fixed gaffe mea culpa
[openocd.git] / src / target / target.c
blobc2fce59d61c986a1e03855eae112adc44f721020
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program; if not, write to the *
20 * Free Software Foundation, Inc., *
21 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
22 ***************************************************************************/
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
27 #include "replacements.h"
28 #include "target.h"
29 #include "target_request.h"
31 #include "log.h"
32 #include "configuration.h"
33 #include "binarybuffer.h"
34 #include "jtag.h"
36 #include <string.h>
37 #include <stdlib.h>
38 #include <inttypes.h>
40 #include <sys/types.h>
41 #include <sys/stat.h>
42 #include <unistd.h>
43 #include <errno.h>
45 #include <sys/time.h>
46 #include <time.h>
48 #include <time_support.h>
50 #include <fileio.h>
51 #include <image.h>
53 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
55 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
72 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
73 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
74 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
75 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
76 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
77 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
78 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
79 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
80 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
83 /* targets */
84 extern target_type_t arm7tdmi_target;
85 extern target_type_t arm720t_target;
86 extern target_type_t arm9tdmi_target;
87 extern target_type_t arm920t_target;
88 extern target_type_t arm966e_target;
89 extern target_type_t arm926ejs_target;
90 extern target_type_t feroceon_target;
91 extern target_type_t xscale_target;
92 extern target_type_t cortexm3_target;
93 extern target_type_t arm11_target;
94 extern target_type_t mips_m4k_target;
96 target_type_t *target_types[] =
98 &arm7tdmi_target,
99 &arm9tdmi_target,
100 &arm920t_target,
101 &arm720t_target,
102 &arm966e_target,
103 &arm926ejs_target,
104 &feroceon_target,
105 &xscale_target,
106 &cortexm3_target,
107 &arm11_target,
108 &mips_m4k_target,
109 NULL,
112 target_t *targets = NULL;
113 target_event_callback_t *target_event_callbacks = NULL;
114 target_timer_callback_t *target_timer_callbacks = NULL;
116 char *target_state_strings[] =
118 "unknown",
119 "running",
120 "halted",
121 "reset",
122 "debug_running",
125 char *target_debug_reason_strings[] =
127 "debug request", "breakpoint", "watchpoint",
128 "watchpoint and breakpoint", "single step",
129 "target not halted", "undefined"
132 char *target_endianess_strings[] =
134 "big endian",
135 "little endian",
138 static int target_continous_poll = 1;
140 /* read a u32 from a buffer in target memory endianness */
141 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
143 if (target->endianness == TARGET_LITTLE_ENDIAN)
144 return le_to_h_u32(buffer);
145 else
146 return be_to_h_u32(buffer);
149 /* read a u16 from a buffer in target memory endianness */
150 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
152 if (target->endianness == TARGET_LITTLE_ENDIAN)
153 return le_to_h_u16(buffer);
154 else
155 return be_to_h_u16(buffer);
158 /* write a u32 to a buffer in target memory endianness */
159 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
161 if (target->endianness == TARGET_LITTLE_ENDIAN)
162 h_u32_to_le(buffer, value);
163 else
164 h_u32_to_be(buffer, value);
167 /* write a u16 to a buffer in target memory endianness */
168 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
170 if (target->endianness == TARGET_LITTLE_ENDIAN)
171 h_u16_to_le(buffer, value);
172 else
173 h_u16_to_be(buffer, value);
176 /* returns a pointer to the n-th configured target */
177 target_t* get_target_by_num(int num)
179 target_t *target = targets;
180 int i = 0;
182 while (target)
184 if (num == i)
185 return target;
186 target = target->next;
187 i++;
190 return NULL;
193 int get_num_by_target(target_t *query_target)
195 target_t *target = targets;
196 int i = 0;
198 while (target)
200 if (target == query_target)
201 return i;
202 target = target->next;
203 i++;
206 return -1;
209 target_t* get_current_target(command_context_t *cmd_ctx)
211 target_t *target = get_target_by_num(cmd_ctx->current_target);
213 if (target == NULL)
215 LOG_ERROR("BUG: current_target out of bounds");
216 exit(-1);
219 return target;
223 int target_poll(struct target_s *target)
225 /* We can't poll until after examine */
226 if (!target->type->examined)
228 /* Fail silently lest we pollute the log */
229 return ERROR_FAIL;
231 return target->type->poll(target);
234 int target_halt(struct target_s *target)
236 /* We can't poll until after examine */
237 if (!target->type->examined)
239 LOG_ERROR("Target not examined yet");
240 return ERROR_FAIL;
242 return target->type->halt(target);
245 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
247 int retval;
249 /* We can't poll until after examine */
250 if (!target->type->examined)
252 LOG_ERROR("Target not examined yet");
253 return ERROR_FAIL;
256 /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
257 * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
258 * the application.
260 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
261 return retval;
263 return retval;
266 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
268 int retval = ERROR_OK;
269 target_t *target;
271 target = targets;
272 while (target)
274 target_invoke_script(cmd_ctx, target, "pre_reset");
275 target = target->next;
278 if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
279 return retval;
281 keep_alive(); /* we might be running on a very slow JTAG clk */
283 /* First time this is executed after launching OpenOCD, it will read out
284 * the type of CPU, etc. and init Embedded ICE registers in host
285 * memory.
287 * It will also set up ICE registers in the target.
289 * However, if we assert TRST later, we need to set up the registers again.
291 * For the "reset halt/init" case we must only set up the registers here.
293 if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
294 return retval;
296 keep_alive(); /* we might be running on a very slow JTAG clk */
298 target = targets;
299 while (target)
301 /* we have no idea what state the target is in, so we
302 * have to drop working areas
304 target_free_all_working_areas_restore(target, 0);
305 target->reset_halt=((reset_mode==RESET_HALT)||(reset_mode==RESET_INIT));
306 target->type->assert_reset(target);
307 target = target->next;
309 if ((retval = jtag_execute_queue()) != ERROR_OK)
311 LOG_WARNING("JTAG communication failed asserting reset.");
312 retval = ERROR_OK;
315 /* request target halt if necessary, and schedule further action */
316 target = targets;
317 while (target)
319 if (reset_mode!=RESET_RUN)
321 if ((jtag_reset_config & RESET_SRST_PULLS_TRST)==0)
322 target_halt(target);
324 target = target->next;
327 if ((retval = jtag_execute_queue()) != ERROR_OK)
329 LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
330 retval = ERROR_OK;
333 target = targets;
334 while (target)
336 target->type->deassert_reset(target);
337 /* We can fail to bring the target into the halted state */
338 target_poll(target);
339 if (target->reset_halt&&((target->state != TARGET_HALTED)))
341 LOG_WARNING("Failed to reset target into halted mode - issuing halt");
342 target->type->halt(target);
345 target = target->next;
348 if ((retval = jtag_execute_queue()) != ERROR_OK)
350 LOG_WARNING("JTAG communication failed while deasserting reset.");
351 retval = ERROR_OK;
354 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
356 /* If TRST was asserted we need to set up registers again */
357 if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
358 return retval;
361 LOG_DEBUG("Waiting for halted stated as appropriate");
363 if ((reset_mode == RESET_HALT) || (reset_mode == RESET_INIT))
365 target = targets;
366 while (target)
368 /* Wait for reset to complete, maximum 5 seconds. */
369 if (((retval=target_wait_state(target, TARGET_HALTED, 5000)))==ERROR_OK)
371 if (reset_mode == RESET_INIT)
372 target_invoke_script(cmd_ctx, target, "post_reset");
374 target = target->next;
378 /* We want any events to be processed before the prompt */
379 target_call_timer_callbacks_now();
381 return retval;
384 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
386 *physical = virtual;
387 return ERROR_OK;
390 static int default_mmu(struct target_s *target, int *enabled)
392 *enabled = 0;
393 return ERROR_OK;
396 static int default_examine(struct command_context_s *cmd_ctx, struct target_s *target)
398 target->type->examined = 1;
399 return ERROR_OK;
403 /* Targets that correctly implement init+examine, i.e.
