ARM NAND I/O refactor code copying.
[openocd.git] / src / flash / arm_nandio.c
blob990d3a0fc4296c5c86a19f5c2d6a81d485f8c689
1 /*
2 * Copyright (C) 2009 by Marvell Semiconductors, Inc.
3 * Written by Nicolas Pitre <nico at marvell.com>
5 * Copyright (C) 2009 by David Brownell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the
19 * Free Software Foundation, Inc.,
20 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
27 #include "arm_nandio.h"
28 #include "armv4_5.h"
29 #include "algorithm.h"
31 /**
32 * Copies code to a working area. This will allocate room for the code plus the
33 * additional amount requested if the working area pointer is null.
35 * @param target Pointer to the target to copy code to
36 * @param code Pointer to the code area to be copied
37 * @param code_size Size of the code being copied
38 * @param additional Size of the additional area to be allocated in addition to
39 * code
40 * @param area Pointer to a pointer to a working area to copy code to
41 * @return Success or failure of the operation
43 int arm_code_to_working_area(struct target *target, const uint32_t *code, unsigned code_size,
44 unsigned additional, struct working_area **area)
46 uint8_t code_buf[code_size];
47 unsigned i;
48 int retval;
49 unsigned size = code_size + additional;
51 /* make sure we have a working area */
52 if (NULL == *area) {
53 retval = target_alloc_working_area(target, size, area);
54 if (retval != ERROR_OK) {
55 LOG_DEBUG("%s: no %d byte buffer", __FUNCTION__, (int) size);
56 return ERROR_NAND_NO_BUFFER;
60 /* buffer code in target endianness */
61 for (i = 0; i < code_size / 4; i++)
62 target_buffer_set_u32(target, code_buf + i * 4, code[i]);
64 /* copy code to work area */
65 retval = target_write_memory(target, (*area)->address,
66 4, code_size / 4, code_buf);
68 return retval;
72 * ARM-specific bulk write from buffer to address of 8-bit wide NAND.
73 * For now this only supports ARMv4 and ARMv5 cores.
75 * Enhancements to target_run_algorithm() could enable:
76 * - ARMv6 and ARMv7 cores in ARM mode
78 * Different code fragments could handle:
79 * - Thumb2 cores like Cortex-M (needs different byteswapping)
80 * - 16-bit wide data (needs different setup too)
82 int arm_nandwrite(struct arm_nand_data *nand, uint8_t *data, int size)
84 struct target *target = nand->target;
85 struct armv4_5_algorithm algo;
86 struct arm *armv4_5 = target->arch_info;
87 struct reg_param reg_params[3];
88 uint32_t target_buf;
89 uint32_t exit = 0;
90 int retval;
92 /* Inputs:
93 * r0 NAND data address (byte wide)
94 * r1 buffer address
95 * r2 buffer length
97 static const uint32_t code[] = {
98 0xe4d13001, /* s: ldrb r3, [r1], #1 */
99 0xe5c03000, /* strb r3, [r0] */
100 0xe2522001, /* subs r2, r2, #1 */
101 0x1afffffb, /* bne s */
103 /* exit: ARMv4 needs hardware breakpoint */
104 0xe1200070, /* e: bkpt #0 */
107 if (!nand->copy_area) {
108 retval = arm_code_to_working_area(target, code, sizeof(code),
109 nand->chunk_size, &nand->copy_area);
110 if (retval != ERROR_OK) {
111 return retval;
115 /* copy data to work area */
116 target_buf = nand->copy_area->address + sizeof(code);
117 retval = target_bulk_write_memory(target, target_buf, size / 4, data);
118 if (retval == ERROR_OK && (size & 3) != 0)
119 retval = target_write_memory(target,
120 target_buf + (size & ~3),
121 1, size & 3, data + (size & ~3));
122 if (retval != ERROR_OK)
123 return retval;
125 /* set up algorithm and parameters */
