2 /***************************************************************************
3 * Copyright (C) 2005 by Dominic Rath *
4 * Dominic.Rath@gmx.de *
6 * This program is free software; you can redistribute it and/or modify *
7 * it under the terms of the GNU General Public License as published by *
8 * the Free Software Foundation; either version 2 of the License, or *
9 * (at your option) any later version. *
11 * This program is distributed in the hope that it will be useful, *
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
14 * GNU General Public License for more details. *
16 * You should have received a copy of the GNU General Public License *
17 * along with this program; if not, write to the *
18 * Free Software Foundation, Inc., *
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
20 ***************************************************************************/
27 #include <helper/time_support.h>
28 #include "target_type.h"
30 #include "arm_opcodes.h"
33 * For information about the ARM920T, see ARM DDI 0151C especially
34 * Chapter 9 about debug support, which shows how to manipulate each
35 * of the different scan chains:
37 * 0 ... ARM920 signals, e.g. to rest of SOC (unused here)
38 * 1 ... debugging; watchpoint and breakpoint status, etc; also
39 * MMU and cache access in conjunction with scan chain 15
41 * 3 ... external boundary scan (SoC-specific, unused here)
42 * 4 ... access to cache tag RAM
44 * 15 ... access coprocessor 15, "physical" or "interpreted" modes
45 * "interpreted" works with a few actual MRC/MCR instructions
46 * "physical" provides register-like behaviors. Section 9.6.7
47 * covers these details.
49 * The ARM922T is similar, but with smaller caches (8K each, vs 16K).
53 #define _DEBUG_INSTRUCTION_EXECUTION_
56 /* Table 9-8 shows scan chain 15 format during physical access mode, using a
57 * dedicated 6-bit address space (encoded in bits 33:38). Writes use one
58 * JTAG scan, while reads use two.
60 * Table 9-9 lists the thirteen registers which support physical access.
61 * ARM920T_CP15_PHYS_ADDR() constructs the 6-bit reg_addr parameter passed
62 * to arm920t_read_cp15_physical() and arm920t_write_cp15_physical().
68 #define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z))
70 /* Registers supporting physical Read access (from table 9-9) */
71 #define CP15PHYS_CACHETYPE ARM920T_CP15_PHYS_ADDR(0, 0x0, 1)
72 #define CP15PHYS_ICACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xd, 1)
73 #define CP15PHYS_DCACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xe, 1)
74 /* NOTE: several more registers support only physical read access */
76 /* Registers supporting physical Read/Write access (from table 9-9) */
77 #define CP15PHYS_CTRL ARM920T_CP15_PHYS_ADDR(0, 0x1, 0)
78 #define CP15PHYS_PID ARM920T_CP15_PHYS_ADDR(0, 0xd, 0)
79 #define CP15PHYS_TESTSTATE ARM920T_CP15_PHYS_ADDR(0, 0xf, 0)
80 #define CP15PHYS_ICACHE ARM920T_CP15_PHYS_ADDR(1, 0x1, 1)
81 #define CP15PHYS_DCACHE ARM920T_CP15_PHYS_ADDR(1, 0x2, 1)
83 static int arm920t_read_cp15_physical(struct target
*target
,
84 int reg_addr
, uint32_t *value
)
86 struct arm920t_common
*arm920t
= target_to_arm920(target
);
87 struct arm_jtag
*jtag_info
;
88 struct scan_field fields
[4];
89 uint8_t access_type_buf
= 1;
90 uint8_t reg_addr_buf
= reg_addr
& 0x3f;
94 jtag_info
= &arm920t
->arm7_9_common
.jtag_info
;
96 retval
= arm_jtag_scann(jtag_info
, 0xf, TAP_IDLE
);
97 if (retval
!= ERROR_OK
)
99 retval
= arm_jtag_set_instr(jtag_info
, jtag_info
->intest_instr
, NULL
, TAP_IDLE
);
100 if (retval
!= ERROR_OK
)
103 fields
[0].num_bits
= 1;
104 fields
[0].out_value
= &access_type_buf
;
105 fields
[0].in_value
= NULL
;
107 fields
[1].num_bits
= 32;
108 fields
[1].out_value
= NULL
;
109 fields
[1].in_value
= NULL
;
111 fields
[2].num_bits
= 6;
112 fields
[2].out_value
= ®_addr_buf
;
113 fields
[2].in_value
= NULL
;
115 fields
[3].num_bits
= 1;
116 fields
[3].out_value
= &nr_w_buf
;
117 fields
[3].in_value
= NULL
;
119 jtag_add_dr_scan(jtag_info
->tap
, 4, fields
, TAP_IDLE
);
121 fields
[1].in_value
= (uint8_t *)value
;
123 jtag_add_dr_scan(jtag_info
->tap
, 4, fields
, TAP_IDLE
);
125 jtag_add_callback(arm_le_to_h_u32
, (jtag_callback_data_t
)value
);
127 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
128 jtag_execute_queue();
129 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr
, *value
);
135 static int arm920t_write_cp15_physical(struct target
*target
,
136 int reg_addr
, uint32_t value
)
138 struct arm920t_common
*arm920t
= target_to_arm920(target
);
139 struct arm_jtag
*jtag_info
;
140 struct scan_field fields
[4];
141 uint8_t access_type_buf
= 1;
142 uint8_t reg_addr_buf
= reg_addr
& 0x3f;
143 uint8_t nr_w_buf
= 1;
144 uint8_t value_buf
[4];
147 jtag_info
= &arm920t
->arm7_9_common
.jtag_info
;
149 buf_set_u32(value_buf
, 0, 32, value
);
151 retval
= arm_jtag_scann(jtag_info
, 0xf, TAP_IDLE
);
152 if (retval
!= ERROR_OK
)
154 retval
= arm_jtag_set_instr(jtag_info
, jtag_info
->intest_instr
, NULL
, TAP_IDLE
);
155 if (retval
!= ERROR_OK
)
158 fields
[0].num_bits
= 1;
159 fields
[0].out_value
= &access_type_buf
;
160 fields
[0].in_value
= NULL
;
162 fields
[1].num_bits
= 32;
163 fields
[1].out_value
= value_buf
;
164 fields
[1].in_value
= NULL
;
166 fields
[2].num_bits
= 6;
167 fields
[2].out_value
= ®_addr_buf
;
168 fields
[2].in_value
= NULL
;
170 fields
[3].num_bits
= 1;
171 fields
[3].out_value
= &nr_w_buf
;
172 fields
[3].in_value
= NULL
;
174 jtag_add_dr_scan(jtag_info
->tap
, 4, fields
, TAP_IDLE
);
176 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
177 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr
, value
);
183 /* See table 9-10 for scan chain 15 format during interpreted access mode.
184 * If the TESTSTATE register is set for interpreted access, certain CP15
185 * MRC and MCR instructions may be executed through scan chain 15.
187 * Tables 9-11, 9-12, and 9-13 show which MRC and MCR instructions can be
188 * executed using scan chain 15 interpreted mode.
