2 * Reverb for the OpenAL cross platform audio library
3 * Copyright (C) 2008-2009 by Christopher Fitzgerald.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
30 #include "alAuxEffectSlot.h"
35 typedef struct DelayLine
37 // The delay lines use sample lengths that are powers of 2 to allow the
38 // use of bit-masking instead of a modulus for wrapping.
43 typedef struct ALverbState
{
44 // Must be first in all effects!
47 // All delay lines are allocated as a single buffer to reduce memory
48 // fragmentation and management code.
49 ALfloat
*SampleBuffer
;
51 // Master effect low-pass filter (2 chained 1-pole filters).
55 // Modulator delay line.
57 // The vibrato time is tracked with an index over a modulus-wrapped
58 // range (in samples).
61 // The depth of frequency change (also in samples) and its filter.
66 // Initial effect delay.
68 // The tap points for the initial delay. First tap goes to early
69 // reflections, the last to late reverb.
72 // Output gain for early reflections.
74 // Early reflections are done with 4 delay lines.
78 // The gain for each output channel based on 3D panning (only for the
80 ALfloat PanGain
[MAXCHANNELS
];
82 // Decorrelator delay line.
83 DelayLine Decorrelator
;
84 // There are actually 4 decorrelator taps, but the first occurs at the
88 // Output gain for late reverb.
90 // Attenuation to compensate for the modal density and decay rate of
93 // The feed-back and feed-forward all-pass coefficient.
95 // Mixing matrix coefficient.
97 // Late reverb has 4 parallel all-pass filters.
101 // In addition to 4 cyclical delay lines.
105 // The cyclical delay lines are 1-pole low-pass filtered.
108 // The gain for each output channel based on 3D panning (only for the
110 ALfloat PanGain
[MAXCHANNELS
];
113 // Attenuation to compensate for the modal density and decay rate of
116 // Echo delay and all-pass lines.
124 // The echo line is 1-pole low-pass filtered.
127 // Echo mixing coefficients.
130 // The current read offset for all delay lines.
133 // The gain for each output channel (non-EAX path only; aliased from
138 /* This is a user config option for modifying the overall output of the reverb
141 ALfloat ReverbBoost
= 1.0f
;
143 /* Specifies whether to use a standard reverb effect in place of EAX reverb */
144 ALboolean EmulateEAXReverb
= AL_FALSE
;
146 /* This coefficient is used to define the maximum frequency range controlled
147 * by the modulation depth. The current value of 0.1 will allow it to swing
148 * from 0.9x to 1.1x. This value must be below 1. At 1 it will cause the
149 * sampler to stall on the downswing, and above 1 it will cause it to sample
152 static const ALfloat MODULATION_DEPTH_COEFF
= 0.1f
;
154 /* A filter is used to avoid the terrible distortion caused by changing
155 * modulation time and/or depth. To be consistent across different sample
156 * rates, the coefficient must be raised to a constant divided by the sample
157 * rate: coeff^(constant / rate).
159 static const ALfloat MODULATION_FILTER_COEFF
= 0.048f
;
160 static const ALfloat MODULATION_FILTER_CONST
= 100000.0f
;
162 // When diffusion is above 0, an all-pass filter is used to take the edge off
163 // the echo effect. It uses the following line length (in seconds).
164 static const ALfloat ECHO_ALLPASS_LENGTH
= 0.0133f
;
166 // Input into the late reverb is decorrelated between four channels. Their
167 // timings are dependent on a fraction and multiplier. See the
168 // UpdateDecorrelator() routine for the calculations involved.
169 static const ALfloat DECO_FRACTION
= 0.15f
;
170 static const ALfloat DECO_MULTIPLIER
= 2.0f
;
172 // All delay line lengths are specified in seconds.
174 // The lengths of the early delay lines.
175 static const ALfloat EARLY_LINE_LENGTH
[4] =
177 0.0015f
, 0.0045f
, 0.0135f
, 0.0405f
180 // The lengths of the late all-pass delay lines.
181 static const ALfloat ALLPASS_LINE_LENGTH
[4] =
183 0.0151f
, 0.0167f
, 0.0183f
, 0.0200f
,
186 // The lengths of the late cyclical delay lines.
187 static const ALfloat LATE_LINE_LENGTH
[4] =
189 0.0211f
, 0.0311f
, 0.0461f
, 0.0680f
192 // The late cyclical delay lines have a variable length dependent on the
193 // effect's density parameter (inverted for some reason) and this multiplier.
194 static const ALfloat LATE_LINE_MULTIPLIER
= 4.0f
;
197 // Basic delay line input/output routines.
198 static __inline ALfloat
DelayLineOut(DelayLine
*Delay
, ALuint offset
)
200 return Delay
->Line
[offset
&Delay
->Mask
];
203 static __inline ALvoid
DelayLineIn(DelayLine
*Delay
, ALuint offset
, ALfloat in
)
205 Delay
->Line
[offset
&Delay
->Mask
] = in
;
208 // Attenuated delay line output routine.
209 static __inline ALfloat
AttenuatedDelayLineOut(DelayLine
*Delay
, ALuint offset
, ALfloat coeff
)
211 return coeff
* Delay
->Line
[offset
&Delay
->Mask
];
214 // Basic attenuated all-pass input/output routine.
215 static __inline ALfloat
AllpassInOut(DelayLine
*Delay
, ALuint outOffset
, ALuint inOffset
, ALfloat in
, ALfloat feedCoeff
, ALfloat coeff
)
219 out
= DelayLineOut(Delay
, outOffset
);
220 feed
= feedCoeff
* in
;
221 DelayLineIn(Delay
, inOffset
, (feedCoeff
* (out
- feed
)) + in
);
223 // The time-based attenuation is only applied to the delay output to
224 // keep it from affecting the feed-back path (which is already controlled
225 // by the all-pass feed coefficient).
226 return (coeff
* out
) - feed
;
229 // Given an input sample, this function produces modulation for the late
231 static __inline ALfloat
EAXModulation(ALverbState
*State
, ALfloat in
)
237 // Calculate the sinus rythm (dependent on modulation time and the
238 // sampling rate). The center of the sinus is moved to reduce the delay
239 // of the effect when the time or depth are low.
240 sinus
= 1.0f
- aluCos(F_PI
*2.0f
* State
->Mod
.Index
/ State
->Mod
.Range
);
242 // The depth determines the range over which to read the input samples
243 // from, so it must be filtered to reduce the distortion caused by even
244 // small parameter changes.
245 State
->Mod
.Filter
= lerp(State
->Mod
.Filter
, State
->Mod
.Depth
,
248 // Calculate the read offset and fraction between it and the next sample.
249 frac
= (1.0f
+ (State
->Mod
.Filter
* sinus
));
250 offset
= (ALuint
)frac
;
253 // Get the two samples crossed by the offset, and feed the delay line
254 // with the next input sample.
