Move the direct and send params into separate different types
[openal-soft/openal-hmr.git] / Alc / ALu.c
blob2758bb90040a44b4f8492a97e18a065e21c7331c
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <math.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <ctype.h>
27 #include <assert.h>
29 #include "alMain.h"
30 #include "AL/al.h"
31 #include "AL/alc.h"
32 #include "alSource.h"
33 #include "alBuffer.h"
34 #include "alListener.h"
35 #include "alAuxEffectSlot.h"
36 #include "alu.h"
37 #include "bs2b.h"
40 struct ChanMap {
41 enum Channel channel;
42 ALfloat angle;
45 /* Cone scalar */
46 ALfloat ConeScale = 0.5f;
48 /* Localized Z scalar for mono sources */
49 ALfloat ZScale = 1.0f;
52 static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat w,ALfloat matrix[4][4])
54 ALfloat temp[4] = {
55 vector[0], vector[1], vector[2], w
58 vector[0] = temp[0]*matrix[0][0] + temp[1]*matrix[1][0] + temp[2]*matrix[2][0] + temp[3]*matrix[3][0];
59 vector[1] = temp[0]*matrix[0][1] + temp[1]*matrix[1][1] + temp[2]*matrix[2][1] + temp[3]*matrix[3][1];
60 vector[2] = temp[0]*matrix[0][2] + temp[1]*matrix[1][2] + temp[2]*matrix[2][2] + temp[3]*matrix[3][2];
64 ALvoid CalcNonAttnSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
66 static const struct ChanMap MonoMap[1] = { { FRONT_CENTER, 0.0f } };
67 static const struct ChanMap StereoMap[2] = {
68 { FRONT_LEFT, -30.0f * F_PI/180.0f },
69 { FRONT_RIGHT, 30.0f * F_PI/180.0f }
71 static const struct ChanMap RearMap[2] = {
72 { BACK_LEFT, -150.0f * F_PI/180.0f },
73 { BACK_RIGHT, 150.0f * F_PI/180.0f }
75 static const struct ChanMap QuadMap[4] = {
76 { FRONT_LEFT, -45.0f * F_PI/180.0f },
77 { FRONT_RIGHT, 45.0f * F_PI/180.0f },
78 { BACK_LEFT, -135.0f * F_PI/180.0f },
79 { BACK_RIGHT, 135.0f * F_PI/180.0f }
81 static const struct ChanMap X51Map[6] = {
82 { FRONT_LEFT, -30.0f * F_PI/180.0f },
83 { FRONT_RIGHT, 30.0f * F_PI/180.0f },
84 { FRONT_CENTER, 0.0f * F_PI/180.0f },
85 { LFE, 0.0f },
86 { BACK_LEFT, -110.0f * F_PI/180.0f },
87 { BACK_RIGHT, 110.0f * F_PI/180.0f }
89 static const struct ChanMap X61Map[7] = {
90 { FRONT_LEFT, -30.0f * F_PI/180.0f },
91 { FRONT_RIGHT, 30.0f * F_PI/180.0f },
92 { FRONT_CENTER, 0.0f * F_PI/180.0f },
93 { LFE, 0.0f },
94 { BACK_CENTER, 180.0f * F_PI/180.0f },
95 { SIDE_LEFT, -90.0f * F_PI/180.0f },
96 { SIDE_RIGHT, 90.0f * F_PI/180.0f }
98 static const struct ChanMap X71Map[8] = {
99 { FRONT_LEFT, -30.0f * F_PI/180.0f },
100 { FRONT_RIGHT, 30.0f * F_PI/180.0f },
101 { FRONT_CENTER, 0.0f * F_PI/180.0f },
102 { LFE, 0.0f },
103 { BACK_LEFT, -150.0f * F_PI/180.0f },
104 { BACK_RIGHT, 150.0f * F_PI/180.0f },
105 { SIDE_LEFT, -90.0f * F_PI/180.0f },
106 { SIDE_RIGHT, 90.0f * F_PI/180.0f }
109 ALCdevice *Device = ALContext->Device;
110 ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
111 ALbufferlistitem *BufferListItem;
112 enum FmtChannels Channels;
113 ALfloat (*SrcMatrix)[MAXCHANNELS];
114 ALfloat DryGain, DryGainHF;
115 ALfloat WetGain[MAX_SENDS];
116 ALfloat WetGainHF[MAX_SENDS];
117 ALint NumSends, Frequency;
118 const ALfloat *ChannelGain;
119 const struct ChanMap *chans = NULL;
120 enum Resampler Resampler;
121 ALint num_channels = 0;
122 ALboolean DirectChannels;
123 ALfloat Pitch;
124 ALfloat cw;
125 ALuint pos;
126 ALint i, c;
128 /* Get device properties */
129 NumSends = Device->NumAuxSends;
130 Frequency = Device->Frequency;
132 /* Get listener properties */
133 ListenerGain = ALContext->Listener.Gain;
135 /* Get source properties */
136 SourceVolume = ALSource->Gain;
137 MinVolume = ALSource->MinGain;
138 MaxVolume = ALSource->MaxGain;
139 Pitch = ALSource->Pitch;
140 Resampler = ALSource->Resampler;
141 DirectChannels = ALSource->DirectChannels;
143 /* Calculate the stepping value */
144 Channels = FmtMono;
145 BufferListItem = ALSource->queue;
146 while(BufferListItem != NULL)
148 ALbuffer *ALBuffer;
149 if((ALBuffer=BufferListItem->buffer) != NULL)
151 ALsizei maxstep = STACK_DATA_SIZE/sizeof(ALfloat) /
152 ALSource->NumChannels;