404 * no communication with target during init:
406 * XScale
408 int target_examine(struct command_context_s *cmd_ctx)
410 int retval = ERROR_OK;
411 target_t *target = targets;
412 while (target)
414 if ((retval = target->type->examine(cmd_ctx, target))!=ERROR_OK)
415 return retval;
416 target = target->next;
418 return retval;
421 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
423 if (!target->type->examined)
425 LOG_ERROR("Target not examined yet");
426 return ERROR_FAIL;
428 return target->type->write_memory_imp(target, address, size, count, buffer);
431 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
433 if (!target->type->examined)
435 LOG_ERROR("Target not examined yet");
436 return ERROR_FAIL;
438 return target->type->read_memory_imp(target, address, size, count, buffer);
441 static int target_soft_reset_halt_imp(struct target_s *target)
443 if (!target->type->examined)
445 LOG_ERROR("Target not examined yet");
446 return ERROR_FAIL;
448 return target->type->soft_reset_halt_imp(target);
451 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
453 if (!target->type->examined)
455 LOG_ERROR("Target not examined yet");
456 return ERROR_FAIL;
458 return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
461 int target_init(struct command_context_s *cmd_ctx)
463 target_t *target = targets;
465 while (target)
467 target->type->examined = 0;
468 if (target->type->examine == NULL)
470 target->type->examine = default_examine;
473 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
475 LOG_ERROR("target '%s' init failed", target->type->name);
476 exit(-1);
479 /* Set up default functions if none are provided by target */
480 if (target->type->virt2phys == NULL)
482 target->type->virt2phys = default_virt2phys;
484 target->type->virt2phys = default_virt2phys;
485 /* a non-invasive way(in terms of patches) to add some code that
486 * runs before the type->write/read_memory implementation
488 target->type->write_memory_imp = target->type->write_memory;
489 target->type->write_memory = target_write_memory_imp;
490 target->type->read_memory_imp = target->type->read_memory;
491 target->type->read_memory = target_read_memory_imp;
492 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
493 target->type->soft_reset_halt = target_soft_reset_halt_imp;
494 target->type->run_algorithm_imp = target->type->run_algorithm;
495 target->type->run_algorithm = target_run_algorithm_imp;
498 if (target->type->mmu == NULL)
500 target->type->mmu = default_mmu;
502 target = target->next;
505 if (targets)
507 target_register_user_commands(cmd_ctx);
508 target_register_timer_callback(handle_target, 100, 1, NULL);
511 return ERROR_OK;
514 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
516 target_event_callback_t **callbacks_p = &target_event_callbacks;
518 if (callback == NULL)
520 return ERROR_INVALID_ARGUMENTS;
523 if (*callbacks_p)
525 while ((*callbacks_p)->next)
526 callbacks_p = &((*callbacks_p)->next);
527 callbacks_p = &((*callbacks_p)->next);
530 (*callbacks_p) = malloc(sizeof(target_event_callback_t));
531 (*callbacks_p)->callback = callback;
532 (*callbacks_p)->priv = priv;
533 (*callbacks_p)->next = NULL;
535 return ERROR_OK;
538 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
540 target_timer_callback_t **callbacks_p = &target_timer_callbacks;
541 struct timeval now;
543 if (callback == NULL)
545 return ERROR_INVALID_ARGUMENTS;
548 if (*callbacks_p)
550 while ((*callbacks_p)->next)
551 callbacks_p = &((*callbacks_p)->next);
552 callbacks_p = &((*callbacks_p)->next);
555 (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
556 (*callbacks_p)->callback = callback;
557 (*callbacks_p)->periodic = periodic;
558 (*callbacks_p)->time_ms = time_ms;
560 gettimeofday(&now, NULL);
561 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
562 time_ms -= (time_ms % 1000);
563 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
564 if ((*callbacks_p)->when.tv_usec > 1000000)
566 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
567 (*callbacks_p)->when.tv_sec += 1;
570 (*callbacks_p)->priv = priv;
571 (*callbacks_p)->next = NULL;
573 return ERROR_OK;
576 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
578 target_event_callback_t **p = &target_event_callbacks;
579 target_event_callback_t *c = target_event_callbacks;
581 if (callback == NULL)
583 return ERROR_INVALID_ARGUMENTS;
586 while (c)
588 target_event_callback_t *next = c->next;
589 if ((c->callback == callback) && (c->priv == priv))
591 *p = next;
592 free(c);
593 return ERROR_OK;
595 else
596 p = &(c->next);
597 c = next;
600 return ERROR_OK;
603 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
605 target_timer_callback_t **p = &target_timer_callbacks;
606 target_timer_callback_t *c = target_timer_callbacks;
608 if (callback == NULL)
610 return ERROR_INVALID_ARGUMENTS;
613 while (c)
615 target_timer_callback_t *next = c->next;
616 if ((c->callback == callback) && (c->priv == priv))
618 *p = next;
619 free(c);
620 return ERROR_OK;
622 else
623 p = &(c->next);
624 c = next;
627 return ERROR_OK;
630 int target_call_event_callbacks(target_t *target, enum target_event event)
632 target_event_callback_t *callback = target_event_callbacks;
633 target_event_callback_t *next_callback;
635 LOG_DEBUG("target event %i", event);
637 while (callback)
639 next_callback = callback->next;
640 callback->callback(target, event, callback->priv);
641 callback = next_callback;
644 return ERROR_OK;
647 static int target_call_timer_callbacks_check_time(int checktime)
649 target_timer_callback_t *callback = target_timer_callbacks;
650 target_timer_callback_t *next_callback;
651 struct timeval now;
653 keep_alive();
655 gettimeofday(&now, NULL);
657 while (callback)
659 next_callback = callback->next;
661 if ((!checktime&&callback->periodic)||
662 (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
663 || (now.tv_sec > callback->when.tv_sec)))
665 if(callback->callback != NULL)
667 callback->callback(callback->priv);
668 if (callback->periodic)
670 int time_ms = callback->time_ms;
671 callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
672 time_ms -= (time_ms % 1000);
673 callback->when.tv_sec = now.tv_sec + time_ms / 1000;
674 if (callback->when.tv_usec > 1000000)
676 callback->when.tv_usec = callback->when.tv_usec - 1000000;
677 callback->when.tv_sec += 1;
680 else
681 target_unregister_timer_callback(callback->callback, callback->priv);
685 callback = next_callback;
688 return ERROR_OK;
691 int target_call_timer_callbacks()
693 return target_call_timer_callbacks_check_time(1);
696 /* invoke periodic callbacks immediately */
697 int target_call_timer_callbacks_now()
699 return target_call_timer_callbacks(0);
702 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
704 working_area_t *c = target->working_areas;
705 working_area_t *new_wa = NULL;
707 /* Reevaluate working area address based on MMU state*/
708 if (target->working_areas == NULL)
710 int retval;
711 int enabled;
712 retval = target->type->mmu(target, &enabled);
713 if (retval != ERROR_OK)
715 return retval;
717 if (enabled)
719 target->working_area = target->working_area_virt;
721 else
723 target->working_area = target->working_area_phys;
727 /* only allocate multiples of 4 byte */
728 if (size % 4)
730 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
731 size = CEIL(size, 4);
734 /* see if there's already a matching working area */
735 while (c)
737 if ((c->free) && (c->size == size))
739 new_wa = c;
740 break;
742 c = c->next;
745 /* if not, allocate a new one */
746 if (!new_wa)
