Make the filter processing function inline
[openal-soft/openal-hmr.git] / Alc / ALu.c
blobc1377fa7a46e15b9e622d4acd76b7731a316b11c
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #define _CRT_SECURE_NO_DEPRECATE // get rid of sprintf security warnings on VS2005
23 #include "config.h"
25 #include <math.h>
26 #include "alMain.h"
27 #include "AL/al.h"
28 #include "AL/alc.h"
29 #include "alSource.h"
30 #include "alBuffer.h"
31 #include "alThunk.h"
32 #include "alListener.h"
33 #include "alAuxEffectSlot.h"
34 #include "bs2b.h"
36 #if defined(HAVE_STDINT_H)
37 #include <stdint.h>
38 typedef int64_t ALint64;
39 #elif defined(HAVE___INT64)
40 typedef __int64 ALint64;
41 #elif (SIZEOF_LONG == 8)
42 typedef long ALint64;
43 #elif (SIZEOF_LONG_LONG == 8)
44 typedef long long ALint64;
45 #endif
47 #ifdef HAVE_SQRTF
48 #define aluSqrt(x) ((ALfloat)sqrtf((float)(x)))
49 #else
50 #define aluSqrt(x) ((ALfloat)sqrt((double)(x)))
51 #endif
53 #ifdef HAVE_ACOSF
54 #define aluAcos(x) ((ALfloat)acosf((float)(x)))
55 #else
56 #define aluAcos(x) ((ALfloat)acos((double)(x)))
57 #endif
59 // fixes for mingw32.
60 #if defined(max) && !defined(__max)
61 #define __max max
62 #endif
63 #if defined(min) && !defined(__min)
64 #define __min min
65 #endif
67 #define BUFFERSIZE 24000
68 #define FRACTIONBITS 14
69 #define FRACTIONMASK ((1L<<FRACTIONBITS)-1)
70 #define MAX_PITCH 4
72 enum {
73 FRONT_LEFT = 0,
74 FRONT_RIGHT,
75 SIDE_LEFT,
76 SIDE_RIGHT,
77 BACK_LEFT,
78 BACK_RIGHT,
79 CENTER,
80 LFE,
82 OUTPUTCHANNELS
85 ALboolean DuplicateStereo = AL_FALSE;
87 /* NOTE: The AL_FORMAT_REAR* enums aren't handled here be cause they're
88 * converted to AL_FORMAT_QUAD* when loaded */
89 __inline ALuint aluBytesFromFormat(ALenum format)
91 switch(format)
93 case AL_FORMAT_MONO8:
94 case AL_FORMAT_STEREO8:
95 case AL_FORMAT_QUAD8_LOKI:
96 case AL_FORMAT_QUAD8:
97 case AL_FORMAT_51CHN8:
98 case AL_FORMAT_61CHN8:
99 case AL_FORMAT_71CHN8:
100 return 1;
102 case AL_FORMAT_MONO16:
103 case AL_FORMAT_STEREO16:
104 case AL_FORMAT_QUAD16_LOKI:
105 case AL_FORMAT_QUAD16:
106 case AL_FORMAT_51CHN16:
107 case AL_FORMAT_61CHN16:
108 case AL_FORMAT_71CHN16:
109 return 2;
111 case AL_FORMAT_MONO_FLOAT32:
112 case AL_FORMAT_STEREO_FLOAT32:
113 case AL_FORMAT_QUAD32:
114 case AL_FORMAT_51CHN32:
115 case AL_FORMAT_61CHN32:
116 case AL_FORMAT_71CHN32:
117 return 4;
119 default:
120 return 0;
124 __inline ALuint aluChannelsFromFormat(ALenum format)
126 switch(format)
128 case AL_FORMAT_MONO8:
129 case AL_FORMAT_MONO16:
130 case AL_FORMAT_MONO_FLOAT32:
131 return 1;
133 case AL_FORMAT_STEREO8:
134 case AL_FORMAT_STEREO16:
135 case AL_FORMAT_STEREO_FLOAT32:
136 return 2;
138 case AL_FORMAT_QUAD8_LOKI:
139 case AL_FORMAT_QUAD16_LOKI:
140 case AL_FORMAT_QUAD8:
141 case AL_FORMAT_QUAD16:
142 case AL_FORMAT_QUAD32:
143 return 4;
145 case AL_FORMAT_51CHN8:
146 case AL_FORMAT_51CHN16:
147 case AL_FORMAT_51CHN32:
148 return 6;
150 case AL_FORMAT_61CHN8:
151 case AL_FORMAT_61CHN16:
152 case AL_FORMAT_61CHN32:
153 return 7;
155 case AL_FORMAT_71CHN8:
156 case AL_FORMAT_71CHN16:
157 case AL_FORMAT_71CHN32:
158 return 8;
160 default:
161 return 0;
166 static __inline ALfloat lpFilter(FILTER *iir, ALfloat input)
168 unsigned int i;
169 float *hist1_ptr,*hist2_ptr,*coef_ptr;
170 ALfloat output,new_hist,history1,history2;
172 coef_ptr = iir->coef; /* coefficient pointer */
174 hist1_ptr = iir->history; /* first history */
175 hist2_ptr = hist1_ptr + 1; /* next history */
177 /* 1st number of coefficients array is overall input scale factor,
178 * or filter gain */
179 output = input * (*coef_ptr++);
181 for(i = 0;i < FILTER_SECTIONS;i++)
183 history1 = *hist1_ptr; /* history values */
184 history2 = *hist2_ptr;
