flash/nor/avrf: add ATmega32U4 support
[openocd.git] / src / flash / nor / kinetis.c
blob7137b4aa078719af31122f8276494f006589e8ab
1 // SPDX-License-Identifier: GPL-2.0-or-later
3 /***************************************************************************
4 * Copyright (C) 2011 by Mathias Kuester *
5 * kesmtp@freenet.de *
6 * *
7 * Copyright (C) 2011 sleep(5) ltd *
8 * tomas@sleepfive.com *
9 * *
10 * Copyright (C) 2012 by Christopher D. Kilgour *
11 * techie at whiterocker.com *
12 * *
13 * Copyright (C) 2013 Nemui Trinomius *
14 * nemuisan_kawausogasuki@live.jp *
15 * *
16 * Copyright (C) 2015 Tomas Vanek *
17 * vanekt@fbl.cz *
18 ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
24 #include "jtag/interface.h"
25 #include "imp.h"
26 #include <helper/binarybuffer.h>
27 #include <helper/time_support.h>
28 #include <target/target_type.h>
29 #include <target/algorithm.h>
30 #include <target/arm_adi_v5.h>
31 #include <target/armv7m.h>
32 #include <target/cortex_m.h>
35 * Implementation Notes
37 * The persistent memories in the Kinetis chip families K10 through
38 * K70 are all manipulated with the Flash Memory Module. Some
39 * variants call this module the FTFE, others call it the FTFL. To
40 * indicate that both are considered here, we use FTFX.
42 * Within the module, according to the chip variant, the persistent
43 * memory is divided into what Freescale terms Program Flash, FlexNVM,
44 * and FlexRAM. All chip variants have Program Flash. Some chip
45 * variants also have FlexNVM and FlexRAM, which always appear
46 * together.
48 * A given Kinetis chip may have 1, 2 or 4 blocks of flash. Here we map
49 * each block to a separate bank. Each block size varies by chip and
50 * may be determined by the read-only SIM_FCFG1 register. The sector
51 * size within each bank/block varies by chip, and may be 1, 2 or 4k.
52 * The sector size may be different for flash and FlexNVM.
54 * The first half of the flash (1 or 2 blocks) is always Program Flash
55 * and always starts at address 0x00000000. The "PFLSH" flag, bit 23
56 * of the read-only SIM_FCFG2 register, determines whether the second
57 * half of the flash is also Program Flash or FlexNVM+FlexRAM. When
58 * PFLSH is set, the second from the first half. When PFLSH is clear,
59 * the second half of flash is FlexNVM and always starts at address
60 * 0x10000000. FlexRAM, which is also present when PFLSH is clear,
61 * always starts at address 0x14000000.
63 * The Flash Memory Module provides a register set where flash
64 * commands are loaded to perform flash operations like erase and
65 * program. Different commands are available depending on whether
66 * Program Flash or FlexNVM/FlexRAM is being manipulated. Although
67 * the commands used are quite consistent between flash blocks, the
68 * parameters they accept differ according to the flash sector size.
72 /* Addresses */
73 #define FCF_ADDRESS 0x00000400
74 #define FCF_FPROT 0x8
75 #define FCF_FSEC 0xc
76 #define FCF_FOPT 0xd
77 #define FCF_FDPROT 0xf
78 #define FCF_SIZE 0x10
80 #define FLEXRAM 0x14000000
82 #define MSCM_OCMDR0 0x40001400
83 #define FMC_PFB01CR 0x4001f004
84 #define FTFX_FSTAT 0x40020000
85 #define FTFX_FCNFG 0x40020001
86 #define FTFX_FCCOB3 0x40020004
87 #define FTFX_FPROT3 0x40020010
88 #define FTFX_FDPROT 0x40020017
89 #define SIM_BASE 0x40047000
90 #define SIM_BASE_KL28 0x40074000
91 #define SIM_COPC 0x40048100
92 /* SIM_COPC does not exist on devices with changed SIM_BASE */
93 #define WDOG_BASE 0x40052000
94 #define WDOG32_KE1X 0x40052000
95 #define WDOG32_KL28 0x40076000
96 #define SMC_PMCTRL 0x4007E001
97 #define SMC_PMSTAT 0x4007E003
98 #define SMC32_PMCTRL 0x4007E00C
99 #define SMC32_PMSTAT 0x4007E014
100 #define PMC_REGSC 0x4007D002
101 #define MC_PMCTRL 0x4007E003
102 #define MCM_PLACR 0xF000300C
104 /* Offsets */
105 #define SIM_SOPT1_OFFSET 0x0000
106 #define SIM_SDID_OFFSET 0x1024
107 #define SIM_FCFG1_OFFSET 0x104c
108 #define SIM_FCFG2_OFFSET 0x1050
110 #define WDOG_STCTRLH_OFFSET 0
111 #define WDOG32_CS_OFFSET 0
113 /* Values */
114 #define PM_STAT_RUN 0x01
115 #define PM_STAT_VLPR 0x04
116 #define PM_CTRL_RUNM_RUN 0x00
118 /* Commands */
119 #define FTFX_CMD_BLOCKSTAT 0x00
120 #define FTFX_CMD_SECTSTAT 0x01
121 #define FTFX_CMD_LWORDPROG 0x06
122 #define FTFX_CMD_SECTERASE 0x09
123 #define FTFX_CMD_SECTWRITE 0x0b
124 #define FTFX_CMD_MASSERASE 0x44
125 #define FTFX_CMD_PGMPART 0x80
126 #define FTFX_CMD_SETFLEXRAM 0x81
128 /* The older Kinetis K series uses the following SDID layout :
129 * Bit 31-16 : 0
130 * Bit 15-12 : REVID
131 * Bit 11-7 : DIEID
132 * Bit 6-4 : FAMID
133 * Bit 3-0 : PINID
135 * The newer Kinetis series uses the following SDID layout :
136 * Bit 31-28 : FAMID
137 * Bit 27-24 : SUBFAMID
138 * Bit 23-20 : SERIESID
139 * Bit 19-16 : SRAMSIZE
140 * Bit 15-12 : REVID
141 * Bit 6-4 : Reserved (0)
142 * Bit 3-0 : PINID
144 * We assume that if bits 31-16 are 0 then it's an older
145 * K-series MCU.
148 #define KINETIS_SOPT1_RAMSIZE_MASK 0x0000F000
149 #define KINETIS_SOPT1_RAMSIZE_K24FN1M 0x0000B000
151 #define KINETIS_SDID_K_SERIES_MASK 0x0000FFFF
153 #define KINETIS_SDID_DIEID_MASK 0x00000F80
155 #define KINETIS_SDID_DIEID_K22FN128 0x00000680 /* smaller pflash with FTFA */
156 #define KINETIS_SDID_DIEID_K22FN256 0x00000A80
157 #define KINETIS_SDID_DIEID_K22FN512 0x00000E80
158 #define KINETIS_SDID_DIEID_K24FN256 0x00000700
160 #define KINETIS_SDID_DIEID_K24FN1M 0x00000300 /* Detect Errata 7534 */
162 /* We can't rely solely on the FAMID field to determine the MCU
163 * type since some FAMID values identify multiple MCUs with
164 * different flash sector sizes (K20 and K22 for instance).
165 * Therefore we combine it with the DIEID bits which may possibly
166 * break if Freescale bumps the DIEID for a particular MCU. */
167 #define KINETIS_K_SDID_TYPE_MASK 0x00000FF0
168 #define KINETIS_K_SDID_K10_M50 0x00000000
169 #define KINETIS_K_SDID_K10_M72 0x00000080
170 #define KINETIS_K_SDID_K10_M100 0x00000100
171 #define KINETIS_K_SDID_K10_M120 0x00000180
172 #define KINETIS_K_SDID_K11 0x00000220
173 #define KINETIS_K_SDID_K12 0x00000200
174 #define KINETIS_K_SDID_K20_M50 0x00000010
175 #define KINETIS_K_SDID_K20_M72 0x00000090
176 #define KINETIS_K_SDID_K20_M100 0x00000110
177 #define KINETIS_K_SDID_K20_M120 0x00000190
178 #define KINETIS_K_SDID_K21_M50 0x00000230
179 #define KINETIS_K_SDID_K21_M120 0x00000330
180 #define KINETIS_K_SDID_K22_M50 0x00000210
181 #define KINETIS_K_SDID_K22_M120 0x00000310
182 #define KINETIS_K_SDID_K30_M72 0x000000A0
183 #define KINETIS_K_SDID_K30_M100 0x00000120
184 #define KINETIS_K_SDID_K40_M72 0x000000B0
185 #define KINETIS_K_SDID_K40_M100 0x00000130
186 #define KINETIS_K_SDID_K50_M72 0x000000E0
187 #define KINETIS_K_SDID_K51_M72 0x000000F0
188 #define KINETIS_K_SDID_K53 0x00000170
189 #define KINETIS_K_SDID_K60_M100 0x00000140
190 #define KINETIS_K_SDID_K60_M150 0x000001C0
191 #define KINETIS_K_SDID_K70_M150 0x000001D0
193 #define KINETIS_K_REVID_MASK 0x0000F000
194 #define KINETIS_K_REVID_SHIFT 12
196 #define KINETIS_SDID_SERIESID_MASK 0x00F00000
197 #define KINETIS_SDID_SERIESID_K 0x00000000
198 #define KINETIS_SDID_SERIESID_KL 0x00100000
199 #define KINETIS_SDID_SERIESID_KE 0x00200000
200 #define KINETIS_SDID_SERIESID_KW 0x00500000
201 #define KINETIS_SDID_SERIESID_KV 0x00600000
203 #define KINETIS_SDID_SUBFAMID_SHIFT 24
204 #define KINETIS_SDID_SUBFAMID_MASK 0x0F000000
205 #define KINETIS_SDID_SUBFAMID_KX0 0x00000000
206 #define KINETIS_SDID_SUBFAMID_KX1 0x01000000
207 #define KINETIS_SDID_SUBFAMID_KX2 0x02000000
208 #define KINETIS_SDID_SUBFAMID_KX3 0x03000000
209 #define KINETIS_SDID_SUBFAMID_KX4 0x04000000
210 #define KINETIS_SDID_SUBFAMID_KX5 0x05000000
211 #define KINETIS_SDID_SUBFAMID_KX6 0x06000000
212 #define KINETIS_SDID_SUBFAMID_KX7 0x07000000
213 #define KINETIS_SDID_SUBFAMID_KX8 0x08000000
215 #define KINETIS_SDID_FAMILYID_SHIFT 28
216 #define KINETIS_SDID_FAMILYID_MASK 0xF0000000
217 #define KINETIS_SDID_FAMILYID_K0X 0x00000000
218 #define KINETIS_SDID_FAMILYID_K1X 0x10000000
219 #define KINETIS_SDID_FAMILYID_K2X 0x20000000
220 #define KINETIS_SDID_FAMILYID_K3X 0x30000000
221 #define KINETIS_SDID_FAMILYID_K4X 0x40000000
222 #define KINETIS_SDID_FAMILYID_K5X 0x50000000
223 #define KINETIS_SDID_FAMILYID_K6X 0x60000000
224 #define KINETIS_SDID_FAMILYID_K7X 0x70000000
225 #define KINETIS_SDID_FAMILYID_K8X 0x80000000
226 #define KINETIS_SDID_FAMILYID_KL8X 0x90000000
228 /* The field originally named DIEID has new name/meaning on KE1x */
229 #define KINETIS_SDID_PROJECTID_MASK KINETIS_SDID_DIEID_MASK
230 #define KINETIS_SDID_PROJECTID_KE1XF 0x00000080
231 #define KINETIS_SDID_PROJECTID_KE1XZ 0x00000100
233 struct kinetis_flash_bank {
234 struct kinetis_chip *k_chip;
235 bool probed;
236 unsigned bank_number; /* bank number in particular chip */
237 struct flash_bank *bank;
239 uint32_t sector_size;
240 uint32_t protection_size;
241 uint32_t prog_base; /* base address for FTFx operations */
242 /* usually same as bank->base for pflash, differs for FlexNVM */
243 uint32_t protection_block; /* number of first protection block in this bank */
245 enum {
246 FC_AUTO = 0,
247 FC_PFLASH,
248 FC_FLEX_NVM,
249 FC_FLEX_RAM,
250 } flash_class;
253 #define KINETIS_MAX_BANKS 4u
255 struct kinetis_chip {
256 struct target *target;
257 bool probed;
259 uint32_t sim_sdid;
260 uint32_t sim_fcfg1;
261 uint32_t sim_fcfg2;
262 uint32_t fcfg2_maxaddr0_shifted;
263 uint32_t fcfg2_maxaddr1_shifted;
265 unsigned num_pflash_blocks, num_nvm_blocks;
266 unsigned pflash_sector_size, nvm_sector_size;
267 unsigned max_flash_prog_size;
269 uint32_t pflash_base;
270 uint32_t pflash_size;
271 uint32_t nvm_base;
272 uint32_t nvm_size; /* whole FlexNVM */
273 uint32_t dflash_size; /* accessible rest of FlexNVM if EEPROM backup uses part of FlexNVM */
275 uint32_t progr_accel_ram;
276 uint32_t sim_base;
278 enum {
279 FS_PROGRAM_SECTOR = 1,
280 FS_PROGRAM_LONGWORD = 2,
281 FS_PROGRAM_PHRASE = 4, /* Unsupported */
283 FS_NO_CMD_BLOCKSTAT = 0x40,
284 FS_WIDTH_256BIT = 0x80,
285 FS_ECC = 0x100,
286 } flash_support;
288 enum {
289 KINETIS_CACHE_NONE,
290 KINETIS_CACHE_K, /* invalidate using FMC->PFB0CR/PFB01CR */
291 KINETIS_CACHE_L, /* invalidate using MCM->PLACR */
292 KINETIS_CACHE_MSCM, /* devices like KE1xF, invalidate MSCM->OCMDR0 */
293 } cache_type;
295 enum {
296 KINETIS_WDOG_NONE,
297 KINETIS_WDOG_K,
298 KINETIS_WDOG_COP,
299 KINETIS_WDOG32_KE1X,
300 KINETIS_WDOG32_KL28,
301 } watchdog_type;
303 enum {
304 KINETIS_SMC,
305 KINETIS_SMC32,
306 KINETIS_MC,
307 } sysmodectrlr_type;
309 char name[40];
311 unsigned num_banks;
312 struct kinetis_flash_bank banks[KINETIS_MAX_BANKS];
315 struct kinetis_type {
316 uint32_t sdid;
317 char *name;
320 static const struct kinetis_type kinetis_types_old[] = {
321 { KINETIS_K_SDID_K10_M50, "MK10D%s5" },
322 { KINETIS_K_SDID_K10_M72, "MK10D%s7" },
323 { KINETIS_K_SDID_K10_M100, "MK10D%s10" },
324 { KINETIS_K_SDID_K10_M120, "MK10F%s12" },
325 { KINETIS_K_SDID_K11, "MK11D%s5" },
326 { KINETIS_K_SDID_K12, "MK12D%s5" },
328 { KINETIS_K_SDID_K20_M50, "MK20D%s5" },
329 { KINETIS_K_SDID_K20_M72, "MK20D%s7" },
330 { KINETIS_K_SDID_K20_M100, "MK20D%s10" },
331 { KINETIS_K_SDID_K20_M120, "MK20F%s12" },
332 { KINETIS_K_SDID_K21_M50, "MK21D%s5" },
333 { KINETIS_K_SDID_K21_M120, "MK21F%s12" },
334 { KINETIS_K_SDID_K22_M50, "MK22D%s5" },
335 { KINETIS_K_SDID_K22_M120, "MK22F%s12" },
337 { KINETIS_K_SDID_K30_M72, "MK30D%s7" },
338 { KINETIS_K_SDID_K30_M100, "MK30D%s10" },
340 { KINETIS_K_SDID_K40_M72, "MK40D%s7" },
341 { KINETIS_K_SDID_K40_M100, "MK40D%s10" },
343 { KINETIS_K_SDID_K50_M72, "MK50D%s7" },
344 { KINETIS_K_SDID_K51_M72, "MK51D%s7" },
345 { KINETIS_K_SDID_K53, "MK53D%s10" },
347 { KINETIS_K_SDID_K60_M100, "MK60D%s10" },
348 { KINETIS_K_SDID_K60_M150, "MK60F%s15" },
350 { KINETIS_K_SDID_K70_M150, "MK70F%s15" },
354 #define MDM_AP 1
356 #define MDM_REG_STAT 0x00
357 #define MDM_REG_CTRL 0x04
358 #define MDM_REG_ID 0xfc
360 #define MDM_STAT_FMEACK (1<<0)
361 #define MDM_STAT_FREADY (1<<1)
362 #define MDM_STAT_SYSSEC (1<<2)