748 working_area_t **p = &target->working_areas;
749 u32 first_free = target->working_area;
750 u32 free_size = target->working_area_size;
752 LOG_DEBUG("allocating new working area");
754 c = target->working_areas;
755 while (c)
757 first_free += c->size;
758 free_size -= c->size;
759 p = &c->next;
760 c = c->next;
763 if (free_size < size)
765 LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
766 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
769 new_wa = malloc(sizeof(working_area_t));
770 new_wa->next = NULL;
771 new_wa->size = size;
772 new_wa->address = first_free;
774 if (target->backup_working_area)
776 new_wa->backup = malloc(new_wa->size);
777 target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
779 else
781 new_wa->backup = NULL;
784 /* put new entry in list */
785 *p = new_wa;
788 /* mark as used, and return the new (reused) area */
789 new_wa->free = 0;
790 *area = new_wa;
792 /* user pointer */
793 new_wa->user = area;
795 return ERROR_OK;
798 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
800 if (area->free)
801 return ERROR_OK;
803 if (restore&&target->backup_working_area)
804 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
806 area->free = 1;
808 /* mark user pointer invalid */
809 *area->user = NULL;
810 area->user = NULL;
812 return ERROR_OK;
815 int target_free_working_area(struct target_s *target, working_area_t *area)
817 return target_free_working_area_restore(target, area, 1);
820 int target_free_all_working_areas_restore(struct target_s *target, int restore)
822 working_area_t *c = target->working_areas;
824 while (c)
826 working_area_t *next = c->next;
827 target_free_working_area_restore(target, c, restore);
829 if (c->backup)
830 free(c->backup);
832 free(c);
834 c = next;
837 target->working_areas = NULL;
839 return ERROR_OK;
842 int target_free_all_working_areas(struct target_s *target)
844 return target_free_all_working_areas_restore(target, 1);
847 int target_register_commands(struct command_context_s *cmd_ctx)
849 register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
850 register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
851 register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
852 register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
853 register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
856 /* script procedures */
857 register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing");
858 register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values");
859 return ERROR_OK;
862 int target_arch_state(struct target_s *target)
864 int retval;
865 if (target==NULL)
867 LOG_USER("No target has been configured");
868 return ERROR_OK;
871 LOG_USER("target state: %s", target_state_strings[target->state]);
873 if (target->state!=TARGET_HALTED)
874 return ERROR_OK;
876 retval=target->type->arch_state(target);
877 return retval;
880 /* Single aligned words are guaranteed to use 16 or 32 bit access
881 * mode respectively, otherwise data is handled as quickly as
882 * possible
884 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
886 int retval;
887 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
889 if (!target->type->examined)
891 LOG_ERROR("Target not examined yet");
892 return ERROR_FAIL;
895 if (address+size<address)
897 /* GDB can request this when e.g. PC is 0xfffffffc*/
898 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
899 return ERROR_FAIL;
902 if (((address % 2) == 0) && (size == 2))
904 return target->type->write_memory(target, address, 2, 1, buffer);
907 /* handle unaligned head bytes */
908 if (address % 4)
910 int unaligned = 4 - (address % 4);
912 if (unaligned > size)
913 unaligned = size;
915 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
916 return retval;
918 buffer += unaligned;
919 address += unaligned;
920 size -= unaligned;
923 /* handle aligned words */
924 if (size >= 4)
926 int aligned = size - (size % 4);
928 /* use bulk writes above a certain limit. This may have to be changed */
929 if (aligned > 128)
931 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
932 return retval;
934 else
936 if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
937 return retval;
940 buffer += aligned;
941 address += aligned;
942 size -= aligned;
945 /* handle tail writes of less than 4 bytes */
946 if (size > 0)
948 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
949 return retval;
952 return ERROR_OK;
956 /* Single aligned words are guaranteed to use 16 or 32 bit access
957 * mode respectively, otherwise data is handled as quickly as
958 * possible
960 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
962 int retval;
963 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
965 if (!target->type->examined)
967 LOG_ERROR("Target not examined yet");
968 return ERROR_FAIL;
971 if (address+size<address)
973 /* GDB can request this when e.g. PC is 0xfffffffc*/
974 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
975 return ERROR_FAIL;
978 if (((address % 2) == 0) && (size == 2))
980 return target->type->read_memory(target, address, 2, 1, buffer);
983 /* handle unaligned head bytes */
984 if (address % 4)
986 int unaligned = 4 - (address % 4);
988 if (unaligned > size)
989 unaligned = size;
991 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
992 return retval;
994 buffer += unaligned;
995 address += unaligned;
996 size -= unaligned;
999 /* handle aligned words */
1000 if (size >= 4)
1002 int aligned = size - (size % 4);
1004 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1005 return retval;
1007 buffer += aligned;
1008 address += aligned;
1009 size -= aligned;
1012 /* handle tail writes of less than 4 bytes */
1013 if (size > 0)
1015 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1016 return retval;
1019 return ERROR_OK;
1022 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1024 u8 *buffer;
1025 int retval;
1026 int i;
1027 u32 checksum = 0;
1028 if (!target->type->examined)
1030 LOG_ERROR("Target not examined yet");
1031 return ERROR_FAIL;
1034 if ((retval = target->type->checksum_memory(target, address,
1035 size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1037 buffer = malloc(size);
1038 if (buffer == NULL)
1040 LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1041 return ERROR_INVALID_ARGUMENTS;
1043 retval = target_read_buffer(target, address, size, buffer);
1044 if (retval != ERROR_OK)
1046 free(buffer);
1047 return retval;
1050 /* convert to target endianess */
1051 for (i = 0; i < (size/sizeof(u32)); i++)
1053 u32 target_data;
1054 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1055 target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1058 retval = image_calculate_checksum( buffer, size, &checksum );
1059 free(buffer);
1062 *crc = checksum;
1064 return retval;
1067 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1069 int retval;
1070 if (!target->type->examined)
1072 LOG_ERROR("Target not examined yet");
1073 return ERROR_FAIL;
1076 if (target->type->blank_check_memory == 0)
1077 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1079 retval = target->type->blank_check_memory(target, address, size, blank);
1081 return retval;
1084 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1086 u8 value_buf[4];
1087 if (!target->type->examined)
1089 LOG_ERROR("Target not examined yet");
1090 return ERROR_FAIL;
1093 int retval = target->type->read_memory(target, address, 4, 1, value_buf);
1095 if (retval == ERROR_OK)
1097 *value = target_buffer_get_u32(target, value_buf);
1098 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1100 else