153 maxstep -= ResamplerPadding[Resampler] +
154 ResamplerPrePadding[Resampler] + 1;
155 maxstep = mini(maxstep, INT_MAX>>FRACTIONBITS);
157 Pitch = Pitch * ALBuffer->Frequency / Frequency;
158 if(Pitch > (ALfloat)maxstep)
159 ALSource->Params.Step = maxstep<<FRACTIONBITS;
160 else
162 ALSource->Params.Step = fastf2i(Pitch*FRACTIONONE);
163 if(ALSource->Params.Step == 0)
164 ALSource->Params.Step = 1;
166 if(ALSource->Params.Step == FRACTIONONE)
167 Resampler = PointResampler;
169 Channels = ALBuffer->FmtChannels;
170 break;
172 BufferListItem = BufferListItem->next;
174 if(!DirectChannels && Device->Hrtf)
175 ALSource->Params.DryMix = SelectHrtfMixer(Resampler);
176 else
177 ALSource->Params.DryMix = SelectDirectMixer(Resampler);
178 ALSource->Params.WetMix = SelectSendMixer(Resampler);
180 /* Calculate gains */
181 DryGain = clampf(SourceVolume, MinVolume, MaxVolume);
182 DryGain *= ALSource->DirectGain;
183 DryGainHF = ALSource->DirectGainHF;
184 for(i = 0;i < NumSends;i++)
186 WetGain[i] = clampf(SourceVolume, MinVolume, MaxVolume);
187 WetGain[i] *= ALSource->Send[i].Gain;
188 WetGainHF[i] = ALSource->Send[i].GainHF;
191 SrcMatrix = ALSource->Params.Direct.Gains;
192 for(i = 0;i < MAXCHANNELS;i++)
194 for(c = 0;c < MAXCHANNELS;c++)
195 SrcMatrix[i][c] = 0.0f;
197 switch(Channels)
199 case FmtMono:
200 chans = MonoMap;
201 num_channels = 1;
202 break;
203 case FmtStereo:
204 if(!DirectChannels && (Device->Flags&DEVICE_DUPLICATE_STEREO))
206 DryGain *= aluSqrt(2.0f/4.0f);
207 for(c = 0;c < 2;c++)
209 pos = aluCart2LUTpos(aluCos(RearMap[c].angle),
210 aluSin(RearMap[c].angle));
211 ChannelGain = Device->PanningLUT[pos];
213 for(i = 0;i < (ALint)Device->NumChan;i++)
215 enum Channel chan = Device->Speaker2Chan[i];
216 SrcMatrix[c][chan] += DryGain * ListenerGain *
217 ChannelGain[chan];
221 chans = StereoMap;
222 num_channels = 2;
223 break;
225 case FmtRear:
226 chans = RearMap;
227 num_channels = 2;
228 break;
230 case FmtQuad:
231 chans = QuadMap;
232 num_channels = 4;
233 break;
235 case FmtX51:
236 chans = X51Map;
237 num_channels = 6;
238 break;
240 case FmtX61:
241 chans = X61Map;
242 num_channels = 7;
243 break;
245 case FmtX71:
246 chans = X71Map;
247 num_channels = 8;
248 break;
251 if(DirectChannels != AL_FALSE)
253 for(c = 0;c < num_channels;c++)
255 for(i = 0;i < (ALint)Device->NumChan;i++)
257 enum Channel chan = Device->Speaker2Chan[i];
258 if(chan == chans[c].channel)
260 SrcMatrix[c][chan] += DryGain * ListenerGain;
261 break;
266 else if(Device->Hrtf)
268 for(c = 0;c < num_channels;c++)
270 if(chans[c].channel == LFE)
272 /* Skip LFE */
273 ALSource->Params.Hrtf.Delay[c][0] = 0;
274 ALSource->Params.Hrtf.Delay[c][1] = 0;
275 for(i = 0;i < HRIR_LENGTH;i++)
277 ALSource->Params.Hrtf.Coeffs[c][i][0] = 0.0f;
278 ALSource->Params.Hrtf.Coeffs[c][i][1] = 0.0f;
281 else
283 /* Get the static HRIR coefficients and delays for this
284 * channel. */
285 GetLerpedHrtfCoeffs(Device->Hrtf,
286 0.0f, chans[c].angle,
287 DryGain*ListenerGain,
288 ALSource->Params.Hrtf.Coeffs[c],
289 ALSource->Params.Hrtf.Delay[c]);
292 ALSource->Hrtf.Counter = 0;
294 else
296 for(c = 0;c < num_channels;c++)
298 /* Special-case LFE */
299 if(chans[c].channel == LFE)
301 SrcMatrix[c][LFE] += DryGain * ListenerGain;
302 continue;
304 pos = aluCart2LUTpos(aluCos(chans[c].angle), aluSin(chans[c].angle));
305 ChannelGain = Device->PanningLUT[pos];
307 for(i = 0;i < (ALint)Device->NumChan;i++)
309 enum Channel chan = Device->Speaker2Chan[i];
310 SrcMatrix[c][chan] += DryGain * ListenerGain *
311 ChannelGain[chan];
315 for(i = 0;i < NumSends;i++)
317 ALeffectslot *Slot = ALSource->Send[i].Slot;
319 if(!Slot && i == 0)
320 Slot = Device->DefaultSlot;
321 if(Slot && Slot->effect.type == AL_EFFECT_NULL)
322 Slot = NULL;
323 ALSource->Params.Slot[i] = Slot;
324 ALSource->Params.Send[i].Gain = WetGain[i] * ListenerGain;
327 /* Update filter coefficients. Calculations based on the I3DL2
328 * spec. */
329 cw = aluCos(F_PI*2.0f * LOWPASSFREQREF / Frequency);
