Leave SourceToListener untransformed for use with untransformed velocities
[openal-soft/openal-hmr.git] / Alc / ALu.c
blob8ef39cfad0eae2b1e33829426a1e39cbeda416bc
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #define _CRT_SECURE_NO_DEPRECATE // get rid of sprintf security warnings on VS2005
23 #include "config.h"
25 #include <math.h>
26 #include "alMain.h"
27 #include "AL/al.h"
28 #include "AL/alc.h"
29 #include "alSource.h"
30 #include "alBuffer.h"
31 #include "alThunk.h"
32 #include "alListener.h"
33 #include "alAuxEffectSlot.h"
34 #include "bs2b.h"
36 #if defined(HAVE_STDINT_H)
37 #include <stdint.h>
38 typedef int64_t ALint64;
39 #elif defined(HAVE___INT64)
40 typedef __int64 ALint64;
41 #elif (SIZEOF_LONG == 8)
42 typedef long ALint64;
43 #elif (SIZEOF_LONG_LONG == 8)
44 typedef long long ALint64;
45 #endif
47 #ifdef HAVE_SQRTF
48 #define aluSqrt(x) ((ALfloat)sqrtf((float)(x)))
49 #else
50 #define aluSqrt(x) ((ALfloat)sqrt((double)(x)))
51 #endif
53 #ifdef HAVE_ACOSF
54 #define aluAcos(x) ((ALfloat)acosf((float)(x)))
55 #else
56 #define aluAcos(x) ((ALfloat)acos((double)(x)))
57 #endif
59 // fixes for mingw32.
60 #if defined(max) && !defined(__max)
61 #define __max max
62 #endif
63 #if defined(min) && !defined(__min)
64 #define __min min
65 #endif
67 #define BUFFERSIZE 48000
68 #define FRACTIONBITS 14
69 #define FRACTIONMASK ((1L<<FRACTIONBITS)-1)
70 #define MAX_PITCH 4
72 enum {
73 FRONT_LEFT = 0,
74 FRONT_RIGHT,
75 SIDE_LEFT,
76 SIDE_RIGHT,
77 BACK_LEFT,
78 BACK_RIGHT,
79 CENTER,
80 LFE,
82 OUTPUTCHANNELS
85 ALboolean DuplicateStereo = AL_FALSE;
87 /* NOTE: The AL_FORMAT_REAR* enums aren't handled here be cause they're
88 * converted to AL_FORMAT_QUAD* when loaded */
89 __inline ALuint aluBytesFromFormat(ALenum format)
91 switch(format)
93 case AL_FORMAT_MONO8:
94 case AL_FORMAT_STEREO8:
95 case AL_FORMAT_QUAD8_LOKI:
96 case AL_FORMAT_QUAD8:
97 case AL_FORMAT_51CHN8:
98 case AL_FORMAT_61CHN8:
99 case AL_FORMAT_71CHN8:
100 return 1;
102 case AL_FORMAT_MONO16:
103 case AL_FORMAT_STEREO16:
104 case AL_FORMAT_QUAD16_LOKI:
105 case AL_FORMAT_QUAD16:
106 case AL_FORMAT_51CHN16:
107 case AL_FORMAT_61CHN16:
108 case AL_FORMAT_71CHN16:
109 return 2;
111 case AL_FORMAT_MONO_FLOAT32:
112 case AL_FORMAT_STEREO_FLOAT32:
113 case AL_FORMAT_QUAD32:
114 case AL_FORMAT_51CHN32:
115 case AL_FORMAT_61CHN32:
116 case AL_FORMAT_71CHN32:
117 return 4;
119 default:
120 return 0;
124 __inline ALuint aluChannelsFromFormat(ALenum format)
126 switch(format)
128 case AL_FORMAT_MONO8:
129 case AL_FORMAT_MONO16:
130 case AL_FORMAT_MONO_FLOAT32:
131 return 1;
133 case AL_FORMAT_STEREO8:
134 case AL_FORMAT_STEREO16:
135 case AL_FORMAT_STEREO_FLOAT32:
136 return 2;
138 case AL_FORMAT_QUAD8_LOKI:
139 case AL_FORMAT_QUAD16_LOKI:
140 case AL_FORMAT_QUAD8:
141 case AL_FORMAT_QUAD16:
142 case AL_FORMAT_QUAD32:
143 return 4;
145 case AL_FORMAT_51CHN8:
146 case AL_FORMAT_51CHN16:
147 case AL_FORMAT_51CHN32:
148 return 6;
150 case AL_FORMAT_61CHN8:
151 case AL_FORMAT_61CHN16:
152 case AL_FORMAT_61CHN32:
153 return 7;
155 case AL_FORMAT_71CHN8:
156 case AL_FORMAT_71CHN16:
157 case AL_FORMAT_71CHN32:
158 return 8;
160 default:
161 return 0;
166 static __inline ALshort aluF2S(ALfloat Value)
168 ALint i;
170 i = (ALint)Value;
171 i = __min( 32767, i);
172 i = __max(-32768, i);
173 return ((ALshort)i);
176 static __inline ALvoid aluCrossproduct(ALfloat *inVector1,ALfloat *inVector2,ALfloat *outVector)
178 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
179 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
180 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
183 static __inline ALfloat aluDotproduct(ALfloat *inVector1,ALfloat *inVector2)
185 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
186 inVector1[2]*inVector2[2];
189 static __inline ALvoid aluNormalize(ALfloat *inVector)
191 ALfloat length, inverse_length;
193 length = aluSqrt(aluDotproduct(inVector, inVector));
194 if(length != 0.0f)
196 inverse_length = 1.0f/length;
197 inVector[0] *= inverse_length;
198 inVector[1] *= inverse_length;
