=1. We are therefore
743 * already in Exit1-DR/IR and have to skip the first step on our way
744 * to end_state.
746 ublast_state_move(cmd->end_state, 1);
747 return ret;
750 static void ublast_usleep(int us)
752 LOG_DEBUG_IO("%s(us=%d)", __func__, us);
753 jtag_sleep(us);
756 static void ublast_initial_wipeout(void)
758 static uint8_t tms_reset = 0xff;
759 uint8_t out_value;
760 uint32_t retlen;
761 int i;
763 out_value = ublast_build_out(SCAN_OUT);
764 for (i = 0; i < BUF_LEN; i++)
765 info.buf[i] = out_value | ((i % 2) ? TCK : 0);
768 * Flush USB-Blaster queue fifos
769 * - empty the write FIFO (128 bytes)
770 * - empty the read FIFO (384 bytes)
772 ublast_buf_write(info.buf, BUF_LEN, &retlen);
774 * Put JTAG in RESET state (five 1 on TMS)
776 ublast_tms_seq(&tms_reset, 5, 0);
777 tap_set_state(TAP_RESET);
780 static int ublast_execute_queue(void)
782 struct jtag_command *cmd;
783 static int first_call = 1;
784 int ret = ERROR_OK;
786 if (first_call) {
787 first_call--;
788 ublast_initial_wipeout();
791 for (cmd = jtag_command_queue; ret == ERROR_OK && cmd;
792 cmd = cmd->next) {
793 switch (cmd->type) {
794 case JTAG_RESET:
795 ublast_reset(cmd->cmd.reset->trst, cmd->cmd.reset->srst);
796 break;
797 case JTAG_RUNTEST:
798 ublast_runtest(cmd->cmd.runtest->num_cycles,
799 cmd->cmd.runtest->end_state);
800 break;
801 case JTAG_STABLECLOCKS:
802 ublast_stableclocks(cmd->cmd.stableclocks->num_cycles);
803 break;
804 case JTAG_TLR_RESET:
805 ublast_state_move(cmd->cmd.statemove->end_state, 0);
806 break;
807 case JTAG_PATHMOVE:
808 ublast_path_move(cmd->cmd.pathmove);
809 break;
810 case JTAG_TMS:
811 ublast_tms(cmd->cmd.tms);
812 break;
813 case JTAG_SLEEP:
814 ublast_usleep(cmd->cmd.sleep->us);
815 break;
816 case JTAG_SCAN:
817 ret = ublast_scan(cmd->cmd.scan);
818 break;
819 default:
820 LOG_ERROR("BUG: unknown JTAG command type 0x%X",
821 cmd->type);
822 ret = ERROR_FAIL;
823 break;
827 ublast_flush_buffer();
828 return ret;
832 * ublast_init - Initialize the Altera device
834 * Initialize the device :
835 * - open the USB device
836 * - pretend it's initialized while actual init is delayed until first jtag command
838 * Returns ERROR_OK if USB device found, error if not.
840 static int ublast_init(void)
842 int ret, i;
844 for (i = 0; lowlevel_drivers_map[i].name; i++) {
845 if (info.lowlevel_name) {
846 if (!strcmp(lowlevel_drivers_map[i].name, info.lowlevel_name)) {
847 info.drv = lowlevel_drivers_map[i].drv_register();
848 if (!info.drv) {
849 LOG_ERROR("Error registering lowlevel driver \"%s\"",
850 info.lowlevel_name);
851 return ERROR_JTAG_DEVICE_ERROR;
853 break;
855 } else {
856 info.drv = lowlevel_drivers_map[i].drv_register();
857 if (info.drv) {
858 info.lowlevel_name = strdup(lowlevel_drivers_map[i].name);
859 LOG_INFO("No lowlevel driver configured, using %s", info.lowlevel_name);
860 break;
865 if (!info.drv) {
866 LOG_ERROR("No lowlevel driver available");
867 return ERROR_JTAG_DEVICE_ERROR;
871 * Register the lowlevel driver
873 info.drv->ublast_vid = info.ublast_vid;
874 info.drv->ublast_pid = info.ublast_pid;
875 info.drv->ublast_vid_uninit = info.ublast_vid_uninit;
876 info.drv->ublast_pid_uninit = info.ublast_pid_uninit;
877 info.drv->ublast_device_desc = info.ublast_device_desc;
878 info.drv->firmware_path = info.firmware_path;
880 info.flags |= info.drv->flags;
882 ret = info.drv->open(info.drv);
885 * Let lie here : the TAP is in an unknown state, but the first
886 * execute_queue() will trigger a ublast_initial_wipeout(), which will
887 * put the TAP in RESET.