190 static int arm920t_execute_cp15(struct target
*target
, uint32_t cp15_opcode
,
194 struct arm920t_common
*arm920t
= target_to_arm920(target
);
195 struct arm_jtag
*jtag_info
;
196 struct scan_field fields
[4];
197 uint8_t access_type_buf
= 0; /* interpreted access */
198 uint8_t reg_addr_buf
= 0x0;
199 uint8_t nr_w_buf
= 0;
200 uint8_t cp15_opcode_buf
[4];
202 jtag_info
= &arm920t
->arm7_9_common
.jtag_info
;
204 retval
= arm_jtag_scann(jtag_info
, 0xf, TAP_IDLE
);
205 if (retval
!= ERROR_OK
)
207 retval
= arm_jtag_set_instr(jtag_info
, jtag_info
->intest_instr
, NULL
, TAP_IDLE
);
208 if (retval
!= ERROR_OK
)
211 buf_set_u32(cp15_opcode_buf
, 0, 32, cp15_opcode
);
213 fields
[0].num_bits
= 1;
214 fields
[0].out_value
= &access_type_buf
;
215 fields
[0].in_value
= NULL
;
217 fields
[1].num_bits
= 32;
218 fields
[1].out_value
= cp15_opcode_buf
;
219 fields
[1].in_value
= NULL
;
221 fields
[2].num_bits
= 6;
222 fields
[2].out_value
= ®_addr_buf
;
223 fields
[2].in_value
= NULL
;
225 fields
[3].num_bits
= 1;
226 fields
[3].out_value
= &nr_w_buf
;
227 fields
[3].in_value
= NULL
;
229 jtag_add_dr_scan(jtag_info
->tap
, 4, fields
, TAP_IDLE
);
231 arm9tdmi_clock_out(jtag_info
, arm_opcode
, 0, NULL
, 0);
232 arm9tdmi_clock_out(jtag_info
, ARMV4_5_NOP
, 0, NULL
, 1);
233 retval
= arm7_9_execute_sys_speed(target
);
234 if (retval
!= ERROR_OK
)
237 retval
= jtag_execute_queue();
238 if (retval
!= ERROR_OK
) {
239 LOG_ERROR("failed executing JTAG queue");
246 static int arm920t_read_cp15_interpreted(struct target
*target
,
247 uint32_t cp15_opcode
, uint32_t address
, uint32_t *value
)
249 struct arm
*arm
= target_to_arm(target
);
252 uint32_t cp15c15
= 0x0;
253 struct reg
*r
= arm
->core_cache
->reg_list
;
255 /* load address into R1 */
257 arm9tdmi_write_core_regs(target
, 0x2, regs
);
259 /* read-modify-write CP15 test state register
260 * to enable interpreted access mode */
261 arm920t_read_cp15_physical(target
, CP15PHYS_TESTSTATE
, &cp15c15
);
262 jtag_execute_queue();
263 cp15c15
|= 1; /* set interpret mode */
264 arm920t_write_cp15_physical(target
, CP15PHYS_TESTSTATE
, cp15c15
);
266 /* execute CP15 instruction and ARM load (reading from coprocessor) */
267 arm920t_execute_cp15(target
, cp15_opcode
, ARMV4_5_LDR(0, 1));
269 /* disable interpreted access mode */
270 cp15c15
&= ~1U; /* clear interpret mode */
271 arm920t_write_cp15_physical(target
, CP15PHYS_TESTSTATE
, cp15c15
);
273 /* retrieve value from R0 */
275 arm9tdmi_read_core_regs(target
, 0x1, regs_p
);
276 jtag_execute_queue();
278 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
279 LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x",
280 cp15_opcode
, address
, *value
);
283 if (!is_arm_mode(arm
->core_mode
)) {
284 LOG_ERROR("not a valid arm core mode - communication failure?");
295 int arm920t_write_cp15_interpreted(struct target
*target
,
296 uint32_t cp15_opcode
, uint32_t value
, uint32_t address
)
298 uint32_t cp15c15
= 0x0;
299 struct arm
*arm
= target_to_arm(target
);
301 struct reg
*r
= arm
->core_cache
->reg_list
;
303 /* load value, address into R0, R1 */
306 arm9tdmi_write_core_regs(target
, 0x3, regs
);
308 /* read-modify-write CP15 test state register
309 * to enable interpreted access mode */
310 arm920t_read_cp15_physical(target
, CP15PHYS_TESTSTATE
, &cp15c15
);
311 jtag_execute_queue();
312 cp15c15
|= 1; /* set interpret mode */
313 arm920t_write_cp15_physical(target
, CP15PHYS_TESTSTATE
, cp15c15
);
315 /* execute CP15 instruction and ARM store (writing to coprocessor) */
316 arm920t_execute_cp15(target
, cp15_opcode
, ARMV4_5_STR(0, 1));
318 /* disable interpreted access mode */
319 cp15c15
&= ~1U; /* set interpret mode */
320 arm920t_write_cp15_physical(target
, CP15PHYS_TESTSTATE
, cp15c15
);
322 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
323 LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x",
324 cp15_opcode
, value
, address
);
327 if (!is_arm_mode(arm
->core_mode
)) {
328 LOG_ERROR("not a valid arm core mode - communication failure?");
338 /* EXPORTED to FA256 */
339 int arm920t_get_ttb(struct target
*target
, uint32_t *result
)
344 retval
= arm920t_read_cp15_interpreted(target
,
345 /* FIXME use opcode macro */
346 0xeebf0f51, 0x0, &ttb
);
347 if (retval
!= ERROR_OK
)
354 /* EXPORTED to FA256 */
355 int arm920t_disable_mmu_caches(struct target
*target
, int mmu
,
356 int d_u_cache
, int i_cache
)
358 uint32_t cp15_control
;
361 /* read cp15 control register */
362 retval
= arm920t_read_cp15_physical(target
, CP15PHYS_CTRL
, &cp15_control
);
363 if (retval
!= ERROR_OK
)
365 retval
= jtag_execute_queue();
366 if (retval
!= ERROR_OK
)
370 cp15_control
&= ~0x1U
;
373 cp15_control
&= ~0x4U
;
376 cp15_control
&= ~0x1000U
;
378 retval
= arm920t_write_cp15_physical(target
, CP15PHYS_CTRL
, cp15_control
);
382 /* EXPORTED to FA256 */
383 int arm920t_enable_mmu_caches(struct target
*target
, int mmu
,
384 int d_u_cache
, int i_cache
)
386 uint32_t cp15_control
;
389 /* read cp15 control register */
390 retval
= arm920t_read_cp15_physical(target
, CP15PHYS_CTRL
, &cp15_control
);
391 if (retval
!= ERROR_OK
)
393 retval
= jtag_execute_queue();
394 if (retval
!= ERROR_OK
)
398 cp15_control
|= 0x1U
;
401 cp15_control
|= 0x4U
;
404 cp15_control
|= 0x1000U
;
406 retval
= arm920t_write_cp15_physical(target
, CP15PHYS_CTRL
, cp15_control
);
410 /* EXPORTED to FA256 */
411 int arm920t_post_debug_entry(struct target
*target
)
414 struct arm920t_common
*arm920t
= target_to_arm920(target
);
417 /* examine cp15 control reg */
418 retval
= arm920t_read_cp15_physical(target
,
419 CP15PHYS_CTRL
, &arm920t
->cp15_control_reg
);
420 if (retval
!= ERROR_OK
)
422 retval
= jtag_execute_queue();
423 if (retval
!= ERROR_OK
)
425 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32
, arm920t
->cp15_control_reg
);
427 if (arm920t
->armv4_5_mmu
.armv4_5_cache
.ctype
== -1) {
428 uint32_t cache_type_reg
;
429 /* identify caches */
430 retval
= arm920t_read_cp15_physical(target
,
431 CP15PHYS_CACHETYPE
, &cache_type_reg
);
432 if (retval
!= ERROR_OK
)
434 retval
= jtag_execute_queue();
435 if (retval
!= ERROR_OK
)
437 armv4_5_identify_cache(cache_type_reg
,
438 &arm920t
->armv4_5_mmu
.armv4_5_cache
);
441 arm920t
->armv4_5_mmu
.mmu_enabled
=