255 out0
= DelayLineOut(&State
->Mod
.Delay
, State
->Offset
- offset
);
256 out1
= DelayLineOut(&State
->Mod
.Delay
, State
->Offset
- offset
- 1);
257 DelayLineIn(&State
->Mod
.Delay
, State
->Offset
, in
);
259 // Step the modulation index forward, keeping it bound to its range.
260 State
->Mod
.Index
= (State
->Mod
.Index
+ 1) % State
->Mod
.Range
;
262 // The output is obtained by linearly interpolating the two samples that
263 // were acquired above.
264 return lerp(out0
, out1
, frac
);
267 // Delay line output routine for early reflections.
268 static __inline ALfloat
EarlyDelayLineOut(ALverbState
*State
, ALuint index
)
270 return AttenuatedDelayLineOut(&State
->Early
.Delay
[index
],
271 State
->Offset
- State
->Early
.Offset
[index
],
272 State
->Early
.Coeff
[index
]);
275 // Given an input sample, this function produces four-channel output for the
276 // early reflections.
277 static __inline ALvoid
EarlyReflection(ALverbState
*State
, ALfloat in
, ALfloat
*out
)
279 ALfloat d
[4], v
, f
[4];
281 // Obtain the decayed results of each early delay line.
282 d
[0] = EarlyDelayLineOut(State
, 0);
283 d
[1] = EarlyDelayLineOut(State
, 1);
284 d
[2] = EarlyDelayLineOut(State
, 2);
285 d
[3] = EarlyDelayLineOut(State
, 3);
287 /* The following uses a lossless scattering junction from waveguide
288 * theory. It actually amounts to a householder mixing matrix, which
289 * will produce a maximally diffuse response, and means this can probably
290 * be considered a simple feed-back delay network (FDN).
298 v
= (d
[0] + d
[1] + d
[2] + d
[3]) * 0.5f
;
299 // The junction is loaded with the input here.
302 // Calculate the feed values for the delay lines.
308 // Re-feed the delay lines.
309 DelayLineIn(&State
->Early
.Delay
[0], State
->Offset
, f
[0]);
310 DelayLineIn(&State
->Early
.Delay
[1], State
->Offset
, f
[1]);
311 DelayLineIn(&State
->Early
.Delay
[2], State
->Offset
, f
[2]);
312 DelayLineIn(&State
->Early
.Delay
[3], State
->Offset
, f
[3]);
314 // Output the results of the junction for all four channels.
315 out
[0] = State
->Early
.Gain
* f
[0];
316 out
[1] = State
->Early
.Gain
* f
[1];
317 out
[2] = State
->Early
.Gain
* f
[2];
318 out
[3] = State
->Early
.Gain
* f
[3];
321 // All-pass input/output routine for late reverb.
322 static __inline ALfloat
LateAllPassInOut(ALverbState
*State
, ALuint index
, ALfloat in
)
324 return AllpassInOut(&State
->Late
.ApDelay
[index
],
325 State
->Offset
- State
->Late
.ApOffset
[index
],
326 State
->Offset
, in
, State
->Late
.ApFeedCoeff
,
327 State
->Late
.ApCoeff
[index
]);
330 // Delay line output routine for late reverb.
331 static __inline ALfloat
LateDelayLineOut(ALverbState
*State
, ALuint index
)
333 return AttenuatedDelayLineOut(&State
->Late
.Delay
[index
],
334 State
->Offset
- State
->Late
.Offset
[index
],
335 State
->Late
.Coeff
[index
]);
338 // Low-pass filter input/output routine for late reverb.
339 static __inline ALfloat
LateLowPassInOut(ALverbState
*State
, ALuint index
, ALfloat in
)
341 in
= lerp(in
, State
->Late
.LpSample
[index
], State
->Late
.LpCoeff
[index
]);
342 State
->Late
.LpSample
[index
] = in
;
346 // Given four decorrelated input samples, this function produces four-channel
347 // output for the late reverb.
348 static __inline ALvoid
LateReverb(ALverbState
*State
, ALfloat
*in
, ALfloat
*out
)
352 // Obtain the decayed results of the cyclical delay lines, and add the
353 // corresponding input channels. Then pass the results through the
356 // This is where the feed-back cycles from line 0 to 1 to 3 to 2 and back
358 d
[0] = LateLowPassInOut(State
, 2, in
[2] + LateDelayLineOut(State
, 2));
359 d
[1] = LateLowPassInOut(State
, 0, in
[0] + LateDelayLineOut(State
, 0));
360 d
[2] = LateLowPassInOut(State
, 3, in
[3] + LateDelayLineOut(State
, 3));
361 d
[3] = LateLowPassInOut(State
, 1, in
[1] + LateDelayLineOut(State
, 1));
363 // To help increase diffusion, run each line through an all-pass filter.
364 // When there is no diffusion, the shortest all-pass filter will feed the
365 // shortest delay line.
366 d
[0] = LateAllPassInOut(State
, 0, d
[0]);
367 d
[1] = LateAllPassInOut(State
, 1, d
[1]);
368 d
[2] = LateAllPassInOut(State
, 2, d
[2]);
369 d
[3] = LateAllPassInOut(State
, 3, d
[3]);
371 /* Late reverb is done with a modified feed-back delay network (FDN)
372 * topology. Four input lines are each fed through their own all-pass
373 * filter and then into the mixing matrix. The four outputs of the
374 * mixing matrix are then cycled back to the inputs. Each output feeds
375 * a different input to form a circlular feed cycle.
377 * The mixing matrix used is a 4D skew-symmetric rotation matrix derived
378 * using a single unitary rotational parameter:
380 * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
385 * The rotation is constructed from the effect's diffusion parameter,
386 * yielding: 1 = x^2 + 3 y^2; where a, b, and c are the coefficient y
387 * with differing signs, and d is the coefficient x. The matrix is thus:
389 * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
390 * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
391 * [ y, -y, x, y ] x = cos(t)
392 * [ -y, -y, -y, x ] y = sin(t) / n
394 * To reduce the number of multiplies, the x coefficient is applied with
395 * the cyclical delay line coefficients. Thus only the y coefficient is
396 * applied when mixing, and is modified to be: y / x.
398 f
[0] = d
[0] + (State
->Late
.MixCoeff
* ( d
[1] + -d
[2] + d
[3]));
399 f
[1] = d
[1] + (State
->Late
.MixCoeff
* (-d
[0] + d
[2] + d
[3]));
400 f
[2] = d
[2] + (State
->Late
.MixCoeff
* ( d
[0] + -d
[1] + d
[3]));
401 f
[3] = d
[3] + (State
->Late
.MixCoeff
* (-d
[0] + -d
[1] + -d
[2] ));
403 // Output the results of the matrix for all four channels, attenuated by
404 // the late reverb gain (which is attenuated by the 'x' mix coefficient).
