Use a new low-pass filter, based on the I3DL2 spec
[openal-soft/openal-hmr.git] / Alc / ALu.c
blob3b8be4a24ab8a7f13fdf0b962f507eb946bde76c
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #define _CRT_SECURE_NO_DEPRECATE // get rid of sprintf security warnings on VS2005
23 #include "config.h"
25 #include <math.h>
26 #include "alMain.h"
27 #include "AL/al.h"
28 #include "AL/alc.h"
29 #include "alSource.h"
30 #include "alBuffer.h"
31 #include "alThunk.h"
32 #include "alListener.h"
33 #include "alAuxEffectSlot.h"
34 #include "alu.h"
35 #include "bs2b.h"
37 #if defined(HAVE_STDINT_H)
38 #include <stdint.h>
39 typedef int64_t ALint64;
40 #elif defined(HAVE___INT64)
41 typedef __int64 ALint64;
42 #elif (SIZEOF_LONG == 8)
43 typedef long ALint64;
44 #elif (SIZEOF_LONG_LONG == 8)
45 typedef long long ALint64;
46 #endif
48 #ifdef HAVE_SQRTF
49 #define aluSqrt(x) ((ALfloat)sqrtf((float)(x)))
50 #else
51 #define aluSqrt(x) ((ALfloat)sqrt((double)(x)))
52 #endif
54 #ifdef HAVE_ACOSF
55 #define aluAcos(x) ((ALfloat)acosf((float)(x)))
56 #else
57 #define aluAcos(x) ((ALfloat)acos((double)(x)))
58 #endif
60 // fixes for mingw32.
61 #if defined(max) && !defined(__max)
62 #define __max max
63 #endif
64 #if defined(min) && !defined(__min)
65 #define __min min
66 #endif
68 #define BUFFERSIZE 24000
69 #define FRACTIONBITS 14
70 #define FRACTIONMASK ((1L<<FRACTIONBITS)-1)
71 #define MAX_PITCH 4
73 /* Minimum ramp length in milliseconds. The value below was chosen to
74 * adequately reduce clicks and pops from harsh gain changes. */
75 #define MIN_RAMP_LENGTH 16
77 ALboolean DuplicateStereo = AL_FALSE;
79 /* NOTE: The AL_FORMAT_REAR* enums aren't handled here be cause they're
80 * converted to AL_FORMAT_QUAD* when loaded */
81 __inline ALuint aluBytesFromFormat(ALenum format)
83 switch(format)
85 case AL_FORMAT_MONO8:
86 case AL_FORMAT_STEREO8:
87 case AL_FORMAT_QUAD8_LOKI:
88 case AL_FORMAT_QUAD8:
89 case AL_FORMAT_51CHN8:
90 case AL_FORMAT_61CHN8:
91 case AL_FORMAT_71CHN8:
92 return 1;
94 case AL_FORMAT_MONO16:
95 case AL_FORMAT_STEREO16:
96 case AL_FORMAT_QUAD16_LOKI:
97 case AL_FORMAT_QUAD16:
98 case AL_FORMAT_51CHN16:
99 case AL_FORMAT_61CHN16:
100 case AL_FORMAT_71CHN16:
101 return 2;
103 case AL_FORMAT_MONO_FLOAT32:
104 case AL_FORMAT_STEREO_FLOAT32:
105 case AL_FORMAT_QUAD32:
106 case AL_FORMAT_51CHN32:
107 case AL_FORMAT_61CHN32:
108 case AL_FORMAT_71CHN32:
109 return 4;
111 default:
112 return 0;
116 __inline ALuint aluChannelsFromFormat(ALenum format)
118 switch(format)
120 case AL_FORMAT_MONO8:
121 case AL_FORMAT_MONO16:
122 case AL_FORMAT_MONO_FLOAT32:
123 return 1;
125 case AL_FORMAT_STEREO8:
126 case AL_FORMAT_STEREO16:
127 case AL_FORMAT_STEREO_FLOAT32:
128 return 2;
130 case AL_FORMAT_QUAD8_LOKI:
131 case AL_FORMAT_QUAD16_LOKI:
132 case AL_FORMAT_QUAD8:
133 case AL_FORMAT_QUAD16:
134 case AL_FORMAT_QUAD32:
135 return 4;
137 case AL_FORMAT_51CHN8:
138 case AL_FORMAT_51CHN16:
139 case AL_FORMAT_51CHN32:
140 return 6;
142 case AL_FORMAT_61CHN8:
143 case AL_FORMAT_61CHN16:
144 case AL_FORMAT_61CHN32:
145 return 7;
147 case AL_FORMAT_71CHN8:
148 case AL_FORMAT_71CHN16:
149 case AL_FORMAT_71CHN32:
150 return 8;
152 default:
153 return 0;
158 static __inline ALfloat lpFilter(FILTER *iir, ALfloat input)
160 ALfloat *history = iir->history;
161 ALfloat a = iir->coeff;
162 ALfloat output = input;
164 output = output + (history[0]-output)*a;
165 history[0] = output;
166 output = output + (history[1]-output)*a;
167 history[1] = output;
168 output = output + (history[2]-output)*a;
169 history[2] = output;
170 output = output + (history[3]-output)*a;
171 history[3] = output;
173 return output;
177 static __inline ALshort aluF2S(ALfloat Value)
179 ALint i;
181 i = (ALint)Value;
182 i = __min( 32767, i);
183 i = __max(-32768, i);
184 return ((ALshort)i);
187 static __inline ALvoid aluCrossproduct(ALfloat *inVector1,ALfloat *inVector2,ALfloat *outVector)
189 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
190 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
191 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
194 static __inline ALfloat aluDotproduct(ALfloat *inVector1,ALfloat *inVector2)
196 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
197 inVector1[2]*inVector2[2];
200 static __inline ALvoid aluNormalize(ALfloat *inVector)
202 ALfloat length, inverse_length;
204 length = aluSqrt(aluDotproduct(inVector, inVector));