442 (arm920t
->cp15_control_reg
& 0x1U
) ? 1 : 0;
443 arm920t
->armv4_5_mmu
.armv4_5_cache
.d_u_cache_enabled
=
444 (arm920t
->cp15_control_reg
& 0x4U
) ? 1 : 0;
445 arm920t
->armv4_5_mmu
.armv4_5_cache
.i_cache_enabled
=
446 (arm920t
->cp15_control_reg
& 0x1000U
) ? 1 : 0;
448 /* save i/d fault status and address register
449 * FIXME use opcode macros */
450 retval
= arm920t_read_cp15_interpreted(target
, 0xee150f10, 0x0, &arm920t
->d_fsr
);
451 if (retval
!= ERROR_OK
)
453 retval
= arm920t_read_cp15_interpreted(target
, 0xee150f30, 0x0, &arm920t
->i_fsr
);
454 if (retval
!= ERROR_OK
)
456 retval
= arm920t_read_cp15_interpreted(target
, 0xee160f10, 0x0, &arm920t
->d_far
);
457 if (retval
!= ERROR_OK
)
459 retval
= arm920t_read_cp15_interpreted(target
, 0xee160f30, 0x0, &arm920t
->i_far
);
460 if (retval
!= ERROR_OK
)
463 LOG_DEBUG("D FSR: 0x%8.8" PRIx32
", D FAR: 0x%8.8" PRIx32
464 ", I FSR: 0x%8.8" PRIx32
", I FAR: 0x%8.8" PRIx32
,
465 arm920t
->d_fsr
, arm920t
->d_far
, arm920t
->i_fsr
, arm920t
->i_far
);
467 if (arm920t
->preserve_cache
) {
468 /* read-modify-write CP15 test state register
469 * to disable I/D-cache linefills */
470 retval
= arm920t_read_cp15_physical(target
,
471 CP15PHYS_TESTSTATE
, &cp15c15
);
472 if (retval
!= ERROR_OK
)
474 retval
= jtag_execute_queue();
475 if (retval
!= ERROR_OK
)
478 retval
= arm920t_write_cp15_physical(target
,
479 CP15PHYS_TESTSTATE
, cp15c15
);
480 if (retval
!= ERROR_OK
)
486 /* EXPORTED to FA256 */
487 void arm920t_pre_restore_context(struct target
*target
)
490 struct arm920t_common
*arm920t
= target_to_arm920(target
);
492 /* restore i/d fault status and address register */
493 arm920t_write_cp15_interpreted(target
, 0xee050f10, arm920t
->d_fsr
, 0x0);
494 arm920t_write_cp15_interpreted(target
, 0xee050f30, arm920t
->i_fsr
, 0x0);
495 arm920t_write_cp15_interpreted(target
, 0xee060f10, arm920t
->d_far
, 0x0);
496 arm920t_write_cp15_interpreted(target
, 0xee060f30, arm920t
->i_far
, 0x0);
498 /* read-modify-write CP15 test state register
499 * to reenable I/D-cache linefills */
500 if (arm920t
->preserve_cache
) {
501 arm920t_read_cp15_physical(target
,
502 CP15PHYS_TESTSTATE
, &cp15c15
);
503 jtag_execute_queue();
505 arm920t_write_cp15_physical(target
,
506 CP15PHYS_TESTSTATE
, cp15c15
);
510 static const char arm920_not
[] = "target is not an ARM920";
512 static int arm920t_verify_pointer(struct command_context
*cmd_ctx
,
513 struct arm920t_common
*arm920t
)
515 if (arm920t
->common_magic
!= ARM920T_COMMON_MAGIC
) {
516 command_print(cmd_ctx
, arm920_not
);
517 return ERROR_TARGET_INVALID
;
523 /** Logs summary of ARM920 state for a halted target. */
524 int arm920t_arch_state(struct target
*target
)
526 static const char *state
[] = {
527 "disabled", "enabled"
530 struct arm920t_common
*arm920t
= target_to_arm920(target
);
532 if (arm920t
->common_magic
!= ARM920T_COMMON_MAGIC
) {
533 LOG_ERROR("BUG: %s", arm920_not
);
534 return ERROR_TARGET_INVALID
;
537 arm_arch_state(target
);
538 LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
539 state
[arm920t
->armv4_5_mmu
.mmu_enabled
],
540 state
[arm920t
->armv4_5_mmu
.armv4_5_cache
.d_u_cache_enabled
],
541 state
[arm920t
->armv4_5_mmu
.armv4_5_cache
.i_cache_enabled
]);
546 static int arm920_mmu(struct target
*target
, int *enabled
)
548 if (target
->state
!= TARGET_HALTED
) {
549 LOG_ERROR("%s: target not halted", __func__
);
550 return ERROR_TARGET_INVALID
;
553 *enabled
= target_to_arm920(target
)->armv4_5_mmu
.mmu_enabled
;
557 static int arm920_virt2phys(struct target
*target
,
558 uint32_t virt
, uint32_t *phys
)
561 struct arm920t_common
*arm920t
= target_to_arm920(target
);
564 int retval
= armv4_5_mmu_translate_va(target
,
565 &arm920t
->armv4_5_mmu
, virt
, &cb
, &ret
);
566 if (retval
!= ERROR_OK
)
572 /** Reads a buffer, in the specified word size, with current MMU settings. */
573 int arm920t_read_memory(struct target
*target
, uint32_t address
,
574 uint32_t size
, uint32_t count
, uint8_t *buffer
)
578 retval
= arm7_9_read_memory(target
, address
, size
, count
, buffer
);
584 static int arm920t_read_phys_memory(struct target
*target
,
585 uint32_t address
, uint32_t size
,
586 uint32_t count
, uint8_t *buffer
)
588 struct arm920t_common
*arm920t
= target_to_arm920(target
);
590 return armv4_5_mmu_read_physical(target
, &arm920t
->armv4_5_mmu
,
591 address
, size
, count
, buffer
);
594 static int arm920t_write_phys_memory(struct target
*target
,
595 uint32_t address
, uint32_t size
,
596 uint32_t count
, const uint8_t *buffer
)
598 struct arm920t_common
*arm920t
= target_to_arm920(target
);
600 return armv4_5_mmu_write_physical(target
, &arm920t
->armv4_5_mmu
,
601 address
, size
, count
, buffer
);
604 /** Writes a buffer, in the specified word size, with current MMU settings. */
605 int arm920t_write_memory(struct target
*target
, uint32_t address
,
606 uint32_t size
, uint32_t count
, const uint8_t *buffer
)
609 const uint32_t cache_mask
= ~0x1f; /* cache line size : 32 byte */
610 struct arm920t_common
*arm920t
= target_to_arm920(target
);
612 /* FIX!!!! this should be cleaned up and made much more general. The
613 * plan is to write up and test on arm920t specifically and
614 * then generalize and clean up afterwards.
616 * Also it should be moved to the callbacks that handle breakpoints
617 * specifically and not the generic memory write fn's. See XScale code.
619 if (arm920t
->armv4_5_mmu
.mmu_enabled
&& (count
== 1) &&
620 ((size
== 2) || (size
== 4))) {
621 /* special case the handling of single word writes to
622 * bypass MMU, to allow implementation of breakpoints
623 * in memory marked read only
630 * We need physical address and cb
632 retval
= armv4_5_mmu_translate_va(target
, &arm920t
->armv4_5_mmu
,
634 if (retval
!= ERROR_OK
)
637 if (arm920t
->armv4_5_mmu
.armv4_5_cache
.d_u_cache_enabled
) {
639 LOG_DEBUG("D-Cache buffered, "
640 "drain write buffer");
643 * Drain write buffer - MCR p15,0,Rd,c7,c10,4
646 retval
= arm920t_write_cp15_interpreted(target
,
647 ARMV4_5_MCR(15, 0, 0, 7, 10, 4),
649 if (retval
!= ERROR_OK
)
655 * Write back memory ? -> clean cache
657 * There is no way to clean cache lines using
658 * cp15 scan chain, so copy the full cache
659 * line from cache to physical memory.