199 inVector[2] *= inverse_length;
203 static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat matrix[3][3])
205 ALfloat result[3];
207 result[0] = vector[0]*matrix[0][0] + vector[1]*matrix[1][0] + vector[2]*matrix[2][0];
208 result[1] = vector[0]*matrix[0][1] + vector[1]*matrix[1][1] + vector[2]*matrix[2][1];
209 result[2] = vector[0]*matrix[0][2] + vector[1]*matrix[1][2] + vector[2]*matrix[2][2];
210 memcpy(vector, result, sizeof(result));
213 static __inline ALfloat aluComputeSample(ALfloat GainHF, ALfloat sample, ALfloat LastSample)
215 if(GainHF < 1.0f)
217 if(GainHF > 0.0f)
219 sample *= GainHF;
220 sample += LastSample * (1.0f-GainHF);
222 else
223 sample = 0.0f;
226 return sample;
229 static ALvoid CalcSourceParams(ALCcontext *ALContext, ALsource *ALSource,
230 ALenum isMono, ALenum OutputFormat,
231 ALfloat *drysend, ALfloat *wetsend,
232 ALfloat *pitch, ALfloat *drygainhf,
233 ALfloat *wetgainhf)
235 ALfloat InnerAngle,OuterAngle,Angle,Distance,DryMix,WetMix=0.0f;
236 ALfloat Direction[3],Position[3],SourceToListener[3];
237 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff,OuterGainHF;
238 ALfloat ConeVolume,SourceVolume,PanningFB,PanningLR,ListenerGain;
239 ALfloat U[3],V[3],N[3];
240 ALfloat DopplerFactor, DopplerVelocity, flSpeedOfSound, flMaxVelocity;
241 ALfloat Matrix[3][3];
242 ALfloat flAttenuation;
243 ALfloat RoomAttenuation;
244 ALfloat MetersPerUnit;
245 ALfloat RoomRolloff;
246 ALfloat DryGainHF = 1.0f;
247 ALfloat WetGainHF = 1.0f;
249 //Get context properties
250 DopplerFactor = ALContext->DopplerFactor;
251 DopplerVelocity = ALContext->DopplerVelocity;
252 flSpeedOfSound = ALContext->flSpeedOfSound;
254 //Get listener properties
255 ListenerGain = ALContext->Listener.Gain;
256 MetersPerUnit = ALContext->Listener.MetersPerUnit;
258 //Get source properties
259 SourceVolume = ALSource->flGain;
260 memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition));
261 memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation));
262 MinVolume = ALSource->flMinGain;
263 MaxVolume = ALSource->flMaxGain;
264 MinDist = ALSource->flRefDistance;
265 MaxDist = ALSource->flMaxDistance;
266 Rolloff = ALSource->flRollOffFactor;
267 InnerAngle = ALSource->flInnerAngle;
268 OuterAngle = ALSource->flOuterAngle;
269 OuterGainHF = ALSource->OuterGainHF;
270 RoomRolloff = ALSource->RoomRolloffFactor;
272 //Only apply 3D calculations for mono buffers
273 if(isMono != AL_FALSE)
275 //1. Translate Listener to origin (convert to head relative)
276 // Note that Direction and SourceToListener are *not* transformed.
277 // SourceToListener is used with the source and listener velocities,
278 // which are untransformed, and Direction is used with SourceToListener
279 // for the sound cone
280 if(ALSource->bHeadRelative==AL_FALSE)
282 // Build transform matrix
283 aluCrossproduct(ALContext->Listener.Forward, ALContext->Listener.Up, U); // Right-vector
284 aluNormalize(U); // Normalized Right-vector
285 memcpy(V, ALContext->Listener.Up, sizeof(V)); // Up-vector
286 aluNormalize(V); // Normalized Up-vector
287 memcpy(N, ALContext->Listener.Forward, sizeof(N)); // At-vector
288 aluNormalize(N); // Normalized At-vector
289 Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0];
290 Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1];
291 Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2];
293 // Translate source position into listener space
294 Position[0] -= ALContext->Listener.Position[0];
295 Position[1] -= ALContext->Listener.Position[1];
296 Position[2] -= ALContext->Listener.Position[2];
298 SourceToListener[0] = -Position[0];
299 SourceToListener[1] = -Position[1];
300 SourceToListener[2] = -Position[2];
302 // Transform source position and direction into listener space
303 aluMatrixVector(Position, Matrix);
305 else
307 SourceToListener[0] = -Position[0];
308 SourceToListener[1] = -Position[1];
309 SourceToListener[2] = -Position[2];
311 aluNormalize(SourceToListener);
312 aluNormalize(Direction);
314 //2. Calculate distance attenuation
315 Distance = aluSqrt(aluDotproduct(Position, Position));