405 out
[0] = State
->Late
.Gain
* f
[0];
406 out
[1] = State
->Late
.Gain
* f
[1];
407 out
[2] = State
->Late
.Gain
* f
[2];
408 out
[3] = State
->Late
.Gain
* f
[3];
410 // Re-feed the cyclical delay lines.
411 DelayLineIn(&State
->Late
.Delay
[0], State
->Offset
, f
[0]);
412 DelayLineIn(&State
->Late
.Delay
[1], State
->Offset
, f
[1]);
413 DelayLineIn(&State
->Late
.Delay
[2], State
->Offset
, f
[2]);
414 DelayLineIn(&State
->Late
.Delay
[3], State
->Offset
, f
[3]);
417 // Given an input sample, this function mixes echo into the four-channel late
419 static __inline ALvoid
EAXEcho(ALverbState
*State
, ALfloat in
, ALfloat
*late
)
423 // Get the latest attenuated echo sample for output.
424 feed
= AttenuatedDelayLineOut(&State
->Echo
.Delay
,
425 State
->Offset
- State
->Echo
.Offset
,
428 // Mix the output into the late reverb channels.
429 out
= State
->Echo
.MixCoeff
[0] * feed
;
430 late
[0] = (State
->Echo
.MixCoeff
[1] * late
[0]) + out
;
431 late
[1] = (State
->Echo
.MixCoeff
[1] * late
[1]) + out
;
432 late
[2] = (State
->Echo
.MixCoeff
[1] * late
[2]) + out
;
433 late
[3] = (State
->Echo
.MixCoeff
[1] * late
[3]) + out
;
435 // Mix the energy-attenuated input with the output and pass it through
436 // the echo low-pass filter.
437 feed
+= State
->Echo
.DensityGain
* in
;
438 feed
= lerp(feed
, State
->Echo
.LpSample
, State
->Echo
.LpCoeff
);
439 State
->Echo
.LpSample
= feed
;
441 // Then the echo all-pass filter.
442 feed
= AllpassInOut(&State
->Echo
.ApDelay
,
443 State
->Offset
- State
->Echo
.ApOffset
,
444 State
->Offset
, feed
, State
->Echo
.ApFeedCoeff
,
445 State
->Echo
.ApCoeff
);
447 // Feed the delay with the mixed and filtered sample.
448 DelayLineIn(&State
->Echo
.Delay
, State
->Offset
, feed
);
451 // Perform the non-EAX reverb pass on a given input sample, resulting in
452 // four-channel output.
453 static __inline ALvoid
VerbPass(ALverbState
*State
, ALfloat in
, ALfloat
*early
, ALfloat
*late
)
455 ALfloat feed
, taps
[4];
457 // Low-pass filter the incoming sample.
458 in
= lpFilter2P(&State
->LpFilter
, 0, in
);
460 // Feed the initial delay line.
461 DelayLineIn(&State
->Delay
, State
->Offset
, in
);
463 // Calculate the early reflection from the first delay tap.
464 in
= DelayLineOut(&State
->Delay
, State
->Offset
- State
->DelayTap
[0]);
465 EarlyReflection(State
, in
, early
);
467 // Feed the decorrelator from the energy-attenuated output of the second
469 in
= DelayLineOut(&State
->Delay
, State
->Offset
- State
->DelayTap
[1]);
470 feed
= in
* State
->Late
.DensityGain
;
471 DelayLineIn(&State
->Decorrelator
, State
->Offset
, feed
);
473 // Calculate the late reverb from the decorrelator taps.
475 taps
[1] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[0]);
476 taps
[2] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[1]);
477 taps
[3] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[2]);
478 LateReverb(State
, taps
, late
);
480 // Step all delays forward one sample.
484 // Perform the EAX reverb pass on a given input sample, resulting in four-
486 static __inline ALvoid
EAXVerbPass(ALverbState
*State
, ALfloat in
, ALfloat
*early
, ALfloat
*late
)
488 ALfloat feed
, taps
[4];
490 // Low-pass filter the incoming sample.
491 in
= lpFilter2P(&State
->LpFilter
, 0, in
);
493 // Perform any modulation on the input.
494 in
= EAXModulation(State
, in
);
496 // Feed the initial delay line.
497 DelayLineIn(&State
->Delay
, State
->Offset
, in
);
499 // Calculate the early reflection from the first delay tap.
500 in
= DelayLineOut(&State
->Delay
, State
->Offset
- State
->DelayTap
[0]);
501 EarlyReflection(State
, in
, early
);
503 // Feed the decorrelator from the energy-attenuated output of the second
505 in
= DelayLineOut(&State
->Delay
, State
->Offset
- State
->DelayTap
[1]);
506 feed
= in
* State
->Late
.DensityGain
;
507 DelayLineIn(&State
->Decorrelator
, State
->Offset
, feed
);
509 // Calculate the late reverb from the decorrelator taps.
511 taps
[1] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[0]);
512 taps
[2] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[1]);
513 taps
[3] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[2]);
514 LateReverb(State
, taps
, late
);
516 // Calculate and mix in any echo.
517 EAXEcho(State
, in
, late
);
519 // Step all delays forward one sample.
523 // This processes the reverb state, given the input samples and an output
525 static ALvoid
VerbProcess(ALeffectState
*effect
, ALuint SamplesToDo
, const ALfloat
*SamplesIn
, ALfloat (*SamplesOut
)[MAXCHANNELS
])
527 ALverbState
*State
= (ALverbState
*)effect
;
529 ALfloat early
[4], late
[4], out
[4];
530 const ALfloat
*panGain
= State
->Gain
;
532 for(index
= 0;index
< SamplesToDo
;index
++)
534 // Process reverb for this sample.
535 VerbPass(State
, SamplesIn
[index
], early
, late
);
537 // Mix early reflections and late reverb.
538 out
[0] = (early
[0] + late
[0]);
539 out
[1] = (early
[1] + late
[1]);
540 out
[2] = (early
[2] + late
[2]);
541 out
[3] = (early
[3] + late
[3]);
543 // Output the results.
544 SamplesOut
[index
][FRONT_LEFT
] += panGain
[FRONT_LEFT
] * out
[0];
545 SamplesOut
[index
][FRONT_RIGHT
] += panGain
[FRONT_RIGHT
] * out
[1];
546 SamplesOut
[index
][FRONT_CENTER
] += panGain
[FRONT_CENTER
] * out
[3];
547 SamplesOut
[index
][SIDE_LEFT
] += panGain
[SIDE_LEFT
] * out
[0];
548 SamplesOut
[index
][SIDE_RIGHT
] += panGain
[SIDE_RIGHT
] * out
[1];
549 SamplesOut
[index
][BACK_LEFT
] += panGain
[BACK_LEFT
] * out
[0];
550 SamplesOut
[index
][BACK_RIGHT
] += panGain
[BACK_RIGHT
] * out
[1];
551 SamplesOut
[index
][BACK_CENTER
] += panGain
[BACK_CENTER
] * out
[2];
555 // This processes the EAX reverb state, given the input samples and an output
557 static ALvoid
EAXVerbProcess(ALeffectState
*effect
, ALuint SamplesToDo
, const ALfloat
*SamplesIn
, ALfloat (*SamplesOut
)[MAXCHANNELS
])
559 ALverbState
*State
= (ALverbState
*)effect
;
561 ALfloat early
[4], late
[4];
563 for(index
= 0;index
< SamplesToDo
;index
++)
565 // Process reverb for this sample.