663 LOG_DEBUG("D-Cache in 'write back' mode, "
666 retval
= target_read_memory(target
,
667 address
& cache_mask
, 1,
668 sizeof(data
), &data
[0]);
669 if (retval
!= ERROR_OK
)
672 retval
= armv4_5_mmu_write_physical(target
,
673 &arm920t
->armv4_5_mmu
,
675 sizeof(data
), &data
[0]);
676 if (retval
!= ERROR_OK
)
683 * Cached ? -> Invalidate data cache using MVA
685 * MCR p15,0,Rd,c7,c6,1
687 LOG_DEBUG("D-Cache enabled, "
688 "invalidate cache line");
690 retval
= arm920t_write_cp15_interpreted(target
,
691 ARMV4_5_MCR(15, 0, 0, 7, 6, 1), 0x0,
692 address
& cache_mask
);
693 if (retval
!= ERROR_OK
)
698 /* write directly to physical memory,
699 * bypassing any read only MMU bits, etc.
701 retval
= armv4_5_mmu_write_physical(target
,
702 &arm920t
->armv4_5_mmu
, pa
, size
,
704 if (retval
!= ERROR_OK
)
707 retval
= arm7_9_write_memory(target
, address
, size
, count
, buffer
);
708 if (retval
!= ERROR_OK
)
712 /* If ICache is enabled, we have to invalidate affected ICache lines
713 * the DCache is forced to write-through,
714 * so we don't have to clean it here
716 if (arm920t
->armv4_5_mmu
.armv4_5_cache
.i_cache_enabled
) {
718 /* invalidate ICache single entry with MVA
719 * mcr 15, 0, r0, cr7, cr5, {1}
721 LOG_DEBUG("I-Cache enabled, "
722 "invalidating affected I-Cache line");
723 retval
= arm920t_write_cp15_interpreted(target
,
724 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
725 0x0, address
& cache_mask
);
726 if (retval
!= ERROR_OK
)
730 * mcr 15, 0, r0, cr7, cr5, {0}
732 retval
= arm920t_write_cp15_interpreted(target
,
733 ARMV4_5_MCR(15, 0, 0, 7, 5, 0),
735 if (retval
!= ERROR_OK
)
743 /* EXPORTED to FA256 */
744 int arm920t_soft_reset_halt(struct target
*target
)
746 int retval
= ERROR_OK
;
747 struct arm920t_common
*arm920t
= target_to_arm920(target
);
748 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
749 struct arm
*arm
= &arm7_9
->arm
;
750 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
752 retval
= target_halt(target
);
753 if (retval
!= ERROR_OK
)
756 long long then
= timeval_ms();
758 while (!(timeout
= ((timeval_ms()-then
) > 1000))) {
759 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1) == 0) {
760 embeddedice_read_reg(dbg_stat
);
761 retval
= jtag_execute_queue();
762 if (retval
!= ERROR_OK
)
766 if (debug_level
>= 3) {
767 /* do not eat all CPU, time out after 1 se*/
773 LOG_ERROR("Failed to halt CPU after 1 sec");
774 return ERROR_TARGET_TIMEOUT
;
777 target
->state
= TARGET_HALTED
;
779 /* SVC, ARM state, IRQ and FIQ disabled */
782 cpsr
= buf_get_u32(arm
->cpsr
->value
, 0, 32);
785 arm_set_cpsr(arm
, cpsr
);
786 arm
->cpsr
->dirty
= 1;
788 /* start fetching from 0x0 */
789 buf_set_u32(arm
->pc
->value
, 0, 32, 0x0);
793 arm920t_disable_mmu_caches(target
, 1, 1, 1);
794 arm920t
->armv4_5_mmu
.mmu_enabled
= 0;
795 arm920t
->armv4_5_mmu
.armv4_5_cache
.d_u_cache_enabled
= 0;
796 arm920t
->armv4_5_mmu
.armv4_5_cache
.i_cache_enabled
= 0;
798 return target_call_event_callbacks(target
, TARGET_EVENT_HALTED
);
801 /* FIXME remove forward decls */
802 static int arm920t_mrc(struct target
*target
, int cpnum
,
803 uint32_t op1
, uint32_t op2
,
804 uint32_t CRn
, uint32_t CRm
,
806 static int arm920t_mcr(struct target
*target
, int cpnum
,
807 uint32_t op1
, uint32_t op2
,
808 uint32_t CRn
, uint32_t CRm
,
811 static int arm920t_init_arch_info(struct target
*target
,
812 struct arm920t_common
*arm920t
, struct jtag_tap
*tap
)
814 struct arm7_9_common
*arm7_9
= &arm920t
->arm7_9_common
;
816 arm7_9
->arm
.mrc
= arm920t_mrc
;
817 arm7_9
->arm
.mcr
= arm920t_mcr
;
819 /* initialize arm7/arm9 specific info (including armv4_5) */
820 arm9tdmi_init_arch_info(target
, arm7_9
, tap
);
822 arm920t
->common_magic
= ARM920T_COMMON_MAGIC
;
824 arm7_9
->post_debug_entry
= arm920t_post_debug_entry
;
825 arm7_9
->pre_restore_context
= arm920t_pre_restore_context
;
826 arm7_9
->write_memory
= arm920t_write_memory
;
828 arm920t
->armv4_5_mmu
.armv4_5_cache
.ctype
= -1;
829 arm920t
->armv4_5_mmu
.get_ttb
= arm920t_get_ttb
;
830 arm920t
->armv4_5_mmu
.read_memory
= arm7_9_read_memory
;
831 arm920t
->armv4_5_mmu
.write_memory
= arm7_9_write_memory
;
832 arm920t
->armv4_5_mmu
.disable_mmu_caches
= arm920t_disable_mmu_caches
;
833 arm920t
->armv4_5_mmu
.enable_mmu_caches
= arm920t_enable_mmu_caches
;
834 arm920t
->armv4_5_mmu
.has_tiny_pages
= 1;
835 arm920t
->armv4_5_mmu
.mmu_enabled
= 0;
837 /* disabling linefills leads to lockups, so keep them enabled for now
838 * this doesn't affect correctness, but might affect timing issues, if
839 * important data is evicted from the cache during the debug session
841 arm920t
->preserve_cache
= 0;
843 /* override hw single-step capability from ARM9TDMI */
844 arm7_9
->has_single_step
= 1;
849 static int arm920t_target_create(struct target
*target
, Jim_Interp
*interp
)
851 struct arm920t_common
*arm920t
;
853 arm920t
= calloc(1, sizeof(struct arm920t_common
));
854 return arm920t_init_arch_info(target
, arm920t
, target
->tap
);
857 COMMAND_HANDLER(arm920t_handle_read_cache_command
)
859 int retval
= ERROR_OK
;
860 struct target
*target
= get_current_target(CMD_CTX
);
861 struct arm920t_common
*arm920t
= target_to_arm920(target
);
862 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
863 struct arm
*arm
= &arm7_9
->arm
;
865 uint32_t cp15_ctrl