363 #define MDM_STAT_SYSRES (1<<3)
364 #define MDM_STAT_FMEEN (1<<5)
365 #define MDM_STAT_BACKDOOREN (1<<6)
366 #define MDM_STAT_LPEN (1<<7)
367 #define MDM_STAT_VLPEN (1<<8)
368 #define MDM_STAT_LLSMODEXIT (1<<9)
369 #define MDM_STAT_VLLSXMODEXIT (1<<10)
370 #define MDM_STAT_CORE_HALTED (1<<16)
371 #define MDM_STAT_CORE_SLEEPDEEP (1<<17)
372 #define MDM_STAT_CORESLEEPING (1<<18)
374 #define MDM_CTRL_FMEIP (1<<0)
375 #define MDM_CTRL_DBG_DIS (1<<1)
376 #define MDM_CTRL_DBG_REQ (1<<2)
377 #define MDM_CTRL_SYS_RES_REQ (1<<3)
378 #define MDM_CTRL_CORE_HOLD_RES (1<<4)
379 #define MDM_CTRL_VLLSX_DBG_REQ (1<<5)
380 #define MDM_CTRL_VLLSX_DBG_ACK (1<<6)
381 #define MDM_CTRL_VLLSX_STAT_ACK (1<<7)
383 #define MDM_ACCESS_TIMEOUT 500 /* msec */
386 static bool allow_fcf_writes;
387 static uint8_t fcf_fopt = 0xff;
388 static bool create_banks;
391 const struct flash_driver kinetis_flash;
392 static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
393 uint32_t offset, uint32_t count);
394 static int kinetis_probe_chip(struct kinetis_chip *k_chip);
395 static int kinetis_auto_probe(struct flash_bank *bank);
398 static int kinetis_mdm_write_register(struct adiv5_dap *dap, unsigned reg, uint32_t value)
400 LOG_DEBUG("MDM_REG[0x%02x] <- %08" PRIX32, reg, value);
402 struct adiv5_ap *ap = dap_get_ap(dap, MDM_AP);
403 if (!ap) {
404 LOG_DEBUG("MDM: failed to get AP");
405 return ERROR_FAIL;
408 int retval = dap_queue_ap_write(ap, reg, value);
409 if (retval != ERROR_OK) {
410 LOG_DEBUG("MDM: failed to queue a write request");
411 dap_put_ap(ap);
412 return retval;
415 retval = dap_run(dap);
416 dap_put_ap(ap);
417 if (retval != ERROR_OK) {
418 LOG_DEBUG("MDM: dap_run failed");
419 return retval;
423 return ERROR_OK;
426 static int kinetis_mdm_read_register(struct adiv5_dap *dap, unsigned reg, uint32_t *result)
428 struct adiv5_ap *ap = dap_get_ap(dap, MDM_AP);
429 if (!ap) {
430 LOG_DEBUG("MDM: failed to get AP");
431 return ERROR_FAIL;
434 int retval = dap_queue_ap_read(ap, reg, result);
435 if (retval != ERROR_OK) {
436 LOG_DEBUG("MDM: failed to queue a read request");
437 dap_put_ap(ap);
438 return retval;
441 retval = dap_run(dap);
442 dap_put_ap(ap);
443 if (retval != ERROR_OK) {
444 LOG_DEBUG("MDM: dap_run failed");
445 return retval;
448 LOG_DEBUG("MDM_REG[0x%02x]: %08" PRIX32, reg, *result);
449 return ERROR_OK;
452 static int kinetis_mdm_poll_register(struct adiv5_dap *dap, unsigned reg,
453 uint32_t mask, uint32_t value, uint32_t timeout_ms)
455 uint32_t val;
456 int retval;
457 int64_t ms_timeout = timeval_ms() + timeout_ms;
459 do {
460 retval = kinetis_mdm_read_register(dap, reg, &val);
461 if (retval != ERROR_OK || (val & mask) == value)
462 return retval;
464 alive_sleep(1);
465 } while (timeval_ms() < ms_timeout);
467 LOG_DEBUG("MDM: polling timed out");
468 return ERROR_FAIL;
472 * This command can be used to break a watchdog reset loop when
473 * connecting to an unsecured target. Unlike other commands, halt will
474 * automatically retry as it does not know how far into the boot process
475 * it is when the command is called.
477 COMMAND_HANDLER(kinetis_mdm_halt)
479 struct target *target = get_current_target(CMD_CTX);
480 struct cortex_m_common *cortex_m = target_to_cm(target);
481 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
482 int retval;
483 int tries = 0;
484 uint32_t stat;
485 int64_t ms_timeout = timeval_ms() + MDM_ACCESS_TIMEOUT;
487 if (!dap) {
488 LOG_ERROR("Cannot perform halt with a high-level adapter");
489 return ERROR_FAIL;
492 while (true) {
493 tries++;
495 kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_CORE_HOLD_RES);
497 alive_sleep(1);
499 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
500 if (retval != ERROR_OK) {
501 LOG_DEBUG("MDM: failed to read MDM_REG_STAT");
502 continue;
505 /* Repeat setting MDM_CTRL_CORE_HOLD_RES until system is out of
506 * reset with flash ready and without security
508 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSSEC | MDM_STAT_SYSRES))
509 == (MDM_STAT_FREADY | MDM_STAT_SYSRES))
510 break;
512 if (timeval_ms() >= ms_timeout) {
513 LOG_ERROR("MDM: halt timed out");
514 return ERROR_FAIL;
518 LOG_DEBUG("MDM: halt succeeded after %d attempts.", tries);
520 target_poll(target);
521 /* enable polling in case kinetis_check_flash_security_status disabled it */
522 jtag_poll_set_enabled(true);
524 alive_sleep(100);
526 target->reset_halt = true;
527 target->type->assert_reset(target);
529 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
530 if (retval != ERROR_OK) {
531 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
532 return retval;
535 target->type->deassert_reset(target);
537 return ERROR_OK;
540 COMMAND_HANDLER(kinetis_mdm_reset)
542 struct target *target = get_current_target(CMD_CTX);
543 struct cortex_m_common *cortex_m = target_to_cm(target);
544 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
545 int retval;
547 if (!dap) {
548 LOG_ERROR("Cannot perform reset with a high-level adapter");
549 return ERROR_FAIL;
552 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
553 if (retval != ERROR_OK) {
554 LOG_ERROR("MDM: failed to write MDM_REG_CTRL");
555 return retval;
558 retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT, MDM_STAT_SYSRES, 0, 500);
559 if (retval != ERROR_OK) {
560 LOG_ERROR("MDM: failed to assert reset");
561 return retval;
564 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
565 if (retval != ERROR_OK) {
566 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
567 return retval;
570 return ERROR_OK;
574 * This function implements the procedure to mass erase the flash via
575 * SWD/JTAG on Kinetis K and L series of devices as it is described in
576 * AN4835 "Production Flash Programming Best Practices for Kinetis K-
577 * and L-series MCUs" Section 4.2.1. To prevent a watchdog reset loop,
578 * the core remains halted after this function completes as suggested
579 * by the application note.
581 COMMAND_HANDLER(kinetis_mdm_mass_erase)
583 struct target *target = get_current_target(CMD_CTX);
584 struct cortex_m_common *cortex_m = target_to_cm(target);
585 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
587 if (!dap) {
588 LOG_ERROR("Cannot perform mass erase with a high-level adapter");
589 return ERROR_FAIL;
592 int retval;
595 * ... Power on the processor, or if power has already been
596 * applied, assert the RESET pin to reset the processor. For
597 * devices that do not have a RESET pin, write the System
598 * Reset Request bit in the MDM-AP control register after
599 * establishing communication...
602 /* assert SRST if configured */
603 bool has_srst = jtag_get_reset_config() & RESET_HAS_SRST;
604 if (has_srst)
605 adapter_assert_reset();
607 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
608 if (retval != ERROR_OK && !has_srst) {
609 LOG_ERROR("MDM: failed to assert reset");
610 goto deassert_reset_and_exit;
614 * ... Read the MDM-AP status register repeatedly and wait for
615 * stable conditions suitable for mass erase:
616 * - mass erase is enabled
617 * - flash is ready
618 * - reset is finished
620 * Mass erase is started as soon as all conditions are met in 32
621 * subsequent status reads.
623 * In case of not stable conditions (RESET/WDOG loop in secured device)
624 * the user is asked for manual pressing of RESET button
625 * as a last resort.
627 int cnt_mass_erase_disabled = 0;
628 int cnt_ready = 0;
629 int64_t ms_start = timeval_ms();
630 bool man_reset_requested = false;
632 do {
633 uint32_t stat = 0;
634 int64_t ms_elapsed = timeval_ms() - ms_start;
636 if (!man_reset_requested && ms_elapsed > 100) {
637 LOG_INFO("MDM: Press RESET button now if possible.");
638 man_reset_requested = true;
641 if (ms_elapsed > 3000) {
642 LOG_ERROR("MDM: waiting for mass erase conditions timed out.");
643 LOG_INFO("Mass erase of a secured MCU is not possible without hardware reset.");
644 LOG_INFO("Connect SRST, use 'reset_config srst_only' and retry.");
645 goto deassert_reset_and_exit;
647 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
648 if (retval != ERROR_OK) {
649 cnt_ready = 0;
650 continue;
653 if (!(stat & MDM_STAT_FMEEN)) {
654 cnt_ready = 0;
655 cnt_mass_erase_disabled++;
656 if (cnt_mass_erase_disabled > 10) {
657 LOG_ERROR("MDM: mass erase is disabled");
658 goto deassert_reset_and_exit;
660 continue;
663 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSRES)) == MDM_STAT_FREADY)
664 cnt_ready++;
665 else
666 cnt_ready = 0;
668 } while (cnt_ready < 32);
671 * ... Write the MDM-AP control register to set the Flash Mass
672 * Erase in Progress bit. This will start the mass erase
673 * process...
675 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ | MDM_CTRL_FMEIP);
676 if (retval != ERROR_OK) {
677 LOG_ERROR("MDM: failed to start mass erase");
678 goto deassert_reset_and_exit;
682 * ... Read the MDM-AP control register until the Flash Mass
683 * Erase in Progress bit clears...
684 * Data sheed defines erase time <3.6 sec/512kB flash block.
685 * The biggest device has 4 pflash blocks => timeout 16 sec.
687 retval = kinetis_mdm_poll_register(dap, MDM_REG_CTRL, MDM_CTRL_FMEIP, 0, 16000);
688 if (retval != ERROR_OK) {
689 LOG_ERROR("MDM: mass erase timeout");
690 goto deassert_reset_and_exit;
693 target_poll(target);
694 /* enable polling in case kinetis_check_flash_security_status disabled it */
695 jtag_poll_set_enabled(true);
697 alive_sleep(100);
699 target->reset_halt = true;
700 target->type->assert_reset(target);
703 * ... Negate the RESET signal or clear the System Reset Request
704 * bit in the MDM-AP control register.
706 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
707 if (retval != ERROR_OK)
708 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
710 target->type->deassert_reset(target);
712 return retval;
714 deassert_reset_and_exit:
715 kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
716 if (has_srst)
717 adapter_deassert_reset();
718 return retval;
721 static const uint32_t kinetis_known_mdm_ids[] = {
722 0x001C0000, /* Kinetis-K Series */
723 0x001C0020, /* Kinetis-L/M/V/E Series */
724 0x001C0030, /* Kinetis with a Cortex-M7, in time of writing KV58 */
728 * This function implements the procedure to connect to
729 * SWD/JTAG on Kinetis K and L series of devices as it is described in
730 * AN4835 "Production Flash Programming Best Practices for Kinetis K-
731 * and L-series MCUs" Section 4.1.1
733 COMMAND_HANDLER(kinetis_check_flash_security_status)
735 struct target *target = get_current_target(CMD_CTX);
736 struct cortex_m_common *cortex_m = target_to_cm(target);
737 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
739 if (!dap) {
740 LOG_WARNING("Cannot check flash security status with a high-level adapter");
741 return ERROR_OK;
744 if (!dap->ops)
745 return ERROR_OK; /* too early to check, in JTAG mode ops may not be initialised */
747 uint32_t val;
748 int retval;
751 * ... The MDM-AP ID register can be read to verify that the
752 * connection is working correctly...
754 retval = kinetis_mdm_read_register(dap, MDM_REG_ID, &val);
755 if (retval != ERROR_OK) {
756 LOG_ERROR("MDM: failed to read ID register");
757 return ERROR_OK;
760 if (val == 0)
761 return ERROR_OK; /* dap not yet initialised */
763 bool found = false;
764 for (size_t i = 0; i < ARRAY_SIZE(kinetis_known_mdm_ids); i++) {
765 if (val == kinetis_known_mdm_ids[i]) {
766 found = true;
767 break;
771 if (!found)
772 LOG_WARNING("MDM: unknown ID %08" PRIX32, val);
775 * ... Read the System Security bit to determine if security is enabled.
776 * If System Security = 0, then proceed. If System Security = 1, then
777 * communication with the internals of the processor, including the
778 * flash, will not be possible without issuing a mass erase command or
779 * unsecuring the part through other means (backdoor key unlock)...
781 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &val);
782 if (retval != ERROR_OK) {
783 LOG_ERROR("MDM: failed to read MDM_REG_STAT");
784 return ERROR_OK;
788 * System Security bit is also active for short time during reset.