205 if(length != 0.0f)
207 inverse_length = 1.0f/length;
208 inVector[0] *= inverse_length;
209 inVector[1] *= inverse_length;
210 inVector[2] *= inverse_length;
214 static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat matrix[3][3])
216 ALfloat result[3];
218 result[0] = vector[0]*matrix[0][0] + vector[1]*matrix[1][0] + vector[2]*matrix[2][0];
219 result[1] = vector[0]*matrix[0][1] + vector[1]*matrix[1][1] + vector[2]*matrix[2][1];
220 result[2] = vector[0]*matrix[0][2] + vector[1]*matrix[1][2] + vector[2]*matrix[2][2];
221 memcpy(vector, result, sizeof(result));
225 static ALvoid CalcSourceParams(ALCcontext *ALContext, ALsource *ALSource,
226 ALenum isMono, ALenum OutputFormat,
227 ALfloat *drysend, ALfloat *wetsend,
228 ALfloat *pitch, ALfloat *drygainhf,
229 ALfloat *wetgainhf)
231 ALfloat InnerAngle,OuterAngle,Angle,Distance,DryMix,WetMix=0.0f;
232 ALfloat Direction[3],Position[3],SourceToListener[3];
233 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff,OuterGainHF;
234 ALfloat ConeVolume,SourceVolume,PanningFB,PanningLR,ListenerGain;
235 ALfloat U[3],V[3],N[3];
236 ALfloat DopplerFactor, DopplerVelocity, flSpeedOfSound, flMaxVelocity;
237 ALfloat Matrix[3][3];
238 ALfloat flAttenuation;
239 ALfloat RoomAttenuation;
240 ALfloat MetersPerUnit;
241 ALfloat RoomRolloff;
242 ALfloat DryGainHF = 1.0f;
243 ALfloat WetGainHF = 1.0f;
244 ALfloat cw, a, g;
246 //Get context properties
247 DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
248 DopplerVelocity = ALContext->DopplerVelocity;
249 flSpeedOfSound = ALContext->flSpeedOfSound;
251 //Get listener properties
252 ListenerGain = ALContext->Listener.Gain;
253 MetersPerUnit = ALContext->Listener.MetersPerUnit;
255 //Get source properties
256 SourceVolume = ALSource->flGain;
257 memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition));
258 memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation));
259 MinVolume = ALSource->flMinGain;
260 MaxVolume = ALSource->flMaxGain;
261 MinDist = ALSource->flRefDistance;
262 MaxDist = ALSource->flMaxDistance;
263 Rolloff = ALSource->flRollOffFactor;
264 InnerAngle = ALSource->flInnerAngle;
265 OuterAngle = ALSource->flOuterAngle;
266 OuterGainHF = ALSource->OuterGainHF;
267 RoomRolloff = ALSource->RoomRolloffFactor;
269 //Only apply 3D calculations for mono buffers
270 if(isMono != AL_FALSE)
272 //1. Translate Listener to origin (convert to head relative)
273 // Note that Direction and SourceToListener are *not* transformed.
274 // SourceToListener is used with the source and listener velocities,
275 // which are untransformed, and Direction is used with SourceToListener
276 // for the sound cone
277 if(ALSource->bHeadRelative==AL_FALSE)
279 // Build transform matrix
280 aluCrossproduct(ALContext->Listener.Forward, ALContext->Listener.Up, U); // Right-vector
281 aluNormalize(U); // Normalized Right-vector
282 memcpy(V, ALContext->Listener.Up, sizeof(V)); // Up-vector
283 aluNormalize(V); // Normalized Up-vector
284 memcpy(N, ALContext->Listener.Forward, sizeof(N)); // At-vector
285 aluNormalize(N); // Normalized At-vector
286 Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0];
287 Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1];
288 Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2];
290 // Translate source position into listener space
291 Position[0] -= ALContext->Listener.Position[0];
292 Position[1] -= ALContext->Listener.Position[1];
293 Position[2] -= ALContext->Listener.Position[2];
295 SourceToListener[0] = -Position[0];
296 SourceToListener[1] = -Position[1];
297 SourceToListener[2] = -Position[2];
299 // Transform source position and direction into listener space
300 aluMatrixVector(Position, Matrix);
302 else
304 SourceToListener[0] = -Position[0];
305 SourceToListener[1] = -Position[1];
306 SourceToListener[2] = -Position[2];
308 aluNormalize(SourceToListener);
309 aluNormalize(Direction);
311 //2. Calculate distance attenuation
312 Distance = aluSqrt(aluDotproduct(Position, Position));
314 if(ALSource->Send[0].Slot)
316 if(ALSource->Send[0].Slot->effect.type == AL_EFFECT_REVERB)
317 RoomRolloff += ALSource->Send[0].Slot->effect.Reverb.RoomRolloffFactor;
320 flAttenuation = 1.0f;
321 RoomAttenuation = 1.0f;
322 switch (ALContext->DistanceModel)
324 case AL_INVERSE_DISTANCE_CLAMPED:
325 Distance=__max(Distance,MinDist);
326 Distance=__min(Distance,MaxDist);
327 if (MaxDist < MinDist)