, cp15_ctrl_saved
;
867 uint32_t *regs_p
[16];
868 uint32_t C15_C_D_Ind
, C15_C_I_Ind
;
871 int segment
, index_t
;
874 retval
= arm920t_verify_pointer(CMD_CTX
, arm920t
);
875 if (retval
!= ERROR_OK
)
879 return ERROR_COMMAND_SYNTAX_ERROR
;
881 output
= fopen(CMD_ARGV
[0], "w");
882 if (output
== NULL
) {
883 LOG_DEBUG("error opening cache content file");
887 for (i
= 0; i
< 16; i
++)
888 regs_p
[i
] = ®s
[i
];
890 /* disable MMU and Caches */
891 arm920t_read_cp15_physical(target
, CP15PHYS_CTRL
, &cp15_ctrl
);
892 retval
= jtag_execute_queue();
893 if (retval
!= ERROR_OK
)
895 cp15_ctrl_saved
= cp15_ctrl
;
896 cp15_ctrl
&= ~(ARMV4_5_MMU_ENABLED
897 | ARMV4_5_D_U_CACHE_ENABLED
| ARMV4_5_I_CACHE_ENABLED
);
898 arm920t_write_cp15_physical(target
, CP15PHYS_CTRL
, cp15_ctrl
);
900 /* read CP15 test state register */
901 arm920t_read_cp15_physical(target
, CP15PHYS_TESTSTATE
, &cp15c15
);
902 jtag_execute_queue();
904 /* read DCache content */
905 fprintf(output
, "DCache:\n");
907 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
909 segment
< arm920t
->armv4_5_mmu
.armv4_5_cache
.d_u_size
.nsets
;
911 fprintf(output
, "\nsegment: %i\n----------", segment
);
913 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
914 regs
[0] = 0x0 | (segment
<< 5);
915 arm9tdmi_write_core_regs(target
, 0x1, regs
);
917 /* set interpret mode */
919 arm920t_write_cp15_physical(target
,
920 CP15PHYS_TESTSTATE
, cp15c15
);
922 /* D CAM Read, loads current victim into C15.C.D.Ind */
923 arm920t_execute_cp15(target
,
924 ARMV4_5_MCR(15, 2, 0, 15, 6, 2), ARMV4_5_LDR(1, 0));
926 /* read current victim */
927 arm920t_read_cp15_physical(target
,
928 CP15PHYS_DCACHE_IDX
, &C15_C_D_Ind
);
930 /* clear interpret mode */
932 arm920t_write_cp15_physical(target
,
933 CP15PHYS_TESTSTATE
, cp15c15
);
935 for (index_t
= 0; index_t
< 64; index_t
++) {
937 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
939 regs
[0] = 0x0 | (segment
<< 5) | (index_t
<< 26);
940 arm9tdmi_write_core_regs(target
, 0x1, regs
);
942 /* set interpret mode */
944 arm920t_write_cp15_physical(target
,
945 CP15PHYS_TESTSTATE
, cp15c15
);
947 /* Write DCache victim */
948 arm920t_execute_cp15(target
,
949 ARMV4_5_MCR(15, 0, 0, 9, 1, 0), ARMV4_5_LDR(1, 0));
952 arm920t_execute_cp15(target
,
953 ARMV4_5_MCR(15, 2, 0, 15, 10, 2),
954 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
957 arm920t_execute_cp15(target
,
958 ARMV4_5_MCR(15, 2, 0, 15, 6, 2),
961 /* clear interpret mode */
963 arm920t_write_cp15_physical(target
,
964 CP15PHYS_TESTSTATE
, cp15c15
);
966 /* read D RAM and CAM content */
967 arm9tdmi_read_core_regs(target
, 0x3fe, regs_p
);
968 retval
= jtag_execute_queue();
969 if (retval
!= ERROR_OK
)
973 regs
[9] &= 0xfffffffe;
974 fprintf(output
, "\nsegment: %i, index: %i, CAM: 0x%8.8"
975 PRIx32
", content (%s):\n",
976 segment
, index_t
, regs
[9],
977 (regs
[9] & 0x10) ? "valid" : "invalid");
979 for (i
= 1; i
< 9; i
++) {
980 fprintf(output
, "%i: 0x%8.8" PRIx32
"\n",
986 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
987 regs
[0] = 0x0 | (segment
<< 5) | (C15_C_D_Ind
<< 26);
988 arm9tdmi_write_core_regs(target
, 0x1, regs
);
990 /* set interpret mode */
992 arm920t_write_cp15_physical(target
,
993 CP15PHYS_TESTSTATE
, cp15c15
);
995 /* Write DCache victim */
996 arm920t_execute_cp15(target
,
997 ARMV4_5_MCR(15, 0, 0, 9, 1, 0), ARMV4_5_LDR(1, 0));
999 /* clear interpret mode */
1001 arm920t_write_cp15_physical(target
,
1002 CP15PHYS_TESTSTATE
, cp15c15
);
1005 /* read ICache content */
1006 fprintf(output
, "ICache:\n");
1008 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
1010 segment
< arm920t
->armv4_5_mmu
.armv4_5_cache
.d_u_size
.nsets
;
1012 fprintf(output
, "segment: %i\n----------", segment
);
1014 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
1015 regs
[0] = 0x0 | (segment
<< 5);
1016 arm9tdmi_write_core_regs(target
, 0x1, regs
);
1018 /* set interpret mode */
1020 arm920t_write_cp15_physical(target
,
1021 CP15PHYS_TESTSTATE
, cp15c15
);
1023 /* I CAM Read, loads current victim into C15.C.I.Ind */
1024 arm920t_execute_cp15(target
,
1025 ARMV4_5_MCR(15, 2, 0, 15, 5, 2), ARMV4_5_LDR(1, 0));
1027 /* read current victim */
1028 arm920t_read_cp15_physical(target
, CP15PHYS_ICACHE_IDX
,
1031 /* clear interpret mode */
1033 arm920t_write_cp15_physical(target
,
1034 CP15PHYS_TESTSTATE
, cp15c15
);
1036 for (index_t
= 0; index_t
< 64; index_t
++) {
1038 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
1040 regs
[0] = 0x0 | (segment
<< 5) | (index_t
<< 26);
1041 arm9tdmi_write_core_regs(target
, 0x1, regs
);
1043 /* set interpret mode */
1045 arm920t_write_cp15_physical(target
,
1046 CP15PHYS_TESTSTATE
, cp15c15
);
1048 /* Write ICache victim */
1049 arm920t_execute_cp15(target
,
1050 ARMV4_5_MCR(15, 0, 0, 9, 1, 1), ARMV4_5_LDR(1, 0));
1053 arm920t_execute_cp15(target
,
1054 ARMV4_5_MCR(15, 2, 0, 15, 9, 2),
1055 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
1058 arm920t_execute_cp15(target
,
1059 ARMV4_5_MCR(15, 2, 0, 15, 5, 2),
1062 /* clear interpret mode */
1064 arm920t_write_cp15_physical(target
,
1065 CP15PHYS_TESTSTATE
, cp15c15
);
1067 /* read I RAM and CAM content */
1068 arm9tdmi_read_core_regs(target
, 0x3fe, regs_p
);
1069 retval
= jtag_execute_queue();
1070 if (retval
!= ERROR_OK
)
1074 regs
[9] &= 0xfffffffe;