186 output = output - history1 * (*coef_ptr++);
187 new_hist = output - history2 * (*coef_ptr++); /* poles */
189 output = new_hist + history1 * (*coef_ptr++);
190 output = output + history2 * (*coef_ptr++); /* zeros */
192 *hist2_ptr++ = *hist1_ptr;
193 *hist1_ptr++ = new_hist;
194 hist1_ptr++;
195 hist2_ptr++;
198 return output;
202 static __inline ALshort aluF2S(ALfloat Value)
204 ALint i;
206 i = (ALint)Value;
207 i = __min( 32767, i);
208 i = __max(-32768, i);
209 return ((ALshort)i);
212 static __inline ALvoid aluCrossproduct(ALfloat *inVector1,ALfloat *inVector2,ALfloat *outVector)
214 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
215 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
216 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
219 static __inline ALfloat aluDotproduct(ALfloat *inVector1,ALfloat *inVector2)
221 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
222 inVector1[2]*inVector2[2];
225 static __inline ALvoid aluNormalize(ALfloat *inVector)
227 ALfloat length, inverse_length;
229 length = aluSqrt(aluDotproduct(inVector, inVector));
230 if(length != 0.0f)
232 inverse_length = 1.0f/length;
233 inVector[0] *= inverse_length;
234 inVector[1] *= inverse_length;
235 inVector[2] *= inverse_length;
239 static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat matrix[3][3])
241 ALfloat result[3];
243 result[0] = vector[0]*matrix[0][0] + vector[1]*matrix[1][0] + vector[2]*matrix[2][0];
244 result[1] = vector[0]*matrix[0][1] + vector[1]*matrix[1][1] + vector[2]*matrix[2][1];
245 result[2] = vector[0]*matrix[0][2] + vector[1]*matrix[1][2] + vector[2]*matrix[2][2];
246 memcpy(vector, result, sizeof(result));
249 static __inline ALfloat aluComputeSample(ALfloat GainHF, ALfloat sample, ALfloat LowSample)
251 return LowSample + ((sample - LowSample) * GainHF);
254 static ALvoid CalcSourceParams(ALCcontext *ALContext, ALsource *ALSource,
255 ALenum isMono, ALenum OutputFormat,
256 ALfloat *drysend, ALfloat *wetsend,
257 ALfloat *pitch, ALfloat *drygainhf,
258 ALfloat *wetgainhf)
260 ALfloat InnerAngle,OuterAngle,Angle,Distance,DryMix,WetMix=0.0f;
261 ALfloat Direction[3],Position[3],SourceToListener[3];
262 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff,OuterGainHF;
263 ALfloat ConeVolume,SourceVolume,PanningFB,PanningLR,ListenerGain;
264 ALfloat U[3],V[3],N[3];
265 ALfloat DopplerFactor, DopplerVelocity, flSpeedOfSound, flMaxVelocity;
266 ALfloat Matrix[3][3];
267 ALfloat flAttenuation;
268 ALfloat RoomAttenuation;
269 ALfloat MetersPerUnit;
270 ALfloat RoomRolloff;
271 ALfloat DryGainHF = 1.0f;
272 ALfloat WetGainHF = 1.0f;
274 //Get context properties
275 DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
276 DopplerVelocity = ALContext->DopplerVelocity;
277 flSpeedOfSound = ALContext->flSpeedOfSound;
279 //Get listener properties
280 ListenerGain = ALContext->Listener.Gain;
281 MetersPerUnit = ALContext->Listener.MetersPerUnit;
283 //Get source properties
284 SourceVolume = ALSource->flGain;
285 memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition));
286 memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation));
287 MinVolume = ALSource->flMinGain;
288 MaxVolume = ALSource->flMaxGain;
289 MinDist = ALSource->flRefDistance;
290 MaxDist = ALSource->flMaxDistance;
291 Rolloff = ALSource->flRollOffFactor;
292 InnerAngle = ALSource->flInnerAngle;
293 OuterAngle = ALSource->flOuterAngle;
294 OuterGainHF = ALSource->OuterGainHF;
295 RoomRolloff = ALSource->RoomRolloffFactor;
297 //Only apply 3D calculations for mono buffers
298 if(isMono != AL_FALSE)
300 //1. Translate Listener to origin (convert to head relative)
301 // Note that Direction and SourceToListener are *not* transformed.