331 /* We use two chained one-pole filters, so we need to take the
332 * square root of the squared gain, which is the same as the base
333 * gain. */
334 ALSource->Params.Direct.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw);
335 for(i = 0;i < NumSends;i++)
337 /* We use a one-pole filter, so we need to take the squared gain */
338 ALfloat a = lpCoeffCalc(WetGainHF[i]*WetGainHF[i], cw);
339 ALSource->Params.Send[i].iirFilter.coeff = a;
343 ALvoid CalcSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
345 const ALCdevice *Device = ALContext->Device;
346 ALfloat InnerAngle,OuterAngle,Angle,Distance,ClampedDist;
347 ALfloat Direction[3],Position[3],SourceToListener[3];
348 ALfloat Velocity[3],ListenerVel[3];
349 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff;
350 ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain;
351 ALfloat DopplerFactor, SpeedOfSound;
352 ALfloat AirAbsorptionFactor;
353 ALfloat RoomAirAbsorption[MAX_SENDS];
354 ALbufferlistitem *BufferListItem;
355 ALfloat Attenuation;
356 ALfloat RoomAttenuation[MAX_SENDS];
357 ALfloat MetersPerUnit;
358 ALfloat RoomRolloffBase;
359 ALfloat RoomRolloff[MAX_SENDS];
360 ALfloat DecayDistance[MAX_SENDS];
361 ALfloat DryGain;
362 ALfloat DryGainHF;
363 ALboolean DryGainHFAuto;
364 ALfloat WetGain[MAX_SENDS];
365 ALfloat WetGainHF[MAX_SENDS];
366 ALboolean WetGainAuto;
367 ALboolean WetGainHFAuto;
368 enum Resampler Resampler;
369 ALfloat Matrix[4][4];
370 ALfloat Pitch;
371 ALuint Frequency;
372 ALint NumSends;
373 ALfloat cw;
374 ALint i, j;
376 DryGainHF = 1.0f;
377 for(i = 0;i < MAX_SENDS;i++)
378 WetGainHF[i] = 1.0f;
380 /* Get context/device properties */
381 DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
382 SpeedOfSound = ALContext->SpeedOfSound * ALContext->DopplerVelocity;
383 NumSends = Device->NumAuxSends;
384 Frequency = Device->Frequency;
386 /* Get listener properties */
387 ListenerGain = ALContext->Listener.Gain;
388 MetersPerUnit = ALContext->Listener.MetersPerUnit;
389 ListenerVel[0] = ALContext->Listener.Velocity[0];
390 ListenerVel[1] = ALContext->Listener.Velocity[1];
391 ListenerVel[2] = ALContext->Listener.Velocity[2];
392 for(i = 0;i < 4;i++)
394 for(j = 0;j < 4;j++)
395 Matrix[i][j] = ALContext->Listener.Matrix[i][j];
398 /* Get source properties */
399 SourceVolume = ALSource->Gain;
400 MinVolume = ALSource->MinGain;
401 MaxVolume = ALSource->MaxGain;
402 Pitch = ALSource->Pitch;
403 Resampler = ALSource->Resampler;
404 Position[0] = ALSource->Position[0];
405 Position[1] = ALSource->Position[1];
406 Position[2] = ALSource->Position[2];
407 Direction[0] = ALSource->Orientation[0];
408 Direction[1] = ALSource->Orientation[1];
409 Direction[2] = ALSource->Orientation[2];
410 Velocity[0] = ALSource->Velocity[0];
411 Velocity[1] = ALSource->Velocity[1];
412 Velocity[2] = ALSource->Velocity[2];
413 MinDist = ALSource->RefDistance;
414 MaxDist = ALSource->MaxDistance;
415 Rolloff = ALSource->RollOffFactor;
416 InnerAngle = ALSource->InnerAngle * ConeScale;
417 OuterAngle = ALSource->OuterAngle * ConeScale;
418 AirAbsorptionFactor = ALSource->AirAbsorptionFactor;
419 DryGainHFAuto = ALSource->DryGainHFAuto;
420 WetGainAuto = ALSource->WetGainAuto;
421 WetGainHFAuto = ALSource->WetGainHFAuto;
422 RoomRolloffBase = ALSource->RoomRolloffFactor;
423 for(i = 0;i < NumSends;i++)
425 ALeffectslot *Slot = ALSource->Send[i].Slot;
427 if(!Slot && i == 0)
428 Slot = Device->DefaultSlot;
429 if(!Slot || Slot->effect.type == AL_EFFECT_NULL)
431 Slot = NULL;
432 RoomRolloff[i] = 0.0f;
433 DecayDistance[i] = 0.0f;
434 RoomAirAbsorption[i] = 1.0f;
436 else if(Slot->AuxSendAuto)
438 RoomRolloff[i] = RoomRolloffBase;
439 if(IsReverbEffect(Slot->effect.type))
441 RoomRolloff[i] += Slot->effect.Reverb.RoomRolloffFactor;
442 DecayDistance[i] = Slot->effect.Reverb.DecayTime *
443 SPEEDOFSOUNDMETRESPERSEC;
444 RoomAirAbsorption[i] = Slot->effect.Reverb.AirAbsorptionGainHF;
446 else
448 DecayDistance[i] = 0.0f;
449 RoomAirAbsorption[i] = 1.0f;
452 else