1075 fprintf(output
, "\nsegment: %i, index: %i, "
1076 "CAM: 0x%8.8" PRIx32
", content (%s):\n",
1077 segment
, index_t
, regs
[9],
1078 (regs
[9] & 0x10) ? "valid" : "invalid");
1080 for (i
= 1; i
< 9; i
++) {
1081 fprintf(output
, "%i: 0x%8.8" PRIx32
"\n",
1086 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
1087 regs
[0] = 0x0 | (segment
<< 5) | (C15_C_D_Ind
<< 26);
1088 arm9tdmi_write_core_regs(target
, 0x1, regs
);
1090 /* set interpret mode */
1092 arm920t_write_cp15_physical(target
,
1093 CP15PHYS_TESTSTATE
, cp15c15
);
1095 /* Write ICache victim */
1096 arm920t_execute_cp15(target
,
1097 ARMV4_5_MCR(15, 0, 0, 9, 1, 1), ARMV4_5_LDR(1, 0));
1099 /* clear interpret mode */
1101 arm920t_write_cp15_physical(target
,
1102 CP15PHYS_TESTSTATE
, cp15c15
);
1105 /* restore CP15 MMU and Cache settings */
1106 arm920t_write_cp15_physical(target
, CP15PHYS_CTRL
, cp15_ctrl_saved
);
1108 command_print(CMD_CTX
, "cache content successfully output to %s",
1113 if (!is_arm_mode(arm
->core_mode
)) {
1114 LOG_ERROR("not a valid arm core mode - communication failure?");
1118 /* force writeback of the valid data */
1119 r
= arm
->core_cache
->reg_list
;
1120 r
[0].dirty
= r
[0].valid
;
1121 r
[1].dirty
= r
[1].valid
;
1122 r
[2].dirty
= r
[2].valid
;
1123 r
[3].dirty
= r
[3].valid
;
1124 r
[4].dirty
= r
[4].valid
;
1125 r
[5].dirty
= r
[5].valid
;
1126 r
[6].dirty
= r
[6].valid
;
1127 r
[7].dirty
= r
[7].valid
;
1129 r
= arm_reg_current(arm
, 8);
1130 r
->dirty
= r
->valid
;
1132 r
= arm_reg_current(arm
, 9);
1133 r
->dirty
= r
->valid
;
1138 COMMAND_HANDLER(arm920t_handle_read_mmu_command
)
1140 int retval
= ERROR_OK
;
1141 struct target
*target
= get_current_target(CMD_CTX
);
1142 struct arm920t_common
*arm920t
= target_to_arm920(target
);
1143 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1144 struct arm
*arm
= &arm7_9
->arm
;
1146 uint32_t cp15_ctrl
, cp15_ctrl_saved
;
1148 uint32_t *regs_p
[16];
1151 uint32_t Dlockdown
, Ilockdown
;
1152 struct arm920t_tlb_entry d_tlb
[64], i_tlb
[64];
1156 retval
= arm920t_verify_pointer(CMD_CTX
, arm920t
);
1157 if (retval
!= ERROR_OK
)
1161 return ERROR_COMMAND_SYNTAX_ERROR
;
1163 output
= fopen(CMD_ARGV
[0], "w");
1164 if (output
== NULL
) {
1165 LOG_DEBUG("error opening mmu content file");
1169 for (i
= 0; i
< 16; i
++)
1170 regs_p
[i
] = ®s
[i
];
1172 /* disable MMU and Caches */
1173 arm920t_read_cp15_physical(target
, CP15PHYS_CTRL
, &cp15_ctrl
);
1174 retval
= jtag_execute_queue();
1175 if (retval
!= ERROR_OK
)
1177 cp15_ctrl_saved
= cp15_ctrl
;
1178 cp15_ctrl
&= ~(ARMV4_5_MMU_ENABLED
1179 | ARMV4_5_D_U_CACHE_ENABLED
| ARMV4_5_I_CACHE_ENABLED
);
1180 arm920t_write_cp15_physical(target
, CP15PHYS_CTRL
, cp15_ctrl
);
1182 /* read CP15 test state register */
1183 arm920t_read_cp15_physical(target
, CP15PHYS_TESTSTATE
, &cp15c15
);
1184 retval
= jtag_execute_queue();
1185 if (retval
!= ERROR_OK
)
1188 /* prepare reading D TLB content
1191 /* set interpret mode */
1193 arm920t_write_cp15_physical(target
, CP15PHYS_TESTSTATE
, cp15c15
);
1195 /* Read D TLB lockdown */
1196 arm920t_execute_cp15(target
,
1197 ARMV4_5_MRC(15, 0, 0, 10, 0, 0), ARMV4_5_LDR(1, 0));
1199 /* clear interpret mode */
1201 arm920t_write_cp15_physical(target
, CP15PHYS_TESTSTATE
, cp15c15
);
1203 /* read D TLB lockdown stored to r1 */
1204 arm9tdmi_read_core_regs(target
, 0x2, regs_p
);
1205 retval
= jtag_execute_queue();
1206 if (retval
!= ERROR_OK
)
1208 Dlockdown
= regs
[1];
1210 for (victim
= 0; victim
< 64; victim
+= 8) {
1211 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1212 * base remains unchanged, victim goes through entries 0 to 63
1214 regs
[1] = (Dlockdown
& 0xfc000000) | (victim
<< 20);
1215 arm9tdmi_write_core_regs(target
, 0x2, regs
);
1217 /* set interpret mode */
1219 arm920t_write_cp15_physical(target
,
1220 CP15PHYS_TESTSTATE
, cp15c15
);
1222 /* Write D TLB lockdown */
1223 arm920t_execute_cp15(target
,
1224 ARMV4_5_MCR(15, 0, 0, 10, 0, 0),
1227 /* Read D TLB CAM */
1228 arm920t_execute_cp15(target
,
1229 ARMV4_5_MCR(15, 4, 0, 15, 6, 4),
1230 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1232 /* clear interpret mode */
1234 arm920t_write_cp15_physical(target
,
1235 CP15PHYS_TESTSTATE
, cp15c15
);
1237 /* read D TLB CAM content stored to r2-r9 */
1238 arm9tdmi_read_core_regs(target
, 0x3fc, regs_p
);
1239 retval
= jtag_execute_queue();
1240 if (retval
!= ERROR_OK
)
1243 for (i
= 0; i
< 8; i
++)
1244 d_tlb
[victim
+ i
].cam
= regs
[i
+ 2];
1247 for (victim
= 0; victim
< 64; victim
++) {
1248 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1249 * base remains unchanged, victim goes through entries 0 to 63
1251 regs
[1] = (Dlockdown
& 0xfc000000) | (victim
<< 20);
1252 arm9tdmi_write_core_regs(target
, 0x2, regs
);
1254 /* set interpret mode */
1256 arm920t_write_cp15_physical(target
,
1257 CP15PHYS_TESTSTATE
, cp15c15
);
1259 /* Write D TLB lockdown */
1260 arm920t_execute_cp15(target
,
1261 ARMV4_5_MCR(15, 0, 0, 10, 0, 0), ARMV4_5_STR(1, 0));
1263 /* Read D TLB RAM1 */
1264 arm920t_execute_cp15(target
,
1265 ARMV4_5_MCR(15, 4, 0, 15, 10, 4), ARMV4_5_LDR(2, 0));
1267 /* Read D TLB RAM2 */
1268 arm920t_execute_cp15(target
,
1269 ARMV4_5_MCR(15, 4, 0, 15, 2, 5), ARMV4_5_LDR(3, 0));
1271 /* clear interpret mode */
1273 arm920t_write_cp15_physical(target
,
