Move ConeScale and ZScale to ALu.c and alu.h, and make them floats
[openal-soft/android.git] / Alc / hrtf.c
blobcad6f9f152b30572d780b88d5249fc25d5f73895
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 2011 by Chris Robinson
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <stdlib.h>
24 #include <ctype.h>
26 #include "AL/al.h"
27 #include "AL/alc.h"
28 #include "alMain.h"
29 #include "alSource.h"
31 /* External HRTF file format (LE byte order):
33 * ALchar magic[8] = "MinPHR00";
34 * ALuint sampleRate;
36 * ALushort hrirCount; // Required value: 828
37 * ALushort hrirSize; // Required value: 32
38 * ALubyte evCount; // Required value: 19
40 * ALushort evOffset[evCount]; // Required values:
41 * { 0, 1, 13, 37, 73, 118, 174, 234, 306, 378, 450, 522, 594, 654, 710, 755, 791, 815, 827 }
43 * ALshort coefficients[hrirCount][hrirSize];
44 * ALubyte delays[hrirCount]; // Element values must not exceed 127
47 static const ALchar magicMarker[8] = "MinPHR00";
49 #define HRIR_COUNT 828
50 #define ELEV_COUNT 19
52 static const ALushort evOffset[ELEV_COUNT] = { 0, 1, 13, 37, 73, 118, 174, 234, 306, 378, 450, 522, 594, 654, 710, 755, 791, 815, 827 };
53 static const ALubyte azCount[ELEV_COUNT] = { 1, 12, 24, 36, 45, 56, 60, 72, 72, 72, 72, 72, 60, 56, 45, 36, 24, 12, 1 };
56 static const struct Hrtf {
57 ALuint sampleRate;
58 ALshort coeffs[HRIR_COUNT][HRIR_LENGTH];
59 ALubyte delays[HRIR_COUNT];
60 } DefaultHrtf = {
61 44100,
62 #include "hrtf_tables.inc"
65 static struct Hrtf *LoadedHrtfs = NULL;
66 static ALuint NumLoadedHrtfs = 0;
69 // Calculate the elevation indices given the polar elevation in radians.
70 // This will return two indices between 0 and (ELEV_COUNT-1) and an
71 // interpolation factor between 0.0 and 1.0.
72 static void CalcEvIndices(ALfloat ev, ALuint *evidx, ALfloat *evmu)
74 ev = (F_PI_2 + ev) * (ELEV_COUNT-1) / F_PI;
75 evidx[0] = (ALuint)ev;
76 evidx[1] = minu(evidx[0] + 1, ELEV_COUNT-1);
77 *evmu = ev - evidx[0];
80 // Calculate the azimuth indices given the polar azimuth in radians. This
81 // will return two indices between 0 and (azCount [ei] - 1) and an
82 // interpolation factor between 0.0 and 1.0.
83 static void CalcAzIndices(ALuint evidx, ALfloat az, ALuint *azidx, ALfloat *azmu)
85 az = (F_PI*2.0f + az) * azCount[evidx] / (F_PI*2.0f);
86 azidx[0] = (ALuint)az % azCount[evidx];
87 azidx[1] = (azidx[0] + 1) % azCount[evidx];
88 *azmu = az - floor(az);
91 // Calculates the normalized HRTF transition factor (delta) from the changes
92 // in gain and listener to source angle between updates. The result is a
93 // normalized delta factor than can be used to calculate moving HRIR stepping
94 // values.
95 ALfloat CalcHrtfDelta(ALfloat oldGain, ALfloat newGain, const ALfloat olddir[3], const ALfloat newdir[3])
97 ALfloat gainChange, angleChange;
99 // Calculate the normalized dB gain change.
100 newGain = maxf(newGain, 0.0001f);
101 oldGain = maxf(oldGain, 0.0001f);
102 gainChange = aluFabs(log10(newGain / oldGain) / log10(0.0001f));
104 // Calculate the normalized listener to source angle change when there is
105 // enough gain to notice it.
106 angleChange = 0.0f;
107 if(gainChange > 0.0001f || newGain > 0.0001f)
109 // No angle change when the directions are equal or degenerate (when
110 // both have zero length).
111 if(newdir[0]-olddir[0] || newdir[1]-olddir[1] || newdir[2]-olddir[2])
112 angleChange = aluAcos(olddir[0]*newdir[0] +
113 olddir[1]*newdir[1] +
114 olddir[2]*newdir[2]) / F_PI;
118 // Use the largest of the two changes for the delta factor, and apply a
119 // significance shaping function to it.