328 break;
329 //fall-through
330 case AL_INVERSE_DISTANCE:
331 if (MinDist > 0.0f)
333 if ((MinDist + (Rolloff * (Distance - MinDist))) > 0.0f)
334 flAttenuation = MinDist / (MinDist + (Rolloff * (Distance - MinDist)));
335 if ((MinDist + (RoomRolloff * (Distance - MinDist))) > 0.0f)
336 RoomAttenuation = MinDist / (MinDist + (RoomRolloff * (Distance - MinDist)));
338 break;
340 case AL_LINEAR_DISTANCE_CLAMPED:
341 Distance=__max(Distance,MinDist);
342 Distance=__min(Distance,MaxDist);
343 if (MaxDist < MinDist)
344 break;
345 //fall-through
346 case AL_LINEAR_DISTANCE:
347 Distance=__min(Distance,MaxDist);
348 if (MaxDist != MinDist)
350 flAttenuation = 1.0f - (Rolloff*(Distance-MinDist)/(MaxDist - MinDist));
351 RoomAttenuation = 1.0f - (RoomRolloff*(Distance-MinDist)/(MaxDist - MinDist));
353 break;
355 case AL_EXPONENT_DISTANCE_CLAMPED:
356 Distance=__max(Distance,MinDist);
357 Distance=__min(Distance,MaxDist);
358 if (MaxDist < MinDist)
359 break;
360 //fall-through
361 case AL_EXPONENT_DISTANCE:
362 if ((Distance > 0.0f) && (MinDist > 0.0f))
364 flAttenuation = (ALfloat)pow(Distance/MinDist, -Rolloff);
365 RoomAttenuation = (ALfloat)pow(Distance/MinDist, -RoomRolloff);
367 break;
369 case AL_NONE:
370 flAttenuation = 1.0f;
371 RoomAttenuation = 1.0f;
372 break;
375 // Distance-based air absorption
376 if(ALSource->AirAbsorptionFactor > 0.0f && ALContext->DistanceModel != AL_NONE)
378 ALfloat dist = Distance-MinDist;
379 ALfloat absorb;
381 if(dist < 0.0f) dist = 0.0f;
382 // Absorption calculation is done in dB
383 absorb = (ALSource->AirAbsorptionFactor*AIRABSORBGAINDBHF) *
384 (Distance*MetersPerUnit);
385 // Convert dB to linear gain before applying
386 absorb = pow(0.5, absorb/-6.0);
387 DryGainHF *= absorb;
388 WetGainHF *= absorb;
391 // Source Gain + Attenuation and clamp to Min/Max Gain
392 DryMix = SourceVolume * flAttenuation;
393 DryMix = __min(DryMix,MaxVolume);
394 DryMix = __max(DryMix,MinVolume);
396 WetMix = SourceVolume * RoomAttenuation;
397 WetMix = __min(WetMix,MaxVolume);
398 WetMix = __max(WetMix,MinVolume);
400 //3. Apply directional soundcones
401 Angle = aluAcos(aluDotproduct(Direction,SourceToListener)) * 180.0f /
402 3.141592654f;
403 if(Angle >= InnerAngle && Angle <= OuterAngle)
405 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
406 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f)*scale);
407 DryMix *= ConeVolume;
408 if(ALSource->WetGainAuto)
409 WetMix *= ConeVolume;
410 if(ALSource->DryGainHFAuto)
411 DryGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
412 if(ALSource->WetGainHFAuto)
413 WetGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
415 else if(Angle > OuterAngle)
417 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f));
418 DryMix *= ConeVolume;
419 if(ALSource->WetGainAuto)
420 WetMix *= ConeVolume;
421 if(ALSource->DryGainHFAuto)
422 DryGainHF *= (1.0f+(OuterGainHF-1.0f));
423 if(ALSource->WetGainHFAuto)
424 WetGainHF *= (1.0f+(OuterGainHF-1.0f));
427 //4. Calculate Velocity
428 if(DopplerFactor != 0.0f)
430 ALfloat flVSS, flVLS = 0.0f;
432 if(ALSource->bHeadRelative==AL_FALSE)
433 flVLS = aluDotproduct(ALContext->Listener.Velocity, SourceToListener);
434 flVSS = aluDotproduct(ALSource->vVelocity, SourceToListener);
436 flMaxVelocity = (DopplerVelocity * flSpeedOfSound) / DopplerFactor;
438 if (flVSS >= flMaxVelocity)
439 flVSS = (flMaxVelocity - 1.0f);
440 else if (flVSS <= -flMaxVelocity)
441 flVSS = -flMaxVelocity + 1.0f;
443 if (flVLS >= flMaxVelocity)
444 flVLS = (flMaxVelocity - 1.0f);
445 else if (flVLS <= -flMaxVelocity)
446 flVLS = -flMaxVelocity + 1.0f;
448 pitch[0] = ALSource->flPitch *
449 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVLS)) /
450 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVSS));
452 else
453 pitch[0] = ALSource->flPitch;
455 if(ALSource->Send[0].Slot)
457 // If the slot's auxilliary send auto is off, the data sent to the
458 // effect slot is the same as the dry path, sans filter effects
459 if(!ALSource->Send[0].Slot->AuxSendAuto)
461 WetMix = DryMix;
462 WetGainHF = DryGainHF;
465 // Note that these are really applied by the effect slot. However,
466 // it's easier to handle them here (particularly the lowpass
467 // filter). Applying the gain to the individual sources going to
468 // the effect slot should have the same effect as applying the gain
469 // to the accumulated sources in the effect slot.