1102 *value = 0x0;
1103 LOG_DEBUG("address: 0x%8.8x failed", address);
1106 return retval;
1109 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1111 u8 value_buf[2];
1112 if (!target->type->examined)
1114 LOG_ERROR("Target not examined yet");
1115 return ERROR_FAIL;
1118 int retval = target->type->read_memory(target, address, 2, 1, value_buf);
1120 if (retval == ERROR_OK)
1122 *value = target_buffer_get_u16(target, value_buf);
1123 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1125 else
1127 *value = 0x0;
1128 LOG_DEBUG("address: 0x%8.8x failed", address);
1131 return retval;
1134 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1136 int retval = target->type->read_memory(target, address, 1, 1, value);
1137 if (!target->type->examined)
1139 LOG_ERROR("Target not examined yet");
1140 return ERROR_FAIL;
1143 if (retval == ERROR_OK)
1145 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1147 else
1149 *value = 0x0;
1150 LOG_DEBUG("address: 0x%8.8x failed", address);
1153 return retval;
1156 int target_write_u32(struct target_s *target, u32 address, u32 value)
1158 int retval;
1159 u8 value_buf[4];
1160 if (!target->type->examined)
1162 LOG_ERROR("Target not examined yet");
1163 return ERROR_FAIL;
1166 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1168 target_buffer_set_u32(target, value_buf, value);
1169 if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1171 LOG_DEBUG("failed: %i", retval);
1174 return retval;
1177 int target_write_u16(struct target_s *target, u32 address, u16 value)
1179 int retval;
1180 u8 value_buf[2];
1181 if (!target->type->examined)
1183 LOG_ERROR("Target not examined yet");
1184 return ERROR_FAIL;
1187 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1189 target_buffer_set_u16(target, value_buf, value);
1190 if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1192 LOG_DEBUG("failed: %i", retval);
1195 return retval;
1198 int target_write_u8(struct target_s *target, u32 address, u8 value)
1200 int retval;
1201 if (!target->type->examined)
1203 LOG_ERROR("Target not examined yet");
1204 return ERROR_FAIL;
1207 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1209 if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
1211 LOG_DEBUG("failed: %i", retval);
1214 return retval;
1217 int target_register_user_commands(struct command_context_s *cmd_ctx)
1219 register_command(cmd_ctx, NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
1220 register_command(cmd_ctx, NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1221 register_command(cmd_ctx, NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1222 register_command(cmd_ctx, NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1223 register_command(cmd_ctx, NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1224 register_command(cmd_ctx, NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1225 register_command(cmd_ctx, NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init]");
1226 register_command(cmd_ctx, NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1228 register_command(cmd_ctx, NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1229 register_command(cmd_ctx, NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1230 register_command(cmd_ctx, NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1232 register_command(cmd_ctx, NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1233 register_command(cmd_ctx, NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1234 register_command(cmd_ctx, NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1236 register_command(cmd_ctx, NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1237 register_command(cmd_ctx, NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1238 register_command(cmd_ctx, NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1239 register_command(cmd_ctx, NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1241 register_command(cmd_ctx, NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1242 register_command(cmd_ctx, NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1243 register_command(cmd_ctx, NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1245 target_request_register_commands(cmd_ctx);
1246 trace_register_commands(cmd_ctx);
1248 return ERROR_OK;
1251 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1253 target_t *target = targets;
1254 int count = 0;
1256 if (argc == 1)
1258 int num = strtoul(args[0], NULL, 0);
1260 while (target)
1262 count++;
1263 target = target->next;
1266 if (num < count)
1267 cmd_ctx->current_target = num;
1268 else
1269 command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
1271 return ERROR_OK;
1274 while (target)
1276 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
1277 target = target->next;
1280 return ERROR_OK;
1283 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1285 int i;
1286 int found = 0;
1288 if (argc < 3)
1290 return ERROR_COMMAND_SYNTAX_ERROR;
1293 /* search for the specified target */
1294 if (args[0] && (args[0][0] != 0))
1296 for (i = 0; target_types[i]; i++)
1298 if (strcmp(args[0], target_types[i]->name) == 0)
1300 target_t **last_target_p = &targets;
1302 /* register target specific commands */
1303 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
1305 LOG_ERROR("couldn't register '%s' commands", args[0]);
1306 exit(-1);
1309 if (*last_target_p)
1311 while ((*last_target_p)->next)
1312 last_target_p = &((*last_target_p)->next);
1313 last_target_p = &((*last_target_p)->next);
1316 *last_target_p = malloc(sizeof(target_t));
1318 /* allocate memory for each unique target type */
1319 (*last_target_p)->type = (target_type_t*)malloc(sizeof(target_type_t));
1320 *((*last_target_p)->type) = *target_types[i];
1322 if (strcmp(args[1], "big") == 0)
1323 (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
1324 else if (strcmp(args[1], "little") == 0)
1325 (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
1326 else
1328 LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
1329 return ERROR_COMMAND_SYNTAX_ERROR;
1332 if (strcmp(args[2], "reset_halt") == 0)
1334 LOG_WARNING("reset_mode argument is obsolete.");
1335 return ERROR_COMMAND_SYNTAX_ERROR;
1337 else if (strcmp(args[2], "reset_run") == 0)
1339 LOG_WARNING("reset_mode argument is obsolete.");
1340 return ERROR_COMMAND_SYNTAX_ERROR;
1342 else if (strcmp(args[2], "reset_init") == 0)
1344 LOG_WARNING("reset_mode argument is obsolete.");
1345 return ERROR_COMMAND_SYNTAX_ERROR;
1347 else if (strcmp(args[2], "run_and_halt") == 0)
1349 LOG_WARNING("reset_mode argument is obsolete.");
1350 return ERROR_COMMAND_SYNTAX_ERROR;
1352 else if (strcmp(args[2], "run_and_init") == 0)
1354 LOG_WARNING("reset_mode argument is obsolete.");
1355 return ERROR_COMMAND_SYNTAX_ERROR;
1357 else
1359 /* Kludge! we want to make this reset arg optional while remaining compatible! */
1360 args--;
1361 argc++;
1364 (*last_target_p)->working_area = 0x0;
1365 (*last_target_p)->working_area_size = 0x0;
1366 (*last_target_p)->working_areas = NULL;
1367 (*last_target_p)->backup_working_area = 0;
1369 (*last_target_p)->state = TARGET_UNKNOWN;
1370 (*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
1371 (*last_target_p)->reg_cache = NULL;
1372 (*last_target_p)->breakpoints = NULL;
1373 (*last_target_p)->watchpoints = NULL;
1374 (*last_target_p)->next = NULL;
1375 (*last_target_p)->arch_info = NULL;
1377 /* initialize trace information */
1378 (*last_target_p)->trace_info = malloc(sizeof(trace_t));
1379 (*last_target_p)->trace_info->num_trace_points = 0;