789 * If a MCU has blank flash and runs in RESET/WDOG loop,
790 * System Security bit is active most of time!
791 * We should observe Flash Ready bit and read status several times
792 * to avoid false detection of secured MCU
794 int secured_score = 0, flash_not_ready_score = 0;
796 if ((val & (MDM_STAT_SYSSEC | MDM_STAT_FREADY)) != MDM_STAT_FREADY) {
797 uint32_t stats[32];
798 struct adiv5_ap *ap = dap_get_ap(dap, MDM_AP);
799 if (!ap) {
800 LOG_ERROR("MDM: failed to get AP");
801 return ERROR_OK;
804 for (unsigned int i = 0; i < 32; i++) {
805 stats[i] = MDM_STAT_FREADY;
806 dap_queue_ap_read(ap, MDM_REG_STAT, &stats[i]);
808 retval = dap_run(dap);
809 dap_put_ap(ap);
810 if (retval != ERROR_OK) {
811 LOG_DEBUG("MDM: dap_run failed when validating secured state");
812 return ERROR_OK;
814 for (unsigned int i = 0; i < 32; i++) {
815 if (stats[i] & MDM_STAT_SYSSEC)
816 secured_score++;
817 if (!(stats[i] & MDM_STAT_FREADY))
818 flash_not_ready_score++;
822 if (flash_not_ready_score <= 8 && secured_score > 24) {
823 jtag_poll_set_enabled(false);
825 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
826 LOG_WARNING("**** ****");
827 LOG_WARNING("**** Your Kinetis MCU is in secured state, which means that, ****");
828 LOG_WARNING("**** with exception for very basic communication, JTAG/SWD ****");
829 LOG_WARNING("**** interface will NOT work. In order to restore its ****");
830 LOG_WARNING("**** functionality please issue 'kinetis mdm mass_erase' ****");
831 LOG_WARNING("**** command, power cycle the MCU and restart OpenOCD. ****");
832 LOG_WARNING("**** ****");
833 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
835 } else if (flash_not_ready_score > 24) {
836 jtag_poll_set_enabled(false);
837 LOG_WARNING("**** Your Kinetis MCU is probably locked-up in RESET/WDOG loop. ****");
838 LOG_WARNING("**** Common reason is a blank flash (at least a reset vector). ****");
839 LOG_WARNING("**** Issue 'kinetis mdm halt' command or if SRST is connected ****");
840 LOG_WARNING("**** and configured, use 'reset halt' ****");
841 LOG_WARNING("**** If MCU cannot be halted, it is likely secured and running ****");
842 LOG_WARNING("**** in RESET/WDOG loop. Issue 'kinetis mdm mass_erase' ****");
844 } else {
845 LOG_INFO("MDM: Chip is unsecured. Continuing.");
846 jtag_poll_set_enabled(true);
849 return ERROR_OK;
853 static struct kinetis_chip *kinetis_get_chip(struct target *target)
855 struct flash_bank *bank_iter;
856 struct kinetis_flash_bank *k_bank;
858 /* iterate over all kinetis banks */
859 for (bank_iter = flash_bank_list(); bank_iter; bank_iter = bank_iter->next) {
860 if (bank_iter->driver != &kinetis_flash
861 || bank_iter->target != target)
862 continue;
864 k_bank = bank_iter->driver_priv;
865 if (!k_bank)
866 continue;
868 if (k_bank->k_chip)
869 return k_bank->k_chip;
871 return NULL;
874 static int kinetis_chip_options(struct kinetis_chip *k_chip, int argc, const char *argv[])
876 for (int i = 0; i < argc; i++) {
877 if (strcmp(argv[i], "-sim-base") == 0) {
878 if (i + 1 < argc)
879 k_chip->sim_base = strtoul(argv[++i], NULL, 0);
880 } else
881 LOG_ERROR("Unsupported flash bank option %s", argv[i]);
883 return ERROR_OK;
886 FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
888 struct target *target = bank->target;
889 struct kinetis_chip *k_chip;
890 struct kinetis_flash_bank *k_bank;
891 int retval;
893 if (CMD_ARGC < 6)
894 return ERROR_COMMAND_SYNTAX_ERROR;
896 LOG_INFO("add flash_bank kinetis %s", bank->name);
898 k_chip = kinetis_get_chip(target);
900 if (!k_chip) {
901 k_chip = calloc(sizeof(struct kinetis_chip), 1);
902 if (!k_chip) {
903 LOG_ERROR("No memory");
904 return ERROR_FAIL;
907 k_chip->target = target;
909 /* only the first defined bank can define chip options */
910 retval = kinetis_chip_options(k_chip, CMD_ARGC - 6, CMD_ARGV + 6);
911 if (retval != ERROR_OK)
912 return retval;
915 if (k_chip->num_banks >= KINETIS_MAX_BANKS) {
916 LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS);
917 return ERROR_FAIL;
920 bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]);
921 k_bank->k_chip = k_chip;
922 k_bank->bank_number = k_chip->num_banks;
923 k_bank->bank = bank;
924 k_chip->num_banks++;
926 return ERROR_OK;
930 static void kinetis_free_driver_priv(struct flash_bank *bank)
932 struct kinetis_flash_bank *k_bank = bank->driver_priv;
933 if (!k_bank)
934 return;
936 struct kinetis_chip *k_chip = k_bank->k_chip;
937 if (!k_chip)
938 return;
940 k_chip->num_banks--;
941 if (k_chip->num_banks == 0)
942 free(k_chip);
946 static int kinetis_create_missing_banks(struct kinetis_chip *k_chip)
948 unsigned num_blocks;
949 struct kinetis_flash_bank *k_bank;
950 struct flash_bank *bank;
951 char base_name[69], name[87], num[11];
952 char *class, *p;
954 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
955 if (num_blocks > KINETIS_MAX_BANKS) {
956 LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS);
957 return ERROR_FAIL;
960 bank = k_chip->banks[0].bank;
961 if (bank && bank->name) {
962 strncpy(base_name, bank->name, sizeof(base_name) - 1);
963 base_name[sizeof(base_name) - 1] = '\0';
964 p = strstr(base_name, ".pflash");
965 if (p) {
966 *p = '\0';
967 if (k_chip->num_pflash_blocks > 1) {
968 /* rename first bank if numbering is needed */
969 snprintf(name, sizeof(name), "%s.pflash0", base_name);
970 free(bank->name);
971 bank->name = strdup(name);
974 } else {
975 strncpy(base_name, target_name(k_chip->target), sizeof(base_name) - 1);
976 base_name[sizeof(base_name) - 1] = '\0';
977 p = strstr(base_name, ".cpu");
978 if (p)
979 *p = '\0';
982 for (unsigned int bank_idx = 1; bank_idx < num_blocks; bank_idx++) {
983 k_bank = &(k_chip->banks[bank_idx]);
984 bank = k_bank->bank;
986 if (bank)
987 continue;
989 num[0] = '\0';
991 if (bank_idx < k_chip->num_pflash_blocks) {
992 class = "pflash";
993 if (k_chip->num_pflash_blocks > 1)
994 snprintf(num, sizeof(num), "%u", bank_idx);
995 } else {
996 class = "flexnvm";
997 if (k_chip->num_nvm_blocks > 1)
998 snprintf(num, sizeof(num), "%u",
999 bank_idx - k_chip->num_pflash_blocks);
1002 bank = calloc(sizeof(struct flash_bank), 1);
1003 if (!bank)
1004 return ERROR_FAIL;
1006 bank->target = k_chip->target;
1007 bank->driver = &kinetis_flash;
1008 bank->default_padded_value = bank->erased_value = 0xff;
1010 snprintf(name, sizeof(name), "%s.%s%s",
1011 base_name, class, num);
1012 bank->name = strdup(name);
1014 bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]);
1015 k_bank->k_chip = k_chip;
1016 k_bank->bank_number = bank_idx;
1017 k_bank->bank = bank;
1018 if (k_chip->num_banks <= bank_idx)
1019 k_chip->num_banks = bank_idx + 1;
1021 flash_bank_add(bank);
1023 return ERROR_OK;
1027 static int kinetis_disable_wdog_algo(struct target *target, size_t code_size, const uint8_t *code, uint32_t wdog_base)
1029 struct working_area *wdog_algorithm;
1030 struct armv7m_algorithm armv7m_info;
1031 struct reg_param reg_params[1];
1032 int retval;
1034 if (target->state != TARGET_HALTED) {
1035 LOG_ERROR("Target not halted");
1036 return ERROR_TARGET_NOT_HALTED;
1039 retval = target_alloc_working_area(target, code_size, &wdog_algorithm);
1040 if (retval != ERROR_OK)
1041 return retval;
1043 retval = target_write_buffer(target, wdog_algorithm->address,
1044 code_size, code);
1045 if (retval == ERROR_OK) {
1046 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1047 armv7m_info.core_mode = ARM_MODE_THREAD;
1049 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1050 buf_set_u32(reg_params[0].value, 0, 32, wdog_base);
1052 retval = target_run_algorithm(target, 0, NULL, 1, reg_params,
1053 wdog_algorithm->address,
1054 wdog_algorithm->address + code_size - 2,
1055 500, &armv7m_info);
1057 destroy_reg_param(&reg_params[0]);
1059 if (retval != ERROR_OK)
1060 LOG_ERROR("Error executing Kinetis WDOG unlock algorithm");
1063 target_free_working_area(target, wdog_algorithm);
1065 return retval;
1068 /* Disable the watchdog on Kinetis devices
1069 * Standard Kx WDOG peripheral checks timing and therefore requires to run algo.
1071 static int kinetis_disable_wdog_kx(struct target *target)
1073 const uint32_t wdog_base = WDOG_BASE;
1074 uint16_t wdog;
1075 int retval;
1077 static const uint8_t kinetis_unlock_wdog_code[] = {
1078 #include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog.inc"
1081 retval = target_read_u16(target, wdog_base + WDOG_STCTRLH_OFFSET, &wdog);
1082 if (retval != ERROR_OK)
1083 return retval;
1085 if ((wdog & 0x1) == 0) {
1086 /* watchdog already disabled */
1087 return ERROR_OK;
1089 LOG_INFO("Disabling Kinetis watchdog (initial WDOG_STCTRLH = 0x%04" PRIx16 ")", wdog);
1091 retval = kinetis_disable_wdog_algo(target, sizeof(kinetis_unlock_wdog_code), kinetis_unlock_wdog_code, wdog_base);
1092 if (retval != ERROR_OK)
1093 return retval;
1095 retval = target_read_u16(target, wdog_base + WDOG_STCTRLH_OFFSET, &wdog);
1096 if (retval != ERROR_OK)
1097 return retval;
1099 LOG_INFO("WDOG_STCTRLH = 0x%04" PRIx16, wdog);
1100 return (wdog & 0x1) ? ERROR_FAIL : ERROR_OK;
1103 static int kinetis_disable_wdog32(struct target *target, uint32_t wdog_base)
1105 uint32_t wdog_cs;
1106 int retval;
1108 static const uint8_t kinetis_unlock_wdog_code[] = {
1109 #include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog32.inc"
1112 retval = target_read_u32(target, wdog_base + WDOG32_CS_OFFSET, &wdog_cs);
1113 if (retval != ERROR_OK)
1114 return retval;
1116 if ((wdog_cs & 0x80) == 0)
1117 return ERROR_OK; /* watchdog already disabled */
1119 LOG_INFO("Disabling Kinetis watchdog (initial WDOG_CS 0x%08" PRIx32 ")", wdog_cs);
1121 retval = kinetis_disable_wdog_algo(target, sizeof(kinetis_unlock_wdog_code), kinetis_unlock_wdog_code, wdog_base);
1122 if (retval != ERROR_OK)
1123 return retval;
1125 retval = target_read_u32(target, wdog_base + WDOG32_CS_OFFSET, &wdog_cs);
1126 if (retval != ERROR_OK)
1127 return retval;
1129 if ((wdog_cs & 0x80) == 0)
1130 return ERROR_OK; /* watchdog disabled successfully */
1132 LOG_ERROR("Cannot disable Kinetis watchdog (WDOG_CS 0x%08" PRIx32 "), issue 'reset init'", wdog_cs);
1133 return ERROR_FAIL;
1136 static int kinetis_disable_wdog(struct kinetis_chip *k_chip)
1138 struct target *target = k_chip->target;
1139 uint8_t sim_copc;
1140 int retval;
1142 if (!k_chip->probed) {
1143 retval = kinetis_probe_chip(k_chip);
1144 if (retval != ERROR_OK)
1145 return retval;
1148 switch (k_chip->watchdog_type) {
1149 case KINETIS_WDOG_K:
1150 return kinetis_disable_wdog_kx(target);
1152 case KINETIS_WDOG_COP:
1153 retval = target_read_u8(target, SIM_COPC, &sim_copc);
1154 if (retval != ERROR_OK)
1155 return retval;
1157 if ((sim_copc & 0xc) == 0)
1158 return ERROR_OK; /* watchdog already disabled */
1160 LOG_INFO("Disabling Kinetis watchdog (initial SIM_COPC 0x%02" PRIx8 ")", sim_copc);
1161 retval = target_write_u8(target, SIM_COPC, sim_copc & ~0xc);
1162 if (retval != ERROR_OK)
1163 return retval;
1165 retval = target_read_u8(target, SIM_COPC, &sim_copc);
1166 if (retval != ERROR_OK)
1167 return retval;
1169 if ((sim_copc & 0xc) == 0)
1170 return ERROR_OK; /* watchdog disabled successfully */
1172 LOG_ERROR("Cannot disable Kinetis watchdog (SIM_COPC 0x%02" PRIx8 "), issue 'reset init'", sim_copc);
1173 return ERROR_FAIL;
1175 case KINETIS_WDOG32_KE1X:
1176 return kinetis_disable_wdog32(target, WDOG32_KE1X);
1178 case KINETIS_WDOG32_KL28:
1179 return kinetis_disable_wdog32(target, WDOG32_KL28);
1181 default:
1182 return ERROR_OK;
1186 COMMAND_HANDLER(kinetis_disable_wdog_handler)
1188 int result;
1189 struct target *target = get_current_target(CMD_CTX);
1190 struct kinetis_chip *k_chip = kinetis_get_chip(target);
1192 if (!k_chip)
1193 return ERROR_FAIL;
1195 if (CMD_ARGC > 0)
1196 return ERROR_COMMAND_SYNTAX_ERROR;
1198 result = kinetis_disable_wdog(k_chip);
1199 return result;
1203 static int kinetis_ftfx_decode_error(uint8_t fstat)
1205 if (fstat & 0x20) {
1206 LOG_ERROR("Flash operation failed, illegal command");
1207 return ERROR_FLASH_OPER_UNSUPPORTED;
1209 } else if (fstat & 0x10)
1210 LOG_ERROR("Flash operation failed, protection violated");
1212 else if (fstat & 0x40)
1213 LOG_ERROR("Flash operation failed, read collision");
1215 else if (fstat & 0x80)
1216 return ERROR_OK;
1218 else
1219 LOG_ERROR("Flash operation timed out");
1221 return ERROR_FLASH_OPERATION_FAILED;
1224 static int kinetis_ftfx_clear_error(struct target *target)
1226 /* reset error flags */
1227 return target_write_u8(target, FTFX_FSTAT, 0x70);
1231 static int kinetis_ftfx_prepare(struct target *target)
1233 int result;