470 // vol1*g + vol2*g + ... voln*g = (vol1+vol2+...voln)*g
471 WetMix *= ALSource->Send[0].Slot->Gain;
472 if(ALSource->Send[0].Slot->effect.type == AL_EFFECT_REVERB)
474 WetMix *= ALSource->Send[0].Slot->effect.Reverb.Gain;
475 WetGainHF *= ALSource->Send[0].Slot->effect.Reverb.GainHF;
476 WetGainHF *= pow(ALSource->Send[0].Slot->effect.Reverb.AirAbsorptionGainHF,
477 Distance * MetersPerUnit);
480 else
482 WetMix = 0.0f;
483 WetGainHF = 1.0f;
486 //5. Apply filter gains and filters
487 switch(ALSource->DirectFilter.type)
489 case AL_FILTER_LOWPASS:
490 DryMix *= ALSource->DirectFilter.Gain;
491 DryGainHF *= ALSource->DirectFilter.GainHF;
492 break;
495 switch(ALSource->Send[0].WetFilter.type)
497 case AL_FILTER_LOWPASS:
498 WetMix *= ALSource->Send[0].WetFilter.Gain;
499 WetGainHF *= ALSource->Send[0].WetFilter.GainHF;
500 break;
503 DryMix *= ListenerGain;
504 WetMix *= ListenerGain;
506 //6. Convert normalized position into pannings, then into channel volumes
507 aluNormalize(Position);
508 switch(aluChannelsFromFormat(OutputFormat))
510 case 1:
511 case 2:
512 PanningLR = 0.5f + 0.5f*Position[0];
513 drysend[FRONT_LEFT] = DryMix * aluSqrt(1.0f-PanningLR); //L Direct
514 drysend[FRONT_RIGHT] = DryMix * aluSqrt( PanningLR); //R Direct
515 drysend[BACK_LEFT] = drysend[FRONT_LEFT];
516 drysend[BACK_RIGHT] = drysend[FRONT_RIGHT];
517 drysend[SIDE_LEFT] = drysend[FRONT_LEFT];
518 drysend[SIDE_RIGHT] = drysend[FRONT_RIGHT];
519 wetsend[FRONT_LEFT] = WetMix * aluSqrt(1.0f-PanningLR); //L Room
520 wetsend[FRONT_RIGHT] = WetMix * aluSqrt( PanningLR); //R Room
521 wetsend[BACK_LEFT] = wetsend[FRONT_LEFT];
522 wetsend[BACK_RIGHT] = wetsend[FRONT_RIGHT];
523 wetsend[SIDE_LEFT] = wetsend[FRONT_LEFT];
524 wetsend[SIDE_RIGHT] = wetsend[FRONT_RIGHT];
525 break;
526 case 4:
527 /* TODO: Add center/lfe channel in spatial calculations? */
528 case 6:
529 // Apply a scalar so each individual speaker has more weight
530 PanningLR = 0.5f + (0.5f*Position[0]*1.41421356f);
531 PanningLR = __min(1.0f, PanningLR);
532 PanningLR = __max(0.0f, PanningLR);
533 PanningFB = 0.5f + (0.5f*Position[2]*1.41421356f);
534 PanningFB = __min(1.0f, PanningFB);
535 PanningFB = __max(0.0f, PanningFB);
536 drysend[FRONT_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
537 drysend[FRONT_RIGHT] = DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
538 drysend[BACK_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
539 drysend[BACK_RIGHT] = DryMix * aluSqrt(( PanningLR)*( PanningFB));
540 drysend[SIDE_LEFT] = (drysend[FRONT_LEFT] +drysend[BACK_LEFT]) * 0.5f;
541 drysend[SIDE_RIGHT] = (drysend[FRONT_RIGHT]+drysend[BACK_RIGHT]) * 0.5f;
542 wetsend[FRONT_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
543 wetsend[FRONT_RIGHT] = WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
544 wetsend[BACK_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
545 wetsend[BACK_RIGHT] = WetMix * aluSqrt(( PanningLR)*( PanningFB));
546 wetsend[SIDE_LEFT] = (wetsend[FRONT_LEFT] +wetsend[BACK_LEFT]) * 0.5f;
547 wetsend[SIDE_RIGHT] = (wetsend[FRONT_RIGHT]+wetsend[BACK_RIGHT]) * 0.5f;
548 break;
549 case 7:
550 case 8:
551 PanningFB = 1.0f - fabs(Position[2]*1.15470054f);
552 PanningFB = __min(1.0f, PanningFB);
553 PanningFB = __max(0.0f, PanningFB);
554 PanningLR = 0.5f + (0.5*Position[0]*((1.0f-PanningFB)*2.0f));
555 PanningLR = __min(1.0f, PanningLR);
556 PanningLR = __max(0.0f, PanningLR);
557 if(Position[2] > 0.0f)
559 drysend[BACK_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
560 drysend[BACK_RIGHT] = DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
561 drysend[SIDE_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
562 drysend[SIDE_RIGHT] = DryMix * aluSqrt(( PanningLR)*( PanningFB));
563 drysend[FRONT_LEFT] = 0.0f;
564 drysend[FRONT_RIGHT] = 0.0f;
565 wetsend[BACK_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
566 wetsend[BACK_RIGHT] = WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
567 wetsend[SIDE_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
568 wetsend[SIDE_RIGHT] = WetMix * aluSqrt(( PanningLR)*( PanningFB));
569 wetsend[FRONT_LEFT] = 0.0f;
570 wetsend[FRONT_RIGHT] = 0.0f;
572 else
574 drysend[FRONT_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
575 drysend[FRONT_RIGHT] = DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
576 drysend[SIDE_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
577 drysend[SIDE_RIGHT] = DryMix * aluSqrt(( PanningLR)*( PanningFB));
578 drysend[BACK_LEFT] = 0.0f;
579 drysend[BACK_RIGHT] = 0.0f;
580 wetsend[FRONT_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
581 wetsend[FRONT_RIGHT] = WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
582 wetsend[SIDE_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
583 wetsend[SIDE_RIGHT] = WetMix * aluSqrt(( PanningLR)*( PanningFB));
584 wetsend[BACK_LEFT] = 0.0f;
585 wetsend[BACK_RIGHT] = 0.0f;
587 default:
588 break;
591 // Update filter coefficients. Calculations based on the I3DL2 spec.
592 cw = cos(2.0f*3.141592654f * LOWPASSFREQCUTOFF / ALContext->Frequency);
593 // We use four chained one-pole filters, so we need to take the fourth
594 // root of the squared gain, which is the same as the square root of
595 // the base gain.