1380 (*last_target_p)->trace_info->trace_points_size = 0;
1381 (*last_target_p)->trace_info->trace_points = NULL;
1382 (*last_target_p)->trace_info->trace_history_size = 0;
1383 (*last_target_p)->trace_info->trace_history = NULL;
1384 (*last_target_p)->trace_info->trace_history_pos = 0;
1385 (*last_target_p)->trace_info->trace_history_overflowed = 0;
1387 (*last_target_p)->dbgmsg = NULL;
1388 (*last_target_p)->dbg_msg_enabled = 0;
1390 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
1392 found = 1;
1393 break;
1398 /* no matching target found */
1399 if (!found)
1401 LOG_ERROR("target '%s' not found", args[0]);
1402 return ERROR_COMMAND_SYNTAX_ERROR;
1405 return ERROR_OK;
1408 int target_invoke_script(struct command_context_s *cmd_ctx, target_t *target, char *name)
1410 return command_run_linef(cmd_ctx, " if {[catch {info body target_%d_%s} t]==0} {target_%d_%s}",
1411 get_num_by_target(target), name,
1412 get_num_by_target(target), name);
1415 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1417 target_t *target = NULL;
1419 if ((argc < 4) || (argc > 5))
1421 return ERROR_COMMAND_SYNTAX_ERROR;
1424 target = get_target_by_num(strtoul(args[0], NULL, 0));
1425 if (!target)
1427 return ERROR_COMMAND_SYNTAX_ERROR;
1429 target_free_all_working_areas(target);
1431 target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
1432 if (argc == 5)
1434 target->working_area_virt = strtoul(args[4], NULL, 0);
1436 target->working_area_size = strtoul(args[2], NULL, 0);
1438 if (strcmp(args[3], "backup") == 0)
1440 target->backup_working_area = 1;
1442 else if (strcmp(args[3], "nobackup") == 0)
1444 target->backup_working_area = 0;
1446 else
1448 LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1449 return ERROR_COMMAND_SYNTAX_ERROR;
1452 return ERROR_OK;
1456 /* process target state changes */
1457 int handle_target(void *priv)
1459 target_t *target = targets;
1461 while (target)
1463 if (target_continous_poll)
1465 /* polling may fail silently until the target has been examined */
1466 target_poll(target);
1469 target = target->next;
1472 return ERROR_OK;
1475 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1477 target_t *target;
1478 reg_t *reg = NULL;
1479 int count = 0;
1480 char *value;
1482 LOG_DEBUG("-");
1484 target = get_current_target(cmd_ctx);
1486 /* list all available registers for the current target */
1487 if (argc == 0)
1489 reg_cache_t *cache = target->reg_cache;
1491 count = 0;
1492 while(cache)
1494 int i;
1495 for (i = 0; i < cache->num_regs; i++)
1497 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1498 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1499 free(value);
1501 cache = cache->next;
1504 return ERROR_OK;
1507 /* access a single register by its ordinal number */
1508 if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1510 int num = strtoul(args[0], NULL, 0);
1511 reg_cache_t *cache = target->reg_cache;
1513 count = 0;
1514 while(cache)
1516 int i;
1517 for (i = 0; i < cache->num_regs; i++)
1519 if (count++ == num)
1521 reg = &cache->reg_list[i];
1522 break;
1525 if (reg)
1526 break;
1527 cache = cache->next;
1530 if (!reg)
1532 command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1533 return ERROR_OK;
1535 } else /* access a single register by its name */
1537 reg = register_get_by_name(target->reg_cache, args[0], 1);
1539 if (!reg)
1541 command_print(cmd_ctx, "register %s not found in current target", args[0]);
1542 return ERROR_OK;
1546 /* display a register */
1547 if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1549 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1550 reg->valid = 0;
1552 if (reg->valid == 0)
1554 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1555 if (arch_type == NULL)
1557 LOG_ERROR("BUG: encountered unregistered arch type");
1558 return ERROR_OK;
1560 arch_type->get(reg);
1562 value = buf_to_str(reg->value, reg->size, 16);
1563 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1564 free(value);
1565 return ERROR_OK;
1568 /* set register value */
1569 if (argc == 2)
1571 u8 *buf = malloc(CEIL(reg->size, 8));
1572 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1574 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1575 if (arch_type == NULL)
1577 LOG_ERROR("BUG: encountered unregistered arch type");
1578 return ERROR_OK;
1581 arch_type->set(reg, buf);
1583 value = buf_to_str(reg->value, reg->size, 16);
1584 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1585 free(value);
1587 free(buf);
1589 return ERROR_OK;
1592 command_print(cmd_ctx, "usage: reg <#|name> [value]");
1594 return ERROR_OK;
1598 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1600 target_t *target = get_current_target(cmd_ctx);
1602 if (argc == 0)
1604 target_poll(target);
1605 target_arch_state(target);
1607 else
1609 if (strcmp(args[0], "on") == 0)
1611 target_continous_poll = 1;
1613 else if (strcmp(args[0], "off") == 0)
1615 target_continous_poll = 0;
1617 else
1619 command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1624 return ERROR_OK;
1627 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1629 int ms = 5000;
1631 if (argc > 0)
1633 char *end;
1635 ms = strtoul(args[0], &end, 0) * 1000;
1636 if (*end)
1638 command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1639 return ERROR_OK;
1642 target_t *target = get_current_target(cmd_ctx);
1644 return target_wait_state(target, TARGET_HALTED, ms);
1647 int target_wait_state(target_t *target, enum target_state state, int ms)
1649 int retval;
1650 struct timeval timeout, now;
1651 int once=1;
1652 gettimeofday(&timeout, NULL);
1653 timeval_add_time(&timeout, 0, ms * 1000);
1655 for (;;)
1657 if ((retval=target_poll(target))!=ERROR_OK)
1658 return retval;
1659 target_call_timer_callbacks_now();
1660 if (target->state == state)
1662 break;
1664 if (once)
1666 once=0;
1667 LOG_USER("waiting for target %s...", target_state_strings[state]);
1670 gettimeofday(&now, NULL);
1671 if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
1673 LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
1674 return ERROR_FAIL;
1678 return ERROR_OK;
1681 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1683 int retval;
1684 target_t *target = get_current_target(cmd_ctx);
1686 LOG_DEBUG("-");
1688 if ((retval = target_halt(target)) != ERROR_OK)
1690 return retval;
1693 return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1696 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1698 target_t *target = get_current_target(cmd_ctx);
1700 LOG_USER("requesting target halt and executing a soft reset");
1702 target->type->soft_reset_halt(target);
1704 return ERROR_OK;
1707 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1709 enum target_reset_mode reset_mode = RESET_RUN;
1711 if (argc >= 1)
1713 if (strcmp("run", args[0]) == 0)
1714 reset_mode = RESET_RUN;
1715 else if (strcmp("halt", args[0]) == 0)
1716 reset_mode = RESET_HALT;
1717 else if (strcmp("init", args[0]) == 0)
1718 reset_mode = RESET_INIT;
1719 else
1721 return ERROR_COMMAND_SYNTAX_ERROR;
1725 /* reset *all* targets */
1726 target_process_reset(cmd_ctx, reset_mode);
1728 return ERROR_OK;
1731 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1733 int retval;
1734 target_t *target = get_current_target(cmd_ctx);
1736 target_invoke_script(cmd_ctx, target, "pre_resume");
1738 if (argc == 0)
1739 retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1740 else if (argc == 1)
1741 retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1742 else
1744 return ERROR_COMMAND_SYNTAX_ERROR;
1747 return retval;