126 algo.common_magic = ARMV4_5_COMMON_MAGIC;
127 algo.core_mode = ARMV4_5_MODE_SVC;
128 algo.core_state = ARMV4_5_STATE_ARM;
130 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN);
131 init_reg_param(&reg_params[1], "r1", 32, PARAM_IN);
132 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN);
134 buf_set_u32(reg_params[0].value, 0, 32, nand->data);
135 buf_set_u32(reg_params[1].value, 0, 32, target_buf);
136 buf_set_u32(reg_params[2].value, 0, 32, size);
138 /* armv4 must exit using a hardware breakpoint */
139 if (armv4_5->is_armv4)
140 exit = nand->copy_area->address + sizeof(code) - 4;
142 /* use alg to write data from work area to NAND chip */
143 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
144 nand->copy_area->address, exit, 1000, &algo);
145 if (retval != ERROR_OK)
146 LOG_ERROR("error executing hosted NAND write");
148 destroy_reg_param(&reg_params[0]);
149 destroy_reg_param(&reg_params[1]);
150 destroy_reg_param(&reg_params[2]);
152 return retval;
156 * Uses an on-chip algorithm for an ARM device to read from a NAND device and
157 * store the data into the host machine's memory.
159 * @param nand Pointer to the arm_nand_data struct that defines the I/O
160 * @param data Pointer to the data buffer to store the read data
161 * @param size Amount of data to be stored to the buffer.
163 int arm_nandread(struct arm_nand_data *nand, uint8_t *data, uint32_t size)
165 struct target *target = nand->target;
166 struct armv4_5_algorithm algo;
167 struct arm *armv4_5 = target->arch_info;
168 struct reg_param reg_params[3];
169 uint32_t target_buf;
170 uint32_t exit = 0;
171 int retval;
173 /* Inputs:
174 * r0 buffer address
175 * r1 NAND data address (byte wide)
176 * r2 buffer length
178 static const uint32_t code[] = {
179 0xe5d13000, /* s: ldrb r3, [r1] */
180 0xe4c03001, /* strb r3, [r0], #1 */
181 0xe2522001, /* subs r2, r2, #1 */
182 0x1afffffb, /* bne s */
184 /* exit: ARMv4 needs hardware breakpoint */
185 0xe1200070, /* e: bkpt #0 */
188 /* create the copy area if not yet available */
189 if (!nand->copy_area) {
190 retval = arm_code_to_working_area(target, code, sizeof(code),
191 nand->chunk_size, &nand->copy_area);
192 if (retval != ERROR_OK) {
193 return retval;
197 target_buf = nand->copy_area->address + sizeof(code);
199 /* set up algorithm and parameters */
200 algo.common_magic = ARMV4_5_COMMON_MAGIC;
201 algo.core_mode = ARMV4_5_MODE_SVC;
202 algo.core_state = ARMV4_5_STATE_ARM;
204 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN);
205 init_reg_param(&reg_params[1], "r1", 32, PARAM_IN);
206 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN);
208 buf_set_u32(reg_params[0].value, 0, 32, target_buf);
209 buf_set_u32(reg_params[1].value, 0, 32, nand->data);
210 buf_set_u32(reg_params[2].value, 0, 32, size);
212 /* armv4 must exit using a hardware breakpoint */
213 if (armv4_5->is_armv4)
214 exit = nand->copy_area->address + sizeof(code) - 4;
216 /* use alg to write data from NAND chip to work area */
217 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
218 nand->copy_area->address, exit, 1000, &algo);
219 if (retval != ERROR_OK)
220 LOG_ERROR("error executing hosted NAND write");
222 destroy_reg_param(&reg_params[0]);
223 destroy_reg_param(&reg_params[1]);
224 destroy_reg_param(&reg_params[2]);
226 /* read from work area to the host's memory */
227 retval = target_read_buffer(target, target_buf, size, data);
229 return retval;