1234 uint8_t fstat;
1236 /* wait until busy */
1237 for (unsigned int i = 0; i < 50; i++) {
1238 result = target_read_u8(target, FTFX_FSTAT, &fstat);
1239 if (result != ERROR_OK)
1240 return result;
1242 if (fstat & 0x80)
1243 break;
1246 if ((fstat & 0x80) == 0) {
1247 LOG_ERROR("Flash controller is busy");
1248 return ERROR_FLASH_OPERATION_FAILED;
1250 if (fstat != 0x80) {
1251 /* reset error flags */
1252 result = kinetis_ftfx_clear_error(target);
1254 return result;
1257 /* Kinetis Program-LongWord Microcodes */
1258 static const uint8_t kinetis_flash_write_code[] = {
1259 #include "../../../contrib/loaders/flash/kinetis/kinetis_flash.inc"
1262 /* Program LongWord Block Write */
1263 static int kinetis_write_block(struct flash_bank *bank, const uint8_t *buffer,
1264 uint32_t offset, uint32_t wcount)
1266 struct target *target = bank->target;
1267 uint32_t buffer_size;
1268 struct working_area *write_algorithm;
1269 struct working_area *source;
1270 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1271 uint32_t address = k_bank->prog_base + offset;
1272 uint32_t end_address;
1273 struct reg_param reg_params[5];
1274 struct armv7m_algorithm armv7m_info;
1275 int retval;
1276 uint8_t fstat;
1278 /* allocate working area with flash programming code */
1279 if (target_alloc_working_area(target, sizeof(kinetis_flash_write_code),
1280 &write_algorithm) != ERROR_OK) {
1281 LOG_WARNING("no working area available, can't do block memory writes");
1282 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1285 retval = target_write_buffer(target, write_algorithm->address,
1286 sizeof(kinetis_flash_write_code), kinetis_flash_write_code);
1287 if (retval != ERROR_OK)
1288 return retval;
1290 /* memory buffer, size *must* be multiple of word */
1291 buffer_size = target_get_working_area_avail(target) & ~(sizeof(uint32_t) - 1);
1292 if (buffer_size < 256) {
1293 LOG_WARNING("large enough working area not available, can't do block memory writes");
1294 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1295 } else if (buffer_size > 16384) {
1296 /* probably won't benefit from more than 16k ... */
1297 buffer_size = 16384;
1300 if (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
1301 LOG_ERROR("allocating working area failed");
1302 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1305 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1306 armv7m_info.core_mode = ARM_MODE_THREAD;
1308 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* address */
1309 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* word count */
1310 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1311 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1312 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1314 buf_set_u32(reg_params[0].value, 0, 32, address);
1315 buf_set_u32(reg_params[1].value, 0, 32, wcount);
1316 buf_set_u32(reg_params[2].value, 0, 32, source->address);
1317 buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
1318 buf_set_u32(reg_params[4].value, 0, 32, FTFX_FSTAT);
1320 retval = target_run_flash_async_algorithm(target, buffer, wcount, 4,
1321 0, NULL,
1322 5, reg_params,
1323 source->address, source->size,
1324 write_algorithm->address, 0,
1325 &armv7m_info);
1327 if (retval == ERROR_FLASH_OPERATION_FAILED) {
1328 end_address = buf_get_u32(reg_params[0].value, 0, 32);
1330 LOG_ERROR("Error writing flash at %08" PRIx32, end_address);
1332 retval = target_read_u8(target, FTFX_FSTAT, &fstat);
1333 if (retval == ERROR_OK) {
1334 retval = kinetis_ftfx_decode_error(fstat);
1336 /* reset error flags */
1337 target_write_u8(target, FTFX_FSTAT, 0x70);
1339 } else if (retval != ERROR_OK)
1340 LOG_ERROR("Error executing kinetis Flash programming algorithm");
1342 target_free_working_area(target, source);
1343 target_free_working_area(target, write_algorithm);
1345 destroy_reg_param(&reg_params[0]);
1346 destroy_reg_param(&reg_params[1]);
1347 destroy_reg_param(&reg_params[2]);
1348 destroy_reg_param(&reg_params[3]);
1349 destroy_reg_param(&reg_params[4]);
1351 return retval;
1354 static int kinetis_protect(struct flash_bank *bank, int set, unsigned int first,
1355 unsigned int last)
1357 if (allow_fcf_writes) {
1358 LOG_ERROR("Protection setting is possible with 'kinetis fcf_source protection' only!");
1359 return ERROR_FAIL;
1362 if (!bank->prot_blocks || bank->num_prot_blocks == 0) {
1363 LOG_ERROR("No protection possible for current bank!");
1364 return ERROR_FLASH_BANK_INVALID;
1367 for (unsigned int i = first; i < bank->num_prot_blocks && i <= last; i++)
1368 bank->prot_blocks[i].is_protected = set;
1370 LOG_INFO("Protection bits will be written at the next FCF sector erase or write.");
1371 LOG_INFO("Do not issue 'flash info' command until protection is written,");
1372 LOG_INFO("doing so would re-read protection status from MCU.");
1374 return ERROR_OK;
1377 static int kinetis_protect_check(struct flash_bank *bank)
1379 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1380 int result;
1381 int b;
1382 uint32_t fprot;
1384 if (k_bank->flash_class == FC_PFLASH) {
1386 /* read protection register */
1387 result = target_read_u32(bank->target, FTFX_FPROT3, &fprot);
1388 if (result != ERROR_OK)
1389 return result;
1391 /* Every bit protects 1/32 of the full flash (not necessarily just this bank) */
1393 } else if (k_bank->flash_class == FC_FLEX_NVM) {
1394 uint8_t fdprot;
1396 /* read protection register */
1397 result = target_read_u8(bank->target, FTFX_FDPROT, &fdprot);
1398 if (result != ERROR_OK)
1399 return result;
1401 fprot = fdprot;
1403 } else {
1404 LOG_ERROR("Protection checks for FlexRAM not supported");
1405 return ERROR_FLASH_BANK_INVALID;
1408 b = k_bank->protection_block;
1409 for (unsigned int i = 0; i < bank->num_prot_blocks; i++) {
1410 if ((fprot >> b) & 1)
1411 bank->prot_blocks[i].is_protected = 0;
1412 else
1413 bank->prot_blocks[i].is_protected = 1;
1415 b++;
1418 return ERROR_OK;
1422 static int kinetis_fill_fcf(struct flash_bank *bank, uint8_t *fcf)
1424 uint32_t fprot = 0xffffffff;
1425 uint8_t fsec = 0xfe; /* set MCU unsecure */
1426 uint8_t fdprot = 0xff;
1427 unsigned num_blocks;
1428 uint32_t pflash_bit;
1429 uint8_t dflash_bit;
1430 struct flash_bank *bank_iter;
1431 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1432 struct kinetis_chip *k_chip = k_bank->k_chip;
1434 memset(fcf, 0xff, FCF_SIZE);
1436 pflash_bit = 1;
1437 dflash_bit = 1;
1439 /* iterate over all kinetis banks */
1440 /* current bank is bank 0, it contains FCF */
1441 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
1442 for (unsigned int bank_idx = 0; bank_idx < num_blocks; bank_idx++) {
1443 k_bank = &(k_chip->banks[bank_idx]);
1444 bank_iter = k_bank->bank;
1446 if (!bank_iter) {
1447 LOG_WARNING("Missing bank %u configuration, FCF protection flags may be incomplete", bank_idx);
1448 continue;
1451 kinetis_auto_probe(bank_iter);
1453 assert(bank_iter->prot_blocks);
1455 if (k_bank->flash_class == FC_PFLASH) {
1456 for (unsigned int i = 0; i < bank_iter->num_prot_blocks; i++) {
1457 if (bank_iter->prot_blocks[i].is_protected == 1)
1458 fprot &= ~pflash_bit;
1460 pflash_bit <<= 1;
1463 } else if (k_bank->flash_class == FC_FLEX_NVM) {
1464 for (unsigned int i = 0; i < bank_iter->num_prot_blocks; i++) {
1465 if (bank_iter->prot_blocks[i].is_protected == 1)
1466 fdprot &= ~dflash_bit;
1468 dflash_bit <<= 1;
1474 target_buffer_set_u32(bank->target, fcf + FCF_FPROT, fprot);
1475 fcf[FCF_FSEC] = fsec;
1476 fcf[FCF_FOPT] = fcf_fopt;
1477 fcf[FCF_FDPROT] = fdprot;
1478 return ERROR_OK;
1481 static int kinetis_ftfx_command(struct target *target, uint8_t fcmd, uint32_t faddr,
1482 uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7,
1483 uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb,
1484 uint8_t *ftfx_fstat)
1486 uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd,
1487 fccob7, fccob6, fccob5, fccob4,
1488 fccobb, fccoba, fccob9, fccob8};
1489 int result;
1490 uint8_t fstat;
1491 int64_t ms_timeout = timeval_ms() + 250;
1493 result = target_write_memory(target, FTFX_FCCOB3, 4, 3, command);
1494 if (result != ERROR_OK)
1495 return result;
1497 /* start command */
1498 result = target_write_u8(target, FTFX_FSTAT, 0x80);
1499 if (result != ERROR_OK)
1500 return result;
1502 /* wait for done */
1503 do {
1504 result = target_read_u8(target, FTFX_FSTAT, &fstat);
1506 if (result != ERROR_OK)
1507 return result;
1509 if (fstat & 0x80)
1510 break;
1512 } while (timeval_ms() < ms_timeout);
1514 if (ftfx_fstat)
1515 *ftfx_fstat = fstat;
1517 if ((fstat & 0xf0) != 0x80) {
1518 LOG_DEBUG("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
1519 fstat, command[3], command[2], command[1], command[0],
1520 command[7], command[6], command[5], command[4],
1521 command[11], command[10], command[9], command[8]);
1523 return kinetis_ftfx_decode_error(fstat);
1526 return ERROR_OK;
1530 static int kinetis_read_pmstat(struct kinetis_chip *k_chip, uint8_t *pmstat)
1532 int result;
1533 uint32_t stat32;
1534 struct target *target = k_chip->target;
1536 switch (k_chip->sysmodectrlr_type) {
1537 case KINETIS_SMC:
1538 result = target_read_u8(target, SMC_PMSTAT, pmstat);
1539 return result;
1541 case KINETIS_SMC32:
1542 result = target_read_u32(target, SMC32_PMSTAT, &stat32);
1543 if (result == ERROR_OK)
1544 *pmstat = stat32 & 0xff;
1545 return result;
1547 case KINETIS_MC:
1548 /* emulate SMC by reading PMC_REGSC bit 3 (VLPRS) */
1549 result = target_read_u8(target, PMC_REGSC, pmstat);
1550 if (result == ERROR_OK) {
1551 if (*pmstat & 0x08)
1552 *pmstat = PM_STAT_VLPR;
1553 else
1554 *pmstat = PM_STAT_RUN;
1556 return result;
1558 return ERROR_FAIL;
1561 static int kinetis_check_run_mode(struct kinetis_chip *k_chip)
1563 int result;
1564 uint8_t pmstat;
1565 struct target *target;
1567 if (!k_chip) {
1568 LOG_ERROR("Chip not probed.");
1569 return ERROR_FAIL;
1571 target = k_chip->target;
1573 if (target->state != TARGET_HALTED) {
1574 LOG_ERROR("Target not halted");
1575 return ERROR_TARGET_NOT_HALTED;
1578 result = kinetis_read_pmstat(k_chip, &pmstat);
1579 if (result != ERROR_OK)
1580 return result;
1582 if (pmstat == PM_STAT_RUN)
1583 return ERROR_OK;
1585 if (pmstat == PM_STAT_VLPR) {
1586 /* It is safe to switch from VLPR to RUN mode without changing clock */
1587 LOG_INFO("Switching from VLPR to RUN mode.");
1589 switch (k_chip->sysmodectrlr_type) {
1590 case KINETIS_SMC:
1591 result = target_write_u8(target, SMC_PMCTRL, PM_CTRL_RUNM_RUN);
1592 break;
1594 case KINETIS_SMC32:
1595 result = target_write_u32(target, SMC32_PMCTRL, PM_CTRL_RUNM_RUN);
1596 break;
1598 case KINETIS_MC:
1599 result = target_write_u32(target, MC_PMCTRL, PM_CTRL_RUNM_RUN);
1600 break;
1602 if (result != ERROR_OK)
1603 return result;
1605 for (unsigned int i = 100; i > 0; i--) {
1606 result = kinetis_read_pmstat(k_chip, &pmstat);
1607 if (result != ERROR_OK)
1608 return result;
1610 if (pmstat == PM_STAT_RUN)
1611 return ERROR_OK;
1615 LOG_ERROR("Flash operation not possible in current run mode: SMC_PMSTAT: 0x%x", pmstat);
1616 LOG_ERROR("Issue a 'reset init' command.");
1617 return ERROR_TARGET_NOT_HALTED;
1621 static void kinetis_invalidate_flash_cache(struct kinetis_chip *k_chip)
1623 struct target *target = k_chip->target;
1625 switch (k_chip->cache_type) {
1626 case KINETIS_CACHE_K:
1627 target_write_u8(target, FMC_PFB01CR + 2, 0xf0);
1628 /* Set CINV_WAY bits - request invalidate of all cache ways */
1629 /* FMC_PFB0CR has same address and CINV_WAY bits as FMC_PFB01CR */
1630 break;
1632 case KINETIS_CACHE_L:
1633 target_write_u8(target, MCM_PLACR + 1, 0x04);
1634 /* set bit CFCC - Clear Flash Controller Cache */
1635 break;
1637 case KINETIS_CACHE_MSCM:
1638 target_write_u32(target, MSCM_OCMDR0, 0x30);
1639 /* disable data prefetch and flash speculate */
1640 break;
1642 default:
1643 break;
1648 static int kinetis_erase(struct flash_bank *bank, unsigned int first,
1649 unsigned int last)
1651 int result;
1652 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1653 struct kinetis_chip *k_chip = k_bank->k_chip;
1655 result = kinetis_check_run_mode(k_chip);
1656 if (result != ERROR_OK)
1657 return result;
1659 /* reset error flags */
1660 result = kinetis_ftfx_prepare(bank->target);
1661 if (result != ERROR_OK)
1662 return result;
1664 if ((first > bank->num_sectors) || (last > bank->num_sectors))
1665 return ERROR_FLASH_OPERATION_FAILED;
1668 * FIXME: TODO: use the 'Erase Flash Block' command if the
1669 * requested erase is PFlash or NVM and encompasses the entire
1670 * block. Should be quicker.