1750 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1752 target_t *target = get_current_target(cmd_ctx);
1754 LOG_DEBUG("-");
1756 if (argc == 0)
1757 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1759 if (argc == 1)
1760 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1762 return ERROR_OK;
1765 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1767 const int line_bytecnt = 32;
1768 int count = 1;
1769 int size = 4;
1770 u32 address = 0;
1771 int line_modulo;
1772 int i;
1774 char output[128];
1775 int output_len;
1777 int retval;
1779 u8 *buffer;
1780 target_t *target = get_current_target(cmd_ctx);
1782 if (argc < 1)
1783 return ERROR_OK;
1785 if (argc == 2)
1786 count = strtoul(args[1], NULL, 0);
1788 address = strtoul(args[0], NULL, 0);
1791 switch (cmd[2])
1793 case 'w':
1794 size = 4; line_modulo = line_bytecnt / 4;
1795 break;
1796 case 'h':
1797 size = 2; line_modulo = line_bytecnt / 2;
1798 break;
1799 case 'b':
1800 size = 1; line_modulo = line_bytecnt / 1;
1801 break;
1802 default:
1803 return ERROR_OK;
1806 buffer = calloc(count, size);
1807 retval = target->type->read_memory(target, address, size, count, buffer);
1808 if (retval == ERROR_OK)
1810 output_len = 0;
1812 for (i = 0; i < count; i++)
1814 if (i%line_modulo == 0)
1815 output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1817 switch (size)
1819 case 4:
1820 output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1821 break;
1822 case 2:
1823 output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1824 break;
1825 case 1:
1826 output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1827 break;
1830 if ((i%line_modulo == line_modulo-1) || (i == count - 1))
1832 command_print(cmd_ctx, output);
1833 output_len = 0;
1838 free(buffer);
1840 return retval;
1843 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1845 u32 address = 0;
1846 u32 value = 0;
1847 int count = 1;
1848 int i;
1849 int wordsize;
1850 target_t *target = get_current_target(cmd_ctx);
1851 u8 value_buf[4];
1853 if ((argc < 2) || (argc > 3))
1854 return ERROR_COMMAND_SYNTAX_ERROR;
1856 address = strtoul(args[0], NULL, 0);
1857 value = strtoul(args[1], NULL, 0);
1858 if (argc == 3)
1859 count = strtoul(args[2], NULL, 0);
1861 switch (cmd[2])
1863 case 'w':
1864 wordsize = 4;
1865 target_buffer_set_u32(target, value_buf, value);
1866 break;
1867 case 'h':
1868 wordsize = 2;
1869 target_buffer_set_u16(target, value_buf, value);
1870 break;
1871 case 'b':
1872 wordsize = 1;
1873 value_buf[0] = value;
1874 break;
1875 default:
1876 return ERROR_COMMAND_SYNTAX_ERROR;
1878 for (i=0; i<count; i++)
1880 int retval;
1881 switch (wordsize)
1883 case 4:
1884 retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
1885 break;
1886 case 2:
1887 retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
1888 break;
1889 case 1:
1890 retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
1891 break;
1892 default:
1893 return ERROR_OK;
1895 if (retval!=ERROR_OK)
1897 return retval;
1901 return ERROR_OK;
1905 int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1907 u8 *buffer;
1908 u32 buf_cnt;
1909 u32 image_size;
1910 u32 min_address=0;
1911 u32 max_address=0xffffffff;
1912 int i;
1913 int retval;
1915 image_t image;
1917 duration_t duration;
1918 char *duration_text;
1920 target_t *target = get_current_target(cmd_ctx);
1922 if ((argc < 1)||(argc > 5))
1924 return ERROR_COMMAND_SYNTAX_ERROR;
1927 /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
1928 if (argc >= 2)
1930 image.base_address_set = 1;
1931 image.base_address = strtoul(args[1], NULL, 0);
1933 else
1935 image.base_address_set = 0;
1939 image.start_address_set = 0;
1941 if (argc>=4)
1943 min_address=strtoul(args[3], NULL, 0);
1945 if (argc>=5)
1947 max_address=strtoul(args[4], NULL, 0)+min_address;
1950 if (min_address>max_address)
1952 return ERROR_COMMAND_SYNTAX_ERROR;
1956 duration_start_measure(&duration);
1958 if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
1960 return ERROR_OK;
1963 image_size = 0x0;
1964 retval = ERROR_OK;
1965 for (i = 0; i < image.num_sections; i++)
1967 buffer = malloc(image.sections[i].size);
1968 if (buffer == NULL)
1970 command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
1971 break;
1974 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
1976 free(buffer);
1977 break;
1980 u32 offset=0;
1981 u32 length=buf_cnt;
1984 /* DANGER!!! beware of unsigned comparision here!!! */
1986 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
1987 (image.sections[i].base_address<max_address))
1989 if (image.sections[i].base_address<min_address)
1991 /* clip addresses below */
1992 offset+=min_address-image.sections[i].base_address;
1993 length-=offset;
1996 if (image.sections[i].base_address+buf_cnt>max_address)
1998 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2001 if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2003 free(buffer);
2004 break;
2006 image_size += length;
2007 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2010 free(buffer);
2013 duration_stop_measure(&duration, &duration_text);
2014 if (retval==ERROR_OK)
2016 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2018 free(duration_text);
2020 image_close(&image);
2022 return retval;
2026 int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2028 fileio_t fileio;
2030 u32 address;
2031 u32 size;
2032 u8 buffer[560];
2033 int retval=ERROR_OK;
2035 duration_t duration;
2036 char *duration_text;
2038 target_t *target = get_current_target(cmd_ctx);
2040 if (argc != 3)
2042 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2043 return ERROR_OK;
2046 address = strtoul(args[1], NULL, 0);
2047 size = strtoul(args[2], NULL, 0);
2049 if ((address & 3) || (size & 3))
2051 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
2052 return ERROR_OK;
2055 if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2057 return ERROR_OK;
2060 duration_start_measure(&duration);
2062 while (size > 0)
2064 u32 size_written;
2065 u32 this_run_size = (size > 560) ? 560 : size;
2067 retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
2068 if (retval != ERROR_OK)
2070 break;
2073 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2074 if (retval != ERROR_OK)
2076 break;
2079 size -= this_run_size;
2080 address += this_run_size;
2083 fileio_close(&fileio);
2085 duration_stop_measure(&duration, &duration_text);
2086 if (retval==ERROR_OK)
2088 command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
2090 free(duration_text);
2092 return ERROR_OK;
2095 int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2097 u8 *buffer;
2098 u32 buf_cnt;
2099 u32 image_size;
2100 int i;
2101 int retval;
2102 u32 checksum = 0;
2103 u32 mem_checksum = 0;
2105 image_t image;
2107 duration_t duration;
2108 char *duration_text;
2110 target_t *target = get_current_target(cmd_ctx);
2112 if (argc < 1)
2114 return ERROR_COMMAND_SYNTAX_ERROR;
2117 if (!target)
2119 LOG_ERROR("no target selected");
2120 return ERROR_FAIL;
2123 duration_start_measure(&duration);
2125 if (argc >= 2)
2127 image.base_address_set = 1;
2128 image.base_address = strtoul(args[1], NULL, 0);
2130 else
2132 image.base_address_set = 0;
2133 image.base_address = 0x0;
2136 image.start_address_set = 0;
2138 if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2140 return retval;
2143 image_size = 0x0;
2144 retval=ERROR_OK;
2145 for (i = 0; i < image.num_sections; i++)
2147 buffer = malloc(image.sections[i].size);
2148 if (buffer == NULL)
2150 command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2151 break;
2153 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2155 free(buffer);