566 EAXVerbPass(State
, SamplesIn
[index
], early
, late
);
568 // Unfortunately, while the number and configuration of gains for
569 // panning adjust according to MAXCHANNELS, the output from the
570 // reverb engine is not so scalable.
571 SamplesOut
[index
][FRONT_LEFT
] +=
572 (State
->Early
.PanGain
[FRONT_LEFT
]*early
[0] +
573 State
->Late
.PanGain
[FRONT_LEFT
]*late
[0]);
574 SamplesOut
[index
][FRONT_RIGHT
] +=
575 (State
->Early
.PanGain
[FRONT_RIGHT
]*early
[1] +
576 State
->Late
.PanGain
[FRONT_RIGHT
]*late
[1]);
577 SamplesOut
[index
][FRONT_CENTER
] +=
578 (State
->Early
.PanGain
[FRONT_CENTER
]*early
[3] +
579 State
->Late
.PanGain
[FRONT_CENTER
]*late
[3]);
580 SamplesOut
[index
][SIDE_LEFT
] +=
581 (State
->Early
.PanGain
[SIDE_LEFT
]*early
[0] +
582 State
->Late
.PanGain
[SIDE_LEFT
]*late
[0]);
583 SamplesOut
[index
][SIDE_RIGHT
] +=
584 (State
->Early
.PanGain
[SIDE_RIGHT
]*early
[1] +
585 State
->Late
.PanGain
[SIDE_RIGHT
]*late
[1]);
586 SamplesOut
[index
][BACK_LEFT
] +=
587 (State
->Early
.PanGain
[BACK_LEFT
]*early
[0] +
588 State
->Late
.PanGain
[BACK_LEFT
]*late
[0]);
589 SamplesOut
[index
][BACK_RIGHT
] +=
590 (State
->Early
.PanGain
[BACK_RIGHT
]*early
[1] +
591 State
->Late
.PanGain
[BACK_RIGHT
]*late
[1]);
592 SamplesOut
[index
][BACK_CENTER
] +=
593 (State
->Early
.PanGain
[BACK_CENTER
]*early
[2] +
594 State
->Late
.PanGain
[BACK_CENTER
]*late
[2]);
599 // Given the allocated sample buffer, this function updates each delay line
601 static __inline ALvoid
RealizeLineOffset(ALfloat
* sampleBuffer
, DelayLine
*Delay
)
603 Delay
->Line
= &sampleBuffer
[(ALintptrEXT
)Delay
->Line
];
606 // Calculate the length of a delay line and store its mask and offset.
607 static ALuint
CalcLineLength(ALfloat length
, ALintptrEXT offset
, ALuint frequency
, DelayLine
*Delay
)
611 // All line lengths are powers of 2, calculated from their lengths, with
612 // an additional sample in case of rounding errors.
613 samples
= NextPowerOf2((ALuint
)(length
* frequency
) + 1);
614 // All lines share a single sample buffer.
615 Delay
->Mask
= samples
- 1;
616 Delay
->Line
= (ALfloat
*)offset
;
617 // Return the sample count for accumulation.
621 /* Calculates the delay line metrics and allocates the shared sample buffer
622 * for all lines given the sample rate (frequency). If an allocation failure
623 * occurs, it returns AL_FALSE.
625 static ALboolean
AllocLines(ALuint frequency
, ALverbState
*State
)
627 ALuint totalSamples
, index
;
629 ALfloat
*newBuffer
= NULL
;
631 // All delay line lengths are calculated to accomodate the full range of
632 // lengths given their respective paramters.
635 /* The modulator's line length is calculated from the maximum modulation
636 * time and depth coefficient, and halfed for the low-to-high frequency
637 * swing. An additional sample is added to keep it stable when there is no
640 length
= (AL_EAXREVERB_MAX_MODULATION_TIME
*MODULATION_DEPTH_COEFF
/2.0f
) +
642 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
,
645 // The initial delay is the sum of the reflections and late reverb
647 length
= AL_EAXREVERB_MAX_REFLECTIONS_DELAY
+
648 AL_EAXREVERB_MAX_LATE_REVERB_DELAY
;
649 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
,
652 // The early reflection lines.
653 for(index
= 0;index
< 4;index
++)
654 totalSamples
+= CalcLineLength(EARLY_LINE_LENGTH
[index
], totalSamples
,
655 frequency
, &State
->Early
.Delay
[index
]);
657 // The decorrelator line is calculated from the lowest reverb density (a
658 // parameter value of 1).
659 length
= (DECO_FRACTION
* DECO_MULTIPLIER
* DECO_MULTIPLIER
) *
660 LATE_LINE_LENGTH
[0] * (1.0f
+ LATE_LINE_MULTIPLIER
);
661 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
,
662 &State
->Decorrelator
);
664 // The late all-pass lines.
665 for(index
= 0;index
< 4;index
++)
666 totalSamples
+= CalcLineLength(ALLPASS_LINE_LENGTH
[index
], totalSamples
,
667 frequency
, &State
->Late
.ApDelay
[index
]);
669 // The late delay lines are calculated from the lowest reverb density.
670 for(index
= 0;index
< 4;index
++)
672 length
= LATE_LINE_LENGTH
[index
] * (1.0f
+ LATE_LINE_MULTIPLIER
);
673 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
,
674 &State
->Late
.Delay
[index
]);
677 // The echo all-pass and delay lines.
678 totalSamples
+= CalcLineLength(ECHO_ALLPASS_LENGTH
, totalSamples
,
679 frequency
, &State
->Echo
.ApDelay
);
680 totalSamples
+= CalcLineLength(AL_EAXREVERB_MAX_ECHO_TIME
, totalSamples
,
681 frequency
, &State
->Echo
.Delay
);
683 if(totalSamples
!= State
->TotalSamples
)
685 TRACE("New reverb buffer length: %u samples (%f sec)\n", totalSamples
, totalSamples
/(float)frequency
);
686 newBuffer
= realloc(State
->SampleBuffer
, sizeof(ALfloat
) * totalSamples
);
687 if(newBuffer
== NULL
)
689 State
->SampleBuffer
= newBuffer
;
690 State
->TotalSamples
= totalSamples
;
693 // Update all delays to reflect the new sample buffer.