1672 for (unsigned int i = first; i <= last; i++) {
1673 /* set command and sector address */
1674 result = kinetis_ftfx_command(bank->target, FTFX_CMD_SECTERASE, k_bank->prog_base + bank->sectors[i].offset,
1675 0, 0, 0, 0, 0, 0, 0, 0, NULL);
1677 if (result != ERROR_OK) {
1678 LOG_WARNING("erase sector %u failed", i);
1679 return ERROR_FLASH_OPERATION_FAILED;
1682 if (k_bank->prog_base == 0
1683 && bank->sectors[i].offset <= FCF_ADDRESS
1684 && bank->sectors[i].offset + bank->sectors[i].size > FCF_ADDRESS + FCF_SIZE) {
1685 if (allow_fcf_writes) {
1686 LOG_WARNING("Flash Configuration Field erased, DO NOT reset or power off the device");
1687 LOG_WARNING("until correct FCF is programmed or MCU gets security lock.");
1688 } else {
1689 uint8_t fcf_buffer[FCF_SIZE];
1691 kinetis_fill_fcf(bank, fcf_buffer);
1692 result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
1693 if (result != ERROR_OK)
1694 LOG_WARNING("Flash Configuration Field write failed");
1695 else
1696 LOG_DEBUG("Generated FCF written");
1701 kinetis_invalidate_flash_cache(k_bank->k_chip);
1703 return ERROR_OK;
1706 static int kinetis_make_ram_ready(struct target *target)
1708 int result;
1709 uint8_t ftfx_fcnfg;
1711 /* check if ram ready */
1712 result = target_read_u8(target, FTFX_FCNFG, &ftfx_fcnfg);
1713 if (result != ERROR_OK)
1714 return result;
1716 if (ftfx_fcnfg & (1 << 1))
1717 return ERROR_OK; /* ram ready */
1719 /* make flex ram available */
1720 result = kinetis_ftfx_command(target, FTFX_CMD_SETFLEXRAM, 0x00ff0000,
1721 0, 0, 0, 0, 0, 0, 0, 0, NULL);
1722 if (result != ERROR_OK)
1723 return ERROR_FLASH_OPERATION_FAILED;
1725 /* check again */
1726 result = target_read_u8(target, FTFX_FCNFG, &ftfx_fcnfg);
1727 if (result != ERROR_OK)
1728 return result;
1730 if (ftfx_fcnfg & (1 << 1))
1731 return ERROR_OK; /* ram ready */
1733 return ERROR_FLASH_OPERATION_FAILED;
1737 static int kinetis_write_sections(struct flash_bank *bank, const uint8_t *buffer,
1738 uint32_t offset, uint32_t count)
1740 int result = ERROR_OK;
1741 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1742 struct kinetis_chip *k_chip = k_bank->k_chip;
1743 uint8_t *buffer_aligned = NULL;
1745 * Kinetis uses different terms for the granularity of
1746 * sector writes, e.g. "phrase" or "128 bits". We use
1747 * the generic term "chunk". The largest possible
1748 * Kinetis "chunk" is 16 bytes (128 bits).
1750 uint32_t prog_section_chunk_bytes = k_bank->sector_size >> 8;
1751 uint32_t prog_size_bytes = k_chip->max_flash_prog_size;
1753 while (count > 0) {
1754 uint32_t size = prog_size_bytes - offset % prog_size_bytes;
1755 uint32_t align_begin = offset % prog_section_chunk_bytes;
1756 uint32_t align_end;
1757 uint32_t size_aligned;
1758 uint16_t chunk_count;
1759 uint8_t ftfx_fstat;
1761 if (size > count)
1762 size = count;
1764 align_end = (align_begin + size) % prog_section_chunk_bytes;
1765 if (align_end)
1766 align_end = prog_section_chunk_bytes - align_end;
1768 size_aligned = align_begin + size + align_end;
1769 chunk_count = size_aligned / prog_section_chunk_bytes;
1771 if (size != size_aligned) {
1772 /* aligned section: the first, the last or the only */
1773 if (!buffer_aligned)
1774 buffer_aligned = malloc(prog_size_bytes);
1776 memset(buffer_aligned, 0xff, size_aligned);
1777 memcpy(buffer_aligned + align_begin, buffer, size);
1779 result = target_write_memory(bank->target, k_chip->progr_accel_ram,
1780 4, size_aligned / 4, buffer_aligned);
1782 LOG_DEBUG("section @ " TARGET_ADDR_FMT " aligned begin %" PRIu32
1783 ", end %" PRIu32,
1784 bank->base + offset, align_begin, align_end);
1785 } else
1786 result = target_write_memory(bank->target, k_chip->progr_accel_ram,
1787 4, size_aligned / 4, buffer);
1789 LOG_DEBUG("write section @ " TARGET_ADDR_FMT " with length %" PRIu32
1790 " bytes",
1791 bank->base + offset, size);
1793 if (result != ERROR_OK) {
1794 LOG_ERROR("target_write_memory failed");
1795 break;
1798 /* execute section-write command */
1799 result = kinetis_ftfx_command(bank->target, FTFX_CMD_SECTWRITE,
1800 k_bank->prog_base + offset - align_begin,
1801 chunk_count>>8, chunk_count, 0, 0,
1802 0, 0, 0, 0, &ftfx_fstat);
1804 if (result != ERROR_OK) {
1805 LOG_ERROR("Error writing section at " TARGET_ADDR_FMT,
1806 bank->base + offset);
1807 break;
1810 if (ftfx_fstat & 0x01) {
1811 LOG_ERROR("Flash write error at " TARGET_ADDR_FMT,
1812 bank->base + offset);
1813 if (k_bank->prog_base == 0 && offset == FCF_ADDRESS + FCF_SIZE
1814 && (k_chip->flash_support & FS_WIDTH_256BIT)) {
1815 LOG_ERROR("Flash write immediately after the end of Flash Config Field shows error");
1816 LOG_ERROR("because the flash memory is 256 bits wide (data were written correctly).");
1817 LOG_ERROR("Either change the linker script to add a gap of 16 bytes after FCF");
1818 LOG_ERROR("or set 'kinetis fcf_source write'");
1822 buffer += size;
1823 offset += size;
1824 count -= size;
1826 keep_alive();
1829 free(buffer_aligned);
1830 return result;
1834 static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
1835 uint32_t offset, uint32_t count)
1837 int result;
1838 bool fallback = false;
1839 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1840 struct kinetis_chip *k_chip = k_bank->k_chip;
1842 if (!(k_chip->flash_support & FS_PROGRAM_SECTOR)) {
1843 /* fallback to longword write */
1844 fallback = true;
1845 LOG_INFO("This device supports Program Longword execution only.");
1846 } else {
1847 result = kinetis_make_ram_ready(bank->target);
1848 if (result != ERROR_OK) {
1849 fallback = true;
1850 LOG_WARNING("FlexRAM not ready, fallback to slow longword write.");
1854 LOG_DEBUG("flash write @ " TARGET_ADDR_FMT, bank->base + offset);
1856 if (!fallback) {
1857 /* program section command */
1858 kinetis_write_sections(bank, buffer, offset, count);
1859 } else if (k_chip->flash_support & FS_PROGRAM_LONGWORD) {
1860 /* program longword command, not supported in FTFE */
1861 uint8_t *new_buffer = NULL;
1863 /* check word alignment */
1864 if (offset & 0x3) {
1865 LOG_ERROR("offset 0x%" PRIx32 " breaks the required alignment", offset);
1866 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
1869 if (count & 0x3) {
1870 uint32_t old_count = count;
1871 count = (old_count | 3) + 1;
1872 new_buffer = malloc(count);
1873 if (!new_buffer) {
1874 LOG_ERROR("odd number of bytes to write and no memory "
1875 "for padding buffer");
1876 return ERROR_FAIL;
1878 LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " "
1879 "and padding with 0xff", old_count, count);
1880 memset(new_buffer + old_count, 0xff, count - old_count);
1881 buffer = memcpy(new_buffer, buffer, old_count);
1884 uint32_t words_remaining = count / 4;
1886 kinetis_disable_wdog(k_chip);
1888 /* try using a block write */
1889 result = kinetis_write_block(bank, buffer, offset, words_remaining);
1891 if (result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
1892 /* if block write failed (no sufficient working area),
1893 * we use normal (slow) single word accesses */
1894 LOG_WARNING("couldn't use block writes, falling back to single "
1895 "memory accesses");
1897 while (words_remaining) {
1898 uint8_t ftfx_fstat;
1900 LOG_DEBUG("write longword @ %08" PRIx32, (uint32_t)(bank->base + offset));
1902 result = kinetis_ftfx_command(bank->target, FTFX_CMD_LWORDPROG, k_bank->prog_base + offset,
1903 buffer[3], buffer[2], buffer[1], buffer[0],
1904 0, 0, 0, 0, &ftfx_fstat);
1906 if (result != ERROR_OK) {
1907 LOG_ERROR("Error writing longword at " TARGET_ADDR_FMT,
1908 bank->base + offset);
1909 break;
1912 if (ftfx_fstat & 0x01)
1913 LOG_ERROR("Flash write error at " TARGET_ADDR_FMT,
1914 bank->base + offset);
1916 buffer += 4;
1917 offset += 4;
1918 words_remaining--;
1920 keep_alive();
1923 free(new_buffer);
1924 } else {
1925 LOG_ERROR("Flash write strategy not implemented");
1926 return ERROR_FLASH_OPERATION_FAILED;
1929 kinetis_invalidate_flash_cache(k_chip);
1930 return result;
1934 static int kinetis_write(struct flash_bank *bank, const uint8_t *buffer,
1935 uint32_t offset, uint32_t count)
1937 int result;
1938 bool set_fcf = false;
1939 bool fcf_in_data_valid = false;
1940 bool fcf_differs = false;
1941 int sect = 0;
1942 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1943 struct kinetis_chip *k_chip = k_bank->k_chip;
1944 uint8_t fcf_buffer[FCF_SIZE];
1945 uint8_t fcf_current[FCF_SIZE];
1946 uint8_t fcf_in_data[FCF_SIZE];
1948 result = kinetis_check_run_mode(k_chip);
1949 if (result != ERROR_OK)
1950 return result;
1952 /* reset error flags */
1953 result = kinetis_ftfx_prepare(bank->target);
1954 if (result != ERROR_OK)
1955 return result;
1957 if (k_bank->prog_base == 0 && !allow_fcf_writes) {
1958 if (bank->sectors[1].offset <= FCF_ADDRESS)
1959 sect = 1; /* 1kb sector, FCF in 2nd sector */
1961 if (offset < bank->sectors[sect].offset + bank->sectors[sect].size
1962 && offset + count > bank->sectors[sect].offset)
1963 set_fcf = true; /* write to any part of sector with FCF */
1966 if (set_fcf) {
1967 kinetis_fill_fcf(bank, fcf_buffer);
1969 fcf_in_data_valid = offset <= FCF_ADDRESS
1970 && offset + count >= FCF_ADDRESS + FCF_SIZE;
1971 if (fcf_in_data_valid) {
1972 memcpy(fcf_in_data, buffer + FCF_ADDRESS - offset, FCF_SIZE);
1973 if (memcmp(fcf_in_data, fcf_buffer, 8)) {
1974 fcf_differs = true;
1975 LOG_INFO("Setting of backdoor key is not supported in mode 'kinetis fcf_source protection'.");
1977 if (memcmp(fcf_in_data + FCF_FPROT, fcf_buffer + FCF_FPROT, 4)) {
1978 fcf_differs = true;
1979 LOG_INFO("Flash protection requested in the programmed file differs from current setting.");
1981 if (fcf_in_data[FCF_FDPROT] != fcf_buffer[FCF_FDPROT]) {
1982 fcf_differs = true;
1983 LOG_INFO("Data flash protection requested in the programmed file differs from current setting.");
1985 if ((fcf_in_data[FCF_FSEC] & 3) != 2) {
1986 fcf_in_data_valid = false;
1987 LOG_INFO("Device security requested in the programmed file! Write denied.");
1988 } else if (fcf_in_data[FCF_FSEC] != fcf_buffer[FCF_FSEC]) {
1989 fcf_differs = true;
1990 LOG_INFO("Strange unsecure mode 0x%02" PRIx8
1991 " requested in the programmed file, set FSEC = 0x%02" PRIx8
1992 " in the startup code!",
1993 fcf_in_data[FCF_FSEC], fcf_buffer[FCF_FSEC]);
1995 if (fcf_in_data[FCF_FOPT] != fcf_buffer[FCF_FOPT]) {
1996 fcf_differs = true;
1997 LOG_INFO("FOPT requested in the programmed file differs from current setting, set 'kinetis fopt 0x%02"
1998 PRIx8 "'.", fcf_in_data[FCF_FOPT]);
2001 /* If the device has ECC flash, then we cannot re-program FCF */
2002 if (fcf_differs) {
2003 if (k_chip->flash_support & FS_ECC) {
2004 fcf_in_data_valid = false;
2005 LOG_INFO("Cannot re-program FCF. Expect verify errors at FCF (0x400-0x40f).");
2006 } else {
2007 LOG_INFO("Trying to re-program FCF.");
2008 if (!(k_chip->flash_support & FS_PROGRAM_LONGWORD))
2009 LOG_INFO("Flash re-programming may fail on this device!");
2015 if (set_fcf && !fcf_in_data_valid) {
2016 if (offset < FCF_ADDRESS) {
2017 /* write part preceding FCF */
2018 result = kinetis_write_inner(bank, buffer, offset, FCF_ADDRESS - offset);
2019 if (result != ERROR_OK)
2020 return result;
2023 result = target_read_memory(bank->target, bank->base + FCF_ADDRESS, 4, FCF_SIZE / 4, fcf_current);
2024 if (result == ERROR_OK && memcmp(fcf_current, fcf_buffer, FCF_SIZE) == 0)
2025 set_fcf = false;
2027 if (set_fcf) {
2028 /* write FCF if differs from flash - eliminate multiple writes */
2029 result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
2030 if (result != ERROR_OK)
2031 return result;
2034 LOG_WARNING("Flash Configuration Field written.");
2035 LOG_WARNING("Reset or power off the device to make settings effective.");
2037 if (offset + count > FCF_ADDRESS + FCF_SIZE) {
2038 uint32_t delta = FCF_ADDRESS + FCF_SIZE - offset;
2039 /* write part after FCF */
2040 result = kinetis_write_inner(bank, buffer + delta, FCF_ADDRESS + FCF_SIZE, count - delta);
2042 return result;
2044 } else {
2045 /* no FCF fiddling, normal write */
2046 return kinetis_write_inner(bank, buffer, offset, count);
2051 static int kinetis_probe_chip(struct kinetis_chip *k_chip)
2053 int result;
2054 uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg1_depart;
2055 uint8_t fcfg2_pflsh;
2056 uint32_t ee_size = 0;
2057 uint32_t pflash_size_k, nvm_size_k, dflash_size_k;
2058 uint32_t pflash_size_m;
2059 unsigned num_blocks = 0;
2060 unsigned maxaddr_shift = 13;
2061 struct target *target = k_chip->target;