889 tap_set_state(TAP_RESET);
890 return ret;
894 * ublast_quit - Release the Altera device
896 * Releases the device :
897 * - put the device pins in 'high impedance' mode
898 * - close the USB device
900 * Returns always ERROR_OK
902 static int ublast_quit(void)
904 uint8_t byte0 = 0;
905 uint32_t retlen;
907 ublast_buf_write(&byte0, 1, &retlen);
908 return info.drv->close(info.drv);
911 COMMAND_HANDLER(ublast_handle_device_desc_command)
913 if (CMD_ARGC != 1)
914 return ERROR_COMMAND_SYNTAX_ERROR;
916 info.ublast_device_desc = strdup(CMD_ARGV[0]);
918 return ERROR_OK;
921 COMMAND_HANDLER(ublast_handle_vid_pid_command)
923 if (CMD_ARGC > 4) {
924 LOG_WARNING("ignoring extra IDs in ublast_vid_pid "
925 "(maximum is 2 pairs)");
926 CMD_ARGC = 4;
929 if (CMD_ARGC >= 2) {
930 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[0], info.ublast_vid);
931 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], info.ublast_pid);
932 } else {
933 LOG_WARNING("incomplete ublast_vid_pid configuration");
936 if (CMD_ARGC == 4) {
937 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[2], info.ublast_vid_uninit);
938 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[3], info.ublast_pid_uninit);
939 } else {
940 LOG_WARNING("incomplete ublast_vid_pid configuration");
943 return ERROR_OK;
946 COMMAND_HANDLER(ublast_handle_pin_command)
948 uint8_t out_value;
949 const char * const pin_name = CMD_ARGV[0];
950 enum gpio_steer *steer = NULL;
951 static const char * const pin_val_str[] = {
952 [FIXED_0] = "0",
953 [FIXED_1] = "1",
954 [SRST] = "SRST driven",
955 [TRST] = "TRST driven",
958 if (CMD_ARGC > 2) {
959 LOG_ERROR("%s takes exactly one or two arguments", CMD_NAME);
960 return ERROR_COMMAND_SYNTAX_ERROR;
963 if (!strcmp(pin_name, "pin6"))
964 steer = &info.pin6;
965 if (!strcmp(pin_name, "pin8"))
966 steer = &info.pin8;
967 if (!steer) {
968 LOG_ERROR("%s: pin name must be \"pin6\" or \"pin8\"",
969 CMD_NAME);
970 return ERROR_COMMAND_SYNTAX_ERROR;
973 if (CMD_ARGC == 1) {
974 LOG_INFO("%s: %s is set as %s\n", CMD_NAME, pin_name,
975 pin_val_str[*steer]);
978 if (CMD_ARGC == 2) {
979 const char * const pin_value = CMD_ARGV[1];
980 char val = pin_value[0];
982 if (strlen(pin_value) > 1)
983 val = '?';
984 switch (tolower((unsigned char)val)) {
985 case '0':
986 *steer = FIXED_0;
987 break;
988 case '1':
989 *steer = FIXED_1;
990 break;
991 case 't':
992 *steer = TRST;
993 break;
994 case 's':
995 *steer = SRST;
996 break;
997 default:
998 LOG_ERROR("%s: pin value must be 0, 1, s (SRST) or t (TRST)",
999 pin_value);
1000 return ERROR_COMMAND_SYNTAX_ERROR;
1003 if (info.drv) {
1004 out_value = ublast_build_out(SCAN_OUT);
1005 ublast_queue_byte(out_value);
1006 ublast_flush_buffer();
1009 return ERROR_OK;
1012 COMMAND_HANDLER(ublast_handle_lowlevel_drv_command)
1014 if (CMD_ARGC != 1)
1015 return ERROR_COMMAND_SYNTAX_ERROR;
1017 info.lowlevel_name = strdup(CMD_ARGV[0]);
1019 return ERROR_OK;
1022 COMMAND_HANDLER(ublast_firmware_command)
1024 if (CMD_ARGC != 1)
1025 return ERROR_COMMAND_SYNTAX_ERROR;
1027 info.firmware_path = strdup(CMD_ARGV[0]);
1029 return ERROR_OK;
1033 static const struct command_registration ublast_subcommand_handlers[] = {
1035 .name = "device_desc",
1036 .handler = ublast_handle_device_desc_command,
1037 .mode = COMMAND_CONFIG,
1038 .help = "set the USB device description of the USB-Blaster",
1039 .usage = "description-string",
1042 .name = "vid_pid",
1043 .handler = ublast_handle_vid_pid_command,
1044 .mode = COMMAND_CONFIG,
1045 .help = "the vendor ID and product ID of the USB-Blaster and "
1046 "vendor ID and product ID of the uninitialized device "
1047 "for USB-Blaster II",
1048 .usage = "vid pid vid_uninit pid_uninit",
1051 .name = "lowlevel_driver",
1052 .handler = ublast_handle_lowlevel_drv_command,
1053 .mode = COMMAND_CONFIG,
1054 .help = "set the lowlevel access for the USB Blaster (ftdi, ublast2)",
1055 .usage = "(ftdi|ublast2)",
1058 .name = "pin",
1059 .handler = ublast_handle_pin_command,
1060 .mode = COMMAND_ANY,
1061 .help = "show or set pin state for the unused GPIO pins",
1062 .usage = "(pin6|pin8) (0|1|s|t)",
1065 .name = "firmware",
1066 .handler = &ublast_firmware_command,
1067 .mode = COMMAND_CONFIG,
1068 .help = "configure the USB-Blaster II firmware location",
1069 .usage = "path/to/blaster_xxxx.hex",
1071 COMMAND_REGISTRATION_DONE
1074 static const struct command_registration ublast_command_handlers[] = {
1076 .name = "usb_blaster",
1077 .mode = COMMAND_ANY,
1078 .help = "perform usb_blaster management",
1079 .chain = ublast_subcommand_handlers,
1080 .usage = "",
1082 COMMAND_REGISTRATION_DONE
1085 static struct jtag_interface usb_blaster_interface = {
1086 .supported = DEBUG_CAP_TMS_SEQ,
1087 .execute_queue = ublast_execute_queue,
1090 struct adapter_driver usb_blaster_adapter_driver = {
1091 .name = "usb_blaster",
1092 .transports = jtag_only,
1093 .commands = ublast_command_handlers,
1095 .init = ublast_init,
1096 .quit = ublast_quit,
1098 .jtag_ops = &usb_blaster_interface,