694 RealizeLineOffset(State
->SampleBuffer
, &State
->Delay
);
695 RealizeLineOffset(State
->SampleBuffer
, &State
->Decorrelator
);
696 for(index
= 0;index
< 4;index
++)
698 RealizeLineOffset(State
->SampleBuffer
, &State
->Early
.Delay
[index
]);
699 RealizeLineOffset(State
->SampleBuffer
, &State
->Late
.ApDelay
[index
]);
700 RealizeLineOffset(State
->SampleBuffer
, &State
->Late
.Delay
[index
]);
702 RealizeLineOffset(State
->SampleBuffer
, &State
->Mod
.Delay
);
703 RealizeLineOffset(State
->SampleBuffer
, &State
->Echo
.ApDelay
);
704 RealizeLineOffset(State
->SampleBuffer
, &State
->Echo
.Delay
);
706 // Clear the sample buffer.
707 for(index
= 0;index
< State
->TotalSamples
;index
++)
708 State
->SampleBuffer
[index
] = 0.0f
;
713 // This updates the device-dependant EAX reverb state. This is called on
714 // initialization and any time the device parameters (eg. playback frequency,
715 // format) have been changed.
716 static ALboolean
ReverbDeviceUpdate(ALeffectState
*effect
, ALCdevice
*Device
)
718 ALverbState
*State
= (ALverbState
*)effect
;
719 ALuint frequency
= Device
->Frequency
, index
;
721 // Allocate the delay lines.
722 if(!AllocLines(frequency
, State
))
725 // Calculate the modulation filter coefficient. Notice that the exponent
726 // is calculated given the current sample rate. This ensures that the
727 // resulting filter response over time is consistent across all sample
729 State
->Mod
.Coeff
= aluPow(MODULATION_FILTER_COEFF
,
730 MODULATION_FILTER_CONST
/ frequency
);
732 // The early reflection and late all-pass filter line lengths are static,
733 // so their offsets only need to be calculated once.
734 for(index
= 0;index
< 4;index
++)
736 State
->Early
.Offset
[index
] = (ALuint
)(EARLY_LINE_LENGTH
[index
] *
738 State
->Late
.ApOffset
[index
] = (ALuint
)(ALLPASS_LINE_LENGTH
[index
] *
742 // The echo all-pass filter line length is static, so its offset only
743 // needs to be calculated once.
744 State
->Echo
.ApOffset
= (ALuint
)(ECHO_ALLPASS_LENGTH
* frequency
);
749 // Calculate a decay coefficient given the length of each cycle and the time
750 // until the decay reaches -60 dB.
751 static __inline ALfloat
CalcDecayCoeff(ALfloat length
, ALfloat decayTime
)
753 return aluPow(0.001f
/*-60 dB*/, length
/decayTime
);
756 // Calculate a decay length from a coefficient and the time until the decay
758 static __inline ALfloat
CalcDecayLength(ALfloat coeff
, ALfloat decayTime
)
760 return log10(coeff
) * decayTime
/ -3.0f
/*log10(0.001)*/;
763 // Calculate the high frequency parameter for the I3DL2 coefficient
765 static __inline ALfloat
CalcI3DL2HFreq(ALfloat hfRef
, ALuint frequency
)
767 return aluCos(F_PI
*2.0f
* hfRef
/ frequency
);
770 // Calculate an attenuation to be applied to the input of any echo models to
771 // compensate for modal density and decay time.
772 static __inline ALfloat
CalcDensityGain(ALfloat a
)
774 /* The energy of a signal can be obtained by finding the area under the
775 * squared signal. This takes the form of Sum(x_n^2), where x is the
776 * amplitude for the sample n.
778 * Decaying feedback matches exponential decay of the form Sum(a^n),
779 * where a is the attenuation coefficient, and n is the sample. The area
780 * under this decay curve can be calculated as: 1 / (1 - a).
782 * Modifying the above equation to find the squared area under the curve
783 * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
784 * calculated by inverting the square root of this approximation,
785 * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
787 return aluSqrt(1.0f
- (a
* a
));
790 // Calculate the mixing matrix coefficients given a diffusion factor.
791 static __inline ALvoid
CalcMatrixCoeffs(ALfloat diffusion
, ALfloat
*x
, ALfloat
*y
)
795 // The matrix is of order 4, so n is sqrt (4 - 1).
797 t
= diffusion
* atan(n
);
799 // Calculate the first mixing matrix coefficient.
801 // Calculate the second mixing matrix coefficient.
805 // Calculate the limited HF ratio for use with the late reverb low-pass
807 static ALfloat
CalcLimitedHfRatio(ALfloat hfRatio
, ALfloat airAbsorptionGainHF
, ALfloat decayTime
)
811 /* Find the attenuation due to air absorption in dB (converting delay
812 * time to meters using the speed of sound). Then reversing the decay
813 * equation, solve for HF ratio. The delay length is cancelled out of
814 * the equation, so it can be calculated once for all lines.
816 limitRatio
= 1.0f
/ (CalcDecayLength(airAbsorptionGainHF
, decayTime
) *
817 SPEEDOFSOUNDMETRESPERSEC
);
818 /* Using the limit calculated above, apply the upper bound to the HF
819 * ratio. Also need to limit the result to a minimum of 0.1, just like the
820 * HF ratio parameter. */
821 return clampf(limitRatio
, 0.1f
, hfRatio
);
824 // Calculate the coefficient for a HF (and eventually LF) decay damping
826 static __inline ALfloat
CalcDampingCoeff(ALfloat hfRatio
, ALfloat length
, ALfloat decayTime
, ALfloat decayCoeff
, ALfloat cw
)
830 // Eventually this should boost the high frequencies when the ratio
835 // Calculate the low-pass coefficient by dividing the HF decay
836 // coefficient by the full decay coefficient.
837 g
= CalcDecayCoeff(length
, decayTime
* hfRatio
) / decayCoeff
;
839 // Damping is done with a 1-pole filter, so g needs to be squared.
841 coeff
= lpCoeffCalc(g
, cw
);
843 // Very low decay times will produce minimal output, so apply an
844 // upper bound to the coefficient.
845 coeff
= minf(coeff
, 0.98f
);
850 // Update the EAX modulation index, range, and depth. Keep in mind that this
851 // kind of vibrato is additive and not multiplicative as one may expect. The
852 // downswing will sound stronger than the upswing.
853 static ALvoid
UpdateModulator(ALfloat modTime
, ALfloat modDepth
, ALuint frequency
, ALverbState
*State
)
857 /* Modulation is calculated in two parts.
859 * The modulation time effects the sinus applied to the change in
860 * frequency. An index out of the current time range (both in samples)
861 * is incremented each sample. The range is bound to a reasonable
862 * minimum (1 sample) and when the timing changes, the index is rescaled
863 * to the new range (to keep the sinus consistent).