454 /* If the slot's auxiliary send auto is off, the data sent to the
455 * effect slot is the same as the dry path, sans filter effects */
456 RoomRolloff[i] = Rolloff;
457 DecayDistance[i] = 0.0f;
458 RoomAirAbsorption[i] = AIRABSORBGAINHF;
461 ALSource->Params.Slot[i] = Slot;
464 /* Transform source to listener space (convert to head relative) */
465 if(ALSource->HeadRelative == AL_FALSE)
467 /* Translate position */
468 Position[0] -= ALContext->Listener.Position[0];
469 Position[1] -= ALContext->Listener.Position[1];
470 Position[2] -= ALContext->Listener.Position[2];
472 /* Transform source vectors */
473 aluMatrixVector(Position, 1.0f, Matrix);
474 aluMatrixVector(Direction, 0.0f, Matrix);
475 aluMatrixVector(Velocity, 0.0f, Matrix);
476 /* Transform listener velocity */
477 aluMatrixVector(ListenerVel, 0.0f, Matrix);
479 else
481 /* Transform listener velocity from world space to listener space */
482 aluMatrixVector(ListenerVel, 0.0f, Matrix);
483 /* Offset the source velocity to be relative of the listener velocity */
484 Velocity[0] += ListenerVel[0];
485 Velocity[1] += ListenerVel[1];
486 Velocity[2] += ListenerVel[2];
489 SourceToListener[0] = -Position[0];
490 SourceToListener[1] = -Position[1];
491 SourceToListener[2] = -Position[2];
492 aluNormalize(SourceToListener);
493 aluNormalize(Direction);
495 /* Calculate distance attenuation */
496 Distance = aluSqrt(aluDotproduct(Position, Position));
497 ClampedDist = Distance;
499 Attenuation = 1.0f;
500 for(i = 0;i < NumSends;i++)
501 RoomAttenuation[i] = 1.0f;
502 switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel :
503 ALContext->DistanceModel)
505 case InverseDistanceClamped:
506 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
507 if(MaxDist < MinDist)
508 break;
509 /*fall-through*/
510 case InverseDistance:
511 if(MinDist > 0.0f)
513 if((MinDist + (Rolloff * (ClampedDist - MinDist))) > 0.0f)
514 Attenuation = MinDist / (MinDist + (Rolloff * (ClampedDist - MinDist)));
515 for(i = 0;i < NumSends;i++)
517 if((MinDist + (RoomRolloff[i] * (ClampedDist - MinDist))) > 0.0f)
518 RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (ClampedDist - MinDist)));
521 break;
523 case LinearDistanceClamped:
524 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
525 if(MaxDist < MinDist)
526 break;
527 /*fall-through*/
528 case LinearDistance:
529 if(MaxDist != MinDist)
531 Attenuation = 1.0f - (Rolloff*(ClampedDist-MinDist)/(MaxDist - MinDist));
532 Attenuation = maxf(Attenuation, 0.0f);
533 for(i = 0;i < NumSends;i++)
535 RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(ClampedDist-MinDist)/(MaxDist - MinDist));
536 RoomAttenuation[i] = maxf(RoomAttenuation[i], 0.0f);
539 break;
541 case ExponentDistanceClamped:
542 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
543 if(MaxDist < MinDist)
544 break;
545 /*fall-through*/
546 case ExponentDistance:
547 if(ClampedDist > 0.0f && MinDist > 0.0f)
549 Attenuation = aluPow(ClampedDist/MinDist, -Rolloff);
550 for(i = 0;i < NumSends;i++)
551 RoomAttenuation[i] = aluPow(ClampedDist/MinDist, -RoomRolloff[i]);
553 break;
555 case DisableDistance:
556 ClampedDist = MinDist;
557 break;
560 /* Source Gain + Attenuation */
561 DryGain = SourceVolume * Attenuation;
562 for(i = 0;i < NumSends;i++)
563 WetGain[i] = SourceVolume * RoomAttenuation[i];
565 /* Distance-based air absorption */
566 if(AirAbsorptionFactor > 0.0f && ClampedDist > MinDist)
568 ALfloat meters = maxf(ClampedDist-MinDist, 0.0f) * MetersPerUnit;
569 DryGainHF *= aluPow(AIRABSORBGAINHF, AirAbsorptionFactor*meters);
570 for(i = 0;i < NumSends;i++)
571 WetGainHF[i] *= aluPow(RoomAirAbsorption[i], AirAbsorptionFactor*meters);
574 if(WetGainAuto)
576 ALfloat ApparentDist = 1.0f/maxf(Attenuation, 0.00001f) - 1.0f;
578 /* Apply a decay-time transformation to the wet path, based on the
579 * attenuation of the dry path.
581 * Using the apparent distance, based on the distance attenuation, the
582 * initial decay of the reverb effect is calculated and applied to the
583 * wet path.