317 if(ALSource->Send[0].Slot && !ALSource->Send[0].Slot->AuxSendAuto)
319 if(ALSource->Send[0].Slot->effect.type == AL_EFFECT_REVERB)
320 RoomRolloff = ALSource->Send[0].Slot->effect.Reverb.RoomRolloffFactor;
323 flAttenuation = 1.0f;
324 RoomAttenuation = 1.0f;
325 switch (ALContext->DistanceModel)
327 case AL_INVERSE_DISTANCE_CLAMPED:
328 Distance=__max(Distance,MinDist);
329 Distance=__min(Distance,MaxDist);
330 if (MaxDist < MinDist)
331 break;
332 //fall-through
333 case AL_INVERSE_DISTANCE:
334 if (MinDist > 0.0f)
336 if ((MinDist + (Rolloff * (Distance - MinDist))) > 0.0f)
337 flAttenuation = MinDist / (MinDist + (Rolloff * (Distance - MinDist)));
338 if ((MinDist + (RoomRolloff * (Distance - MinDist))) > 0.0f)
339 RoomAttenuation = MinDist / (MinDist + (RoomRolloff * (Distance - MinDist)));
341 break;
343 case AL_LINEAR_DISTANCE_CLAMPED:
344 Distance=__max(Distance,MinDist);
345 Distance=__min(Distance,MaxDist);
346 if (MaxDist < MinDist)
347 break;
348 //fall-through
349 case AL_LINEAR_DISTANCE:
350 Distance=__min(Distance,MaxDist);
351 if (MaxDist != MinDist)
353 flAttenuation = 1.0f - (Rolloff*(Distance-MinDist)/(MaxDist - MinDist));
354 RoomAttenuation = 1.0f - (RoomRolloff*(Distance-MinDist)/(MaxDist - MinDist));
356 break;
358 case AL_EXPONENT_DISTANCE_CLAMPED:
359 Distance=__max(Distance,MinDist);
360 Distance=__min(Distance,MaxDist);
361 if (MaxDist < MinDist)
362 break;
363 //fall-through
364 case AL_EXPONENT_DISTANCE:
365 if ((Distance > 0.0f) && (MinDist > 0.0f))
367 flAttenuation = (ALfloat)pow(Distance/MinDist, -Rolloff);
368 RoomAttenuation = (ALfloat)pow(Distance/MinDist, -RoomRolloff);
370 break;
372 case AL_NONE:
373 default:
374 flAttenuation = 1.0f;
375 RoomAttenuation = 1.0f;
376 break;
379 // Source Gain + Attenuation and clamp to Min/Max Gain
380 DryMix = SourceVolume * flAttenuation;
381 DryMix = __min(DryMix,MaxVolume);
382 DryMix = __max(DryMix,MinVolume);
384 WetMix = SourceVolume * (ALSource->WetGainAuto ?
385 RoomAttenuation : 1.0f);
386 WetMix = __min(WetMix,MaxVolume);
387 WetMix = __max(WetMix,MinVolume);
389 //3. Apply directional soundcones
390 Angle = aluAcos(aluDotproduct(Direction,SourceToListener)) * 180.0f /
391 3.141592654f;
392 if(Angle >= InnerAngle && Angle <= OuterAngle)
394 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
395 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f)*scale);
396 if(ALSource->WetGainAuto)
397 WetMix *= ConeVolume;
398 if(ALSource->DryGainHFAuto)
399 DryGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
400 if(ALSource->WetGainHFAuto)
401 WetGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
403 else if(Angle > OuterAngle)
405 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f));
406 if(ALSource->WetGainAuto)
407 WetMix *= ConeVolume;
408 if(ALSource->DryGainHFAuto)
409 DryGainHF *= (1.0f+(OuterGainHF-1.0f));
410 if(ALSource->WetGainHFAuto)
411 WetGainHF *= (1.0f+(OuterGainHF-1.0f));
413 else
414 ConeVolume = 1.0f;
416 //4. Calculate Velocity
417 if(DopplerFactor != 0.0f)
419 ALfloat flVSS, flVLS = 0.0f;
421 if(ALSource->bHeadRelative==AL_FALSE)
422 flVLS = aluDotproduct(ALContext->Listener.Velocity, SourceToListener);
423 flVSS = aluDotproduct(ALSource->vVelocity, SourceToListener);
425 flMaxVelocity = (DopplerVelocity * flSpeedOfSound) / DopplerFactor;
427 if (flVSS >= flMaxVelocity)
428 flVSS = (flMaxVelocity - 1.0f);
429 else if (flVSS <= -flMaxVelocity)
430 flVSS = -flMaxVelocity + 1.0f;
432 if (flVLS >= flMaxVelocity)
433 flVLS = (flMaxVelocity - 1.0f);
434 else if (flVLS <= -flMaxVelocity)
435 flVLS = -flMaxVelocity + 1.0f;
437 pitch[0] = ALSource->flPitch *
438 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVLS)) /
439 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVSS));
441 else
442 pitch[0] = ALSource->flPitch;
444 //5. Apply filter gains and filters
445 switch(ALSource->DirectFilter.type)
447 case AL_FILTER_LOWPASS:
448 DryMix *= ALSource->DirectFilter.Gain;
449 DryGainHF *= ALSource->DirectFilter.GainHF;
450 break;
453 switch(ALSource->Send[0].WetFilter.type)