2156 break;
2159 /* calculate checksum of image */
2160 image_calculate_checksum( buffer, buf_cnt, &checksum );
2162 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2163 if( retval != ERROR_OK )
2165 free(buffer);
2166 break;
2169 if( checksum != mem_checksum )
2171 /* failed crc checksum, fall back to a binary compare */
2172 u8 *data;
2174 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2176 data = (u8*)malloc(buf_cnt);
2178 /* Can we use 32bit word accesses? */
2179 int size = 1;
2180 int count = buf_cnt;
2181 if ((count % 4) == 0)
2183 size *= 4;
2184 count /= 4;
2186 retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
2187 if (retval == ERROR_OK)
2189 int t;
2190 for (t = 0; t < buf_cnt; t++)
2192 if (data[t] != buffer[t])
2194 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2195 free(data);
2196 free(buffer);
2197 retval=ERROR_FAIL;
2198 goto done;
2203 free(data);
2206 free(buffer);
2207 image_size += buf_cnt;
2209 done:
2210 duration_stop_measure(&duration, &duration_text);
2211 if (retval==ERROR_OK)
2213 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2215 free(duration_text);
2217 image_close(&image);
2219 return retval;
2222 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2224 int retval;
2225 target_t *target = get_current_target(cmd_ctx);
2227 if (argc == 0)
2229 breakpoint_t *breakpoint = target->breakpoints;
2231 while (breakpoint)
2233 if (breakpoint->type == BKPT_SOFT)
2235 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
2236 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
2237 free(buf);
2239 else
2241 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
2243 breakpoint = breakpoint->next;
2246 else if (argc >= 2)
2248 int hw = BKPT_SOFT;
2249 u32 length = 0;
2251 length = strtoul(args[1], NULL, 0);
2253 if (argc >= 3)
2254 if (strcmp(args[2], "hw") == 0)
2255 hw = BKPT_HARD;
2257 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
2259 LOG_ERROR("Failure setting breakpoints");
2261 else
2263 command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
2266 else
2268 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2271 return ERROR_OK;
2274 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2276 target_t *target = get_current_target(cmd_ctx);
2278 if (argc > 0)
2279 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2281 return ERROR_OK;
2284 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2286 target_t *target = get_current_target(cmd_ctx);
2287 int retval;
2289 if (argc == 0)
2291 watchpoint_t *watchpoint = target->watchpoints;
2293 while (watchpoint)
2295 command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2296 watchpoint = watchpoint->next;
2299 else if (argc >= 2)
2301 enum watchpoint_rw type = WPT_ACCESS;
2302 u32 data_value = 0x0;
2303 u32 data_mask = 0xffffffff;
2305 if (argc >= 3)
2307 switch(args[2][0])
2309 case 'r':
2310 type = WPT_READ;
2311 break;
2312 case 'w':
2313 type = WPT_WRITE;
2314 break;
2315 case 'a':
2316 type = WPT_ACCESS;
2317 break;
2318 default:
2319 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2320 return ERROR_OK;
2323 if (argc >= 4)
2325 data_value = strtoul(args[3], NULL, 0);
2327 if (argc >= 5)
2329 data_mask = strtoul(args[4], NULL, 0);
2332 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2333 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2335 LOG_ERROR("Failure setting breakpoints");
2338 else
2340 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2343 return ERROR_OK;
2346 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2348 target_t *target = get_current_target(cmd_ctx);
2350 if (argc > 0)
2351 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2353 return ERROR_OK;
2356 int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
2358 int retval;
2359 target_t *target = get_current_target(cmd_ctx);
2360 u32 va;
2361 u32 pa;
2363 if (argc != 1)
2365 return ERROR_COMMAND_SYNTAX_ERROR;
2367 va = strtoul(args[0], NULL, 0);
2369 retval = target->type->virt2phys(target, va, &pa);
2370 if (retval == ERROR_OK)
2372 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2374 else
2376 /* lower levels will have logged a detailed error which is
2377 * forwarded to telnet/GDB session.
2380 return retval;
2382 static void writeLong(FILE *f, int l)
2384 int i;
2385 for (i=0; i<4; i++)
2387 char c=(l>>(i*8))&0xff;
2388 fwrite(&c, 1, 1, f);
2392 static void writeString(FILE *f, char *s)
2394 fwrite(s, 1, strlen(s), f);
2399 // Dump a gmon.out histogram file.
2400 static void writeGmon(u32 *samples, int sampleNum, char *filename)
2402 int i;
2403 FILE *f=fopen(filename, "w");
2404 if (f==NULL)
2405 return;
2406 fwrite("gmon", 1, 4, f);
2407 writeLong(f, 0x00000001); // Version
2408 writeLong(f, 0); // padding
2409 writeLong(f, 0); // padding
2410 writeLong(f, 0); // padding
2412 fwrite("", 1, 1, f); // GMON_TAG_TIME_HIST
2414 // figure out bucket size
2415 u32 min=samples[0];
2416 u32 max=samples[0];
2417 for (i=0; i<sampleNum; i++)
2419 if (min>samples[i])
2421 min=samples[i];
2423 if (max<samples[i])
2425 max=samples[i];
2429 int addressSpace=(max-min+1);
2431 static int const maxBuckets=256*1024; // maximum buckets.
2432 int length=addressSpace;
2433 if (length > maxBuckets)
2435 length=maxBuckets;
2437 int *buckets=malloc(sizeof(int)*length);
2438 if (buckets==NULL)
2440 fclose(f);
2441 return;
2443 memset(buckets, 0, sizeof(int)*length);
2444 for (i=0; i<sampleNum;i++)
2446 u32 address=samples[i];
2447 long long a=address-min;
2448 long long b=length-1;
2449 long long c=addressSpace-1;
2450 int index=(a*b)/c; // danger!!!! int32 overflows
2451 buckets[index]++;
2454 // append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
2455 writeLong(f, min); // low_pc
2456 writeLong(f, max); // high_pc
2457 writeLong(f, length); // # of samples
2458 writeLong(f, 64000000); // 64MHz
2459 writeString(f, "seconds");
2460 for (i=0; i<(15-strlen("seconds")); i++)
2462 fwrite("", 1, 1, f); // padding
2464 writeString(f, "s");
2466 // append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
2468 char *data=malloc(2*length);
2469 if (data!=NULL)
2471 for (i=0; i<length;i++)
2473 int val;
2474 val=buckets[i];
2475 if (val>65535)
2477 val=65535;
2479 data[i*2]=val&0xff;
2480 data[i*2+1]=(val>>8)&0xff;
2482 free(buckets);
2483 fwrite(data, 1, length*2, f);
2484 free(data);
2485 } else
2487 free(buckets);
2490 fclose(f);
2493 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2494 int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2496 target_t *target = get_current_target(cmd_ctx);
2497 struct timeval timeout, now;
2499 gettimeofday(&timeout, NULL);
2500 if (argc!=2)
2502 return ERROR_COMMAND_SYNTAX_ERROR;
2504 char *end;
2505 timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2506 if (*end)
2508 return ERROR_OK;
2511 command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2513 static const int maxSample=10000;
2514 u32 *samples=malloc(sizeof(u32)*maxSample);
2515 if (samples==NULL)
2516 return ERROR_OK;
2518 int numSamples=0;
2519 int retval=ERROR_OK;
2520 // hopefully it is safe to cache! We want to stop/restart as quickly as possible.
2521 reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2523 for (;;)
2525 target_poll(target);
2526 if (target->state == TARGET_HALTED)
2528 u32 t=*((u32 *)reg->value);
2529 samples[numSamples++]=t;
2530 retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2531 target_poll(target);
2532 usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
2533 } else if (target->state == TARGET_RUNNING)
2535 // We want to quickly sample the PC.