585 for(i = 0;i < NumSends;i++)
587 if(DecayDistance[i] > 0.0f)
588 WetGain[i] *= aluPow(0.001f/*-60dB*/, ApparentDist/DecayDistance[i]);
592 /* Calculate directional soundcones */
593 Angle = aluAcos(aluDotproduct(Direction,SourceToListener)) * (180.0f/F_PI);
594 if(Angle > InnerAngle && Angle <= OuterAngle)
596 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
597 ConeVolume = lerp(1.0f, ALSource->OuterGain, scale);
598 ConeHF = lerp(1.0f, ALSource->OuterGainHF, scale);
600 else if(Angle > OuterAngle)
602 ConeVolume = ALSource->OuterGain;
603 ConeHF = ALSource->OuterGainHF;
605 else
607 ConeVolume = 1.0f;
608 ConeHF = 1.0f;
611 DryGain *= ConeVolume;
612 if(WetGainAuto)
614 for(i = 0;i < NumSends;i++)
615 WetGain[i] *= ConeVolume;
617 if(DryGainHFAuto)
618 DryGainHF *= ConeHF;
619 if(WetGainHFAuto)
621 for(i = 0;i < NumSends;i++)
622 WetGainHF[i] *= ConeHF;
625 /* Clamp to Min/Max Gain */
626 DryGain = clampf(DryGain, MinVolume, MaxVolume);
627 for(i = 0;i < NumSends;i++)
628 WetGain[i] = clampf(WetGain[i], MinVolume, MaxVolume);
630 /* Apply gain and frequency filters */
631 DryGain *= ALSource->DirectGain * ListenerGain;
632 DryGainHF *= ALSource->DirectGainHF;
633 for(i = 0;i < NumSends;i++)
635 WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
636 WetGainHF[i] *= ALSource->Send[i].GainHF;
639 /* Calculate velocity-based doppler effect */
640 if(DopplerFactor > 0.0f)
642 ALfloat VSS, VLS;
644 if(SpeedOfSound < 1.0f)
646 DopplerFactor *= 1.0f/SpeedOfSound;
647 SpeedOfSound = 1.0f;
650 VSS = aluDotproduct(Velocity, SourceToListener) * DopplerFactor;
651 VLS = aluDotproduct(ListenerVel, SourceToListener) * DopplerFactor;
653 Pitch *= clampf(SpeedOfSound-VLS, 1.0f, SpeedOfSound*2.0f - 1.0f) /
654 clampf(SpeedOfSound-VSS, 1.0f, SpeedOfSound*2.0f - 1.0f);
657 BufferListItem = ALSource->queue;
658 while(BufferListItem != NULL)
660 ALbuffer *ALBuffer;
661 if((ALBuffer=BufferListItem->buffer) != NULL)
663 /* Calculate fixed-point stepping value, based on the pitch, buffer
664 * frequency, and output frequency. */
665 ALsizei maxstep = STACK_DATA_SIZE/sizeof(ALfloat) /
666 ALSource->NumChannels;
667 maxstep -= ResamplerPadding[Resampler] +
668 ResamplerPrePadding[Resampler] + 1;
669 maxstep = mini(maxstep, INT_MAX>>FRACTIONBITS);
671 Pitch = Pitch * ALBuffer->Frequency / Frequency;
672 if(Pitch > (ALfloat)maxstep)
673 ALSource->Params.Step = maxstep<<FRACTIONBITS;
674 else
676 ALSource->Params.Step = fastf2i(Pitch*FRACTIONONE);
677 if(ALSource->Params.Step == 0)
678 ALSource->Params.Step = 1;
680 if(ALSource->Params.Step == FRACTIONONE)
681 Resampler = PointResampler;
683 break;
685 BufferListItem = BufferListItem->next;
687 if(Device->Hrtf)
688 ALSource->Params.DryMix = SelectHrtfMixer(Resampler);
689 else
690 ALSource->Params.DryMix = SelectDirectMixer(Resampler);
691 ALSource->Params.WetMix = SelectSendMixer(Resampler);
693 if(Device->Hrtf)
695 /* Use a binaural HRTF algorithm for stereo headphone playback */
696 ALfloat delta, ev = 0.0f, az = 0.0f;
698 if(Distance > 0.0f)
700 ALfloat invlen = 1.0f/Distance;
701 Position[0] *= invlen;
702 Position[1] *= invlen;
703 Position[2] *= invlen;
705 /* Calculate elevation and azimuth only when the source is not at
706 * the listener. This prevents +0 and -0 Z from producing
707 * inconsistent panning. */
708 ev = aluAsin(Position[1]);
709 az = aluAtan2(Position[0], -Position[2]*ZScale);
712 /* Check to see if the HRIR is already moving. */
713 if(ALSource->Hrtf.Moving)
715 /* Calculate the normalized HRTF transition factor (delta). */
716 delta = CalcHrtfDelta(ALSource->Params.Hrtf.Gain, DryGain,
717 ALSource->Params.Hrtf.Dir, Position);
718 /* If the delta is large enough, get the moving HRIR target
719 * coefficients, target delays, steppping values, and counter. */