120 return clampf(angleChange*2.0f, gainChange*2.0f, 1.0f);
123 // Calculates static HRIR coefficients and delays for the given polar
124 // elevation and azimuth in radians. Linear interpolation is used to
125 // increase the apparent resolution of the HRIR dataset. The coefficients
126 // are also normalized and attenuated by the specified gain.
127 void GetLerpedHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat gain, ALfloat (*coeffs)[2], ALuint *delays)
129 ALuint evidx[2], azidx[2];
130 ALfloat mu[3];
131 ALuint lidx[4], ridx[4];
132 ALuint i;
134 // Claculate elevation indices and interpolation factor.
135 CalcEvIndices(elevation, evidx, &mu[2]);
137 // Calculate azimuth indices and interpolation factor for the first
138 // elevation.
139 CalcAzIndices(evidx[0], azimuth, azidx, &mu[0]);
141 // Calculate the first set of linear HRIR indices for left and right
142 // channels.
143 lidx[0] = evOffset[evidx[0]] + azidx[0];
144 lidx[1] = evOffset[evidx[0]] + azidx[1];
145 ridx[0] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[0]) % azCount[evidx[0]]);
146 ridx[1] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[1]) % azCount[evidx[0]]);
148 // Calculate azimuth indices and interpolation factor for the second
149 // elevation.
150 CalcAzIndices(evidx[1], azimuth, azidx, &mu[1]);
152 // Calculate the second set of linear HRIR indices for left and right
153 // channels.
154 lidx[2] = evOffset[evidx[1]] + azidx[0];
155 lidx[3] = evOffset[evidx[1]] + azidx[1];
156 ridx[2] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[0]) % azCount[evidx[1]]);
157 ridx[3] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[1]) % azCount[evidx[1]]);
159 // Calculate the normalized and attenuated HRIR coefficients using linear
160 // interpolation when there is enough gain to warrant it. Zero the
161 // coefficients if gain is too low.
162 if(gain > 0.0001f)
164 ALdouble scale = gain * (1.0/32767.0);
165 for(i = 0;i < HRIR_LENGTH;i++)
167 coeffs[i][0] = lerp(lerp(Hrtf->coeffs[lidx[0]][i], Hrtf->coeffs[lidx[1]][i], mu[0]),
168 lerp(Hrtf->coeffs[lidx[2]][i], Hrtf->coeffs[lidx[3]][i], mu[1]),
169 mu[2]) * scale;
170 coeffs[i][1] = lerp(lerp(Hrtf->coeffs[ridx[0]][i], Hrtf->coeffs[ridx[1]][i], mu[0]),
171 lerp(Hrtf->coeffs[ridx[2]][i], Hrtf->coeffs[ridx[3]][i], mu[1]),
172 mu[2]) * scale;
175 else
177 for(i = 0;i < HRIR_LENGTH;i++)
179 coeffs[i][0] = 0.0f;
180 coeffs[i][1] = 0.0f;
184 // Calculate the HRIR delays using linear interpolation.
185 delays[0] = (ALuint)(lerp(lerp(Hrtf->delays[lidx[0]], Hrtf->delays[lidx[1]], mu[0]),
186 lerp(Hrtf->delays[lidx[2]], Hrtf->delays[lidx[3]], mu[1]),
187 mu[2]) * 65536.0f);
188 delays[1] = (ALuint)(lerp(lerp(Hrtf->delays[ridx[0]], Hrtf->delays[ridx[1]], mu[0]),
189 lerp(Hrtf->delays[ridx[2]], Hrtf->delays[ridx[3]], mu[1]),
190 mu[2]) * 65536.0f);
193 // Calculates the moving HRIR target coefficients, target delays, and
194 // stepping values for the given polar elevation and azimuth in radians.
195 // Linear interpolation is used to increase the apparent resolution of the
196 // HRIR dataset. The coefficients are also normalized and attenuated by the
197 // specified gain. Stepping resolution and count is determined using the
198 // given delta factor between 0.0 and 1.0.
199 ALuint GetMovingHrtfCoeffs(const struct Hrtf *Hrtf, ALfloat elevation, ALfloat azimuth, ALfloat gain, ALfloat delta, ALint counter, ALfloat (*coeffs)[2], ALuint *delays, ALfloat (*coeffStep)[2], ALint *delayStep)
201 ALuint evidx[2], azidx[2];
202 ALuint lidx[4], ridx[4];
203 ALfloat left, right;
204 ALfloat mu[3];
205 ALfloat step;
206 ALuint i;
208 // Claculate elevation indices and interpolation factor.
209 CalcEvIndices(elevation, evidx, &mu[2]);
211 // Calculate azimuth indices and interpolation factor for the first
212 // elevation.