302 // SourceToListener is used with the source and listener velocities,
303 // which are untransformed, and Direction is used with SourceToListener
304 // for the sound cone
305 if(ALSource->bHeadRelative==AL_FALSE)
307 // Build transform matrix
308 aluCrossproduct(ALContext->Listener.Forward, ALContext->Listener.Up, U); // Right-vector
309 aluNormalize(U); // Normalized Right-vector
310 memcpy(V, ALContext->Listener.Up, sizeof(V)); // Up-vector
311 aluNormalize(V); // Normalized Up-vector
312 memcpy(N, ALContext->Listener.Forward, sizeof(N)); // At-vector
313 aluNormalize(N); // Normalized At-vector
314 Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0];
315 Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1];
316 Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2];
318 // Translate source position into listener space
319 Position[0] -= ALContext->Listener.Position[0];
320 Position[1] -= ALContext->Listener.Position[1];
321 Position[2] -= ALContext->Listener.Position[2];
323 SourceToListener[0] = -Position[0];
324 SourceToListener[1] = -Position[1];
325 SourceToListener[2] = -Position[2];
327 // Transform source position and direction into listener space
328 aluMatrixVector(Position, Matrix);
330 else
332 SourceToListener[0] = -Position[0];
333 SourceToListener[1] = -Position[1];
334 SourceToListener[2] = -Position[2];
336 aluNormalize(SourceToListener);
337 aluNormalize(Direction);
339 //2. Calculate distance attenuation
340 Distance = aluSqrt(aluDotproduct(Position, Position));
342 if(ALSource->Send[0].Slot && !ALSource->Send[0].Slot->AuxSendAuto)
344 if(ALSource->Send[0].Slot->effect.type == AL_EFFECT_REVERB)
345 RoomRolloff += ALSource->Send[0].Slot->effect.Reverb.RoomRolloffFactor;
348 flAttenuation = 1.0f;
349 RoomAttenuation = 1.0f;
350 switch (ALContext->DistanceModel)
352 case AL_INVERSE_DISTANCE_CLAMPED:
353 Distance=__max(Distance,MinDist);
354 Distance=__min(Distance,MaxDist);
355 if (MaxDist < MinDist)
356 break;
357 //fall-through
358 case AL_INVERSE_DISTANCE:
359 if (MinDist > 0.0f)
361 if ((MinDist + (Rolloff * (Distance - MinDist))) > 0.0f)
362 flAttenuation = MinDist / (MinDist + (Rolloff * (Distance - MinDist)));
363 if ((MinDist + (RoomRolloff * (Distance - MinDist))) > 0.0f)
364 RoomAttenuation = MinDist / (MinDist + (RoomRolloff * (Distance - MinDist)));
366 break;
368 case AL_LINEAR_DISTANCE_CLAMPED:
369 Distance=__max(Distance,MinDist);
370 Distance=__min(Distance,MaxDist);
371 if (MaxDist < MinDist)
372 break;
373 //fall-through
374 case AL_LINEAR_DISTANCE:
375 Distance=__min(Distance,MaxDist);
376 if (MaxDist != MinDist)
378 flAttenuation = 1.0f - (Rolloff*(Distance-MinDist)/(MaxDist - MinDist));
379 RoomAttenuation = 1.0f - (RoomRolloff*(Distance-MinDist)/(MaxDist - MinDist));
381 break;
383 case AL_EXPONENT_DISTANCE_CLAMPED:
384 Distance=__max(Distance,MinDist);
385 Distance=__min(Distance,MaxDist);
386 if (MaxDist < MinDist)
387 break;
388 //fall-through
389 case AL_EXPONENT_DISTANCE:
390 if ((Distance > 0.0f) && (MinDist > 0.0f))
392 flAttenuation = (ALfloat)pow(Distance/MinDist, -Rolloff);
393 RoomAttenuation = (ALfloat)pow(Distance/MinDist, -RoomRolloff);
395 break;
397 case AL_NONE:
398 default:
399 flAttenuation = 1.0f;
400 RoomAttenuation = 1.0f;
401 break;
404 // Source Gain + Attenuation and clamp to Min/Max Gain
405 DryMix = SourceVolume * flAttenuation;
406 DryMix = __min(DryMix,MaxVolume);
407 DryMix = __max(DryMix,MinVolume);
409 WetMix = SourceVolume * (ALSource->WetGainAuto ?
410 RoomAttenuation : 1.0f);
411 WetMix = __min(WetMix,MaxVolume);
412 WetMix = __max(WetMix,MinVolume);
414 //3. Apply directional soundcones
415 Angle = aluAcos(aluDotproduct(Direction,SourceToListener)) * 180.0f /
416 3.141592654f;
417 if(Angle >= InnerAngle && Angle <= OuterAngle)
419 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
420 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f)*scale);
421 if(ALSource->WetGainAuto)
422 WetMix *= ConeVolume;
423 if(ALSource->DryGainHFAuto)
424 DryGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
425 if(ALSource->WetGainHFAuto)
426 WetGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
428 else if(Angle > OuterAngle)
430 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f));
431 if(ALSource->WetGainAuto)
432 WetMix *= ConeVolume;
433 if(ALSource->DryGainHFAuto)
434 DryGainHF *= (1.0f+(OuterGainHF-1.0f));
435 if(ALSource->WetGainHFAuto)
436 WetGainHF *= (1.0f+(OuterGainHF-1.0f));
438 else
439 ConeVolume = 1.0f;
441 //4. Calculate Velocity