720 if(delta > 0.001f)
722 ALSource->Hrtf.Counter = GetMovingHrtfCoeffs(Device->Hrtf,
723 ev, az, DryGain, delta,
724 ALSource->Hrtf.Counter,
725 ALSource->Params.Hrtf.Coeffs[0],
726 ALSource->Params.Hrtf.Delay[0],
727 ALSource->Params.Hrtf.CoeffStep,
728 ALSource->Params.Hrtf.DelayStep);
729 ALSource->Params.Hrtf.Gain = DryGain;
730 ALSource->Params.Hrtf.Dir[0] = Position[0];
731 ALSource->Params.Hrtf.Dir[1] = Position[1];
732 ALSource->Params.Hrtf.Dir[2] = Position[2];
735 else
737 /* Get the initial (static) HRIR coefficients and delays. */
738 GetLerpedHrtfCoeffs(Device->Hrtf, ev, az, DryGain,
739 ALSource->Params.Hrtf.Coeffs[0],
740 ALSource->Params.Hrtf.Delay[0]);
741 ALSource->Hrtf.Counter = 0;
742 ALSource->Params.Hrtf.Gain = DryGain;
743 ALSource->Params.Hrtf.Dir[0] = Position[0];
744 ALSource->Params.Hrtf.Dir[1] = Position[1];
745 ALSource->Params.Hrtf.Dir[2] = Position[2];
748 else
750 /* Use a lookup table for panning multi-speaker playback. */
751 ALfloat DirGain, AmbientGain;
752 const ALfloat *ChannelGain;
753 ALfloat length;
754 ALint pos;
756 /* Normalize the length based on the source's min distance. Sources
757 * closer than this will not pan as much. */
758 length = maxf(Distance, MinDist);
759 if(length > 0.0f)
761 ALfloat invlen = 1.0f/length;
762 Position[0] *= invlen;
763 Position[1] *= invlen;
764 Position[2] *= invlen;
767 pos = aluCart2LUTpos(-Position[2]*ZScale, Position[0]);
768 ChannelGain = Device->PanningLUT[pos];
770 /* Adjustment for partial panning. Not the greatest, but simple
771 * enough. */
772 DirGain = aluSqrt(Position[0]*Position[0] + Position[2]*Position[2]);
773 AmbientGain = aluSqrt(1.0f/Device->NumChan);
774 for(i = 0;i < MAXCHANNELS;i++)
776 for(j = 0;j < MAXCHANNELS;j++)
777 ALSource->Params.Direct.Gains[i][j] = 0.0f;
779 for(i = 0;i < (ALint)Device->NumChan;i++)
781 enum Channel chan = Device->Speaker2Chan[i];
782 ALfloat gain = lerp(AmbientGain, ChannelGain[chan], DirGain);
783 ALSource->Params.Direct.Gains[0][chan] = DryGain * gain;
786 for(i = 0;i < NumSends;i++)
787 ALSource->Params.Send[i].Gain = WetGain[i];
789 /* Update filter coefficients. */
790 cw = aluCos(F_PI*2.0f * LOWPASSFREQREF / Frequency);
792 ALSource->Params.Direct.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw);
793 for(i = 0;i < NumSends;i++)
795 ALfloat a = lpCoeffCalc(WetGainHF[i]*WetGainHF[i], cw);
796 ALSource->Params.Send[i].iirFilter.coeff = a;
801 static __inline ALfloat aluF2F(ALfloat val)
802 { return val; }
803 static __inline ALint aluF2I(ALfloat val)
805 if(val > 1.0f) return 2147483647;
806 if(val < -1.0f) return -2147483647-1;
807 return fastf2i((ALfloat)(val*2147483647.0));
809 static __inline ALuint aluF2UI(ALfloat val)
810 { return aluF2I(val)+2147483648u; }
811 static __inline ALshort aluF2S(ALfloat val)
812 { return aluF2I(val)>>16; }
813 static __inline ALushort aluF2US(ALfloat val)
814 { return aluF2S(val)+32768; }
815 static __inline ALbyte aluF2B(ALfloat val)
816 { return aluF2I(val)>>24; }
817 static __inline ALubyte aluF2UB(ALfloat val)
818 { return aluF2B(val)+128; }
820 #define DECL_TEMPLATE(T, N, func) \
821 static void Write_##T##_##N(ALCdevice *device, T *RESTRICT buffer, \
822 ALuint SamplesToDo) \
824 ALfloat (*RESTRICT DryBuffer)[MAXCHANNELS] = device->DryBuffer; \
825 const enum Channel *ChanMap = device->DevChannels; \
826 ALuint i, j; \
828 for(j = 0;j < N;j++) \
830 T *RESTRICT out = buffer + j; \
831 enum Channel chan = ChanMap[j]; \
833 for(i = 0;i < SamplesToDo;i++) \
834 out[i*N] = func(DryBuffer[i][chan]); \
838 DECL_TEMPLATE(ALfloat, 1, aluF2F)
839 DECL_TEMPLATE(ALfloat, 2, aluF2F)
840 DECL_TEMPLATE(ALfloat, 4, aluF2F)
841 DECL_TEMPLATE(ALfloat, 6, aluF2F)
842 DECL_TEMPLATE(ALfloat, 7, aluF2F)