596 // Be careful with gains < 0.0001, as that causes the coefficient to
597 // head towards 1, which will flatten the signal
598 g = aluSqrt(__max(DryGainHF, 0.0001f));
599 a = 0.0f;
600 if(g < 0.9999f) // 1-epsilon
601 a = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) / (1 - g);
602 ALSource->iirFilter.coeff = a;
604 g = aluSqrt(__max(WetGainHF, 0.0001f));
605 a = 0.0f;
606 if(g < 0.9999f) // 1-epsilon
607 a = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) / (1 - g);
608 ALSource->Send[0].iirFilter.coeff = a;
610 *drygainhf = DryGainHF;
611 *wetgainhf = WetGainHF;
613 else
615 //1. Multi-channel buffers always play "normal"
616 pitch[0] = ALSource->flPitch;
618 drysend[FRONT_LEFT] = SourceVolume * ListenerGain;
619 drysend[FRONT_RIGHT] = SourceVolume * ListenerGain;
620 drysend[SIDE_LEFT] = SourceVolume * ListenerGain;
621 drysend[SIDE_RIGHT] = SourceVolume * ListenerGain;
622 drysend[BACK_LEFT] = SourceVolume * ListenerGain;
623 drysend[BACK_RIGHT] = SourceVolume * ListenerGain;
624 drysend[CENTER] = SourceVolume * ListenerGain;
625 drysend[LFE] = SourceVolume * ListenerGain;
626 wetsend[FRONT_LEFT] = 0.0f;
627 wetsend[FRONT_RIGHT] = 0.0f;
628 wetsend[SIDE_LEFT] = 0.0f;
629 wetsend[SIDE_RIGHT] = 0.0f;
630 wetsend[BACK_LEFT] = 0.0f;
631 wetsend[BACK_RIGHT] = 0.0f;
632 wetsend[CENTER] = 0.0f;
633 wetsend[LFE] = 0.0f;
634 WetGainHF = 1.0f;
636 *drygainhf = DryGainHF;
637 *wetgainhf = WetGainHF;
641 ALvoid aluMixData(ALCcontext *ALContext,ALvoid *buffer,ALsizei size,ALenum format)
643 static float DryBuffer[BUFFERSIZE][OUTPUTCHANNELS];
644 static float WetBuffer[BUFFERSIZE][OUTPUTCHANNELS];
645 ALfloat newDrySend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
646 ALfloat newWetSend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
647 ALfloat DryGainHF = 0.0f;
648 ALfloat WetGainHF = 0.0f;
649 ALfloat *DrySend;
650 ALfloat *WetSend;
651 ALuint rampLength;
652 ALfloat dryGainStep[OUTPUTCHANNELS];
653 ALfloat wetGainStep[OUTPUTCHANNELS];
654 ALuint BlockAlign,BufferSize;
655 ALuint DataSize=0,DataPosInt=0,DataPosFrac=0;
656 ALuint Channels,Frequency,ulExtraSamples;
657 ALfloat Pitch;
658 ALint Looping,State;
659 ALint fraction,increment;
660 ALuint Buffer;
661 ALuint SamplesToDo;
662 ALsource *ALSource;
663 ALbuffer *ALBuffer;
664 ALeffectslot *ALEffectSlot;
665 ALfloat value;
666 ALshort *Data;
667 ALuint i,j,k;
668 ALbufferlistitem *BufferListItem;
669 ALuint loop;
670 ALint64 DataSize64,DataPos64;
671 FILTER *DryFilter, *WetFilter;
672 int fpuState;
674 SuspendContext(ALContext);
676 #if defined(HAVE_FESETROUND)
677 fpuState = fegetround();
678 fesetround(FE_TOWARDZERO);
679 #elif defined(HAVE__CONTROLFP)
680 fpuState = _controlfp(0, 0);
681 _controlfp(_RC_CHOP, _MCW_RC);
682 #else
683 (void)fpuState;
684 #endif
686 //Figure output format variables
687 BlockAlign = aluChannelsFromFormat(format);
688 BlockAlign *= aluBytesFromFormat(format);
690 size /= BlockAlign;
691 while(size > 0)
693 //Setup variables
694 SamplesToDo = min(size, BUFFERSIZE);
695 if(ALContext)
697 ALEffectSlot = ALContext->AuxiliaryEffectSlot;
698 ALSource = ALContext->Source;
699 rampLength = ALContext->Frequency * MIN_RAMP_LENGTH / 1000;
701 else
703 ALEffectSlot = NULL;
704 ALSource = NULL;
705 rampLength = 0;
707 rampLength = max(rampLength, SamplesToDo);
709 //Clear mixing buffer
710 memset(DryBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
711 memset(WetBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
713 //Actual mixing loop
714 while(ALSource)
716 j = 0;
717 State = ALSource->state;
719 while(State == AL_PLAYING && j < SamplesToDo)
721 DataSize = 0;
722 DataPosInt = 0;
723 DataPosFrac = 0;
725 //Get buffer info
726 if((Buffer = ALSource->ulBufferID))
728 ALBuffer = (ALbuffer*)ALTHUNK_LOOKUPENTRY(Buffer);
730 Data = ALBuffer->data;
731 Channels = aluChannelsFromFormat(ALBuffer->format);
732 DataSize = ALBuffer->size;
733 Frequency = ALBuffer->frequency;
735 CalcSourceParams(ALContext, ALSource,
736 (Channels==1) ? AL_TRUE : AL_FALSE,
737 format, newDrySend, newWetSend, &Pitch,
738 &DryGainHF, &WetGainHF);
740 Pitch = (Pitch*Frequency) / ALContext->Frequency;
741 DataSize /= Channels * aluBytesFromFormat(ALBuffer->format);
743 //Get source info
744 DataPosInt = ALSource->position;
745 DataPosFrac = ALSource->position_fraction;
746 DryFilter = &ALSource->iirFilter;
747 WetFilter = &ALSource->Send[0].iirFilter;
748 DrySend = ALSource->DryGains;
749 WetSend = ALSource->WetGains;
751 //Compute the gain steps for each output channel
752 for(i = 0;i < OUTPUTCHANNELS;i++)
754 dryGainStep[i] = (newDrySend[i]-DrySend[i]) / rampLength;
755 wetGainStep[i] = (newWetSend[i]-WetSend[i]) / rampLength;
758 //Compute 18.14 fixed point step
759 increment = (ALint)(Pitch*(ALfloat)(1L<<FRACTIONBITS));
760 if(increment > (MAX_PITCH<<FRACTIONBITS))
761 increment = (MAX_PITCH<<FRACTIONBITS);
762 else if(increment <= 0)
763 increment = (1<<FRACTIONBITS);
765 //Figure out how many samples we can mix.