213 CalcAzIndices(evidx[0], azimuth, azidx, &mu[0]);
215 // Calculate the first set of linear HRIR indices for left and right
216 // channels.
217 lidx[0] = evOffset[evidx[0]] + azidx[0];
218 lidx[1] = evOffset[evidx[0]] + azidx[1];
219 ridx[0] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[0]) % azCount[evidx[0]]);
220 ridx[1] = evOffset[evidx[0]] + ((azCount[evidx[0]]-azidx[1]) % azCount[evidx[0]]);
222 // Calculate azimuth indices and interpolation factor for the second
223 // elevation.
224 CalcAzIndices(evidx[1], azimuth, azidx, &mu[1]);
226 // Calculate the second set of linear HRIR indices for left and right
227 // channels.
228 lidx[2] = evOffset[evidx[1]] + azidx[0];
229 lidx[3] = evOffset[evidx[1]] + azidx[1];
230 ridx[2] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[0]) % azCount[evidx[1]]);
231 ridx[3] = evOffset[evidx[1]] + ((azCount[evidx[1]]-azidx[1]) % azCount[evidx[1]]);
233 // Calculate the stepping parameters.
234 delta = maxf(floor(delta*(Hrtf->sampleRate*0.015f) + 0.5), 1.0f);
235 step = 1.0f / delta;
237 // Calculate the normalized and attenuated target HRIR coefficients using
238 // linear interpolation when there is enough gain to warrant it. Zero
239 // the target coefficients if gain is too low. Then calculate the
240 // coefficient stepping values using the target and previous running
241 // coefficients.
242 if(gain > 0.0001f)
244 ALdouble scale = gain * (1.0/32767.0);
245 for(i = 0;i < HRIR_LENGTH;i++)
247 left = coeffs[i][0] - (coeffStep[i][0] * counter);
248 right = coeffs[i][1] - (coeffStep[i][1] * counter);
250 coeffs[i][0] = lerp(lerp(Hrtf->coeffs[lidx[0]][i], Hrtf->coeffs[lidx[1]][i], mu[0]),
251 lerp(Hrtf->coeffs[lidx[2]][i], Hrtf->coeffs[lidx[3]][i], mu[1]),
252 mu[2]) * scale;
253 coeffs[i][1] = lerp(lerp(Hrtf->coeffs[ridx[0]][i], Hrtf->coeffs[ridx[1]][i], mu[0]),
254 lerp(Hrtf->coeffs[ridx[2]][i], Hrtf->coeffs[ridx[3]][i], mu[1]),
255 mu[2]) * scale;
257 coeffStep[i][0] = step * (coeffs[i][0] - left);
258 coeffStep[i][1] = step * (coeffs[i][1] - right);
261 else
263 for(i = 0;i < HRIR_LENGTH;i++)
265 left = coeffs[i][0] - (coeffStep[i][0] * counter);
266 right = coeffs[i][1] - (coeffStep[i][1] * counter);
268 coeffs[i][0] = 0.0f;
269 coeffs[i][1] = 0.0f;
271 coeffStep[i][0] = step * -left;
272 coeffStep[i][1] = step * -right;
276 // Calculate the HRIR delays using linear interpolation. Then calculate
277 // the delay stepping values using the target and previous running
278 // delays.
279 left = delays[0] - (delayStep[0] * counter);
280 right = delays[1] - (delayStep[1] * counter);
282 delays[0] = (ALuint)(lerp(lerp(Hrtf->delays[lidx[0]], Hrtf->delays[lidx[1]], mu[0]),
283 lerp(Hrtf->delays[lidx[2]], Hrtf->delays[lidx[3]], mu[1]),
284 mu[2]) * 65536.0f);
285 delays[1] = (ALuint)(lerp(lerp(Hrtf->delays[ridx[0]], Hrtf->delays[ridx[1]], mu[0]),
286 lerp(Hrtf->delays[ridx[2]], Hrtf->delays[ridx[3]], mu[1]),
287 mu[2]) * 65536.0f);
289 delayStep[0] = (ALint)(step * (delays[0] - left));
290 delayStep[1] = (ALint)(step * (delays[1] - right));
292 // The stepping count is the number of samples necessary for the HRIR to
293 // complete its transition. The mixer will only apply stepping for this
294 // many samples.