1274 CP15PHYS_TESTSTATE
, cp15c15
);
1276 /* read D TLB RAM content stored to r2 and r3 */
1277 arm9tdmi_read_core_regs(target
, 0xc, regs_p
);
1278 retval
= jtag_execute_queue();
1279 if (retval
!= ERROR_OK
)
1282 d_tlb
[victim
].ram1
= regs
[2];
1283 d_tlb
[victim
].ram2
= regs
[3];
1286 /* restore D TLB lockdown */
1287 regs
[1] = Dlockdown
;
1288 arm9tdmi_write_core_regs(target
, 0x2, regs
);
1290 /* Write D TLB lockdown */
1291 arm920t_execute_cp15(target
,
1292 ARMV4_5_MCR(15, 0, 0, 10, 0, 0), ARMV4_5_STR(1, 0));
1294 /* prepare reading I TLB content
1297 /* set interpret mode */
1299 arm920t_write_cp15_physical(target
, CP15PHYS_TESTSTATE
, cp15c15
);
1301 /* Read I TLB lockdown */
1302 arm920t_execute_cp15(target
,
1303 ARMV4_5_MRC(15, 0, 0, 10, 0, 1), ARMV4_5_LDR(1, 0));
1305 /* clear interpret mode */
1307 arm920t_write_cp15_physical(target
, CP15PHYS_TESTSTATE
, cp15c15
);
1309 /* read I TLB lockdown stored to r1 */
1310 arm9tdmi_read_core_regs(target
, 0x2, regs_p
);
1311 retval
= jtag_execute_queue();
1312 if (retval
!= ERROR_OK
)
1314 Ilockdown
= regs
[1];
1316 for (victim
= 0; victim
< 64; victim
+= 8) {
1317 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1318 * base remains unchanged, victim goes through entries 0 to 63
1320 regs
[1] = (Ilockdown
& 0xfc000000) | (victim
<< 20);
1321 arm9tdmi_write_core_regs(target
, 0x2, regs
);
1323 /* set interpret mode */
1325 arm920t_write_cp15_physical(target
,
1326 CP15PHYS_TESTSTATE
, cp15c15
);
1328 /* Write I TLB lockdown */
1329 arm920t_execute_cp15(target
,
1330 ARMV4_5_MCR(15, 0, 0, 10, 0, 1),
1333 /* Read I TLB CAM */
1334 arm920t_execute_cp15(target
,
1335 ARMV4_5_MCR(15, 4, 0, 15, 5, 4),
1336 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1338 /* clear interpret mode */
1340 arm920t_write_cp15_physical(target
,
1341 CP15PHYS_TESTSTATE
, cp15c15
);
1343 /* read I TLB CAM content stored to r2-r9 */
1344 arm9tdmi_read_core_regs(target
, 0x3fc, regs_p
);
1345 retval
= jtag_execute_queue();
1346 if (retval
!= ERROR_OK
)
1349 for (i
= 0; i
< 8; i
++)
1350 i_tlb
[i
+ victim
].cam
= regs
[i
+ 2];
1353 for (victim
= 0; victim
< 64; victim
++) {
1354 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1355 * base remains unchanged, victim goes through entries 0 to 63
1357 regs
[1] = (Dlockdown
& 0xfc000000) | (victim
<< 20);
1358 arm9tdmi_write_core_regs(target
, 0x2, regs
);
1360 /* set interpret mode */
1362 arm920t_write_cp15_physical(target
,
1363 CP15PHYS_TESTSTATE
, cp15c15
);
1365 /* Write I TLB lockdown */
1366 arm920t_execute_cp15(target
,
1367 ARMV4_5_MCR(15, 0, 0, 10, 0, 1), ARMV4_5_STR(1, 0));
1369 /* Read I TLB RAM1 */
1370 arm920t_execute_cp15(target
,
1371 ARMV4_5_MCR(15, 4, 0, 15, 9, 4), ARMV4_5_LDR(2, 0));
1373 /* Read I TLB RAM2 */
1374 arm920t_execute_cp15(target
,
1375 ARMV4_5_MCR(15, 4, 0, 15, 1, 5), ARMV4_5_LDR(3, 0));
1377 /* clear interpret mode */
1379 arm920t_write_cp15_physical(target
,
1380 CP15PHYS_TESTSTATE
, cp15c15
);
1382 /* read I TLB RAM content stored to r2 and r3 */
1383 arm9tdmi_read_core_regs(target
, 0xc, regs_p
);
1384 retval
= jtag_execute_queue();
1385 if (retval
!= ERROR_OK
)
1388 i_tlb
[victim
].ram1
= regs
[2];
1389 i_tlb
[victim
].ram2
= regs
[3];
1392 /* restore I TLB lockdown */
1393 regs
[1] = Ilockdown
;
1394 arm9tdmi_write_core_regs(target
, 0x2, regs
);
1396 /* Write I TLB lockdown */
1397 arm920t_execute_cp15(target
,
1398 ARMV4_5_MCR(15, 0, 0, 10, 0, 1), ARMV4_5_STR(1, 0));
1400 /* restore CP15 MMU and Cache settings */
1401 arm920t_write_cp15_physical(target
, CP15PHYS_CTRL
, cp15_ctrl_saved
);
1403 /* output data to file */
1404 fprintf(output
, "D TLB content:\n");
1405 for (i
= 0; i
< 64; i
++) {
1406 fprintf(output
, "%i: 0x%8.8" PRIx32
" 0x%8.8" PRIx32
1407 " 0x%8.8" PRIx32
" %s\n",
1408 i
, d_tlb
[i
].cam
, d_tlb
[i
].ram1
, d_tlb
[i
].ram2
,
1409 (d_tlb
[i
].cam
& 0x20) ? "(valid)" : "(invalid)");
1412 fprintf(output
, "\n\nI TLB content:\n");
1413 for (i
= 0; i
< 64; i
++) {
1414 fprintf(output
, "%i: 0x%8.8" PRIx32
" 0x%8.8" PRIx32
1415 " 0x%8.8" PRIx32
" %s\n",
1416 i
, i_tlb
[i
].cam
, i_tlb
[i
].ram1
, i_tlb
[i
].ram2
,
1417 (i_tlb
[i
].cam
& 0x20) ? "(valid)" : "(invalid)");
1420 command_print(CMD_CTX
, "mmu content successfully output to %s",
1425 if (!is_arm_mode(arm
->core_mode
)) {
1426 LOG_ERROR("not a valid arm core mode - communication failure?");
1430 /* force writeback of the valid data */
1431 r
= arm
->core_cache
->reg_list
;
1432 r
[0].dirty
= r
[0].valid
;
1433 r
[1].dirty
= r
[1].valid
;
1434 r
[2].dirty
= r
[2].valid
;
1435 r
[3].dirty
= r
[3].valid
;
1436 r
[4].dirty
= r
[4].valid
;
1437 r
[5].dirty
= r
[5].valid
;
1438 r
[6].dirty
= r
[6].valid
;
1439 r
[7].dirty
= r
[7].valid
;
1441 r
= arm_reg_current(arm
, 8);
1442 r
->dirty
= r
->valid
;
1444 r
= arm_reg_current(arm
, 9);
1445 r
->dirty
= r
->valid
;
1450 COMMAND_HANDLER(arm920t_handle_cp15_command
)
1453 struct target
*target
= get_current_target(CMD_CTX
);
1454 struct arm920t_common
*arm920t
= target_to_arm920(target
);
1456 retval
= arm920t_verify_pointer(CMD_CTX
, arm920t
);
1457 if (retval
!= ERROR_OK
)
1460 if (target
->state
!= TARGET_HALTED
) {
1461 command_print(CMD_CTX
, "target must be stopped for "
1462 "\"%s\" command", CMD_NAME
);
1466 /* one argument, read a register.
1467 * two arguments, write it.