843 DECL_TEMPLATE(ALfloat, 8, aluF2F)
845 DECL_TEMPLATE(ALuint, 1, aluF2UI)
846 DECL_TEMPLATE(ALuint, 2, aluF2UI)
847 DECL_TEMPLATE(ALuint, 4, aluF2UI)
848 DECL_TEMPLATE(ALuint, 6, aluF2UI)
849 DECL_TEMPLATE(ALuint, 7, aluF2UI)
850 DECL_TEMPLATE(ALuint, 8, aluF2UI)
852 DECL_TEMPLATE(ALint, 1, aluF2I)
853 DECL_TEMPLATE(ALint, 2, aluF2I)
854 DECL_TEMPLATE(ALint, 4, aluF2I)
855 DECL_TEMPLATE(ALint, 6, aluF2I)
856 DECL_TEMPLATE(ALint, 7, aluF2I)
857 DECL_TEMPLATE(ALint, 8, aluF2I)
859 DECL_TEMPLATE(ALushort, 1, aluF2US)
860 DECL_TEMPLATE(ALushort, 2, aluF2US)
861 DECL_TEMPLATE(ALushort, 4, aluF2US)
862 DECL_TEMPLATE(ALushort, 6, aluF2US)
863 DECL_TEMPLATE(ALushort, 7, aluF2US)
864 DECL_TEMPLATE(ALushort, 8, aluF2US)
866 DECL_TEMPLATE(ALshort, 1, aluF2S)
867 DECL_TEMPLATE(ALshort, 2, aluF2S)
868 DECL_TEMPLATE(ALshort, 4, aluF2S)
869 DECL_TEMPLATE(ALshort, 6, aluF2S)
870 DECL_TEMPLATE(ALshort, 7, aluF2S)
871 DECL_TEMPLATE(ALshort, 8, aluF2S)
873 DECL_TEMPLATE(ALubyte, 1, aluF2UB)
874 DECL_TEMPLATE(ALubyte, 2, aluF2UB)
875 DECL_TEMPLATE(ALubyte, 4, aluF2UB)
876 DECL_TEMPLATE(ALubyte, 6, aluF2UB)
877 DECL_TEMPLATE(ALubyte, 7, aluF2UB)
878 DECL_TEMPLATE(ALubyte, 8, aluF2UB)
880 DECL_TEMPLATE(ALbyte, 1, aluF2B)
881 DECL_TEMPLATE(ALbyte, 2, aluF2B)
882 DECL_TEMPLATE(ALbyte, 4, aluF2B)
883 DECL_TEMPLATE(ALbyte, 6, aluF2B)
884 DECL_TEMPLATE(ALbyte, 7, aluF2B)
885 DECL_TEMPLATE(ALbyte, 8, aluF2B)
887 #undef DECL_TEMPLATE
889 #define DECL_TEMPLATE(T) \
890 static void Write_##T(ALCdevice *device, T *buffer, ALuint SamplesToDo) \
892 switch(device->FmtChans) \
894 case DevFmtMono: \
895 Write_##T##_1(device, buffer, SamplesToDo); \
896 break; \
897 case DevFmtStereo: \
898 Write_##T##_2(device, buffer, SamplesToDo); \
899 break; \
900 case DevFmtQuad: \
901 Write_##T##_4(device, buffer, SamplesToDo); \
902 break; \
903 case DevFmtX51: \
904 case DevFmtX51Side: \
905 Write_##T##_6(device, buffer, SamplesToDo); \
906 break; \
907 case DevFmtX61: \
908 Write_##T##_7(device, buffer, SamplesToDo); \
909 break; \
910 case DevFmtX71: \
911 Write_##T##_8(device, buffer, SamplesToDo); \
912 break; \
916 DECL_TEMPLATE(ALfloat)
917 DECL_TEMPLATE(ALuint)
918 DECL_TEMPLATE(ALint)
919 DECL_TEMPLATE(ALushort)
920 DECL_TEMPLATE(ALshort)
921 DECL_TEMPLATE(ALubyte)
922 DECL_TEMPLATE(ALbyte)
924 #undef DECL_TEMPLATE
926 ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
928 ALuint SamplesToDo;
929 ALeffectslot **slot, **slot_end;
930 ALsource **src, **src_end;
931 ALCcontext *ctx;
932 int fpuState;
933 ALuint i, c;
935 fpuState = SetMixerFPUMode();
937 while(size > 0)
939 SamplesToDo = minu(size, BUFFERSIZE);
940 memset(device->DryBuffer, 0, SamplesToDo*MAXCHANNELS*sizeof(ALfloat));
942 LockDevice(device);
943 ctx = device->ContextList;
944 while(ctx)
946 ALenum DeferUpdates = ctx->DeferUpdates;
947 ALenum UpdateSources = AL_FALSE;
949 if(!DeferUpdates)
950 UpdateSources = ExchangeInt(&ctx->UpdateSources, AL_FALSE);
952 /* source processing */
953 src = ctx->ActiveSources;
954 src_end = src + ctx->ActiveSourceCount;
955 while(src != src_end)
957 if((*src)->state != AL_PLAYING)
959 --(ctx->ActiveSourceCount);
960 *src = *(--src_end);
961 continue;
964 if(!DeferUpdates && (ExchangeInt(&(*src)->NeedsUpdate, AL_FALSE) ||
965 UpdateSources))
966 ALsource_Update(*src, ctx);
968 MixSource(*src, device, SamplesToDo);
969 src++;
972 /* effect slot processing */
973 slot = ctx->ActiveEffectSlots;
974 slot_end = slot + ctx->ActiveEffectSlotCount;
975 while(slot != slot_end)
977 for(c = 0;c < SamplesToDo;c++)
979 (*slot)->WetBuffer[c] += (*slot)->ClickRemoval[0];
980 (*slot)->ClickRemoval[0] -= (*slot)->ClickRemoval[0] * (1.0f/256.0f);
982 (*slot)->ClickRemoval[0] += (*slot)->PendingClicks[0];
983 (*slot)->PendingClicks[0] = 0.0f;