865 length
= modTime
* frequency
;
866 if (length
>= 1.0f
) {
867 State
->Mod
.Index
= (ALuint
)(State
->Mod
.Index
* length
/
869 State
->Mod
.Range
= (ALuint
)length
;
871 State
->Mod
.Index
= 0;
872 State
->Mod
.Range
= 1;
875 /* The modulation depth effects the amount of frequency change over the
876 * range of the sinus. It needs to be scaled by the modulation time so
877 * that a given depth produces a consistent change in frequency over all
878 * ranges of time. Since the depth is applied to a sinus value, it needs
879 * to be halfed once for the sinus range and again for the sinus swing
880 * in time (half of it is spent decreasing the frequency, half is spent
883 State
->Mod
.Depth
= modDepth
* MODULATION_DEPTH_COEFF
* modTime
/ 2.0f
/
887 // Update the offsets for the initial effect delay line.
888 static ALvoid
UpdateDelayLine(ALfloat earlyDelay
, ALfloat lateDelay
, ALuint frequency
, ALverbState
*State
)
890 // Calculate the initial delay taps.
891 State
->DelayTap
[0] = (ALuint
)(earlyDelay
* frequency
);
892 State
->DelayTap
[1] = (ALuint
)((earlyDelay
+ lateDelay
) * frequency
);
895 // Update the early reflections gain and line coefficients.
896 static ALvoid
UpdateEarlyLines(ALfloat reverbGain
, ALfloat earlyGain
, ALfloat lateDelay
, ALverbState
*State
)
900 // Calculate the early reflections gain (from the master effect gain, and
901 // reflections gain parameters) with a constant attenuation of 0.5.
902 State
->Early
.Gain
= 0.5f
* reverbGain
* earlyGain
;
904 // Calculate the gain (coefficient) for each early delay line using the
905 // late delay time. This expands the early reflections to the start of
907 for(index
= 0;index
< 4;index
++)
908 State
->Early
.Coeff
[index
] = CalcDecayCoeff(EARLY_LINE_LENGTH
[index
],
912 // Update the offsets for the decorrelator line.
913 static ALvoid
UpdateDecorrelator(ALfloat density
, ALuint frequency
, ALverbState
*State
)
918 /* The late reverb inputs are decorrelated to smooth the reverb tail and
919 * reduce harsh echos. The first tap occurs immediately, while the
920 * remaining taps are delayed by multiples of a fraction of the smallest
921 * cyclical delay time.
923 * offset[index] = (FRACTION (MULTIPLIER^index)) smallest_delay
925 for(index
= 0;index
< 3;index
++)
927 length
= (DECO_FRACTION
* aluPow(DECO_MULTIPLIER
, (ALfloat
)index
)) *
928 LATE_LINE_LENGTH
[0] * (1.0f
+ (density
* LATE_LINE_MULTIPLIER
));
929 State
->DecoTap
[index
] = (ALuint
)(length
* frequency
);
933 // Update the late reverb gains, line lengths, and line coefficients.
934 static ALvoid
UpdateLateLines(ALfloat reverbGain
, ALfloat lateGain
, ALfloat xMix
, ALfloat density
, ALfloat decayTime
, ALfloat diffusion
, ALfloat hfRatio
, ALfloat cw
, ALuint frequency
, ALverbState
*State
)
939 /* Calculate the late reverb gain (from the master effect gain, and late
940 * reverb gain parameters). Since the output is tapped prior to the
941 * application of the next delay line coefficients, this gain needs to be
942 * attenuated by the 'x' mixing matrix coefficient as well.
944 State
->Late
.Gain
= reverbGain
* lateGain
* xMix
;
946 /* To compensate for changes in modal density and decay time of the late
947 * reverb signal, the input is attenuated based on the maximal energy of
948 * the outgoing signal. This approximation is used to keep the apparent
949 * energy of the signal equal for all ranges of density and decay time.
951 * The average length of the cyclcical delay lines is used to calculate
952 * the attenuation coefficient.
954 length
= (LATE_LINE_LENGTH
[0] + LATE_LINE_LENGTH
[1] +
955 LATE_LINE_LENGTH
[2] + LATE_LINE_LENGTH
[3]) / 4.0f
;
956 length
*= 1.0f
+ (density
* LATE_LINE_MULTIPLIER
);
957 State
->Late
.DensityGain
= CalcDensityGain(CalcDecayCoeff(length
,
960 // Calculate the all-pass feed-back and feed-forward coefficient.
961 State
->Late
.ApFeedCoeff
= 0.5f
* aluPow(diffusion
, 2.0f
);
963 for(index
= 0;index
< 4;index
++)
965 // Calculate the gain (coefficient) for each all-pass line.
966 State
->Late
.ApCoeff
[index
] = CalcDecayCoeff(ALLPASS_LINE_LENGTH
[index
],
969 // Calculate the length (in seconds) of each cyclical delay line.
970 length
= LATE_LINE_LENGTH
[index
] * (1.0f
+ (density
*
971 LATE_LINE_MULTIPLIER
));
973 // Calculate the delay offset for each cyclical delay line.
974 State
->Late
.Offset
[index
] = (ALuint
)(length
* frequency
);
976 // Calculate the gain (coefficient) for each cyclical line.
977 State
->Late
.Coeff
[index
] = CalcDecayCoeff(length
, decayTime
);
979 // Calculate the damping coefficient for each low-pass filter.
980 State
->Late
.LpCoeff
[index
] =
981 CalcDampingCoeff(hfRatio
, length
, decayTime
,
982 State
->Late
.Coeff
[index
], cw
);
984 // Attenuate the cyclical line coefficients by the mixing coefficient
986 State
->Late
.Coeff
[index
] *= xMix
;
990 // Update the echo gain, line offset, line coefficients, and mixing
992 static ALvoid
UpdateEchoLine(ALfloat reverbGain
, ALfloat lateGain
, ALfloat echoTime
, ALfloat decayTime
, ALfloat diffusion
, ALfloat echoDepth
, ALfloat hfRatio
, ALfloat cw
, ALuint frequency
, ALverbState
*State
)
994 // Update the offset and coefficient for the echo delay line.
995 State
->Echo
.Offset
= (ALuint
)(echoTime
* frequency
);
997 // Calculate the decay coefficient for the echo line.
998 State
->Echo
.Coeff
= CalcDecayCoeff(echoTime
, decayTime
);
1000 // Calculate the energy-based attenuation coefficient for the echo delay
1002 State
->Echo
.DensityGain
= CalcDensityGain(State
->Echo
.Coeff
);
1004 // Calculate the echo all-pass feed coefficient.
1005 State
->Echo
.ApFeedCoeff
= 0.5f
* aluPow(diffusion
, 2.0f
);
1007 // Calculate the echo all-pass attenuation coefficient.