2063 unsigned familyid = 0, subfamid = 0;
2064 unsigned cpu_mhz = 120;
2065 bool use_nvm_marking = false;
2066 char flash_marking[12], nvm_marking[2];
2067 char name[40];
2069 k_chip->probed = false;
2070 k_chip->pflash_sector_size = 0;
2071 k_chip->pflash_base = 0;
2072 k_chip->nvm_base = 0x10000000;
2073 k_chip->progr_accel_ram = FLEXRAM;
2075 name[0] = '\0';
2077 if (k_chip->sim_base)
2078 result = target_read_u32(target, k_chip->sim_base + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2079 else {
2080 result = target_read_u32(target, SIM_BASE + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2081 if (result == ERROR_OK)
2082 k_chip->sim_base = SIM_BASE;
2083 else {
2084 result = target_read_u32(target, SIM_BASE_KL28 + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2085 if (result == ERROR_OK)
2086 k_chip->sim_base = SIM_BASE_KL28;
2089 if (result != ERROR_OK)
2090 return result;
2092 if ((k_chip->sim_sdid & (~KINETIS_SDID_K_SERIES_MASK)) == 0) {
2093 /* older K-series MCU */
2094 uint32_t mcu_type = k_chip->sim_sdid & KINETIS_K_SDID_TYPE_MASK;
2095 k_chip->cache_type = KINETIS_CACHE_K;
2096 k_chip->watchdog_type = KINETIS_WDOG_K;
2098 switch (mcu_type) {
2099 case KINETIS_K_SDID_K10_M50:
2100 case KINETIS_K_SDID_K20_M50:
2101 /* 1kB sectors */
2102 k_chip->pflash_sector_size = 1<<10;
2103 k_chip->nvm_sector_size = 1<<10;
2104 num_blocks = 2;
2105 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2106 break;
2107 case KINETIS_K_SDID_K10_M72:
2108 case KINETIS_K_SDID_K20_M72:
2109 case KINETIS_K_SDID_K30_M72:
2110 case KINETIS_K_SDID_K30_M100:
2111 case KINETIS_K_SDID_K40_M72:
2112 case KINETIS_K_SDID_K40_M100:
2113 case KINETIS_K_SDID_K50_M72:
2114 /* 2kB sectors, 1kB FlexNVM sectors */
2115 k_chip->pflash_sector_size = 2<<10;
2116 k_chip->nvm_sector_size = 1<<10;
2117 num_blocks = 2;
2118 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2119 k_chip->max_flash_prog_size = 1<<10;
2120 break;
2121 case KINETIS_K_SDID_K10_M100:
2122 case KINETIS_K_SDID_K20_M100:
2123 case KINETIS_K_SDID_K11:
2124 case KINETIS_K_SDID_K12:
2125 case KINETIS_K_SDID_K21_M50:
2126 case KINETIS_K_SDID_K22_M50:
2127 case KINETIS_K_SDID_K51_M72:
2128 case KINETIS_K_SDID_K53:
2129 case KINETIS_K_SDID_K60_M100:
2130 /* 2kB sectors */
2131 k_chip->pflash_sector_size = 2<<10;
2132 k_chip->nvm_sector_size = 2<<10;
2133 num_blocks = 2;
2134 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2135 break;
2136 case KINETIS_K_SDID_K21_M120:
2137 case KINETIS_K_SDID_K22_M120:
2138 /* 4kB sectors (MK21FN1M0, MK21FX512, MK22FN1M0, MK22FX512) */
2139 k_chip->pflash_sector_size = 4<<10;
2140 k_chip->max_flash_prog_size = 1<<10;
2141 k_chip->nvm_sector_size = 4<<10;
2142 num_blocks = 2;
2143 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2144 break;
2145 case KINETIS_K_SDID_K10_M120:
2146 case KINETIS_K_SDID_K20_M120:
2147 case KINETIS_K_SDID_K60_M150:
2148 case KINETIS_K_SDID_K70_M150:
2149 /* 4kB sectors */
2150 k_chip->pflash_sector_size = 4<<10;
2151 k_chip->nvm_sector_size = 4<<10;
2152 num_blocks = 4;
2153 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2154 break;
2155 default:
2156 LOG_ERROR("Unsupported K-family FAMID");
2159 for (size_t idx = 0; idx < ARRAY_SIZE(kinetis_types_old); idx++) {
2160 if (kinetis_types_old[idx].sdid == mcu_type) {
2161 strcpy(name, kinetis_types_old[idx].name);
2162 use_nvm_marking = true;
2163 break;
2167 /* first revision of some devices has no SMC */
2168 switch (mcu_type) {
2169 case KINETIS_K_SDID_K10_M100:
2170 case KINETIS_K_SDID_K20_M100:
2171 case KINETIS_K_SDID_K30_M100:
2172 case KINETIS_K_SDID_K40_M100:
2173 case KINETIS_K_SDID_K60_M100:
2175 uint32_t revid = (k_chip->sim_sdid & KINETIS_K_REVID_MASK) >> KINETIS_K_REVID_SHIFT;
2176 /* highest bit set corresponds to rev 2.x */
2177 if (revid <= 7) {
2178 k_chip->sysmodectrlr_type = KINETIS_MC;
2179 strcat(name, " Rev 1.x");
2182 break;
2185 } else {
2186 /* Newer K-series or KL series MCU */
2187 familyid = (k_chip->sim_sdid & KINETIS_SDID_FAMILYID_MASK) >> KINETIS_SDID_FAMILYID_SHIFT;
2188 subfamid = (k_chip->sim_sdid & KINETIS_SDID_SUBFAMID_MASK) >> KINETIS_SDID_SUBFAMID_SHIFT;
2190 switch (k_chip->sim_sdid & KINETIS_SDID_SERIESID_MASK) {
2191 case KINETIS_SDID_SERIESID_K:
2192 use_nvm_marking = true;
2193 k_chip->cache_type = KINETIS_CACHE_K;
2194 k_chip->watchdog_type = KINETIS_WDOG_K;
2196 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2197 case KINETIS_SDID_FAMILYID_K0X | KINETIS_SDID_SUBFAMID_KX2:
2198 /* K02FN64, K02FN128: FTFA, 2kB sectors */
2199 k_chip->pflash_sector_size = 2<<10;
2200 num_blocks = 1;
2201 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2202 cpu_mhz = 100;
2203 break;
2205 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX2: {
2206 /* MK24FN1M reports as K22, this should detect it (according to errata note 1N83J) */
2207 uint32_t sopt1;
2208 result = target_read_u32(target, k_chip->sim_base + SIM_SOPT1_OFFSET, &sopt1);
2209 if (result != ERROR_OK)
2210 return result;
2212 if (((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN1M) &&
2213 ((sopt1 & KINETIS_SOPT1_RAMSIZE_MASK) == KINETIS_SOPT1_RAMSIZE_K24FN1M)) {
2214 /* MK24FN1M */
2215 k_chip->pflash_sector_size = 4<<10;
2216 num_blocks = 2;
2217 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2218 k_chip->max_flash_prog_size = 1<<10;
2219 subfamid = 4; /* errata 1N83J fix */
2220 break;
2222 if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN128
2223 || (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN256
2224 || (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN512) {
2225 /* K22 with new-style SDID - smaller pflash with FTFA, 2kB sectors */
2226 k_chip->pflash_sector_size = 2<<10;
2227 /* autodetect 1 or 2 blocks */
2228 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2229 break;
2231 LOG_ERROR("Unsupported Kinetis K22 DIEID");
2232 break;
2234 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX4:
2235 k_chip->pflash_sector_size = 4<<10;
2236 if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN256) {
2237 /* K24FN256 - smaller pflash with FTFA */
2238 num_blocks = 1;
2239 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2240 break;
2242 /* K24FN1M without errata 7534 */
2243 num_blocks = 2;
2244 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2245 k_chip->max_flash_prog_size = 1<<10;
2246 break;
2248 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX1: /* errata 7534 - should be K63 */
2249 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX2: /* errata 7534 - should be K64 */
2250 subfamid += 2; /* errata 7534 fix */
2251 /* fallthrough */
2252 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX3:
2253 /* K63FN1M0 */
2254 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX4:
2255 /* K64FN1M0, K64FX512 */
2256 k_chip->pflash_sector_size = 4<<10;
2257 k_chip->nvm_sector_size = 4<<10;
2258 k_chip->max_flash_prog_size = 1<<10;
2259 num_blocks = 2;
2260 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2261 break;
2263 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX6:
2264 /* K26FN2M0 */
2265 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX6:
2266 /* K66FN2M0, K66FX1M0 */
2267 k_chip->pflash_sector_size = 4<<10;
2268 k_chip->nvm_sector_size = 4<<10;
2269 k_chip->max_flash_prog_size = 1<<10;
2270 num_blocks = 4;
2271 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_ECC;
2272 cpu_mhz = 180;
2273 break;
2275 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX7:
2276 /* K27FN2M0 */
2277 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX8:
2278 /* K28FN2M0 */
2279 k_chip->pflash_sector_size = 4<<10;
2280 k_chip->max_flash_prog_size = 1<<10;
2281 num_blocks = 4;
2282 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_ECC;
2283 cpu_mhz = 150;
2284 break;
2286 case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX0:
2287 case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX1:
2288 case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX2:
2289 /* K80FN256, K81FN256, K82FN256 */
2290 k_chip->pflash_sector_size = 4<<10;
2291 num_blocks = 1;
2292 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_NO_CMD_BLOCKSTAT;
2293 cpu_mhz = 150;
2294 break;
2296 case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX1:
2297 case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX2:
2298 /* KL81Z128, KL82Z128 */
2299 k_chip->pflash_sector_size = 2<<10;
2300 num_blocks = 1;
2301 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_NO_CMD_BLOCKSTAT;
2302 k_chip->cache_type = KINETIS_CACHE_L;
2304 use_nvm_marking = false;
2305 snprintf(name, sizeof(name), "MKL8%uZ%%s7",
2306 subfamid);
2307 break;
2309 default:
2310 LOG_ERROR("Unsupported Kinetis FAMILYID SUBFAMID");
2313 if (name[0] == '\0')
2314 snprintf(name, sizeof(name), "MK%u%uF%%s%u",
2315 familyid, subfamid, cpu_mhz / 10);
2316 break;
2318 case KINETIS_SDID_SERIESID_KL:
2319 /* KL-series */
2320 k_chip->pflash_sector_size = 1<<10;
2321 k_chip->nvm_sector_size = 1<<10;
2322 /* autodetect 1 or 2 blocks */
2323 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2324 k_chip->cache_type = KINETIS_CACHE_L;
2325 k_chip->watchdog_type = KINETIS_WDOG_COP;
2327 cpu_mhz = 48;
2328 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2329 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX3:
2330 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX3:
2331 subfamid = 7;
2332 break;
2334 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX8:
2335 cpu_mhz = 72;
2336 k_chip->pflash_sector_size = 2<<10;
2337 num_blocks = 2;
2338 k_chip->watchdog_type = KINETIS_WDOG32_KL28;
2339 k_chip->sysmodectrlr_type = KINETIS_SMC32;
2340 break;
2343 snprintf(name, sizeof(name), "MKL%u%uZ%%s%u",
2344 familyid, subfamid, cpu_mhz / 10);
2345 break;
2347 case KINETIS_SDID_SERIESID_KW:
2348 /* Newer KW-series (all KW series except KW2xD, KW01Z) */
2349 cpu_mhz = 48;
2350 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2351 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX0:
2352 /* KW40Z */
2353 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
2354 /* KW30Z */
2355 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX0:
2356 /* KW20Z */
2357 /* FTFA, 1kB sectors */
2358 k_chip->pflash_sector_size = 1<<10;
2359 k_chip->nvm_sector_size = 1<<10;
2360 /* autodetect 1 or 2 blocks */
2361 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2362 k_chip->cache_type = KINETIS_CACHE_L;
2363 k_chip->watchdog_type = KINETIS_WDOG_COP;
2364 break;
2365 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX1:
2366 /* KW41Z */
2367 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
2368 /* KW31Z */
2369 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX1:
2370 /* KW21Z */
2371 /* FTFA, 2kB sectors */
2372 k_chip->pflash_sector_size = 2<<10;
2373 k_chip->nvm_sector_size = 2<<10;
2374 /* autodetect 1 or 2 blocks */
2375 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2376 k_chip->cache_type = KINETIS_CACHE_L;
2377 k_chip->watchdog_type = KINETIS_WDOG_COP;
2378 break;
2379 default:
2380 LOG_ERROR("Unsupported KW FAMILYID SUBFAMID");
2382 snprintf(name, sizeof(name), "MKW%u%uZ%%s%u",
2383 familyid, subfamid, cpu_mhz / 10);
2384 break;
2386 case KINETIS_SDID_SERIESID_KV:
2387 /* KV-series */
2388 k_chip->watchdog_type = KINETIS_WDOG_K;
2389 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2390 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX0:
2391 /* KV10: FTFA, 1kB sectors */
2392 k_chip->pflash_sector_size = 1<<10;
2393 num_blocks = 1;
2394 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2395 k_chip->cache_type = KINETIS_CACHE_L;
2396 strcpy(name, "MKV10Z%s7");
2397 break;
2399 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX1:
2400 /* KV11: FTFA, 2kB sectors */
2401 k_chip->pflash_sector_size = 2<<10;
2402 num_blocks = 1;
2403 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2404 k_chip->cache_type = KINETIS_CACHE_L;
2405 strcpy(name, "MKV11Z%s7");
2406 break;
2408 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
2409 /* KV30: FTFA, 2kB sectors, 1 block */
2410 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
2411 /* KV31: FTFA, 2kB sectors, 2 blocks */
2412 k_chip->pflash_sector_size = 2<<10;
2413 /* autodetect 1 or 2 blocks */
2414 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2415 k_chip->cache_type = KINETIS_CACHE_K;
2416 break;
2418 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX2:
2419 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX4:
2420 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX6:
2421 /* KV4x: FTFA, 4kB sectors */
2422 k_chip->pflash_sector_size = 4<<10;
2423 num_blocks = 1;
2424 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2425 k_chip->cache_type = KINETIS_CACHE_K;
2426 cpu_mhz = 168;
2427 break;
2429 case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX6:
2430 case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX8:
2431 /* KV5x: FTFE, 8kB sectors */
2432 k_chip->pflash_sector_size = 8<<10;
2433 k_chip->max_flash_prog_size = 1<<10;
2434 num_blocks = 1;
2435 maxaddr_shift = 14;
2436 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_WIDTH_256BIT | FS_ECC;
2437 k_chip->pflash_base = 0x10000000;
2438 k_chip->progr_accel_ram = 0x18000000;
2439 cpu_mhz = 240;
2440 break;
2442 default:
2443 LOG_ERROR("Unsupported KV FAMILYID SUBFAMID");
2446 if (name[0] == '\0')
2447 snprintf(name, sizeof(name), "MKV%u%uF%%s%u",
2448 familyid, subfamid, cpu_mhz / 10);
2449 break;
2451 case KINETIS_SDID_SERIESID_KE:
2452 /* KE1x-series */
2453 k_chip->watchdog_type = KINETIS_WDOG32_KE1X;
2454 switch (k_chip->sim_sdid &
2455 (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK | KINETIS_SDID_PROJECTID_MASK)) {
2456 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1XZ:
2457 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX5 | KINETIS_SDID_PROJECTID_KE1XZ:
2458 /* KE1xZ: FTFE, 2kB sectors */
2459 k_chip->pflash_sector_size = 2<<10;
2460 k_chip->nvm_sector_size = 2<<10;
2461 k_chip->max_flash_prog_size = 1<<9;
2462 num_blocks = 2;
2463 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2464 k_chip->cache_type = KINETIS_CACHE_L;
2466 cpu_mhz = 72;
2467 snprintf(name, sizeof(name), "MKE%u%uZ%%s%u",
2468 familyid, subfamid, cpu_mhz / 10);
2469 break;
2471 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1XF:
2472 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX6 | KINETIS_SDID_PROJECTID_KE1XF:
2473 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX8 | KINETIS_SDID_PROJECTID_KE1XF:
2474 /* KE1xF: FTFE, 4kB sectors */
2475 k_chip->pflash_sector_size = 4<<10;
2476 k_chip->nvm_sector_size = 2<<10;
2477 k_chip->max_flash_prog_size = 1<<10;
2478 num_blocks = 2;
2479 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2480 k_chip->cache_type = KINETIS_CACHE_MSCM;
2482 cpu_mhz = 168;
2483 snprintf(name, sizeof(name), "MKE%u%uF%%s%u",
2484 familyid, subfamid, cpu_mhz / 10);
2485 break;
2487 default:
2488 LOG_ERROR("Unsupported KE FAMILYID SUBFAMID");
2490 break;
2492 default:
2493 LOG_ERROR("Unsupported K-series");
2497 if (k_chip->pflash_sector_size == 0) {
2498 LOG_ERROR("MCU is unsupported, SDID 0x%08" PRIx32, k_chip->sim_sdid);
2499 return ERROR_FLASH_OPER_UNSUPPORTED;
2502 result = target_read_u32(target, k_chip->sim_base + SIM_FCFG1_OFFSET, &k_chip->sim_fcfg1);
2503 if (result != ERROR_OK)
2504 return result;
2506 result = target_read_u32(target, k_chip->sim_base + SIM_FCFG2_OFFSET, &k_chip->sim_fcfg2);
2507 if (result != ERROR_OK)
2508 return result;
2510 LOG_DEBUG("SDID: 0x%08" PRIX32 " FCFG1: 0x%08" PRIX32 " FCFG2: 0x%08" PRIX32, k_chip->sim_sdid,
2511 k_chip->sim_fcfg1, k_chip->sim_fcfg2);
2513 fcfg1_nvmsize = (uint8_t)((k_chip->sim_fcfg1 >> 28) & 0x0f);
2514 fcfg1_pfsize = (uint8_t)((k_chip->sim_fcfg1 >> 24) & 0x0f);
2515 fcfg1_eesize = (uint8_t)((k_chip->sim_fcfg1 >> 16) & 0x0f);
2516 fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f);
2518 fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01);
2519 k_chip->fcfg2_maxaddr0_shifted = ((k_chip->sim_fcfg2 >> 24) & 0x7f) << maxaddr_shift;
2520 k_chip->fcfg2_maxaddr1_shifted = ((k_chip->sim_fcfg2 >> 16) & 0x7f) << maxaddr_shift;
2522 if (num_blocks == 0)
2523 num_blocks = k_chip->fcfg2_maxaddr1_shifted ? 2 : 1;
2524 else if (k_chip->fcfg2_maxaddr1_shifted == 0 && num_blocks >= 2 && fcfg2_pflsh) {
2525 /* fcfg2_maxaddr1 may be zero due to partitioning whole NVM as EEPROM backup
2526 * Do not adjust block count in this case! */
2527 num_blocks = 1;
2528 LOG_WARNING("MAXADDR1 is zero, number of flash banks adjusted to 1");
2529 } else if (k_chip->fcfg2_maxaddr1_shifted != 0 && num_blocks == 1) {
2530 num_blocks = 2;
2531 LOG_WARNING("MAXADDR1 is non zero, number of flash banks adjusted to 2");
2534 /* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
2535 if (!fcfg2_pflsh) {
2536 switch (fcfg1_nvmsize) {
2537 case 0x03:
2538 case 0x05:
2539 case 0x07:
2540 case 0x09:
2541 case 0x0b:
2542 k_chip->nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
2543 break;
2544 case 0x0f:
2545 if (k_chip->pflash_sector_size >= 4<<10)
2546 k_chip->nvm_size = 512<<10;
2547 else
2548 /* K20_100 */
2549 k_chip->nvm_size = 256<<10;
2550 break;
2551 default:
2552 k_chip->nvm_size = 0;
2553 break;
2556 switch (fcfg1_eesize) {
2557 case 0x00:
2558 case 0x01:
2559 case 0x02:
2560 case 0x03:
2561 case 0x04:
2562 case 0x05:
2563 case 0x06:
2564 case 0x07:
2565 case 0x08:
2566 case 0x09:
2567 ee_size = (16 << (10 - fcfg1_eesize));
2568 break;
2569 default:
2570 ee_size = 0;
2571 break;
2574 switch (fcfg1_depart) {
2575 case 0x01:
2576 case 0x02:
2577 case 0x03:
2578 case 0x04:
2579 case 0x05:
2580 case 0x06:
2581 k_chip->dflash_size = k_chip->nvm_size - (4096 << fcfg1_depart);
2582 break;
2583 case 0x07:
2584 case 0x08:
2585 k_chip->dflash_size = 0;
2586 break;
2587 case 0x09:
2588 case 0x0a:
2589 case 0x0b:
2590 case 0x0c:
2591 case 0x0d:
2592 k_chip->dflash_size = 4096 << (fcfg1_depart & 0x7);
2593 break;
2594 default:
2595 k_chip->dflash_size = k_chip->nvm_size;
2596 break;
2600 switch (fcfg1_pfsize) {
2601 case 0x00:
2602 k_chip->pflash_size = 8192;
2603 break;
2604 case 0x01:
2605 case 0x03:
2606 case 0x05:
2607 case 0x07:
2608 case 0x09:
2609 case 0x0b:
2610 case 0x0d:
2611 k_chip->pflash_size = 1 << (14 + (fcfg1_pfsize >> 1));
2612 break;
2613 case 0x0f:
2614 /* a peculiar case: Freescale states different sizes for 0xf
2615 * KL03P24M48SF0RM 32 KB .... duplicate of code 0x3
2616 * K02P64M100SFARM 128 KB ... duplicate of code 0x7
2617 * K22P121M120SF8RM 256 KB ... duplicate of code 0x9
2618 * K22P121M120SF7RM 512 KB ... duplicate of code 0xb
2619 * K22P100M120SF5RM 1024 KB ... duplicate of code 0xd
2620 * K26P169M180SF5RM 2048 KB ... the only unique value
2621 * fcfg2_maxaddr0 seems to be the only clue to pflash_size
2622 * Checking fcfg2_maxaddr0 in bank probe is pointless then
2624 if (fcfg2_pflsh)
2625 k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks;
2626 else
2627 k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks / 2;
2628 if (k_chip->pflash_size != 2048<<10)
2629 LOG_WARNING("SIM_FCFG1 PFSIZE = 0xf: please check if pflash is %" PRIu32 " KB", k_chip->pflash_size>>10);
2631 break;
2632 default:
2633 k_chip->pflash_size = 0;
2634 break;
2637 if (k_chip->flash_support & FS_PROGRAM_SECTOR && k_chip->max_flash_prog_size == 0) {
2638 k_chip->max_flash_prog_size = k_chip->pflash_sector_size;
2639 /* Program section size is equal to sector size by default */
2642 if (fcfg2_pflsh) {
2643 k_chip->num_pflash_blocks = num_blocks;
2644 k_chip->num_nvm_blocks = 0;
2645 } else {
2646 k_chip->num_pflash_blocks = (num_blocks + 1) / 2;
2647 k_chip->num_nvm_blocks = num_blocks - k_chip->num_pflash_blocks;
2650 if (use_nvm_marking) {
2651 nvm_marking[0] = k_chip->num_nvm_blocks ? 'X' : 'N';
2652 nvm_marking[1] = '\0';
2653 } else
2654 nvm_marking[0] = '\0';
2656 pflash_size_k = k_chip->pflash_size / 1024;
2657 pflash_size_m = pflash_size_k / 1024;
2658 if (pflash_size_m)
2659 snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "M0xxx", nvm_marking, pflash_size_m);
2660 else
2661 snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "xxx", nvm_marking, pflash_size_k);
2663 snprintf(k_chip->name, sizeof(k_chip->name), name, flash_marking);
2664 LOG_INFO("Kinetis %s detected: %u flash blocks", k_chip->name, num_blocks);
2665 LOG_INFO("%u PFlash banks: %" PRIu32 " KiB total", k_chip->num_pflash_blocks, pflash_size_k);
2666 if (k_chip->num_nvm_blocks) {
2667 nvm_size_k = k_chip->nvm_size / 1024;
2668 dflash_size_k = k_chip->dflash_size / 1024;
2669 LOG_INFO("%u FlexNVM banks: %" PRIu32 " KiB total, %" PRIu32 " KiB available as data flash, %"
2670 PRIu32 " bytes FlexRAM", k_chip->num_nvm_blocks, nvm_size_k, dflash_size_k, ee_size);
2673 k_chip->probed = true;
2675 if (create_banks)
2676 kinetis_create_missing_banks(k_chip);
2678 return ERROR_OK;
2681 static int kinetis_probe(struct flash_bank *bank)
2683 int result;
2684 uint8_t fcfg2_maxaddr0, fcfg2_pflsh, fcfg2_maxaddr1;
2685 unsigned num_blocks, first_nvm_bank;
2686 uint32_t size_k;
2687 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2688 struct kinetis_chip *k_chip;
2690 assert(k_bank);
2691 k_chip = k_bank->k_chip;
2693 k_bank->probed = false;
2695 if (!k_chip->probed) {
2696 result = kinetis_probe_chip(k_chip);
2697 if (result != ERROR_OK)
2698 return result;
2701 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
2702 first_nvm_bank = k_chip->num_pflash_blocks;
2704 if (k_bank->bank_number < k_chip->num_pflash_blocks) {
2705 /* pflash, banks start at address zero */
2706 k_bank->flash_class = FC_PFLASH;
2707 bank->size = (k_chip->pflash_size / k_chip->num_pflash_blocks);
2708 bank->base = k_chip->pflash_base + bank->size * k_bank->bank_number;
2709 k_bank->prog_base = 0x00000000 + bank->size * k_bank->bank_number;
2710 k_bank->sector_size = k_chip->pflash_sector_size;
2711 /* pflash is divided into 32 protection areas for
2712 * parts with more than 32K of PFlash. For parts with
2713 * less the protection unit is set to 1024 bytes */
2714 k_bank->protection_size = MAX(k_chip->pflash_size / 32, 1024);
2715 bank->num_prot_blocks = bank->size / k_bank->protection_size;
2716 k_bank->protection_block = bank->num_prot_blocks * k_bank->bank_number;
2718 size_k = bank->size / 1024;
2719 LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k PFlash, FTFx base 0x%08" PRIx32 ", sect %" PRIu32,
2720 k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size);
2722 } else if (k_bank->bank_number < num_blocks) {
2723 /* nvm, banks start at address 0x10000000 */
2724 unsigned nvm_ord = k_bank->bank_number - first_nvm_bank;
2725 uint32_t limit;
2727 k_bank->flash_class = FC_FLEX_NVM;
2728 bank->size = k_chip->nvm_size / k_chip->num_nvm_blocks;
2729 bank->base = k_chip->nvm_base + bank->size * nvm_ord;
2730 k_bank->prog_base = 0x00800000 + bank->size * nvm_ord;
2731 k_bank->sector_size = k_chip->nvm_sector_size;
2732 if (k_chip->dflash_size == 0) {
2733 k_bank->protection_size = 0;
2734 } else {
2735 int i;
2736 for (i = k_chip->dflash_size; ~i & 1; i >>= 1)
2738 if (i == 1)
2739 k_bank->protection_size = k_chip->dflash_size / 8; /* data flash size = 2^^n */
2740 else
2741 k_bank->protection_size = k_chip->nvm_size / 8; /* TODO: verify on SF1, not documented in RM */
2743 bank->num_prot_blocks = 8 / k_chip->num_nvm_blocks;
2744 k_bank->protection_block = bank->num_prot_blocks * nvm_ord;
2746 /* EEPROM backup part of FlexNVM is not accessible, use dflash_size as a limit */
2747 if (k_chip->dflash_size > bank->size * nvm_ord)
2748 limit = k_chip->dflash_size - bank->size * nvm_ord;
2749 else
2750 limit = 0;
2752 if (bank->size > limit) {
2753 bank->size = limit;
2754 LOG_DEBUG("FlexNVM bank %u limited to 0x%08" PRIx32 " due to active EEPROM backup",
2755 k_bank->bank_number, limit);
2758 size_k = bank->size / 1024;
2759 LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k FlexNVM, FTFx base 0x%08" PRIx32 ", sect %" PRIu32,
2760 k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size);
2762 } else {
2763 LOG_ERROR("Cannot determine parameters for bank %u, only %u banks on device",
2764 k_bank->bank_number, num_blocks);
2765 return ERROR_FLASH_BANK_INVALID;
2768 fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01);
2769 fcfg2_maxaddr0 = (uint8_t)((k_chip->sim_fcfg2 >> 24) & 0x7f);
2770 fcfg2_maxaddr1 = (uint8_t)((k_chip->sim_fcfg2 >> 16) & 0x7f);
2772 if (k_bank->bank_number == 0 && k_chip->fcfg2_maxaddr0_shifted != bank->size)
2773 LOG_WARNING("MAXADDR0 0x%02" PRIx8 " check failed,"
2774 " please report to OpenOCD mailing list", fcfg2_maxaddr0);
2776 if (fcfg2_pflsh) {
2777 if (k_bank->bank_number == 1 && k_chip->fcfg2_maxaddr1_shifted != bank->size)
2778 LOG_WARNING("MAXADDR1 0x%02" PRIx8 " check failed,"
2779 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
2780 } else {
2781 if (k_bank->bank_number == first_nvm_bank