985 if(!DeferUpdates && ExchangeInt(&(*slot)->NeedsUpdate, AL_FALSE))
986 ALeffectState_Update((*slot)->EffectState, device, *slot);
988 ALeffectState_Process((*slot)->EffectState, SamplesToDo,
989 (*slot)->WetBuffer, device->DryBuffer);
991 for(i = 0;i < SamplesToDo;i++)
992 (*slot)->WetBuffer[i] = 0.0f;
994 slot++;
997 ctx = ctx->next;
1000 slot = &device->DefaultSlot;
1001 if(*slot != NULL)
1003 for(c = 0;c < SamplesToDo;c++)
1005 (*slot)->WetBuffer[c] += (*slot)->ClickRemoval[0];
1006 (*slot)->ClickRemoval[0] -= (*slot)->ClickRemoval[0] * (1.0f/256.0f);
1008 (*slot)->ClickRemoval[0] += (*slot)->PendingClicks[0];
1009 (*slot)->PendingClicks[0] = 0.0f;
1011 if(ExchangeInt(&(*slot)->NeedsUpdate, AL_FALSE))
1012 ALeffectState_Update((*slot)->EffectState, device, *slot);
1014 ALeffectState_Process((*slot)->EffectState, SamplesToDo,
1015 (*slot)->WetBuffer, device->DryBuffer);
1017 for(i = 0;i < SamplesToDo;i++)
1018 (*slot)->WetBuffer[i] = 0.0f;
1020 UnlockDevice(device);
1022 /* Click-removal. Could do better; this only really handles immediate
1023 * changes between updates where a predictive sample could be
1024 * generated. Delays caused by effects and HRTF aren't caught. */
1025 if(device->FmtChans == DevFmtMono)
1027 for(i = 0;i < SamplesToDo;i++)
1029 device->DryBuffer[i][FRONT_CENTER] += device->ClickRemoval[FRONT_CENTER];
1030 device->ClickRemoval[FRONT_CENTER] -= device->ClickRemoval[FRONT_CENTER] * (1.0f/256.0f);
1032 device->ClickRemoval[FRONT_CENTER] += device->PendingClicks[FRONT_CENTER];
1033 device->PendingClicks[FRONT_CENTER] = 0.0f;
1035 else if(device->FmtChans == DevFmtStereo)
1037 /* Assumes the first two channels are FRONT_LEFT and FRONT_RIGHT */
1038 for(i = 0;i < SamplesToDo;i++)
1040 for(c = 0;c < 2;c++)
1042 device->DryBuffer[i][c] += device->ClickRemoval[c];
1043 device->ClickRemoval[c] -= device->ClickRemoval[c] * (1.0f/256.0f);
1046 for(c = 0;c < 2;c++)
1048 device->ClickRemoval[c] += device->PendingClicks[c];
1049 device->PendingClicks[c] = 0.0f;
1051 if(device->Bs2b)
1053 for(i = 0;i < SamplesToDo;i++)
1054 bs2b_cross_feed(device->Bs2b, &device->DryBuffer[i][0]);
1057 else
1059 for(i = 0;i < SamplesToDo;i++)
1061 for(c = 0;c < MAXCHANNELS;c++)
1063 device->DryBuffer[i][c] += device->ClickRemoval[c];
1064 device->ClickRemoval[c] -= device->ClickRemoval[c] * (1.0f/256.0f);
1067 for(c = 0;c < MAXCHANNELS;c++)
1069 device->ClickRemoval[c] += device->PendingClicks[c];
1070 device->PendingClicks[c] = 0.0f;
1074 if(buffer)
1076 switch(device->FmtType)
1078 case DevFmtByte:
1079 Write_ALbyte(device, buffer, SamplesToDo);
1080 break;
1081 case DevFmtUByte:
1082 Write_ALubyte(device, buffer, SamplesToDo);
1083 break;
1084 case DevFmtShort:
1085 Write_ALshort(device, buffer, SamplesToDo);
1086 break;
1087 case DevFmtUShort:
1088 Write_ALushort(device, buffer, SamplesToDo);
1089 break;
1090 case DevFmtInt:
1091 Write_ALint(device, buffer, SamplesToDo);
1092 break;
1093 case DevFmtUInt:
1094 Write_ALuint(device, buffer, SamplesToDo);
1095 break;
1096 case DevFmtFloat:
1097 Write_ALfloat(device, buffer, SamplesToDo);
1098 break;
1102 size -= SamplesToDo;
1105 RestoreFPUMode(fpuState);
1109 ALvoid aluHandleDisconnect(ALCdevice *device)
1111 ALCcontext *Context;
1113 LockDevice(device);
1114 device->Connected = ALC_FALSE;
1116 Context = device->ContextList;
1117 while(Context)
1119 ALsource **src, **src_end;
1121 src = Context->ActiveSources;
1122 src_end = src + Context->ActiveSourceCount;
1123 while(src != src_end)
1125 if((*src)->state == AL_PLAYING)
1127 (*src)->state = AL_STOPPED;
1128 (*src)->BuffersPlayed = (*src)->BuffersInQueue;
1129 (*src)->position = 0;
1130 (*src)->position_fraction = 0;
1132 src++;
1134 Context->ActiveSourceCount = 0;
1136 Context = Context->next;
1138 UnlockDevice(device);