1008 State
->Echo
.ApCoeff
= CalcDecayCoeff(ECHO_ALLPASS_LENGTH
, decayTime
);
1010 // Calculate the damping coefficient for each low-pass filter.
1011 State
->Echo
.LpCoeff
= CalcDampingCoeff(hfRatio
, echoTime
, decayTime
,
1012 State
->Echo
.Coeff
, cw
);
1014 /* Calculate the echo mixing coefficients. The first is applied to the
1015 * echo itself. The second is used to attenuate the late reverb when
1016 * echo depth is high and diffusion is low, so the echo is slightly
1017 * stronger than the decorrelated echos in the reverb tail.
1019 State
->Echo
.MixCoeff
[0] = reverbGain
* lateGain
* echoDepth
;
1020 State
->Echo
.MixCoeff
[1] = 1.0f
- (echoDepth
* 0.5f
* (1.0f
- diffusion
));
1023 // Update the early and late 3D panning gains.
1024 static ALvoid
Update3DPanning(const ALCdevice
*Device
, const ALfloat
*ReflectionsPan
, const ALfloat
*LateReverbPan
, ALfloat Gain
, ALverbState
*State
)
1026 ALfloat earlyPan
[3] = { ReflectionsPan
[0], ReflectionsPan
[1],
1027 ReflectionsPan
[2] };
1028 ALfloat latePan
[3] = { LateReverbPan
[0], LateReverbPan
[1],
1030 const ALfloat
*speakerGain
;
1031 ALfloat ambientGain
;
1037 Gain
*= ReverbBoost
;
1039 // Attenuate non-directional reverb according to the number of channels
1040 ambientGain
= aluSqrt(2.0f
/Device
->NumChan
);
1042 // Calculate the 3D-panning gains for the early reflections and late
1044 length
= earlyPan
[0]*earlyPan
[0] + earlyPan
[1]*earlyPan
[1] + earlyPan
[2]*earlyPan
[2];
1047 length
= 1.0f
/ aluSqrt(length
);
1048 earlyPan
[0] *= length
;
1049 earlyPan
[1] *= length
;
1050 earlyPan
[2] *= length
;
1052 length
= latePan
[0]*latePan
[0] + latePan
[1]*latePan
[1] + latePan
[2]*latePan
[2];
1055 length
= 1.0f
/ aluSqrt(length
);
1056 latePan
[0] *= length
;
1057 latePan
[1] *= length
;
1058 latePan
[2] *= length
;
1061 /* This code applies directional reverb just like the mixer applies
1062 * directional sources. It diffuses the sound toward all speakers as the
1063 * magnitude of the panning vector drops, which is only a rough
1064 * approximation of the expansion of sound across the speakers from the
1065 * panning direction.
1067 pos
= aluCart2LUTpos(earlyPan
[2], earlyPan
[0]);
1068 speakerGain
= Device
->PanningLUT
[pos
];
1069 dirGain
= aluSqrt((earlyPan
[0] * earlyPan
[0]) + (earlyPan
[2] * earlyPan
[2]));
1071 for(index
= 0;index
< MAXCHANNELS
;index
++)
1072 State
->Early
.PanGain
[index
] = 0.0f
;
1073 for(index
= 0;index
< Device
->NumChan
;index
++)
1075 enum Channel chan
= Device
->Speaker2Chan
[index
];
1076 State
->Early
.PanGain
[chan
] = lerp(ambientGain
, speakerGain
[chan
], dirGain
) * Gain
;
1080 pos
= aluCart2LUTpos(latePan
[2], latePan
[0]);
1081 speakerGain
= Device
->PanningLUT
[pos
];
1082 dirGain
= aluSqrt((latePan
[0] * latePan
[0]) + (latePan
[2] * latePan
[2]));
1084 for(index
= 0;index
< MAXCHANNELS
;index
++)
1085 State
->Late
.PanGain
[index
] = 0.0f
;
1086 for(index
= 0;index
< Device
->NumChan
;index
++)
1088 enum Channel chan
= Device
->Speaker2Chan
[index
];
1089 State
->Late
.PanGain
[chan
] = lerp(ambientGain
, speakerGain
[chan
], dirGain
) * Gain
;
1093 // This updates the EAX reverb state. This is called any time the EAX reverb
1094 // effect is loaded into a slot.
1095 static ALvoid
ReverbUpdate(ALeffectState
*effect
, ALCcontext
*Context
, const ALeffectslot
*Slot
)
1097 ALverbState
*State
= (ALverbState
*)effect
;
1098 ALuint frequency
= Context
->Device
->Frequency
;
1099 ALboolean isEAX
= AL_FALSE
;
1100 ALfloat cw
, x
, y
, hfRatio
;
1102 if(Slot
->effect
.type
== AL_EFFECT_EAXREVERB
&& !EmulateEAXReverb
)
1104 State
->state
.Process
= EAXVerbProcess
;
1107 else if(Slot
->effect
.type
== AL_EFFECT_REVERB
|| EmulateEAXReverb
)
1109 State
->state
.Process
= VerbProcess
;
1113 // Calculate the master low-pass filter (from the master effect HF gain).
1114 if(isEAX
) cw
= CalcI3DL2HFreq(Slot
->effect
.Reverb
.HFReference
, frequency
);
1115 else cw
= CalcI3DL2HFreq(LOWPASSFREQCUTOFF
, frequency
);
1116 // This is done with 2 chained 1-pole filters, so no need to square g.
1117 State
->LpFilter
.coeff
= lpCoeffCalc(Slot
->effect
.Reverb
.GainHF
, cw
);
1121 // Update the modulator line.
1122 UpdateModulator(Slot
->effect
.Reverb
.ModulationTime
,
1123 Slot
->effect
.Reverb
.ModulationDepth
,
1127 // Update the initial effect delay.
1128 UpdateDelayLine(Slot
->effect
.Reverb
.ReflectionsDelay
,
1129 Slot
->effect
.Reverb
.LateReverbDelay
,
1132 // Update the early lines.
1133 UpdateEarlyLines(Slot
->effect
.Reverb
.Gain
,
1134 Slot
->effect
.Reverb
.ReflectionsGain
,
1135 Slot
->effect
.Reverb
.LateReverbDelay
, State
);
1137 // Update the decorrelator.
1138 UpdateDecorrelator(Slot
->effect
.Reverb
.Density
, frequency
, State
);
1140 // Get the mixing matrix coefficients (x and y).
1141 CalcMatrixCoeffs(Slot
->effect
.Reverb
.Diffusion
, &x
, &y
);
1142 // Then divide x into y to simplify the matrix calculation.
1143 State
->Late
.MixCoeff
= y
/ x
;
1145 // If the HF limit parameter is flagged, calculate an appropriate limit
1146 // based on the air absorption parameter.