766 DataSize64 = DataSize;
767 DataSize64 <<= FRACTIONBITS;
768 DataPos64 = DataPosInt;
769 DataPos64 <<= FRACTIONBITS;
770 DataPos64 += DataPosFrac;
771 BufferSize = (ALuint)((DataSize64-DataPos64+(increment-1)) / increment);
773 BufferListItem = ALSource->queue;
774 for(loop = 0; loop < ALSource->BuffersPlayed; loop++)
776 if(BufferListItem)
777 BufferListItem = BufferListItem->next;
779 if (BufferListItem)
781 if (BufferListItem->next)
783 ALbuffer *NextBuf = (ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer);
784 if(NextBuf && NextBuf->data)
786 ulExtraSamples = min(NextBuf->size, (ALint)(ALBuffer->padding*Channels*2));
787 memcpy(&Data[DataSize*Channels], NextBuf->data, ulExtraSamples);
790 else if (ALSource->bLooping)
792 ALbuffer *NextBuf = (ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer);
793 if (NextBuf && NextBuf->data)
795 ulExtraSamples = min(NextBuf->size, (ALint)(ALBuffer->padding*Channels*2));
796 memcpy(&Data[DataSize*Channels], NextBuf->data, ulExtraSamples);
799 else
800 memset(&Data[DataSize*Channels], 0, (ALBuffer->padding*Channels*2));
802 BufferSize = min(BufferSize, (SamplesToDo-j));
804 //Actual sample mixing loop
805 Data += DataPosInt*Channels;
806 while(BufferSize--)
808 k = DataPosFrac>>FRACTIONBITS;
809 fraction = DataPosFrac&FRACTIONMASK;
811 for(i = 0;i < OUTPUTCHANNELS;i++)
813 DrySend[i] += dryGainStep[i];
814 WetSend[i] += wetGainStep[i];
817 if(Channels==1)
819 ALfloat sample, outsamp;
820 //First order interpolator
821 sample = (Data[k]*((1<<FRACTIONBITS)-fraction) +
822 Data[k+1]*fraction) >> FRACTIONBITS;
824 //Direct path final mix buffer and panning
825 outsamp = lpFilter(DryFilter, sample);
826 DryBuffer[j][FRONT_LEFT] += outsamp*DrySend[FRONT_LEFT];
827 DryBuffer[j][FRONT_RIGHT] += outsamp*DrySend[FRONT_RIGHT];
828 DryBuffer[j][SIDE_LEFT] += outsamp*DrySend[SIDE_LEFT];
829 DryBuffer[j][SIDE_RIGHT] += outsamp*DrySend[SIDE_RIGHT];
830 DryBuffer[j][BACK_LEFT] += outsamp*DrySend[BACK_LEFT];
831 DryBuffer[j][BACK_RIGHT] += outsamp*DrySend[BACK_RIGHT];
832 //Room path final mix buffer and panning
833 outsamp = lpFilter(WetFilter, sample);
834 WetBuffer[j][FRONT_LEFT] += outsamp*WetSend[FRONT_LEFT];
835 WetBuffer[j][FRONT_RIGHT] += outsamp*WetSend[FRONT_RIGHT];
836 WetBuffer[j][SIDE_LEFT] += outsamp*WetSend[SIDE_LEFT];
837 WetBuffer[j][SIDE_RIGHT] += outsamp*WetSend[SIDE_RIGHT];
838 WetBuffer[j][BACK_LEFT] += outsamp*WetSend[BACK_LEFT];
839 WetBuffer[j][BACK_RIGHT] += outsamp*WetSend[BACK_RIGHT];
841 else
843 ALfloat samp1, samp2;
844 //First order interpolator (front left)
845 samp1 = (Data[k*Channels]*((1<<FRACTIONBITS)-fraction) +
846 Data[(k+1)*Channels]*fraction) >> FRACTIONBITS;
847 DryBuffer[j][FRONT_LEFT] += samp1*DrySend[FRONT_LEFT];
848 WetBuffer[j][FRONT_LEFT] += samp1*WetSend[FRONT_LEFT];
849 //First order interpolator (front right)
850 samp2 = (Data[k*Channels+1]*((1<<FRACTIONBITS)-fraction) +
851 Data[(k+1)*Channels+1]*fraction) >> FRACTIONBITS;
852 DryBuffer[j][FRONT_RIGHT] += samp2*DrySend[FRONT_RIGHT];
853 WetBuffer[j][FRONT_RIGHT] += samp2*WetSend[FRONT_RIGHT];
854 if(Channels >= 4)
856 int i = 2;
857 if(Channels >= 6)
859 if(Channels != 7)
861 //First order interpolator (center)
862 value = (Data[k*Channels+i]*((1<<FRACTIONBITS)-fraction) +
863 Data[(k+1)*Channels+i]*fraction) >> FRACTIONBITS;
864 DryBuffer[j][CENTER] += value*DrySend[CENTER];
865 WetBuffer[j][CENTER] += value*WetSend[CENTER];
866 i++;
868 //First order interpolator (lfe)
869 value = (Data[k*Channels+i]*((1<<FRACTIONBITS)-fraction) +
870 Data[(k+1)*Channels+i]*fraction) >> FRACTIONBITS;
871 DryBuffer[j][LFE] += value*DrySend[LFE];
872 WetBuffer[j][LFE] += value*WetSend[LFE];
873 i++;
875 //First order interpolator (back left)
876 value = (Data[k*Channels+i]*((1<<FRACTIONBITS)-fraction) +
877 Data[(k+1)*Channels+i]*fraction) >> FRACTIONBITS;
878 DryBuffer[j][BACK_LEFT] += value*DrySend[BACK_LEFT];
879 WetBuffer[j][BACK_LEFT] += value*WetSend[BACK_LEFT];
880 i++;
881 //First order interpolator (back right)
882 value = (Data[k*Channels+i]*((1<<FRACTIONBITS)-fraction) +
883 Data[(k+1)*Channels+i]*fraction) >> FRACTIONBITS;
884 DryBuffer[j][BACK_RIGHT] += value*DrySend[BACK_RIGHT];
885 WetBuffer[j][BACK_RIGHT] += value*WetSend[BACK_RIGHT];
886 i++;
887 if(Channels >= 7)
889 //First order interpolator (side left)
890 value = (Data[k*Channels+i]*((1<<FRACTIONBITS)-fraction) +
891 Data[(k+1)*Channels+i]*fraction) >> FRACTIONBITS;
892 DryBuffer[j][SIDE_LEFT] += value*DrySend[SIDE_LEFT];
893 WetBuffer[j][SIDE_LEFT] += value*WetSend[SIDE_LEFT];
894 i++;
895 //First order interpolator (side right)
896 value = (Data[k*Channels+i]*((1<<FRACTIONBITS)-fraction) +
897 Data[(k+1)*Channels+i]*fraction) >> FRACTIONBITS;
898 DryBuffer[j][SIDE_RIGHT] += value*DrySend[SIDE_RIGHT];
899 WetBuffer[j][SIDE_RIGHT] += value*WetSend[SIDE_RIGHT];
900 i++;
903 else if(DuplicateStereo)
905 //Duplicate stereo channels on the back speakers
906 DryBuffer[j][BACK_LEFT] += samp1*DrySend[BACK_LEFT];
907 WetBuffer[j][BACK_LEFT] += samp1*WetSend[BACK_LEFT];
908 DryBuffer[j][BACK_RIGHT] += samp2*DrySend[BACK_RIGHT];
909 WetBuffer[j][BACK_RIGHT] += samp2*WetSend[BACK_RIGHT];
912 DataPosFrac += increment;
913 j++;
915 DataPosInt += (DataPosFrac>>FRACTIONBITS);
916 DataPosFrac = (DataPosFrac&FRACTIONMASK);
918 //Update source info
919 ALSource->position = DataPosInt;
920 ALSource->position_fraction = DataPosFrac;
923 //Handle looping sources
924 if(!Buffer || DataPosInt >= DataSize)
926 //queueing