2782 && k_chip->fcfg2_maxaddr1_shifted != k_chip->dflash_size)
2783 LOG_WARNING("FlexNVM MAXADDR1 0x%02" PRIx8 " check failed,"
2784 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
2787 free(bank->sectors);
2788 bank->sectors = NULL;
2790 free(bank->prot_blocks);
2791 bank->prot_blocks = NULL;
2793 if (k_bank->sector_size == 0) {
2794 LOG_ERROR("Unknown sector size for bank %u", bank->bank_number);
2795 return ERROR_FLASH_BANK_INVALID;
2798 bank->num_sectors = bank->size / k_bank->sector_size;
2800 if (bank->num_sectors > 0) {
2801 /* FlexNVM bank can be used for EEPROM backup therefore zero sized */
2802 bank->sectors = alloc_block_array(0, k_bank->sector_size, bank->num_sectors);
2803 if (!bank->sectors)
2804 return ERROR_FAIL;
2806 bank->prot_blocks = alloc_block_array(0, k_bank->protection_size, bank->num_prot_blocks);
2807 if (!bank->prot_blocks)
2808 return ERROR_FAIL;
2810 } else {
2811 bank->num_prot_blocks = 0;
2814 k_bank->probed = true;
2816 return ERROR_OK;
2819 static int kinetis_auto_probe(struct flash_bank *bank)
2821 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2823 if (k_bank && k_bank->probed)
2824 return ERROR_OK;
2826 return kinetis_probe(bank);
2829 static int kinetis_info(struct flash_bank *bank, struct command_invocation *cmd)
2831 const char *bank_class_names[] = {
2832 "(ANY)", "PFlash", "FlexNVM", "FlexRAM"
2835 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2836 struct kinetis_chip *k_chip = k_bank->k_chip;
2837 uint32_t size_k = bank->size / 1024;
2839 command_print_sameline(cmd,
2840 "%s %s: %" PRIu32 "k %s bank %s at " TARGET_ADDR_FMT,
2841 bank->driver->name, k_chip->name,
2842 size_k, bank_class_names[k_bank->flash_class],
2843 bank->name, bank->base);
2845 return ERROR_OK;
2848 static int kinetis_blank_check(struct flash_bank *bank)
2850 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2851 struct kinetis_chip *k_chip = k_bank->k_chip;
2852 int result;
2854 /* surprisingly blank check does not work in VLPR and HSRUN modes */
2855 result = kinetis_check_run_mode(k_chip);
2856 if (result != ERROR_OK)
2857 return result;
2859 /* reset error flags */
2860 result = kinetis_ftfx_prepare(bank->target);
2861 if (result != ERROR_OK)
2862 return result;
2864 if (k_bank->flash_class == FC_PFLASH || k_bank->flash_class == FC_FLEX_NVM) {
2865 bool block_dirty = true;
2866 bool use_block_cmd = !(k_chip->flash_support & FS_NO_CMD_BLOCKSTAT);
2867 uint8_t ftfx_fstat;
2869 if (use_block_cmd && k_bank->flash_class == FC_FLEX_NVM) {
2870 uint8_t fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f);
2871 /* block operation cannot be used on FlexNVM when EEPROM backup partition is set */
2872 if (fcfg1_depart != 0xf && fcfg1_depart != 0)
2873 use_block_cmd = false;
2876 if (use_block_cmd) {
2877 /* check if whole bank is blank */
2878 result = kinetis_ftfx_command(bank->target, FTFX_CMD_BLOCKSTAT, k_bank->prog_base,
2879 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
2881 if (result != ERROR_OK)
2882 kinetis_ftfx_clear_error(bank->target);
2883 else if ((ftfx_fstat & 0x01) == 0)
2884 block_dirty = false;
2887 if (block_dirty) {
2888 /* the whole bank is not erased, check sector-by-sector */
2889 for (unsigned int i = 0; i < bank->num_sectors; i++) {
2890 /* normal margin */
2891 result = kinetis_ftfx_command(bank->target, FTFX_CMD_SECTSTAT,
2892 k_bank->prog_base + bank->sectors[i].offset,
2893 1, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
2895 if (result == ERROR_OK) {
2896 bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
2897 } else {
2898 LOG_DEBUG("Ignoring error on PFlash sector blank-check");
2899 kinetis_ftfx_clear_error(bank->target);
2900 bank->sectors[i].is_erased = -1;
2903 } else {
2904 /* the whole bank is erased, update all sectors */
2905 for (unsigned int i = 0; i < bank->num_sectors; i++)
2906 bank->sectors[i].is_erased = 1;
2908 } else {
2909 LOG_WARNING("kinetis_blank_check not supported yet for FlexRAM");
2910 return ERROR_FLASH_OPERATION_FAILED;
2913 return ERROR_OK;
2917 COMMAND_HANDLER(kinetis_nvm_partition)
2919 int result;
2920 unsigned bank_idx;
2921 unsigned num_blocks, first_nvm_bank;
2922 unsigned long par, log2 = 0, ee1 = 0, ee2 = 0;
2923 enum { SHOW_INFO, DF_SIZE, EEBKP_SIZE } sz_type = SHOW_INFO;
2924 bool enable;
2925 uint8_t load_flex_ram = 1;
2926 uint8_t ee_size_code = 0x3f;
2927 uint8_t flex_nvm_partition_code = 0;
2928 uint8_t ee_split = 3;
2929 struct target *target = get_current_target(CMD_CTX);
2930 struct kinetis_chip *k_chip;
2931 uint32_t sim_fcfg1;
2933 k_chip = kinetis_get_chip(target);
2935 if (CMD_ARGC >= 2) {
2936 if (strcmp(CMD_ARGV[0], "dataflash") == 0)
2937 sz_type = DF_SIZE;
2938 else if (strcmp(CMD_ARGV[0], "eebkp") == 0)
2939 sz_type = EEBKP_SIZE;
2941 COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[1], par);
2942 while (par >> (log2 + 3))
2943 log2++;
2945 switch (sz_type) {
2946 case SHOW_INFO:
2947 if (!k_chip) {
2948 LOG_ERROR("Chip not probed.");
2949 return ERROR_FAIL;
2951 result = target_read_u32(target, k_chip->sim_base + SIM_FCFG1_OFFSET, &sim_fcfg1);
2952 if (result != ERROR_OK)
2953 return result;
2955 flex_nvm_partition_code = (uint8_t)((sim_fcfg1 >> 8) & 0x0f);
2956 switch (flex_nvm_partition_code) {
2957 case 0:
2958 command_print(CMD, "No EEPROM backup, data flash only");
2959 break;
2960 case 1:
2961 case 2:
2962 case 3:
2963 case 4:
2964 case 5:
2965 case 6:
2966 command_print(CMD, "EEPROM backup %d KB", 4 << flex_nvm_partition_code);
2967 break;
2968 case 8:
2969 command_print(CMD, "No data flash, EEPROM backup only");
2970 break;
2971 case 0x9:
2972 case 0xA:
2973 case 0xB:
2974 case 0xC:
2975 case 0xD:
2976 case 0xE:
2977 command_print(CMD, "data flash %d KB", 4 << (flex_nvm_partition_code & 7));
2978 break;
2979 case 0xf:
2980 command_print(CMD, "No EEPROM backup, data flash only (DEPART not set)");
2981 break;
2982 default:
2983 command_print(CMD, "Unsupported EEPROM backup size code 0x%02" PRIx8, flex_nvm_partition_code);
2985 return ERROR_OK;
2987 case DF_SIZE:
2988 flex_nvm_partition_code = 0x8 | log2;
2989 break;
2991 case EEBKP_SIZE:
2992 flex_nvm_partition_code = log2;
2993 break;
2996 if (CMD_ARGC == 3) {
2997 unsigned long eex;
2998 COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[2], eex);
2999 ee1 = ee2 = eex / 2;
3000 } else if (CMD_ARGC >= 4) {
3001 COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[2], ee1);
3002 COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[3], ee2);
3005 enable = ee1 + ee2 > 0;
3006 if (enable) {
3007 for (log2 = 2; ; log2++) {
3008 if (ee1 + ee2 == (16u << 10) >> log2)
3009 break;
3010 if (ee1 + ee2 > (16u << 10) >> log2 || log2 >= 9) {
3011 LOG_ERROR("Unsupported EEPROM size");
3012 return ERROR_FLASH_OPERATION_FAILED;
3016 if (ee1 * 3 == ee2)
3017 ee_split = 1;
3018 else if (ee1 * 7 == ee2)
3019 ee_split = 0;
3020 else if (ee1 != ee2) {
3021 LOG_ERROR("Unsupported EEPROM sizes ratio");
3022 return ERROR_FLASH_OPERATION_FAILED;
3025 ee_size_code = log2 | ee_split << 4;
3028 if (CMD_ARGC >= 5)
3029 COMMAND_PARSE_ON_OFF(CMD_ARGV[4], enable);
3030 if (enable)
3031 load_flex_ram = 0;
3033 LOG_INFO("DEPART 0x%" PRIx8 ", EEPROM size code 0x%" PRIx8,
3034 flex_nvm_partition_code, ee_size_code);
3036 result = kinetis_check_run_mode(k_chip);
3037 if (result != ERROR_OK)
3038 return result;
3040 /* reset error flags */
3041 result = kinetis_ftfx_prepare(target);
3042 if (result != ERROR_OK)
3043 return result;
3045 result = kinetis_ftfx_command(target, FTFX_CMD_PGMPART, load_flex_ram,
3046 ee_size_code, flex_nvm_partition_code, 0, 0,
3047 0, 0, 0, 0, NULL);
3048 if (result != ERROR_OK)
3049 return result;
3051 command_print(CMD, "FlexNVM partition set. Please reset MCU.");
3053 if (k_chip) {
3054 first_nvm_bank = k_chip->num_pflash_blocks;
3055 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
3056 for (bank_idx = first_nvm_bank; bank_idx < num_blocks; bank_idx++)
3057 k_chip->banks[bank_idx].probed = false; /* re-probe before next use */
3058 k_chip->probed = false;
3061 command_print(CMD, "FlexNVM banks will be re-probed to set new data flash size.");
3062 return ERROR_OK;
3065 COMMAND_HANDLER(kinetis_fcf_source_handler)
3067 if (CMD_ARGC > 1)
3068 return ERROR_COMMAND_SYNTAX_ERROR;
3070 if (CMD_ARGC == 1) {
3071 if (strcmp(CMD_ARGV[0], "write") == 0)
3072 allow_fcf_writes = true;
3073 else if (strcmp(CMD_ARGV[0], "protection") == 0)
3074 allow_fcf_writes = false;
3075 else
3076 return ERROR_COMMAND_SYNTAX_ERROR;
3079 if (allow_fcf_writes) {
3080 command_print(CMD, "Arbitrary Flash Configuration Field writes enabled.");
3081 command_print(CMD, "Protection info writes to FCF disabled.");
3082 LOG_WARNING("BEWARE: incorrect flash configuration may permanently lock the device.");
3083 } else {
3084 command_print(CMD, "Protection info writes to Flash Configuration Field enabled.");
3085 command_print(CMD, "Arbitrary FCF writes disabled. Mode safe from unwanted locking of the device.");
3088 return ERROR_OK;
3091 COMMAND_HANDLER(kinetis_fopt_handler)
3093 if (CMD_ARGC > 1)
3094 return ERROR_COMMAND_SYNTAX_ERROR;
3096 if (CMD_ARGC == 1) {
3097 COMMAND_PARSE_NUMBER(u8, CMD_ARGV[0], fcf_fopt);
3098 } else {
3099 command_print(CMD, "FCF_FOPT 0x%02" PRIx8, fcf_fopt);
3102 return ERROR_OK;
3105 COMMAND_HANDLER(kinetis_create_banks_handler)
3107 if (CMD_ARGC > 0)
3108 return ERROR_COMMAND_SYNTAX_ERROR;
3110 create_banks = true;
3112 return ERROR_OK;
3116 static const struct command_registration kinetis_security_command_handlers[] = {
3118 .name = "check_security",
3119 .mode = COMMAND_EXEC,
3120 .help = "Check status of device security lock",
3121 .usage = "",
3122 .handler = kinetis_check_flash_security_status,
3125 .name = "halt",
3126 .mode = COMMAND_EXEC,
3127 .help = "Issue a halt via the MDM-AP",
3128 .usage = "",
3129 .handler = kinetis_mdm_halt,
3132 .name = "mass_erase",
3133 .mode = COMMAND_EXEC,
3134 .help = "Issue a complete flash erase via the MDM-AP",
3135 .usage = "",
3136 .handler = kinetis_mdm_mass_erase,
3139 .name = "reset",
3140 .mode = COMMAND_EXEC,
3141 .help = "Issue a reset via the MDM-AP",
3142 .usage = "",
3143 .handler = kinetis_mdm_reset,
3145 COMMAND_REGISTRATION_DONE
3148 static const struct command_registration kinetis_exec_command_handlers[] = {
3150 .name = "mdm",
3151 .mode = COMMAND_ANY,
3152 .help = "MDM-AP command group",
3153 .usage = "",
3154 .chain = kinetis_security_command_handlers,
3157 .name = "disable_wdog",
3158 .mode = COMMAND_EXEC,
3159 .help = "Disable the watchdog timer",
3160 .usage = "",
3161 .handler = kinetis_disable_wdog_handler,
3164 .name = "nvm_partition",
3165 .mode = COMMAND_EXEC,
3166 .help = "Show/set data flash or EEPROM backup size in kilobytes,"
3167 " set two EEPROM sizes in bytes and FlexRAM loading during reset",
3168 .usage = "('info'|'dataflash' size|'eebkp' size) [eesize1 eesize2] ['on'|'off']",
3169 .handler = kinetis_nvm_partition,
3172 .name = "fcf_source",
3173 .mode = COMMAND_EXEC,
3174 .help = "Use protection as a source for Flash Configuration Field or allow writing arbitrary values to the FCF"
3175 " Mode 'protection' is safe from unwanted locking of the device.",
3176 .usage = "['protection'|'write']",
3177 .handler = kinetis_fcf_source_handler,
3180 .name = "fopt",
3181 .mode = COMMAND_EXEC,
3182 .help = "FCF_FOPT value source in 'kinetis fcf_source protection' mode",
3183 .usage = "[num]",
3184 .handler = kinetis_fopt_handler,
3187 .name = "create_banks",
3188 .mode = COMMAND_CONFIG,
3189 .help = "Driver creates additional banks if device with two/four flash blocks is probed",
3190 .handler = kinetis_create_banks_handler,
3191 .usage = "",
3193 COMMAND_REGISTRATION_DONE
3196 static const struct command_registration kinetis_command_handler[] = {
3198 .name = "kinetis",
3199 .mode = COMMAND_ANY,
3200 .help = "Kinetis flash controller commands",
3201 .usage = "",
3202 .chain = kinetis_exec_command_handlers,
3204 COMMAND_REGISTRATION_DONE
3209 const struct flash_driver kinetis_flash = {
3210 .name = "kinetis",
3211 .commands = kinetis_command_handler,
3212 .flash_bank_command = kinetis_flash_bank_command,
3213 .erase = kinetis_erase,
3214 .protect = kinetis_protect,
3215 .write = kinetis_write,
3216 .read = default_flash_read,
3217 .probe = kinetis_probe,
3218 .auto_probe = kinetis_auto_probe,
3219 .erase_check = kinetis_blank_check,
3220 .protect_check = kinetis_protect_check,
3221 .info = kinetis_info,
3222 .free_driver_priv = kinetis_free_driver_priv,