1147 hfRatio
= Slot
->effect
.Reverb
.DecayHFRatio
;
1148 if(Slot
->effect
.Reverb
.DecayHFLimit
&&
1149 Slot
->effect
.Reverb
.AirAbsorptionGainHF
< 1.0f
)
1150 hfRatio
= CalcLimitedHfRatio(hfRatio
,
1151 Slot
->effect
.Reverb
.AirAbsorptionGainHF
,
1152 Slot
->effect
.Reverb
.DecayTime
);
1154 // Update the late lines.
1155 UpdateLateLines(Slot
->effect
.Reverb
.Gain
, Slot
->effect
.Reverb
.LateReverbGain
,
1156 x
, Slot
->effect
.Reverb
.Density
, Slot
->effect
.Reverb
.DecayTime
,
1157 Slot
->effect
.Reverb
.Diffusion
, hfRatio
, cw
, frequency
, State
);
1161 // Update the echo line.
1162 UpdateEchoLine(Slot
->effect
.Reverb
.Gain
, Slot
->effect
.Reverb
.LateReverbGain
,
1163 Slot
->effect
.Reverb
.EchoTime
, Slot
->effect
.Reverb
.DecayTime
,
1164 Slot
->effect
.Reverb
.Diffusion
, Slot
->effect
.Reverb
.EchoDepth
,
1165 hfRatio
, cw
, frequency
, State
);
1167 // Update early and late 3D panning.
1168 Update3DPanning(Context
->Device
, Slot
->effect
.Reverb
.ReflectionsPan
,
1169 Slot
->effect
.Reverb
.LateReverbPan
, Slot
->Gain
, State
);
1173 ALCdevice
*Device
= Context
->Device
;
1174 ALfloat gain
= Slot
->Gain
;
1177 /* Update channel gains */
1178 gain
*= aluSqrt(2.0f
/Device
->NumChan
) * ReverbBoost
;
1179 for(index
= 0;index
< MAXCHANNELS
;index
++)
1180 State
->Gain
[index
] = 0.0f
;
1181 for(index
= 0;index
< Device
->NumChan
;index
++)
1183 enum Channel chan
= Device
->Speaker2Chan
[index
];
1184 State
->Gain
[chan
] = gain
;
1189 // This destroys the reverb state. It should be called only when the effect
1190 // slot has a different (or no) effect loaded over the reverb effect.
1191 static ALvoid
ReverbDestroy(ALeffectState
*effect
)
1193 ALverbState
*State
= (ALverbState
*)effect
;
1196 free(State
->SampleBuffer
);
1197 State
->SampleBuffer
= NULL
;
1202 // This creates the reverb state. It should be called only when the reverb
1203 // effect is loaded into a slot that doesn't already have a reverb effect.
1204 ALeffectState
*ReverbCreate(void)
1206 ALverbState
*State
= NULL
;
1209 State
= malloc(sizeof(ALverbState
));
1213 State
->state
.Destroy
= ReverbDestroy
;
1214 State
->state
.DeviceUpdate
= ReverbDeviceUpdate
;
1215 State
->state
.Update
= ReverbUpdate
;
1216 State
->state
.Process
= VerbProcess
;
1218 State
->TotalSamples
= 0;
1219 State
->SampleBuffer
= NULL
;
1221 State
->LpFilter
.coeff
= 0.0f
;
1222 State
->LpFilter
.history
[0] = 0.0f
;
1223 State
->LpFilter
.history
[1] = 0.0f
;
1225 State
->Mod
.Delay
.Mask
= 0;
1226 State
->Mod
.Delay
.Line
= NULL
;
1227 State
->Mod
.Index
= 0;
1228 State
->Mod
.Range
= 1;
1229 State
->Mod
.Depth
= 0.0f
;
1230 State
->Mod
.Coeff
= 0.0f
;
1231 State
->Mod
.Filter
= 0.0f
;
1233 State
->Delay
.Mask
= 0;
1234 State
->Delay
.Line
= NULL
;
1235 State
->DelayTap
[0] = 0;
1236 State
->DelayTap
[1] = 0;
1238 State
->Early
.Gain
= 0.0f
;
1239 for(index
= 0;index
< 4;index
++)
1241 State
->Early
.Coeff
[index
] = 0.0f
;
1242 State
->Early
.Delay
[index
].Mask
= 0;
1243 State
->Early
.Delay
[index
].Line
= NULL
;
1244 State
->Early
.Offset
[index
] = 0;
1247 State
->Decorrelator
.Mask
= 0;
1248 State
->Decorrelator
.Line
= NULL
;
1249 State
->DecoTap
[0] = 0;
1250 State
->DecoTap
[1] = 0;
1251 State
->DecoTap
[2] = 0;
1253 State
->Late
.Gain
= 0.0f
;
1254 State
->Late
.DensityGain
= 0.0f
;
1255 State
->Late
.ApFeedCoeff
= 0.0f
;
1256 State
->Late
.MixCoeff
= 0.0f
;
1257 for(index
= 0;index
< 4;index
++)
1259 State
->Late
.ApCoeff
[index
] = 0.0f
;
1260 State
->Late
.ApDelay
[index
].Mask
= 0;
1261 State
->Late
.ApDelay
[index
].Line
= NULL
;
1262 State
->Late
.ApOffset
[index
] = 0;
1264 State
->Late
.Coeff
[index
] = 0.0f
;
1265 State
->Late
.Delay
[index
].Mask
= 0;
1266 State
->Late
.Delay
[index
].Line
= NULL
;
1267 State
->Late
.Offset
[index
] = 0;
1269 State
->Late
.LpCoeff
[index
] = 0.0f
;
1270 State
->Late
.LpSample
[index
] = 0.0f
;
1273 for(index
= 0;index
< MAXCHANNELS
;index
++)
1275 State
->Early
.PanGain
[index
] = 0.0f
;
1276 State
->Late
.PanGain
[index
] = 0.0f
;
1279 State
->Echo
.DensityGain
= 0.0f
;
1280 State
->Echo
.Delay
.Mask
= 0;
1281 State
->Echo
.Delay
.Line
= NULL
;
1282 State
->Echo
.ApDelay
.Mask
= 0;
1283 State
->Echo
.ApDelay
.Line
= NULL
;
1284 State
->Echo
.Coeff
= 0.0f
;
1285 State
->Echo
.ApFeedCoeff
= 0.0f
;
1286 State
->Echo
.ApCoeff
= 0.0f
;
1287 State
->Echo
.Offset
= 0;
1288 State
->Echo
.ApOffset
= 0;
1289 State
->Echo
.LpCoeff
= 0.0f
;
1290 State
->Echo
.LpSample
= 0.0f
;
1291 State
->Echo
.MixCoeff
[0] = 0.0f
;
1292 State
->Echo
.MixCoeff
[1] = 0.0f
;
1296 State
->Gain
= State
->Late
.PanGain
;
1298 return &State
->state
;