455 case AL_FILTER_LOWPASS:
456 WetMix *= ALSource->Send[0].WetFilter.Gain;
457 WetGainHF *= ALSource->Send[0].WetFilter.GainHF;
458 break;
461 if(ALSource->AirAbsorptionFactor > 0.0f)
462 DryGainHF *= pow(ALSource->AirAbsorptionFactor * AIRABSORBGAINHF,
463 Distance * MetersPerUnit);
465 if(ALSource->Send[0].Slot)
467 WetMix *= ALSource->Send[0].Slot->Gain;
469 if(ALSource->Send[0].Slot->effect.type == AL_EFFECT_REVERB)
471 WetGainHF *= ALSource->Send[0].Slot->effect.Reverb.GainHF;
472 WetGainHF *= pow(ALSource->Send[0].Slot->effect.Reverb.AirAbsorptionGainHF,
473 Distance * MetersPerUnit);
476 else
478 WetMix = 0.0f;
479 WetGainHF = 1.0f;
482 DryMix *= ListenerGain * ConeVolume;
483 WetMix *= ListenerGain;
485 //6. Convert normalized position into pannings, then into channel volumes
486 aluNormalize(Position);
487 switch(aluChannelsFromFormat(OutputFormat))
489 case 1:
490 drysend[FRONT_LEFT] = DryMix * aluSqrt(1.0f); //Direct
491 drysend[FRONT_RIGHT] = DryMix * aluSqrt(1.0f); //Direct
492 wetsend[FRONT_LEFT] = WetMix * aluSqrt(1.0f); //Room
493 wetsend[FRONT_RIGHT] = WetMix * aluSqrt(1.0f); //Room
494 break;
495 case 2:
496 PanningLR = 0.5f + 0.5f*Position[0];
497 drysend[FRONT_LEFT] = DryMix * aluSqrt(1.0f-PanningLR); //L Direct
498 drysend[FRONT_RIGHT] = DryMix * aluSqrt( PanningLR); //R Direct
499 wetsend[FRONT_LEFT] = WetMix * aluSqrt(1.0f-PanningLR); //L Room
500 wetsend[FRONT_RIGHT] = WetMix * aluSqrt( PanningLR); //R Room
501 break;
502 case 4:
503 /* TODO: Add center/lfe channel in spatial calculations? */
504 case 6:
505 // Apply a scalar so each individual speaker has more weight
506 PanningLR = 0.5f + (0.5f*Position[0]*1.41421356f);
507 PanningLR = __min(1.0f, PanningLR);
508 PanningLR = __max(0.0f, PanningLR);
509 PanningFB = 0.5f + (0.5f*Position[2]*1.41421356f);
510 PanningFB = __min(1.0f, PanningFB);
511 PanningFB = __max(0.0f, PanningFB);
512 drysend[FRONT_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
513 drysend[FRONT_RIGHT] = DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
514 drysend[BACK_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
515 drysend[BACK_RIGHT] = DryMix * aluSqrt(( PanningLR)*( PanningFB));
516 wetsend[FRONT_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
517 wetsend[FRONT_RIGHT] = WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
518 wetsend[BACK_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
519 wetsend[BACK_RIGHT] = WetMix * aluSqrt(( PanningLR)*( PanningFB));
520 break;
521 case 7:
522 case 8:
523 PanningFB = 1.0f - fabs(Position[2]*1.15470054f);
524 PanningFB = __min(1.0f, PanningFB);
525 PanningFB = __max(0.0f, PanningFB);
526 PanningLR = 0.5f + (0.5*Position[0]*((1.0f-PanningFB)*2.0f));
527 PanningLR = __min(1.0f, PanningLR);
528 PanningLR = __max(0.0f, PanningLR);
529 if(Position[2] > 0.0f)
531 drysend[BACK_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
532 drysend[BACK_RIGHT] = DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
533 drysend[SIDE_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
534 drysend[SIDE_RIGHT] = DryMix * aluSqrt(( PanningLR)*( PanningFB));
535 drysend[FRONT_LEFT] = 0.0f;
536 drysend[FRONT_RIGHT] = 0.0f;
537 wetsend[BACK_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
538 wetsend[BACK_RIGHT] = WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
539 wetsend[SIDE_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
540 wetsend[SIDE_RIGHT] = WetMix * aluSqrt(( PanningLR)*( PanningFB));
541 wetsend[FRONT_LEFT] = 0.0f;
542 wetsend[FRONT_RIGHT] = 0.0f;
544 else
546 drysend[FRONT_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
547 drysend[FRONT_RIGHT] = DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
548 drysend[SIDE_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
549 drysend[SIDE_RIGHT] = DryMix * aluSqrt(( PanningLR)*( PanningFB));
550 drysend[BACK_LEFT] = 0.0f;
551 drysend[BACK_RIGHT] = 0.0f;
552 wetsend[FRONT_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
553 wetsend[FRONT_RIGHT] = WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