442 if(DopplerFactor != 0.0f)
444 ALfloat flVSS, flVLS = 0.0f;
446 if(ALSource->bHeadRelative==AL_FALSE)
447 flVLS = aluDotproduct(ALContext->Listener.Velocity, SourceToListener);
448 flVSS = aluDotproduct(ALSource->vVelocity, SourceToListener);
450 flMaxVelocity = (DopplerVelocity * flSpeedOfSound) / DopplerFactor;
452 if (flVSS >= flMaxVelocity)
453 flVSS = (flMaxVelocity - 1.0f);
454 else if (flVSS <= -flMaxVelocity)
455 flVSS = -flMaxVelocity + 1.0f;
457 if (flVLS >= flMaxVelocity)
458 flVLS = (flMaxVelocity - 1.0f);
459 else if (flVLS <= -flMaxVelocity)
460 flVLS = -flMaxVelocity + 1.0f;
462 pitch[0] = ALSource->flPitch *
463 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVLS)) /
464 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVSS));
466 else
467 pitch[0] = ALSource->flPitch;
469 //5. Apply filter gains and filters
470 switch(ALSource->DirectFilter.type)
472 case AL_FILTER_LOWPASS:
473 DryMix *= ALSource->DirectFilter.Gain;
474 DryGainHF *= ALSource->DirectFilter.GainHF;
475 break;
478 switch(ALSource->Send[0].WetFilter.type)
480 case AL_FILTER_LOWPASS:
481 WetMix *= ALSource->Send[0].WetFilter.Gain;
482 WetGainHF *= ALSource->Send[0].WetFilter.GainHF;
483 break;
486 if(ALSource->AirAbsorptionFactor > 0.0f)
487 DryGainHF *= pow(ALSource->AirAbsorptionFactor * AIRABSORBGAINHF,
488 Distance * MetersPerUnit);
490 if(ALSource->Send[0].Slot)
492 WetMix *= ALSource->Send[0].Slot->Gain;
494 if(ALSource->Send[0].Slot->effect.type == AL_EFFECT_REVERB)
496 WetGainHF *= ALSource->Send[0].Slot->effect.Reverb.GainHF;
497 WetGainHF *= pow(ALSource->Send[0].Slot->effect.Reverb.AirAbsorptionGainHF,
498 Distance * MetersPerUnit);
501 else
503 WetMix = 0.0f;
504 WetGainHF = 1.0f;
507 DryMix *= ListenerGain * ConeVolume;
508 WetMix *= ListenerGain;
510 //6. Convert normalized position into pannings, then into channel volumes
511 aluNormalize(Position);
512 switch(aluChannelsFromFormat(OutputFormat))
514 case 1:
515 drysend[FRONT_LEFT] = DryMix * aluSqrt(1.0f); //Direct
516 drysend[FRONT_RIGHT] = DryMix * aluSqrt(1.0f); //Direct
517 wetsend[FRONT_LEFT] = WetMix * aluSqrt(1.0f); //Room
518 wetsend[FRONT_RIGHT] = WetMix * aluSqrt(1.0f); //Room
519 break;
520 case 2:
521 PanningLR = 0.5f + 0.5f*Position[0];
522 drysend[FRONT_LEFT] = DryMix * aluSqrt(1.0f-PanningLR); //L Direct
523 drysend[FRONT_RIGHT] = DryMix * aluSqrt( PanningLR); //R Direct
524 wetsend[FRONT_LEFT] = WetMix * aluSqrt(1.0f-PanningLR); //L Room
525 wetsend[FRONT_RIGHT] = WetMix * aluSqrt( PanningLR); //R Room
526 break;
527 case 4:
528 /* TODO: Add center/lfe channel in spatial calculations? */
529 case 6:
530 // Apply a scalar so each individual speaker has more weight
531 PanningLR = 0.5f + (0.5f*Position[0]*1.41421356f);
532 PanningLR = __min(1.0f, PanningLR);
533 PanningLR = __max(0.0f, PanningLR);
534 PanningFB = 0.5f + (0.5f*Position[2]*1.41421356f);
535 PanningFB = __min(1.0f, PanningFB);
536 PanningFB = __max(0.0f, PanningFB);
537 drysend[FRONT_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
538 drysend[FRONT_RIGHT] = DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
539 drysend[BACK_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
540 drysend[BACK_RIGHT] = DryMix * aluSqrt(( PanningLR)*( PanningFB));
541 wetsend[FRONT_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
542 wetsend[FRONT_RIGHT] = WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
543 wetsend[BACK_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
544 wetsend[BACK_RIGHT] = WetMix * aluSqrt(( PanningLR)*( PanningFB));
545 break;
546 case 7:
547 case 8:
548 PanningFB = 1.0f - fabs(Position[2]*1.15470054f);
549 PanningFB = __min(1.0f, PanningFB);
550 PanningFB = __max(0.0f, PanningFB);
551 PanningLR = 0.5f + (0.5*Position[0]*((1.0f-PanningFB)*2.0f));
552 PanningLR = __min(1.0f, PanningLR);
553 PanningLR = __max(0.0f, PanningLR);
554 if(Position[2] > 0.0f)
556 drysend[BACK_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
557 drysend[BACK_RIGHT] = DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
558 drysend[SIDE_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
559 drysend[SIDE_RIGHT] = DryMix * aluSqrt(( PanningLR)*( PanningFB));
560 drysend[FRONT_LEFT] = 0.0f;
561 drysend[FRONT_RIGHT] = 0.0f;
562 wetsend[BACK_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
563 wetsend[BACK_RIGHT] = WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
564 wetsend[SIDE_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
565 wetsend[SIDE_RIGHT] = WetMix * aluSqrt(( PanningLR)*( PanningFB));