927 if(ALSource->queue)
929 Looping = ALSource->bLooping;
930 if(ALSource->BuffersPlayed < (ALSource->BuffersInQueue-1))
932 BufferListItem = ALSource->queue;
933 for(loop = 0; loop <= ALSource->BuffersPlayed; loop++)
935 if(BufferListItem)
937 if(!Looping)
938 BufferListItem->bufferstate = PROCESSED;
939 BufferListItem = BufferListItem->next;
942 if(BufferListItem)
943 ALSource->ulBufferID = BufferListItem->buffer;
944 ALSource->position = DataPosInt-DataSize;
945 ALSource->position_fraction = DataPosFrac;
946 ALSource->BuffersPlayed++;
948 else
950 if(!Looping)
952 /* alSourceStop */
953 ALSource->state = AL_STOPPED;
954 ALSource->inuse = AL_FALSE;
955 ALSource->BuffersPlayed = ALSource->BuffersInQueue;
956 BufferListItem = ALSource->queue;
957 while(BufferListItem != NULL)
959 BufferListItem->bufferstate = PROCESSED;
960 BufferListItem = BufferListItem->next;
963 else
965 /* alSourceRewind */
966 /* alSourcePlay */
967 ALSource->state = AL_PLAYING;
968 ALSource->inuse = AL_TRUE;
969 ALSource->play = AL_TRUE;
970 ALSource->BuffersPlayed = 0;
971 ALSource->BufferPosition = 0;
972 ALSource->lBytesPlayed = 0;
973 BufferListItem = ALSource->queue;
974 while(BufferListItem != NULL)
976 BufferListItem->bufferstate = PENDING;
977 BufferListItem = BufferListItem->next;
979 ALSource->ulBufferID = ALSource->queue->buffer;
981 ALSource->position = DataPosInt-DataSize;
982 ALSource->position_fraction = DataPosFrac;
988 //Get source state
989 State = ALSource->state;
992 ALSource = ALSource->next;
995 // effect slot processing
996 while(ALEffectSlot)
998 if(ALEffectSlot->effect.type == AL_EFFECT_REVERB)
1000 ALfloat *DelayBuffer = ALEffectSlot->ReverbBuffer;
1001 ALuint Pos = ALEffectSlot->ReverbPos;
1002 ALuint LatePos = ALEffectSlot->ReverbLatePos;
1003 ALuint ReflectPos = ALEffectSlot->ReverbReflectPos;
1004 ALuint Length = ALEffectSlot->ReverbLength;
1005 ALfloat DecayGain = ALEffectSlot->ReverbDecayGain;
1006 ALfloat DecayHFRatio = ALEffectSlot->effect.Reverb.DecayHFRatio;
1007 ALfloat ReflectGain = ALEffectSlot->effect.Reverb.ReflectionsGain;
1008 ALfloat LateReverbGain = ALEffectSlot->effect.Reverb.LateReverbGain;
1009 ALfloat sample, lowsample;
1011 WetFilter = &ALEffectSlot->iirFilter;
1012 for(i = 0;i < SamplesToDo;i++)
1014 sample = WetBuffer[i][FRONT_LEFT] +WetBuffer[i][SIDE_LEFT] +WetBuffer[i][BACK_LEFT];
1015 sample += WetBuffer[i][FRONT_RIGHT]+WetBuffer[i][SIDE_RIGHT]+WetBuffer[i][BACK_RIGHT];
1016 DelayBuffer[Pos] = sample / 6.0f;
1018 sample = DelayBuffer[ReflectPos] * ReflectGain;
1020 DelayBuffer[LatePos] *= LateReverbGain;
1022 Pos = (Pos+1) % Length;
1023 lowsample = lpFilter(WetFilter, DelayBuffer[Pos]);
1024 lowsample += (DelayBuffer[Pos]-lowsample) * DecayHFRatio;
1026 DelayBuffer[LatePos] += lowsample * DecayGain;
1028 sample += DelayBuffer[LatePos];
1030 WetBuffer[i][FRONT_LEFT] = sample;
1031 WetBuffer[i][FRONT_RIGHT] = sample;
1032 WetBuffer[i][SIDE_LEFT] = sample;
1033 WetBuffer[i][SIDE_RIGHT] = sample;
1034 WetBuffer[i][BACK_LEFT] = sample;
1035 WetBuffer[i][BACK_RIGHT] = sample;
1037 LatePos = (LatePos+1) % Length;
1038 ReflectPos = (ReflectPos+1) % Length;
1041 ALEffectSlot->ReverbPos = Pos;
1042 ALEffectSlot->ReverbLatePos = LatePos;
1043 ALEffectSlot->ReverbReflectPos = ReflectPos;
1046 ALEffectSlot = ALEffectSlot->next;
1049 //Post processing loop
1050 switch(format)
1052 case AL_FORMAT_MONO8:
1053 for(i = 0;i < SamplesToDo;i++)
1055 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT]+
1056 WetBuffer[i][FRONT_LEFT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1057 buffer = ((ALubyte*)buffer) + 1;
1059 break;
1060 case AL_FORMAT_STEREO8:
1061 if(ALContext && ALContext->bs2b)
1063 for(i = 0;i < SamplesToDo;i++)
1065 float samples[2];
1066 samples[0] = DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT];
1067 samples[1] = DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT];
1068 bs2b_cross_feed(ALContext->bs2b, samples);
1069 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(samples[0])>>8)+128);
1070 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(samples[1])>>8)+128);
1071 buffer = ((ALubyte*)buffer) + 2;
1074 else
1076 for(i = 0;i < SamplesToDo;i++)
1078 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1079 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1080 buffer = ((ALubyte*)buffer) + 2;
1083 break;
1084 case AL_FORMAT_QUAD8:
1085 for(i = 0;i < SamplesToDo;i++)
1087 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1088 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1089 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1090 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1091 buffer = ((ALubyte*)buffer) + 4;
1093 break;
1094 case AL_FORMAT_51CHN8:
1095 for(i = 0;i < SamplesToDo;i++)
1097 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1098 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1099 #ifdef _WIN32 /* Of course, Windows can't use the same ordering... */
1100 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
1101 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1102 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1103 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1104 #else
1105 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1106 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1107 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
1108 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1109 #endif
1110 buffer = ((ALubyte*)buffer) + 6;
1112 break;
1113 case AL_FORMAT_61CHN8:
1114 for(i = 0;i < SamplesToDo;i++)
1116 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1117 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1118 #ifdef _WIN32
1119 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1120 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1121 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1122 #else
1123 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1124 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1125 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1126 #endif
1127 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT])>>8)+128);
1128 ((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT])>>8)+128);
1129 buffer = ((ALubyte*)buffer) + 7;
1131 break;
1132 case AL_FORMAT_71CHN8:
1133 for(i = 0;i < SamplesToDo;i++)
1135 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1136 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1137 #ifdef _WIN32
1138 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
1139 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1140 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1141 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1142 #else
1143 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1144 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1145 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
1146 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1147 #endif
1148 ((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT])>>8)+128);
1149 ((ALubyte*)buffer)[7] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT])>>8)+128);
1150 buffer = ((ALubyte*)buffer) + 8;
1152 break;
1154 case AL_FORMAT_MONO16:
1155 for(i = 0;i < SamplesToDo;i++)
1157 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT]+
1158 WetBuffer[i][FRONT_LEFT]+WetBuffer[i][FRONT_RIGHT]);
1159 buffer = ((ALshort*)buffer) + 1;
1161 break;
1162 case AL_FORMAT_STEREO16:
1163 if(ALContext && ALContext->bs2b)
1165 for(i = 0;i < SamplesToDo;i++)
1167 float samples[2];
1168 samples[0] = DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT];
1169 samples[1] = DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT];
1170 bs2b_cross_feed(ALContext->bs2b, samples);
1171 ((ALshort*)buffer)[0] = aluF2S(samples[0]);
1172 ((ALshort*)buffer)[1] = aluF2S(samples[1]);
1173 buffer = ((ALshort*)buffer) + 2;
1176 else
1178 for(i = 0;i < SamplesToDo;i++)
1180 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1181 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1182 buffer = ((ALshort*)buffer) + 2;
1185 break;
1186 case AL_FORMAT_QUAD16:
1187 for(i = 0;i < SamplesToDo;i++)
1189 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1190 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1191 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1192 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1193 buffer = ((ALshort*)buffer) + 4;
1195 break;
1196 case AL_FORMAT_51CHN16:
1197 for(i = 0;i < SamplesToDo;i++)
1199 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1200 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1201 #ifdef _WIN32
1202 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1203 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1204 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1205 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1206 #else
1207 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1208 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1209 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1210 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1211 #endif
1212 buffer = ((ALshort*)buffer) + 6;
1214 break;
1215 case AL_FORMAT_61CHN16:
1216 for(i = 0;i < SamplesToDo;i++)
1218 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1219 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1220 #ifdef _WIN32
1221 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1222 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1223 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1224 #else
1225 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1226 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1227 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1228 #endif
1229 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT]);
1230 ((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT]);
1231 buffer = ((ALshort*)buffer) + 7;
1233 break;
1234 case AL_FORMAT_71CHN16:
1235 for(i = 0;i < SamplesToDo;i++)
1237 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1238 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1239 #ifdef _WIN32
1240 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1241 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1242 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1243 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1244 #else
1245 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1246 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1247 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1248 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1249 #endif
1250 ((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT]);
1251 ((ALshort*)buffer)[7] = aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT]);
1252 buffer = ((ALshort*)buffer) + 8;
1254 break;
1256 default:
1257 break;
1260 size -= SamplesToDo;
1263 #if defined(HAVE_FESETROUND)
1264 fesetround(fpuState);
1265 #elif defined(HAVE__CONTROLFP)
1266 _controlfp(fpuState, 0xfffff);
1267 #endif
1269 ProcessContext(ALContext);