554 wetsend[SIDE_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
555 wetsend[SIDE_RIGHT] = WetMix * aluSqrt(( PanningLR)*( PanningFB));
556 wetsend[BACK_LEFT] = 0.0f;
557 wetsend[BACK_RIGHT] = 0.0f;
559 default:
560 break;
563 *drygainhf = DryGainHF;
564 *wetgainhf = WetGainHF;
566 else
568 //1. Multi-channel buffers always play "normal"
569 pitch[0] = ALSource->flPitch;
571 drysend[FRONT_LEFT] = SourceVolume * ListenerGain;
572 drysend[FRONT_RIGHT] = SourceVolume * ListenerGain;
573 drysend[SIDE_LEFT] = SourceVolume * ListenerGain;
574 drysend[SIDE_RIGHT] = SourceVolume * ListenerGain;
575 drysend[BACK_LEFT] = SourceVolume * ListenerGain;
576 drysend[BACK_RIGHT] = SourceVolume * ListenerGain;
577 drysend[CENTER] = SourceVolume * ListenerGain;
578 drysend[LFE] = SourceVolume * ListenerGain;
579 wetsend[FRONT_LEFT] = 0.0f;
580 wetsend[FRONT_RIGHT] = 0.0f;
581 wetsend[SIDE_LEFT] = 0.0f;
582 wetsend[SIDE_RIGHT] = 0.0f;
583 wetsend[BACK_LEFT] = 0.0f;
584 wetsend[BACK_RIGHT] = 0.0f;
585 wetsend[CENTER] = 0.0f;
586 wetsend[LFE] = 0.0f;
587 WetGainHF = 1.0f;
589 *drygainhf = DryGainHF;
590 *wetgainhf = WetGainHF;
594 ALvoid aluMixData(ALCcontext *ALContext,ALvoid *buffer,ALsizei size,ALenum format)
596 static float DryBuffer[BUFFERSIZE][OUTPUTCHANNELS];
597 static float WetBuffer[BUFFERSIZE][OUTPUTCHANNELS];
598 static float ReverbBuffer[BUFFERSIZE];
599 ALfloat DrySend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
600 ALfloat WetSend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
601 ALfloat DryGainHF = 0.0f;
602 ALfloat WetGainHF = 0.0f;
603 ALuint BlockAlign,BufferSize;
604 ALuint DataSize=0,DataPosInt=0,DataPosFrac=0;
605 ALuint Channels,Frequency,ulExtraSamples;
606 ALfloat DrySample, WetSample;
607 ALboolean doReverb;
608 ALfloat Pitch;
609 ALint Looping,increment,State;
610 ALuint Buffer,fraction;
611 ALuint SamplesToDo;
612 ALsource *ALSource;
613 ALbuffer *ALBuffer;
614 ALeffectslot *ALEffectSlot;
615 ALfloat value;
616 ALshort *Data;
617 ALuint i,j,k;
618 ALbufferlistitem *BufferListItem;
619 ALuint loop;
620 ALint64 DataSize64,DataPos64;
622 SuspendContext(ALContext);
624 //Figure output format variables
625 BlockAlign = aluChannelsFromFormat(format);
626 BlockAlign *= aluBytesFromFormat(format);
628 size /= BlockAlign;
629 while(size > 0)
631 //Setup variables
632 ALEffectSlot = (ALContext ? ALContext->AuxiliaryEffectSlot : NULL);
633 ALSource = (ALContext ? ALContext->Source : NULL);
634 SamplesToDo = min(size, BUFFERSIZE);
636 //Clear mixing buffer
637 memset(DryBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
638 memset(WetBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
639 memset(ReverbBuffer, 0, SamplesToDo*sizeof(ALfloat));
641 //Actual mixing loop
642 while(ALSource)
644 j = 0;
645 State = ALSource->state;
647 doReverb = ((ALSource->Send[0].Slot &&
648 ALSource->Send[0].Slot->effect.type == AL_EFFECT_REVERB) ?
649 AL_TRUE : AL_FALSE);
651 while(State == AL_PLAYING && j < SamplesToDo)
653 DataSize = 0;
654 DataPosInt = 0;
655 DataPosFrac = 0;
657 //Get buffer info
658 if((Buffer = ALSource->ulBufferID))
660 ALBuffer = (ALbuffer*)ALTHUNK_LOOKUPENTRY(Buffer);
662 Data = ALBuffer->data;
663 Channels = aluChannelsFromFormat(ALBuffer->format);
664 DataSize = ALBuffer->size;
665 Frequency = ALBuffer->frequency;
667 CalcSourceParams(ALContext, ALSource,
668 (Channels==1) ? AL_TRUE : AL_FALSE,
669 format, DrySend, WetSend, &Pitch,
670 &DryGainHF, &WetGainHF);
673 Pitch = (Pitch*Frequency) / ALContext->Frequency;
674 DataSize /= Channels * aluBytesFromFormat(ALBuffer->format);
676 //Get source info
677 DataPosInt = ALSource->position;
678 DataPosFrac = ALSource->position_fraction;
679 DrySample = ALSource->LastDrySample;
680 WetSample = ALSource->LastWetSample;
682 //Compute 18.14 fixed point step
683 increment = (ALint)(Pitch*(ALfloat)(1L<<FRACTIONBITS));
684 if(increment > (MAX_PITCH<<FRACTIONBITS))
685 increment = (MAX_PITCH<<FRACTIONBITS);
687 //Figure out how many samples we can mix.
688 //Pitch must be <= 4 (the number below !)