566 wetsend[FRONT_LEFT] = 0.0f;
567 wetsend[FRONT_RIGHT] = 0.0f;
569 else
571 drysend[FRONT_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
572 drysend[FRONT_RIGHT] = DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
573 drysend[SIDE_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
574 drysend[SIDE_RIGHT] = DryMix * aluSqrt(( PanningLR)*( PanningFB));
575 drysend[BACK_LEFT] = 0.0f;
576 drysend[BACK_RIGHT] = 0.0f;
577 wetsend[FRONT_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
578 wetsend[FRONT_RIGHT] = WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
579 wetsend[SIDE_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
580 wetsend[SIDE_RIGHT] = WetMix * aluSqrt(( PanningLR)*( PanningFB));
581 wetsend[BACK_LEFT] = 0.0f;
582 wetsend[BACK_RIGHT] = 0.0f;
584 default:
585 break;
588 *drygainhf = DryGainHF;
589 *wetgainhf = WetGainHF;
591 else
593 //1. Multi-channel buffers always play "normal"
594 pitch[0] = ALSource->flPitch;
596 drysend[FRONT_LEFT] = SourceVolume * ListenerGain;
597 drysend[FRONT_RIGHT] = SourceVolume * ListenerGain;
598 drysend[SIDE_LEFT] = SourceVolume * ListenerGain;
599 drysend[SIDE_RIGHT] = SourceVolume * ListenerGain;
600 drysend[BACK_LEFT] = SourceVolume * ListenerGain;
601 drysend[BACK_RIGHT] = SourceVolume * ListenerGain;
602 drysend[CENTER] = SourceVolume * ListenerGain;
603 drysend[LFE] = SourceVolume * ListenerGain;
604 wetsend[FRONT_LEFT] = 0.0f;
605 wetsend[FRONT_RIGHT] = 0.0f;
606 wetsend[SIDE_LEFT] = 0.0f;
607 wetsend[SIDE_RIGHT] = 0.0f;
608 wetsend[BACK_LEFT] = 0.0f;
609 wetsend[BACK_RIGHT] = 0.0f;
610 wetsend[CENTER] = 0.0f;
611 wetsend[LFE] = 0.0f;
612 WetGainHF = 1.0f;
614 *drygainhf = DryGainHF;
615 *wetgainhf = WetGainHF;
619 ALvoid aluMixData(ALCcontext *ALContext,ALvoid *buffer,ALsizei size,ALenum format)
621 static float DryBuffer[BUFFERSIZE][OUTPUTCHANNELS];
622 static float WetBuffer[BUFFERSIZE][OUTPUTCHANNELS];
623 static float ReverbBuffer[BUFFERSIZE];
624 ALfloat DrySend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
625 ALfloat WetSend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
626 ALfloat DryGainHF = 0.0f;
627 ALfloat WetGainHF = 0.0f;
628 ALuint BlockAlign,BufferSize;
629 ALuint DataSize=0,DataPosInt=0,DataPosFrac=0;
630 ALuint Channels,Frequency,ulExtraSamples;
631 ALboolean doReverb;
632 ALfloat Pitch;
633 ALint Looping,State;
634 ALint fraction,increment;
635 ALuint Buffer;
636 ALuint SamplesToDo;
637 ALsource *ALSource;
638 ALbuffer *ALBuffer;
639 ALeffectslot *ALEffectSlot;
640 ALfloat value;
641 ALshort *Data;
642 ALuint i,j,k;
643 ALbufferlistitem *BufferListItem;
644 ALuint loop;
645 ALint64 DataSize64,DataPos64;
646 FILTER *Filter;
648 SuspendContext(ALContext);
650 //Figure output format variables
651 BlockAlign = aluChannelsFromFormat(format);
652 BlockAlign *= aluBytesFromFormat(format);
654 size /= BlockAlign;
655 while(size > 0)
657 //Setup variables
658 ALEffectSlot = (ALContext ? ALContext->AuxiliaryEffectSlot : NULL);
659 ALSource = (ALContext ? ALContext->Source : NULL);
660 SamplesToDo = min(size, BUFFERSIZE);
662 //Clear mixing buffer
663 memset(DryBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
664 memset(WetBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
665 memset(ReverbBuffer, 0, SamplesToDo*sizeof(ALfloat));
667 //Actual mixing loop
668 while(ALSource)
670 j = 0;
671 State = ALSource->state;
673 doReverb = ((ALSource->Send[0].Slot &&
674 ALSource->Send[0].Slot->effect.type == AL_EFFECT_REVERB) ?
675 AL_TRUE : AL_FALSE);
677 while(State == AL_PLAYING && j < SamplesToDo)
679 DataSize = 0;
680 DataPosInt = 0;
681 DataPosFrac = 0;
683 //Get buffer info
684 if((Buffer = ALSource->ulBufferID))
686 ALBuffer = (ALbuffer*)ALTHUNK_LOOKUPENTRY(Buffer);
688 Data = ALBuffer->data;
689 Channels = aluChannelsFromFormat(ALBuffer->format);
690 DataSize = ALBuffer->size;
691 Frequency = ALBuffer->frequency;
693 CalcSourceParams(ALContext, ALSource,
694 (Channels==1) ? AL_TRUE : AL_FALSE,
695 format, DrySend, WetSend, &Pitch,
696 &DryGainHF, &WetGainHF);
699 Pitch = (Pitch*Frequency) / ALContext->Frequency;
700 DataSize /= Channels * aluBytesFromFormat(ALBuffer->format);
702 //Get source info
703 DataPosInt = ALSource->position;
704 DataPosFrac = ALSource->position_fraction;
705 Filter = &ALSource->iirFilter;
707 //Compute 18.14 fixed point step
708 increment = (ALint)(Pitch*(ALfloat)(1L<<FRACTIONBITS));
709 if(increment > (MAX_PITCH<<FRACTIONBITS))
710 increment = (MAX_PITCH<<FRACTIONBITS);
712 //Figure out how many samples we can mix.