2536 target_halt(target);
2537 } else
2539 command_print(cmd_ctx, "Target not halted or running");
2540 retval=ERROR_OK;
2541 break;
2543 if (retval!=ERROR_OK)
2545 break;
2548 gettimeofday(&now, NULL);
2549 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2551 command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2552 target_poll(target);
2553 if (target->state == TARGET_HALTED)
2555 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2557 target_poll(target);
2558 writeGmon(samples, numSamples, args[1]);
2559 command_print(cmd_ctx, "Wrote %s", args[1]);
2560 break;
2563 free(samples);
2565 return ERROR_OK;
2568 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2570 char *namebuf;
2571 Jim_Obj *nameObjPtr, *valObjPtr;
2572 int result;
2574 namebuf = alloc_printf("%s(%d)", varname, idx);
2575 if (!namebuf)
2576 return JIM_ERR;
2578 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2579 valObjPtr = Jim_NewIntObj(interp, val);
2580 if (!nameObjPtr || !valObjPtr)
2582 free(namebuf);
2583 return JIM_ERR;
2586 Jim_IncrRefCount(nameObjPtr);
2587 Jim_IncrRefCount(valObjPtr);
2588 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2589 Jim_DecrRefCount(interp, nameObjPtr);
2590 Jim_DecrRefCount(interp, valObjPtr);
2591 free(namebuf);
2592 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2593 return result;
2596 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2598 target_t *target;
2599 command_context_t *context;
2600 long l;
2601 u32 width;
2602 u32 len;
2603 u32 addr;
2604 u32 count;
2605 u32 v;
2606 const char *varname;
2607 u8 buffer[4096];
2608 int i, n, e, retval;
2610 /* argv[1] = name of array to receive the data
2611 * argv[2] = desired width
2612 * argv[3] = memory address
2613 * argv[4] = count of times to read
2615 if (argc != 5) {
2616 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2617 return JIM_ERR;
2619 varname = Jim_GetString(argv[1], &len);
2620 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2622 e = Jim_GetLong(interp, argv[2], &l);
2623 width = l;
2624 if (e != JIM_OK) {
2625 return e;
2628 e = Jim_GetLong(interp, argv[3], &l);
2629 addr = l;
2630 if (e != JIM_OK) {
2631 return e;
2633 e = Jim_GetLong(interp, argv[4], &l);
2634 len = l;
2635 if (e != JIM_OK) {
2636 return e;
2638 switch (width) {
2639 case 8:
2640 width = 1;
2641 break;
2642 case 16:
2643 width = 2;
2644 break;
2645 case 32:
2646 width = 4;
2647 break;
2648 default:
2649 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2650 Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2651 return JIM_ERR;
2653 if (len == 0) {
2654 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2655 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2656 return JIM_ERR;
2658 if ((addr + (len * width)) < addr) {
2659 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2660 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2661 return JIM_ERR;
2663 /* absurd transfer size? */
2664 if (len > 65536) {
2665 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2666 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2667 return JIM_ERR;
2670 if ((width == 1) ||
2671 ((width == 2) && ((addr & 1) == 0)) ||
2672 ((width == 4) && ((addr & 3) == 0))) {
2673 /* all is well */
2674 } else {
2675 char buf[100];
2676 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2677 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2678 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2679 return JIM_ERR;
2682 context = Jim_GetAssocData(interp, "context");
2683 if (context == NULL)
2685 LOG_ERROR("mem2array: no command context");
2686 return JIM_ERR;
2688 target = get_current_target(context);
2689 if (target == NULL)
2691 LOG_ERROR("mem2array: no current target");
2692 return JIM_ERR;
2695 /* Transfer loop */
2697 /* index counter */
2698 n = 0;
2699 /* assume ok */
2700 e = JIM_OK;
2701 while (len) {
2702 /* Slurp... in buffer size chunks */
2704 count = len; /* in objects.. */
2705 if (count > (sizeof(buffer)/width)) {
2706 count = (sizeof(buffer)/width);
2709 retval = target->type->read_memory( target, addr, width, count, buffer );
2710 if (retval != ERROR_OK) {
2711 /* BOO !*/
2712 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2713 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2714 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2715 e = JIM_ERR;
2716 len = 0;
2717 } else {
2718 v = 0; /* shut up gcc */
2719 for (i = 0 ;i < count ;i++, n++) {
2720 switch (width) {
2721 case 4:
2722 v = target_buffer_get_u32(target, &buffer[i*width]);
2723 break;
2724 case 2:
2725 v = target_buffer_get_u16(target, &buffer[i*width]);
2726 break;
2727 case 1:
2728 v = buffer[i] & 0x0ff;
2729 break;
2731 new_int_array_element(interp, varname, n, v);
2733 len -= count;
2737 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2739 return JIM_OK;
2742 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
2744 char *namebuf;
2745 Jim_Obj *nameObjPtr, *valObjPtr;
2746 int result;
2747 long l;
2749 namebuf = alloc_printf("%s(%d)", varname, idx);
2750 if (!namebuf)
2751 return JIM_ERR;
2753 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2754 if (!nameObjPtr)
2756 free(namebuf);
2757 return JIM_ERR;
2760 Jim_IncrRefCount(nameObjPtr);
2761 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
2762 Jim_DecrRefCount(interp, nameObjPtr);
2763 free(namebuf);
2764 if (valObjPtr == NULL)
2765 return JIM_ERR;
2767 result = Jim_GetLong(interp, valObjPtr, &l);
2768 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
2769 *val = l;
2770 return result;
2773 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2775 target_t *target;
2776 command_context_t *context;
2777 long l;
2778 u32 width;
2779 u32 len;
2780 u32 addr;
2781 u32 count;
2782 u32 v;
2783 const char *varname;
2784 u8 buffer[4096];
2785 int i, n, e, retval;
2787 /* argv[1] = name of array to get the data
2788 * argv[2] = desired width
2789 * argv[3] = memory address
2790 * argv[4] = count to write
2792 if (argc != 5) {
2793 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2794 return JIM_ERR;
2796 varname = Jim_GetString(argv[1], &len);
2797 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2799 e = Jim_GetLong(interp, argv[2], &l);
2800 width = l;
2801 if (e != JIM_OK) {
2802 return e;
2805 e = Jim_GetLong(interp, argv[3], &l);
2806 addr = l;
2807 if (e != JIM_OK) {
2808 return e;
2810 e = Jim_GetLong(interp, argv[4], &l);
2811 len = l;
2812 if (e != JIM_OK) {
2813 return e;
2815 switch (width) {
2816 case 8:
2817 width = 1;
2818 break;
2819 case 16:
2820 width = 2;
2821 break;
2822 case 32:
2823 width = 4;
2824 break;
2825 default:
2826 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2827 Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2828 return JIM_ERR;
2830 if (len == 0) {
2831 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2832 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
2833 return JIM_ERR;
2835 if ((addr + (len * width)) < addr) {
2836 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2837 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
2838 return JIM_ERR;
2840 /* absurd transfer size? */
2841 if (len > 65536) {
2842 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2843 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
2844 return JIM_ERR;
2847 if ((width == 1) ||
2848 ((width == 2) && ((addr & 1) == 0)) ||
2849 ((width == 4) && ((addr & 3) == 0))) {
2850 /* all is well */
2851 } else {
2852 char buf[100];
2853 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2854 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
2855 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2856 return JIM_ERR;
2859 context = Jim_GetAssocData(interp, "context");
2860 if (context == NULL)
2862 LOG_ERROR("array2mem: no command context");
2863 return JIM_ERR;
2865 target = get_current_target(context);
2866 if (target == NULL)
2868 LOG_ERROR("array2mem: no current target");
2869 return JIM_ERR;
2872 /* Transfer loop */
2874 /* index counter */
2875 n = 0;
2876 /* assume ok */
2877 e = JIM_OK;
2878 while (len) {
2879 /* Slurp... in buffer size chunks */
2881 count = len; /* in objects.. */
2882 if (count > (sizeof(buffer)/width)) {
2883 count = (sizeof(buffer)/width);
2886 v = 0; /* shut up gcc */
2887 for (i = 0 ;i < count ;i++, n++) {
2888 get_int_array_element(interp, varname, n, &v);
2889 switch (width) {
2890 case 4:
2891 target_buffer_set_u32(target, &buffer[i*width], v);
2892 break;
2893 case 2:
2894 target_buffer_set_u16(target, &buffer[i*width], v);
2895 break;
2896 case 1:
2897 buffer[i] = v & 0x0ff;
2898 break;
2901 len -= count;
2903 retval = target->type->write_memory(target, addr, width, count, buffer);
2904 if (retval != ERROR_OK) {
2905 /* BOO !*/
2906 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
2907 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2908 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
2909 e = JIM_ERR;
2910 len = 0;
2914 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2916 return JIM_OK;