689 DataSize64 = DataSize+MAX_PITCH;
690 DataSize64 <<= FRACTIONBITS;
691 DataPos64 = DataPosInt;
692 DataPos64 <<= FRACTIONBITS;
693 DataPos64 += DataPosFrac;
694 BufferSize = (ALuint)((DataSize64-DataPos64) / increment);
695 BufferListItem = ALSource->queue;
696 for(loop = 0; loop < ALSource->BuffersPlayed; loop++)
698 if(BufferListItem)
699 BufferListItem = BufferListItem->next;
701 if (BufferListItem)
703 if (BufferListItem->next)
705 ALbuffer *NextBuf = (ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer);
706 if(NextBuf && NextBuf->data)
708 ulExtraSamples = min(NextBuf->size, (ALint)(16*Channels));
709 memcpy(&Data[DataSize*Channels], NextBuf->data, ulExtraSamples);
712 else if (ALSource->bLooping)
714 ALbuffer *NextBuf = (ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer);
715 if (NextBuf && NextBuf->data)
717 ulExtraSamples = min(NextBuf->size, (ALint)(16*Channels));
718 memcpy(&Data[DataSize*Channels], NextBuf->data, ulExtraSamples);
722 BufferSize = min(BufferSize, (SamplesToDo-j));
724 //Actual sample mixing loop
725 Data += DataPosInt*Channels;
726 while(BufferSize--)
728 k = DataPosFrac>>FRACTIONBITS;
729 fraction = DataPosFrac&FRACTIONMASK;
730 if(Channels==1)
732 //First order interpolator
733 ALfloat sample = (ALfloat)((ALshort)(((Data[k]*((1L<<FRACTIONBITS)-fraction))+(Data[k+1]*(fraction)))>>FRACTIONBITS));
735 //Direct path final mix buffer and panning
736 DrySample = aluComputeSample(DryGainHF, sample, DrySample);
737 DryBuffer[j][FRONT_LEFT] += DrySample*DrySend[FRONT_LEFT];
738 DryBuffer[j][FRONT_RIGHT] += DrySample*DrySend[FRONT_RIGHT];
739 DryBuffer[j][SIDE_LEFT] += DrySample*DrySend[SIDE_LEFT];
740 DryBuffer[j][SIDE_RIGHT] += DrySample*DrySend[SIDE_RIGHT];
741 DryBuffer[j][BACK_LEFT] += DrySample*DrySend[BACK_LEFT];
742 DryBuffer[j][BACK_RIGHT] += DrySample*DrySend[BACK_RIGHT];
743 //Room path final mix buffer and panning
744 WetSample = aluComputeSample(WetGainHF, sample, WetSample);
745 if(doReverb)
746 ReverbBuffer[j] += WetSample;
747 else
749 WetBuffer[j][FRONT_LEFT] += WetSample*WetSend[FRONT_LEFT];
750 WetBuffer[j][FRONT_RIGHT] += WetSample*WetSend[FRONT_RIGHT];
751 WetBuffer[j][SIDE_LEFT] += WetSample*WetSend[SIDE_LEFT];
752 WetBuffer[j][SIDE_RIGHT] += WetSample*WetSend[SIDE_RIGHT];
753 WetBuffer[j][BACK_LEFT] += WetSample*WetSend[BACK_LEFT];
754 WetBuffer[j][BACK_RIGHT] += WetSample*WetSend[BACK_RIGHT];
757 else
759 ALfloat samp1, samp2;
760 //First order interpolator (front left)
761 samp1 = (ALfloat)((ALshort)(((Data[k*Channels ]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels ]*(fraction)))>>FRACTIONBITS));
762 DryBuffer[j][FRONT_LEFT] += samp1*DrySend[FRONT_LEFT];
763 WetBuffer[j][FRONT_LEFT] += samp1*WetSend[FRONT_LEFT];
764 //First order interpolator (front right)
765 samp2 = (ALfloat)((ALshort)(((Data[k*Channels+1]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+1]*(fraction)))>>FRACTIONBITS));
766 DryBuffer[j][FRONT_RIGHT] += samp2*DrySend[FRONT_RIGHT];
767 WetBuffer[j][FRONT_RIGHT] += samp2*WetSend[FRONT_RIGHT];
768 if(Channels >= 4)
770 int i = 2;
771 if(Channels >= 6)
773 if(Channels != 7)
775 //First order interpolator (center)
776 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
777 DryBuffer[j][CENTER] += value*DrySend[CENTER];
778 WetBuffer[j][CENTER] += value*WetSend[CENTER];
779 i++;
781 //First order interpolator (lfe)
782 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
783 DryBuffer[j][LFE] += value*DrySend[LFE];
784 WetBuffer[j][LFE] += value*WetSend[LFE];
785 i++;
787 //First order interpolator (back left)
788 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
789 DryBuffer[j][BACK_LEFT] += value*DrySend[BACK_LEFT];
790 WetBuffer[j][BACK_LEFT] += value*WetSend[BACK_LEFT];
791 i++;
792 //First order interpolator (back right)
793 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
794 DryBuffer[j][BACK_RIGHT] += value*DrySend[BACK_RIGHT];
795 WetBuffer[j][BACK_RIGHT] += value*WetSend[BACK_RIGHT];
796 i++;
797 if(Channels >= 7)
799 //First order interpolator (side left)
800 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
801 DryBuffer[j][SIDE_LEFT] += value*DrySend[SIDE_LEFT];
802 WetBuffer[j][SIDE_LEFT] += value*WetSend[SIDE_LEFT];
803 i++;
804 //First order interpolator (side right)
805 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
806 DryBuffer[j][SIDE_RIGHT] += value*DrySend[SIDE_RIGHT];
807 WetBuffer[j][SIDE_RIGHT] += value*WetSend[SIDE_RIGHT];
808 i++;
811 else if(DuplicateStereo)
813 //Duplicate stereo channels on the back speakers
814 DryBuffer[j][BACK_LEFT] += samp1*DrySend[BACK_LEFT];
815 WetBuffer[j][BACK_LEFT] += samp1*WetSend[BACK_LEFT];
816 DryBuffer[j][BACK_RIGHT] += samp2*DrySend[BACK_RIGHT];
817 WetBuffer[j][BACK_RIGHT] += samp2*WetSend[BACK_RIGHT];
820 DataPosFrac += increment;
821 j++;
823 DataPosInt += (DataPosFrac>>FRACTIONBITS);
824 DataPosFrac = (DataPosFrac&FRACTIONMASK);
826 //Update source info
827 ALSource->position = DataPosInt;
828 ALSource->position_fraction = DataPosFrac;
829 ALSource->LastDrySample = DrySample;
830 ALSource->LastWetSample = WetSample;
833 //Handle looping sources
834 if(!Buffer || DataPosInt >= DataSize)
836 //queueing
837 if(ALSource->queue)
839 Looping = ALSource->bLooping;
840 if(ALSource->BuffersPlayed < (ALSource->BuffersInQueue-1))
842 BufferListItem = ALSource->queue;
843 for(loop = 0; loop <= ALSource->BuffersPlayed; loop++)