713 DataSize64 = DataSize;
714 DataSize64 <<= FRACTIONBITS;
715 DataPos64 = DataPosInt;
716 DataPos64 <<= FRACTIONBITS;
717 DataPos64 += DataPosFrac;
718 BufferSize = (ALuint)((DataSize64-DataPos64+(increment-1)) / increment);
720 BufferListItem = ALSource->queue;
721 for(loop = 0; loop < ALSource->BuffersPlayed; loop++)
723 if(BufferListItem)
724 BufferListItem = BufferListItem->next;
726 if (BufferListItem)
728 if (BufferListItem->next)
730 ALbuffer *NextBuf = (ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer);
731 if(NextBuf && NextBuf->data)
733 ulExtraSamples = min(NextBuf->size, (ALint)(ALBuffer->padding*Channels*2));
734 memcpy(&Data[DataSize*Channels], NextBuf->data, ulExtraSamples);
737 else if (ALSource->bLooping)
739 ALbuffer *NextBuf = (ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer);
740 if (NextBuf && NextBuf->data)
742 ulExtraSamples = min(NextBuf->size, (ALint)(ALBuffer->padding*Channels*2));
743 memcpy(&Data[DataSize*Channels], NextBuf->data, ulExtraSamples);
747 BufferSize = min(BufferSize, (SamplesToDo-j));
749 //Actual sample mixing loop
750 Data += DataPosInt*Channels;
751 while(BufferSize--)
753 k = DataPosFrac>>FRACTIONBITS;
754 fraction = DataPosFrac&FRACTIONMASK;
756 if(Channels==1)
758 ALfloat sample, lowsamp, outsamp;
759 //First order interpolator
760 sample = (Data[k]*((1<<FRACTIONBITS)-fraction) +
761 Data[k+1]*fraction) >> FRACTIONBITS;
762 lowsamp = lpFilter(Filter, sample);
764 //Direct path final mix buffer and panning
765 outsamp = aluComputeSample(DryGainHF, sample, lowsamp);
766 DryBuffer[j][FRONT_LEFT] += outsamp*DrySend[FRONT_LEFT];
767 DryBuffer[j][FRONT_RIGHT] += outsamp*DrySend[FRONT_RIGHT];
768 DryBuffer[j][SIDE_LEFT] += outsamp*DrySend[SIDE_LEFT];
769 DryBuffer[j][SIDE_RIGHT] += outsamp*DrySend[SIDE_RIGHT];
770 DryBuffer[j][BACK_LEFT] += outsamp*DrySend[BACK_LEFT];
771 DryBuffer[j][BACK_RIGHT] += outsamp*DrySend[BACK_RIGHT];
772 //Room path final mix buffer and panning
773 outsamp = aluComputeSample(WetGainHF, sample, lowsamp);
774 if(doReverb)
775 ReverbBuffer[j] += outsamp;
776 else
778 WetBuffer[j][FRONT_LEFT] += outsamp*WetSend[FRONT_LEFT];
779 WetBuffer[j][FRONT_RIGHT] += outsamp*WetSend[FRONT_RIGHT];
780 WetBuffer[j][SIDE_LEFT] += outsamp*WetSend[SIDE_LEFT];
781 WetBuffer[j][SIDE_RIGHT] += outsamp*WetSend[SIDE_RIGHT];
782 WetBuffer[j][BACK_LEFT] += outsamp*WetSend[BACK_LEFT];
783 WetBuffer[j][BACK_RIGHT] += outsamp*WetSend[BACK_RIGHT];
786 else
788 ALfloat samp1, samp2;
789 //First order interpolator (front left)
790 samp1 = (ALfloat)((ALshort)(((Data[k*Channels ]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels ]*(fraction)))>>FRACTIONBITS));
791 DryBuffer[j][FRONT_LEFT] += samp1*DrySend[FRONT_LEFT];
792 WetBuffer[j][FRONT_LEFT] += samp1*WetSend[FRONT_LEFT];
793 //First order interpolator (front right)
794 samp2 = (ALfloat)((ALshort)(((Data[k*Channels+1]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+1]*(fraction)))>>FRACTIONBITS));
795 DryBuffer[j][FRONT_RIGHT] += samp2*DrySend[FRONT_RIGHT];
796 WetBuffer[j][FRONT_RIGHT] += samp2*WetSend[FRONT_RIGHT];
797 if(Channels >= 4)
799 int i = 2;
800 if(Channels >= 6)
802 if(Channels != 7)
804 //First order interpolator (center)
805 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
806 DryBuffer[j][CENTER] += value*DrySend[CENTER];
807 WetBuffer[j][CENTER] += value*WetSend[CENTER];
808 i++;
810 //First order interpolator (lfe)
811 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
812 DryBuffer[j][LFE] += value*DrySend[LFE];
813 WetBuffer[j][LFE] += value*WetSend[LFE];
814 i++;
816 //First order interpolator (back left)
817 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
818 DryBuffer[j][BACK_LEFT] += value*DrySend[BACK_LEFT];
819 WetBuffer[j][BACK_LEFT] += value*WetSend[BACK_LEFT];
820 i++;
821 //First order interpolator (back right)
822 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
823 DryBuffer[j][BACK_RIGHT] += value*DrySend[BACK_RIGHT];
824 WetBuffer[j][BACK_RIGHT] += value*WetSend[BACK_RIGHT];
825 i++;
826 if(Channels >= 7)
828 //First order interpolator (side left)
829 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
830 DryBuffer[j][SIDE_LEFT] += value*DrySend[SIDE_LEFT];
831 WetBuffer[j][SIDE_LEFT] += value*WetSend[SIDE_LEFT];
832 i++;
833 //First order interpolator (side right)
834 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
835 DryBuffer[j][SIDE_RIGHT] += value*DrySend[SIDE_RIGHT];
836 WetBuffer[j][SIDE_RIGHT] += value*WetSend[SIDE_RIGHT];
837 i++;
840 else if(DuplicateStereo)
842 //Duplicate stereo channels on the back speakers
843 DryBuffer[j][BACK_LEFT] += samp1*DrySend[BACK_LEFT];
844 WetBuffer[j][BACK_LEFT] += samp1*WetSend[BACK_LEFT];
845 DryBuffer[j][BACK_RIGHT] += samp2*DrySend[BACK_RIGHT];
846 WetBuffer[j][BACK_RIGHT] += samp2*WetSend[BACK_RIGHT];
849 DataPosFrac += increment;
850 j++;
852 DataPosInt += (DataPosFrac>>FRACTIONBITS);
853 DataPosFrac = (DataPosFrac&FRACTIONMASK);
855 //Update source info
856 ALSource->position = DataPosInt;
857 ALSource->position_fraction = DataPosFrac;
860 //Handle looping sources
861 if(!Buffer || DataPosInt >= DataSize)
863 //queueing
864 if(ALSource->queue)
866 Looping = ALSource->bLooping;
867 if(ALSource->BuffersPlayed < (ALSource->BuffersInQueue-1))
869 BufferListItem = ALSource->queue;