295 return (ALuint)delta;
298 const struct Hrtf *GetHrtf(ALCdevice *device)
300 if(device->FmtChans == DevFmtStereo)
302 ALuint i;
303 for(i = 0;i < NumLoadedHrtfs;i++)
305 if(device->Frequency == LoadedHrtfs[i].sampleRate)
306 return &LoadedHrtfs[i];
308 if(device->Frequency == DefaultHrtf.sampleRate)
309 return &DefaultHrtf;
311 ERR("Incompatible format: %s %uhz\n",
312 DevFmtChannelsString(device->FmtChans), device->Frequency);
313 return NULL;
316 void InitHrtf(void)
318 char *fnamelist=NULL, *next=NULL;
319 const char *val;
321 if(ConfigValueStr(NULL, "hrtf_tables", &val))
322 next = fnamelist = strdup(val);
323 while(next && *next)
325 const ALubyte maxDelay = SRC_HISTORY_LENGTH-1;
326 struct Hrtf newdata;
327 ALboolean failed;
328 ALchar magic[9];
329 ALsizei i, j;
330 char *fname;
331 FILE *f;
333 fname = next;
334 next = strchr(fname, ',');
335 if(next)
337 while(next != fname)
339 next--;
340 if(!isspace(*next))
342 *(next++) = '\0';
343 break;
346 while(isspace(*next) || *next == ',')
347 next++;
350 if(!fname[0])
351 continue;
352 TRACE("Loading %s\n", fname);
353 f = fopen(fname, "rb");
354 if(f == NULL)
356 ERR("Could not open %s\n", fname);
357 continue;
360 failed = AL_FALSE;
361 if(fread(magic, 1, sizeof(magicMarker), f) != sizeof(magicMarker))
363 ERR("Failed to read magic marker\n");
364 failed = AL_TRUE;
366 else if(memcmp(magic, magicMarker, sizeof(magicMarker)) != 0)
368 magic[8] = 0;
369 ERR("Invalid magic marker: \"%s\"\n", magic);
370 failed = AL_TRUE;
373 if(!failed)
375 ALushort hrirCount, hrirSize;
376 ALubyte evCount;
378 newdata.sampleRate = fgetc(f);
379 newdata.sampleRate |= fgetc(f)<<8;
380 newdata.sampleRate |= fgetc(f)<<16;
381 newdata.sampleRate |= fgetc(f)<<24;
383 hrirCount = fgetc(f);
384 hrirCount |= fgetc(f)<<8;
386 hrirSize = fgetc(f);
387 hrirSize |= fgetc(f)<<8;
389 evCount = fgetc(f);
391 if(hrirCount != HRIR_COUNT || hrirSize != HRIR_LENGTH || evCount != ELEV_COUNT)
393 ERR("Unsupported value: hrirCount=%d (%d), hrirSize=%d (%d), evCount=%d (%d)\n",
394 hrirCount, HRIR_COUNT, hrirSize, HRIR_LENGTH, evCount, ELEV_COUNT);
395 failed = AL_TRUE;
399 if(!failed)
401 for(i = 0;i < HRIR_COUNT;i++)
403 ALushort offset;
404 offset = fgetc(f);
405 offset |= fgetc(f)<<8;
406 if(offset != evOffset[i])
408 ERR("Unsupported evOffset[%d] value: %d (%d)\n", i, offset, evOffset[i]);
409 failed = AL_TRUE;
414 if(!failed)
416 for(i = 0;i < HRIR_COUNT;i++)
418 for(j = 0;j < HRIR_LENGTH;j++)
420 ALshort coeff;
421 coeff = fgetc(f);
422 coeff |= fgetc(f)<<8;
423 newdata.coeffs[i][j] = coeff;
426 for(i = 0;i < HRIR_COUNT;i++)
428 ALubyte delay;
429 delay = fgetc(f);
430 newdata.delays[i] = delay;
431 if(delay > maxDelay)
433 ERR("Invalid delay[%d]: %d (%d)\n", i, delay, maxDelay);
434 failed = AL_TRUE;
438 if(feof(f))
440 ERR("Premature end of data\n");
441 failed = AL_TRUE;
445 fclose(f);
446 f = NULL;
448 if(!failed)
450 void *temp = realloc(LoadedHrtfs, (NumLoadedHrtfs+1)*sizeof(LoadedHrtfs[0]));
451 if(temp != NULL)
453 LoadedHrtfs = temp;
454 TRACE("Loaded HRTF support for format: %s %uhz\n",
455 DevFmtChannelsString(DevFmtStereo), newdata.sampleRate);
456 LoadedHrtfs[NumLoadedHrtfs++] = newdata;
459 else
460 ERR("Failed to load %s\n", fname);
462 free(fnamelist);
463 fnamelist = NULL;
466 void FreeHrtf(void)
468 NumLoadedHrtfs = 0;
469 free(LoadedHrtfs);
470 LoadedHrtfs = NULL;