845 if(BufferListItem)
847 if(!Looping)
848 BufferListItem->bufferstate = PROCESSED;
849 BufferListItem = BufferListItem->next;
852 if(!Looping)
853 ALSource->BuffersProcessed++;
854 if(BufferListItem)
855 ALSource->ulBufferID = BufferListItem->buffer;
856 ALSource->position = DataPosInt-DataSize;
857 ALSource->position_fraction = DataPosFrac;
858 ALSource->BuffersPlayed++;
860 else
862 if(!Looping)
864 /* alSourceStop */
865 ALSource->state = AL_STOPPED;
866 ALSource->inuse = AL_FALSE;
867 ALSource->BuffersPlayed = ALSource->BuffersProcessed = ALSource->BuffersInQueue;
868 BufferListItem = ALSource->queue;
869 while(BufferListItem != NULL)
871 BufferListItem->bufferstate = PROCESSED;
872 BufferListItem = BufferListItem->next;
875 else
877 /* alSourceRewind */
878 /* alSourcePlay */
879 ALSource->state = AL_PLAYING;
880 ALSource->inuse = AL_TRUE;
881 ALSource->play = AL_TRUE;
882 ALSource->BuffersPlayed = 0;
883 ALSource->BufferPosition = 0;
884 ALSource->lBytesPlayed = 0;
885 ALSource->BuffersProcessed = 0;
886 BufferListItem = ALSource->queue;
887 while(BufferListItem != NULL)
889 BufferListItem->bufferstate = PENDING;
890 BufferListItem = BufferListItem->next;
892 ALSource->ulBufferID = ALSource->queue->buffer;
894 ALSource->position = DataPosInt-DataSize;
895 ALSource->position_fraction = DataPosFrac;
901 //Get source state
902 State = ALSource->state;
905 ALSource = ALSource->next;
908 // effect slot processing
909 while(ALEffectSlot)
911 if(ALEffectSlot->effect.type == AL_EFFECT_REVERB)
913 ALfloat *DelayBuffer = ALEffectSlot->ReverbBuffer;
914 ALuint Pos = ALEffectSlot->ReverbPos;
915 ALuint LatePos = ALEffectSlot->ReverbLatePos;
916 ALuint ReflectPos = ALEffectSlot->ReverbReflectPos;
917 ALuint Length = ALEffectSlot->ReverbLength;
918 ALfloat DecayGain = ALEffectSlot->ReverbDecayGain;
919 ALfloat DecayHFRatio = ALEffectSlot->effect.Reverb.DecayHFRatio;
920 ALfloat Gain = ALEffectSlot->effect.Reverb.Gain;
921 ALfloat ReflectGain = ALEffectSlot->effect.Reverb.ReflectionsGain;
922 ALfloat LateReverbGain = ALEffectSlot->effect.Reverb.LateReverbGain;
923 ALfloat LastDecaySample = ALEffectSlot->LastDecaySample;
924 ALfloat sample;
926 for(i = 0;i < SamplesToDo;i++)
928 DelayBuffer[Pos] = ReverbBuffer[i] * Gain;
930 sample = DelayBuffer[ReflectPos] * ReflectGain;
932 DelayBuffer[LatePos] *= LateReverbGain;
934 Pos = (Pos+1) % Length;
935 DelayBuffer[Pos] *= DecayHFRatio;
936 DelayBuffer[Pos] += LastDecaySample * (1.0f-DecayHFRatio);
937 LastDecaySample = DelayBuffer[Pos];
938 DelayBuffer[Pos] *= DecayGain;
940 DelayBuffer[LatePos] += DelayBuffer[Pos];
942 sample += DelayBuffer[LatePos];
944 WetBuffer[i][FRONT_LEFT] += sample;
945 WetBuffer[i][FRONT_RIGHT] += sample;
946 WetBuffer[i][SIDE_LEFT] += sample;
947 WetBuffer[i][SIDE_RIGHT] += sample;
948 WetBuffer[i][BACK_LEFT] += sample;
949 WetBuffer[i][BACK_RIGHT] += sample;
951 LatePos = (LatePos+1) % Length;
952 ReflectPos = (ReflectPos+1) % Length;
955 ALEffectSlot->ReverbPos = Pos;
956 ALEffectSlot->ReverbLatePos = LatePos;
957 ALEffectSlot->ReverbReflectPos = ReflectPos;
958 ALEffectSlot->LastDecaySample = LastDecaySample;
961 ALEffectSlot = ALEffectSlot->next;
964 //Post processing loop
965 switch(format)
967 case AL_FORMAT_MONO8:
968 for(i = 0;i < SamplesToDo;i++)
970 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT]+
971 WetBuffer[i][FRONT_LEFT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
972 buffer = ((ALubyte*)buffer) + 1;
974 break;
975 case AL_FORMAT_STEREO8:
976 if(ALContext && ALContext->bs2b)
978 for(i = 0;i < SamplesToDo;i++)
980 float samples[2];
981 samples[0] = DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT];
982 samples[1] = DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT];
983 bs2b_cross_feed(ALContext->bs2b, samples);
984 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(samples[0])>>8)+128);
985 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(samples[1])>>8)+128);
986 buffer = ((ALubyte*)buffer) + 2;
989 else
991 for(i = 0;i < SamplesToDo;i++)
993 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
994 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
995 buffer = ((ALubyte*)buffer) + 2;
998 break;
999 case AL_FORMAT_QUAD8:
1000 for(i = 0;i < SamplesToDo;i++)
1002 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1003 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1004 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1005 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1006 buffer = ((ALubyte*)buffer) + 4;
1008 break;
1009 case AL_FORMAT_51CHN8:
1010 for(i = 0;i < SamplesToDo;i++)
1012 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1013 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1014 #ifdef _WIN32 /* Of course, Windows can't use the same ordering... */
1015 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
1016 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1017 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1018 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1019 #else
1020 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1021 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1022 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
1023 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1024 #endif
1025 buffer = ((ALubyte*)buffer) + 6;
1027 break;
1028 case AL_FORMAT_61CHN8:
1029 for(i = 0;i < SamplesToDo;i++)
1031 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1032 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1033 #ifdef _WIN32
1034 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1035 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1036 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1037 #else
1038 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1039 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1040 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1041 #endif
1042 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT])>>8)+128);
1043 ((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT])>>8)+128);
1044 buffer = ((ALubyte*)buffer) + 7;
1046 break;
1047 case AL_FORMAT_71CHN8:
1048 for(i = 0;i < SamplesToDo;i++)
1050 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1051 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1052 #ifdef _WIN32
1053 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
1054 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1055 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1056 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1057 #else
1058 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1059 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1060 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
1061 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1062 #endif
1063 ((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT])>>8)+128);
1064 ((ALubyte*)buffer)[7] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT])>>8)+128);
1065 buffer = ((ALubyte*)buffer) + 8;
1067 break;
1069 case AL_FORMAT_MONO16:
1070 for(i = 0;i < SamplesToDo;i++)
1072 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT]+
1073 WetBuffer[i][FRONT_LEFT]+WetBuffer[i][FRONT_RIGHT]);
1074 buffer = ((ALshort*)buffer) + 1;
1076 break;
1077 case AL_FORMAT_STEREO16:
1078 if(ALContext && ALContext->bs2b)
1080 for(i = 0;i < SamplesToDo;i++)
1082 float samples[2];
1083 samples[0] = DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT];
1084 samples[1] = DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT];
1085 bs2b_cross_feed(ALContext->bs2b, samples);
1086 ((ALshort*)buffer)[0] = aluF2S(samples[0]);
1087 ((ALshort*)buffer)[1] = aluF2S(samples[1]);
1088 buffer = ((ALshort*)buffer) + 2;
1091 else
1093 for(i = 0;i < SamplesToDo;i++)
1095 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1096 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1097 buffer = ((ALshort*)buffer) + 2;
1100 break;
1101 case AL_FORMAT_QUAD16:
1102 for(i = 0;i < SamplesToDo;i++)
1104 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1105 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1106 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1107 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1108 buffer = ((ALshort*)buffer) + 4;
1110 break;
1111 case AL_FORMAT_51CHN16:
1112 for(i = 0;i < SamplesToDo;i++)
1114 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1115 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1116 #ifdef _WIN32
1117 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1118 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1119 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1120 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1121 #else
1122 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1123 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1124 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1125 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1126 #endif
1127 buffer = ((ALshort*)buffer) + 6;
1129 break;
1130 case AL_FORMAT_61CHN16:
1131 for(i = 0;i < SamplesToDo;i++)
1133 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1134 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1135 #ifdef _WIN32
1136 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1137 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1138 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1139 #else
1140 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1141 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1142 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1143 #endif
1144 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT]);
1145 ((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT]);
1146 buffer = ((ALshort*)buffer) + 7;
1148 break;
1149 case AL_FORMAT_71CHN16:
1150 for(i = 0;i < SamplesToDo;i++)
1152 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1153 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1154 #ifdef _WIN32
1155 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1156 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1157 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1158 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1159 #else
1160 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1161 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1162 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1163 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1164 #endif
1165 ((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT]);
1166 ((ALshort*)buffer)[7] = aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT]);
1167 buffer = ((ALshort*)buffer) + 8;
1169 break;
1171 default:
1172 break;
1175 size -= SamplesToDo;
1178 ProcessContext(ALContext);