870 for(loop = 0; loop <= ALSource->BuffersPlayed; loop++)
872 if(BufferListItem)
874 if(!Looping)
875 BufferListItem->bufferstate = PROCESSED;
876 BufferListItem = BufferListItem->next;
879 if(!Looping)
880 ALSource->BuffersProcessed++;
881 if(BufferListItem)
882 ALSource->ulBufferID = BufferListItem->buffer;
883 ALSource->position = DataPosInt-DataSize;
884 ALSource->position_fraction = DataPosFrac;
885 ALSource->BuffersPlayed++;
887 else
889 if(!Looping)
891 /* alSourceStop */
892 ALSource->state = AL_STOPPED;
893 ALSource->inuse = AL_FALSE;
894 ALSource->BuffersPlayed = ALSource->BuffersProcessed = ALSource->BuffersInQueue;
895 BufferListItem = ALSource->queue;
896 while(BufferListItem != NULL)
898 BufferListItem->bufferstate = PROCESSED;
899 BufferListItem = BufferListItem->next;
902 else
904 /* alSourceRewind */
905 /* alSourcePlay */
906 ALSource->state = AL_PLAYING;
907 ALSource->inuse = AL_TRUE;
908 ALSource->play = AL_TRUE;
909 ALSource->BuffersPlayed = 0;
910 ALSource->BufferPosition = 0;
911 ALSource->lBytesPlayed = 0;
912 ALSource->BuffersProcessed = 0;
913 BufferListItem = ALSource->queue;
914 while(BufferListItem != NULL)
916 BufferListItem->bufferstate = PENDING;
917 BufferListItem = BufferListItem->next;
919 ALSource->ulBufferID = ALSource->queue->buffer;
921 ALSource->position = DataPosInt-DataSize;
922 ALSource->position_fraction = DataPosFrac;
928 //Get source state
929 State = ALSource->state;
932 ALSource = ALSource->next;
935 // effect slot processing
936 while(ALEffectSlot)
938 if(ALEffectSlot->effect.type == AL_EFFECT_REVERB)
940 ALfloat *DelayBuffer = ALEffectSlot->ReverbBuffer;
941 ALuint Pos = ALEffectSlot->ReverbPos;
942 ALuint LatePos = ALEffectSlot->ReverbLatePos;
943 ALuint ReflectPos = ALEffectSlot->ReverbReflectPos;
944 ALuint Length = ALEffectSlot->ReverbLength;
945 ALfloat DecayGain = ALEffectSlot->ReverbDecayGain;
946 ALfloat DecayHFRatio = ALEffectSlot->effect.Reverb.DecayHFRatio;
947 ALfloat Gain = ALEffectSlot->effect.Reverb.Gain;
948 ALfloat ReflectGain = ALEffectSlot->effect.Reverb.ReflectionsGain;
949 ALfloat LateReverbGain = ALEffectSlot->effect.Reverb.LateReverbGain;
950 ALfloat sample, lowsample;
952 Filter = &ALEffectSlot->iirFilter;
953 for(i = 0;i < SamplesToDo;i++)
955 DelayBuffer[Pos] = ReverbBuffer[i] * Gain;
957 sample = DelayBuffer[ReflectPos] * ReflectGain;
959 DelayBuffer[LatePos] *= LateReverbGain;
961 Pos = (Pos+1) % Length;
962 lowsample = lpFilter(Filter, DelayBuffer[Pos]);
963 lowsample += (DelayBuffer[Pos]-lowsample) * DecayHFRatio;
965 DelayBuffer[LatePos] += lowsample * DecayGain;
967 sample += DelayBuffer[LatePos];
969 WetBuffer[i][FRONT_LEFT] += sample;
970 WetBuffer[i][FRONT_RIGHT] += sample;
971 WetBuffer[i][SIDE_LEFT] += sample;
972 WetBuffer[i][SIDE_RIGHT] += sample;
973 WetBuffer[i][BACK_LEFT] += sample;
974 WetBuffer[i][BACK_RIGHT] += sample;
976 LatePos = (LatePos+1) % Length;
977 ReflectPos = (ReflectPos+1) % Length;
980 ALEffectSlot->ReverbPos = Pos;
981 ALEffectSlot->ReverbLatePos = LatePos;
982 ALEffectSlot->ReverbReflectPos = ReflectPos;
985 ALEffectSlot = ALEffectSlot->next;
988 //Post processing loop
989 switch(format)
991 case AL_FORMAT_MONO8:
992 for(i = 0;i < SamplesToDo;i++)
994 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT]+
995 WetBuffer[i][FRONT_LEFT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
996 buffer = ((ALubyte*)buffer) + 1;
998 break;
999 case AL_FORMAT_STEREO8:
1000 if(ALContext && ALContext->bs2b)
1002 for(i = 0;i < SamplesToDo;i++)
1004 float samples[2];
1005 samples[0] = DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT];
1006 samples[1] = DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT];
1007 bs2b_cross_feed(ALContext->bs2b, samples);
1008 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(samples[0])>>8)+128);
1009 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(samples[1])>>8)+128);
1010 buffer = ((ALubyte*)buffer) + 2;
1013 else
1015 for(i = 0;i < SamplesToDo;i++)
1017 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1018 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1019 buffer = ((ALubyte*)buffer) + 2;
1022 break;
1023 case AL_FORMAT_QUAD8:
1024 for(i = 0;i < SamplesToDo;i++)
1026 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1027 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1028 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1029 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1030 buffer = ((ALubyte*)buffer) + 4;
1032 break;
1033 case AL_FORMAT_51CHN8:
1034 for(i = 0;i < SamplesToDo;i++)
1036 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1037 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1038 #ifdef _WIN32 /* Of course, Windows can't use the same ordering... */
1039 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
1040 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1041 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1042 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1043 #else
1044 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1045 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1046 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
1047 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1048 #endif
1049 buffer = ((ALubyte*)buffer) + 6;
1051 break;
1052 case AL_FORMAT_61CHN8:
1053 for(i = 0;i < SamplesToDo;i++)