1469 if (CMD_ARGC
>= 1) {
1471 COMMAND_PARSE_NUMBER(int, CMD_ARGV
[0], address
);
1473 if (CMD_ARGC
== 1) {
1475 retval
= arm920t_read_cp15_physical(target
, address
, &value
);
1476 if (retval
!= ERROR_OK
) {
1477 command_print(CMD_CTX
,
1478 "couldn't access reg %i", address
);
1481 retval
= jtag_execute_queue();
1482 if (retval
!= ERROR_OK
)
1485 command_print(CMD_CTX
, "%i: %8.8" PRIx32
,
1487 } else if (CMD_ARGC
== 2) {
1489 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], value
);
1490 retval
= arm920t_write_cp15_physical(target
,
1492 if (retval
!= ERROR_OK
) {
1493 command_print(CMD_CTX
,
1494 "couldn't access reg %i", address
);
1495 /* REVISIT why lie? "return retval"? */
1498 command_print(CMD_CTX
, "%i: %8.8" PRIx32
,
1506 COMMAND_HANDLER(arm920t_handle_cp15i_command
)
1509 struct target
*target
= get_current_target(CMD_CTX
);
1510 struct arm920t_common
*arm920t
= target_to_arm920(target
);
1512 retval
= arm920t_verify_pointer(CMD_CTX
, arm920t
);
1513 if (retval
!= ERROR_OK
)
1517 if (target
->state
!= TARGET_HALTED
) {
1518 command_print(CMD_CTX
, "target must be stopped for "
1519 "\"%s\" command", CMD_NAME
);
1523 /* one argument, read a register.
1524 * two arguments, write it.
1526 if (CMD_ARGC
>= 1) {
1528 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[0], opcode
);
1530 if (CMD_ARGC
== 1) {
1532 retval
= arm920t_read_cp15_interpreted(target
,
1533 opcode
, 0x0, &value
);
1534 if (retval
!= ERROR_OK
) {
1535 command_print(CMD_CTX
,
1536 "couldn't execute %8.8" PRIx32
,
1538 /* REVISIT why lie? "return retval"? */
1542 command_print(CMD_CTX
, "%8.8" PRIx32
": %8.8" PRIx32
,
1544 } else if (CMD_ARGC
== 2) {
1546 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], value
);
1547 retval
= arm920t_write_cp15_interpreted(target
,
1549 if (retval
!= ERROR_OK
) {
1550 command_print(CMD_CTX
,
1551 "couldn't execute %8.8" PRIx32
,
1553 /* REVISIT why lie? "return retval"? */
1556 command_print(CMD_CTX
, "%8.8" PRIx32
": %8.8" PRIx32
,
1558 } else if (CMD_ARGC
== 3) {
1560 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[1], value
);
1562 COMMAND_PARSE_NUMBER(u32
, CMD_ARGV
[2], address
);
1563 retval
= arm920t_write_cp15_interpreted(target
,
1564 opcode
, value
, address
);
1565 if (retval
!= ERROR_OK
) {
1566 command_print(CMD_CTX
,
1567 "couldn't execute %8.8" PRIx32
, opcode
);
1568 /* REVISIT why lie? "return retval"? */
1571 command_print(CMD_CTX
, "%8.8" PRIx32
": %8.8" PRIx32
1572 " %8.8" PRIx32
, opcode
, value
, address
);
1575 return ERROR_COMMAND_SYNTAX_ERROR
;
1580 COMMAND_HANDLER(arm920t_handle_cache_info_command
)
1583 struct target
*target
= get_current_target(CMD_CTX
);
1584 struct arm920t_common
*arm920t
= target_to_arm920(target
);
1586 retval
= arm920t_verify_pointer(CMD_CTX
, arm920t
);
1587 if (retval
!= ERROR_OK
)
1590 return armv4_5_handle_cache_info_command(CMD_CTX
,
1591 &arm920t
->armv4_5_mmu
.armv4_5_cache
);
1595 static int arm920t_mrc(struct target
*target
, int cpnum
,
1596 uint32_t op1
, uint32_t op2
,
1597 uint32_t CRn
, uint32_t CRm
,
1601 LOG_ERROR("Only cp15 is supported");
1606 return arm920t_read_cp15_interpreted(target
,
1607 ARMV4_5_MRC(cpnum
, op1
, 0, CRn
, CRm
, op2
),
1611 static int arm920t_mcr(struct target
*target
, int cpnum
,
1612 uint32_t op1
, uint32_t op2
,
1613 uint32_t CRn
, uint32_t CRm
,
1617 LOG_ERROR("Only cp15 is supported");
1621 /* write "from" r0 */
1622 return arm920t_write_cp15_interpreted(target
,
1623 ARMV4_5_MCR(cpnum
, op1
, 0, CRn
, CRm
, op2
),
1627 static const struct command_registration arm920t_exec_command_handlers
[] = {
1630 .handler
= arm920t_handle_cp15_command
,
1631 .mode
= COMMAND_EXEC
,
1632 .help
= "display/modify cp15 register",
1633 .usage
= "regnum [value]",
1637 .handler
= arm920t_handle_cp15i_command
,
1638 .mode
= COMMAND_EXEC
,
1639 /* prefer using less error-prone "arm mcr" or "arm mrc" */
1640 .help
= "display/modify cp15 register using ARM opcode"
1642 .usage
= "instruction [value [address]]",
1645 .name
= "cache_info",
1646 .handler
= arm920t_handle_cache_info_command
,
1647 .mode
= COMMAND_EXEC
,
1649 .help
= "display information about target caches",
1652 .name
= "read_cache",
1653 .handler
= arm920t_handle_read_cache_command
,
1654 .mode
= COMMAND_EXEC
,
1655 .help
= "dump I/D cache content to file",
1656 .usage
= "filename",
1660 .handler
= arm920t_handle_read_mmu_command
,
1661 .mode
= COMMAND_EXEC
,
1662 .help
= "dump I/D mmu content to file",
1663 .usage
= "filename",
1665 COMMAND_REGISTRATION_DONE
1667 const struct command_registration arm920t_command_handlers
[] = {
1669 .chain
= arm9tdmi_command_handlers
,
1673 .mode
= COMMAND_ANY
,
1674 .help
= "arm920t command group",
1676 .chain
= arm920t_exec_command_handlers
,
1678 COMMAND_REGISTRATION_DONE
1681 /** Holds methods for ARM920 targets. */
1682 struct target_type arm920t_target
= {
1685 .poll
= arm7_9_poll
,
1686 .arch_state
= arm920t_arch_state
,
1688 .target_request_data
= arm7_9_target_request_data
,
1690 .halt
= arm7_9_halt
,
1691 .resume
= arm7_9_resume
,
1692 .step
= arm7_9_step
,
1694 .assert_reset
= arm7_9_assert_reset
,
1695 .deassert_reset
= arm7_9_deassert_reset
,
1696 .soft_reset_halt
= arm920t_soft_reset_halt
,
1698 .get_gdb_reg_list
= arm_get_gdb_reg_list
,
1700 .read_memory
= arm920t_read_memory
,
1701 .write_memory
= arm7_9_write_memory_opt
,
1702 .read_phys_memory
= arm920t_read_phys_memory
,
1703 .write_phys_memory
= arm920t_write_phys_memory
,
1705 .virt2phys
= arm920_virt2phys
,
1707 .checksum_memory
= arm_checksum_memory
,
1708 .blank_check_memory
= arm_blank_check_memory
,
1710 .run_algorithm
= armv4_5_run_algorithm
,
1712 .add_breakpoint
= arm7_9_add_breakpoint
,
1713 .remove_breakpoint
= arm7_9_remove_breakpoint
,
1714 .add_watchpoint
= arm7_9_add_watchpoint
,
1715 .remove_watchpoint
= arm7_9_remove_watchpoint
,
1717 .commands
= arm920t_command_handlers
,
1718 .target_create
= arm920t_target_create
,
1719 .init_target
= arm9tdmi_init_target
,
1720 .examine
= arm7_9_examine
,
1721 .check_reset
= arm7_9_check_reset
,