1055 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1056 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1057 #ifdef _WIN32
1058 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1059 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1060 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1061 #else
1062 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1063 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1064 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1065 #endif
1066 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT])>>8)+128);
1067 ((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT])>>8)+128);
1068 buffer = ((ALubyte*)buffer) + 7;
1070 break;
1071 case AL_FORMAT_71CHN8:
1072 for(i = 0;i < SamplesToDo;i++)
1074 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1075 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1076 #ifdef _WIN32
1077 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
1078 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1079 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1080 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1081 #else
1082 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1083 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1084 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
1085 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1086 #endif
1087 ((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT])>>8)+128);
1088 ((ALubyte*)buffer)[7] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT])>>8)+128);
1089 buffer = ((ALubyte*)buffer) + 8;
1091 break;
1093 case AL_FORMAT_MONO16:
1094 for(i = 0;i < SamplesToDo;i++)
1096 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT]+
1097 WetBuffer[i][FRONT_LEFT]+WetBuffer[i][FRONT_RIGHT]);
1098 buffer = ((ALshort*)buffer) + 1;
1100 break;
1101 case AL_FORMAT_STEREO16:
1102 if(ALContext && ALContext->bs2b)
1104 for(i = 0;i < SamplesToDo;i++)
1106 float samples[2];
1107 samples[0] = DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT];
1108 samples[1] = DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT];
1109 bs2b_cross_feed(ALContext->bs2b, samples);
1110 ((ALshort*)buffer)[0] = aluF2S(samples[0]);
1111 ((ALshort*)buffer)[1] = aluF2S(samples[1]);
1112 buffer = ((ALshort*)buffer) + 2;
1115 else
1117 for(i = 0;i < SamplesToDo;i++)
1119 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1120 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1121 buffer = ((ALshort*)buffer) + 2;
1124 break;
1125 case AL_FORMAT_QUAD16:
1126 for(i = 0;i < SamplesToDo;i++)
1128 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1129 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1130 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1131 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1132 buffer = ((ALshort*)buffer) + 4;
1134 break;
1135 case AL_FORMAT_51CHN16:
1136 for(i = 0;i < SamplesToDo;i++)
1138 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1139 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1140 #ifdef _WIN32
1141 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1142 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1143 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1144 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1145 #else
1146 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1147 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1148 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1149 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1150 #endif
1151 buffer = ((ALshort*)buffer) + 6;
1153 break;
1154 case AL_FORMAT_61CHN16:
1155 for(i = 0;i < SamplesToDo;i++)
1157 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1158 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1159 #ifdef _WIN32
1160 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1161 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1162 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1163 #else
1164 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1165 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1166 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1167 #endif
1168 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT]);
1169 ((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT]);
1170 buffer = ((ALshort*)buffer) + 7;
1172 break;
1173 case AL_FORMAT_71CHN16:
1174 for(i = 0;i < SamplesToDo;i++)
1176 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1177 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1178 #ifdef _WIN32
1179 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1180 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1181 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1182 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1183 #else
1184 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1185 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1186 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1187 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1188 #endif
1189 ((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT]);
1190 ((ALshort*)buffer)[7] = aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT]);
1191 buffer = ((ALshort*)buffer) + 8;
1193 break;
1195 default:
1196 break;
1199 size -= SamplesToDo;
1202 ProcessContext(ALContext);