2 * Reverb for the OpenAL cross platform audio library
3 * Copyright (C) 2008-2009 by Christopher Fitzgerald.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
30 #include "alAuxEffectSlot.h"
35 typedef struct DelayLine
37 // The delay lines use sample lengths that are powers of 2 to allow the
38 // use of bit-masking instead of a modulus for wrapping.
43 typedef struct ALverbState
{
44 // Must be first in all effects!
47 // All delay lines are allocated as a single buffer to reduce memory
48 // fragmentation and management code.
49 ALfloat
*SampleBuffer
;
52 // Master effect low-pass filter (2 chained 1-pole filters).
57 // Modulator delay line.
60 // The vibrato time is tracked with an index over a modulus-wrapped
61 // range (in samples).
65 // The depth of frequency change (also in samples) and its filter.
71 // Initial effect delay.
73 // The tap points for the initial delay. First tap goes to early
74 // reflections, the last to late reverb.
78 // Output gain for early reflections.
81 // Early reflections are done with 4 delay lines.
86 // The gain for each output channel based on 3D panning (only for the
88 ALfloat PanGain
[MAXCHANNELS
];
91 // Decorrelator delay line.
92 DelayLine Decorrelator
;
93 // There are actually 4 decorrelator taps, but the first occurs at the
98 // Output gain for late reverb.
101 // Attenuation to compensate for the modal density and decay rate of
105 // The feed-back and feed-forward all-pass coefficient.
108 // Mixing matrix coefficient.
111 // Late reverb has 4 parallel all-pass filters.
113 DelayLine ApDelay
[4];
116 // In addition to 4 cyclical delay lines.
121 // The cyclical delay lines are 1-pole low-pass filtered.
125 // The gain for each output channel based on 3D panning (only for the
127 ALfloat PanGain
[MAXCHANNELS
];
131 // Attenuation to compensate for the modal density and decay rate of
135 // Echo delay and all-pass lines.
146 // The echo line is 1-pole low-pass filtered.
150 // Echo mixing coefficients.
154 // The current read offset for all delay lines.
157 // The gain for each output channel (non-EAX path only; aliased from
162 /* This is a user config option for modifying the overall output of the reverb
165 ALfloat ReverbBoost
= 1.0f
;
167 /* Specifies whether to use a standard reverb effect in place of EAX reverb */
168 ALboolean EmulateEAXReverb
= AL_FALSE
;
170 /* This coefficient is used to define the maximum frequency range controlled
171 * by the modulation depth. The current value of 0.1 will allow it to swing
172 * from 0.9x to 1.1x. This value must be below 1. At 1 it will cause the
173 * sampler to stall on the downswing, and above 1 it will cause it to sample
176 static const ALfloat MODULATION_DEPTH_COEFF
= 0.1f
;
178 /* A filter is used to avoid the terrible distortion caused by changing
179 * modulation time and/or depth. To be consistent across different sample
180 * rates, the coefficient must be raised to a constant divided by the sample
181 * rate: coeff^(constant / rate).
183 static const ALfloat MODULATION_FILTER_COEFF
= 0.048f
;
184 static const ALfloat MODULATION_FILTER_CONST
= 100000.0f
;
186 // When diffusion is above 0, an all-pass filter is used to take the edge off
187 // the echo effect. It uses the following line length (in seconds).
188 static const ALfloat ECHO_ALLPASS_LENGTH
= 0.0133f
;
190 // Input into the late reverb is decorrelated between four channels. Their
191 // timings are dependent on a fraction and multiplier. See the
192 // UpdateDecorrelator() routine for the calculations involved.
193 static const ALfloat DECO_FRACTION
= 0.15f
;
194 static const ALfloat DECO_MULTIPLIER
= 2.0f
;
196 // All delay line lengths are specified in seconds.
198 // The lengths of the early delay lines.
199 static const ALfloat EARLY_LINE_LENGTH
[4] =
201 0.0015f
, 0.0045f
, 0.0135f
, 0.0405f
204 // The lengths of the late all-pass delay lines.
205 static const ALfloat ALLPASS_LINE_LENGTH
[4] =
207 0.0151f
, 0.0167f
, 0.0183f
, 0.0200f
,
210 // The lengths of the late cyclical delay lines.
211 static const ALfloat LATE_LINE_LENGTH
[4] =
213 0.0211f
, 0.0311f
, 0.0461f
, 0.0680f
216 // The late cyclical delay lines have a variable length dependent on the
217 // effect's density parameter (inverted for some reason) and this multiplier.
218 static const ALfloat LATE_LINE_MULTIPLIER
= 4.0f
;
221 // Basic delay line input/output routines.
222 static __inline ALfloat
DelayLineOut(DelayLine
*Delay
, ALuint offset
)
224 return Delay
->Line
[offset
&Delay
->Mask
];
227 static __inline ALvoid
DelayLineIn(DelayLine
*Delay
, ALuint offset
, ALfloat in
)
229 Delay
->Line
[offset
&Delay
->Mask
] = in
;
232 // Attenuated delay line output routine.
233 static __inline ALfloat
AttenuatedDelayLineOut(DelayLine
*Delay
, ALuint offset
, ALfloat coeff
)
235 return coeff
* Delay
->Line
[offset
&Delay
->Mask
];
238 // Basic attenuated all-pass input/output routine.
239 static __inline ALfloat
AllpassInOut(DelayLine
*Delay
, ALuint outOffset
, ALuint inOffset
, ALfloat in
, ALfloat feedCoeff
, ALfloat coeff
)
243 out
= DelayLineOut(Delay
, outOffset
);
244 feed
= feedCoeff
* in
;
245 DelayLineIn(Delay
, inOffset
, (feedCoeff
* (out
- feed
)) + in
);
247 // The time-based attenuation is only applied to the delay output to
248 // keep it from affecting the feed-back path (which is already controlled
249 // by the all-pass feed coefficient).
250 return (coeff
* out
) - feed
;
253 // Given an input sample, this function produces modulation for the late
255 static __inline ALfloat
EAXModulation(ALverbState
*State
, ALfloat in
)
261 // Calculate the sinus rythm (dependent on modulation time and the
262 // sampling rate). The center of the sinus is moved to reduce the delay
263 // of the effect when the time or depth are low.
264 sinus
= 1.0f
- aluCos(F_PI
*2.0f
* State
->Mod
.Index
/ State
->Mod
.Range
);
266 // The depth determines the range over which to read the input samples
267 // from, so it must be filtered to reduce the distortion caused by even
268 // small parameter changes.
269 State
->Mod
.Filter
= lerp(State
->Mod
.Filter
, State
->Mod
.Depth
,
272 // Calculate the read offset and fraction between it and the next sample.
273 frac
= (1.0f
+ (State
->Mod
.Filter
* sinus
));
274 offset
= fastf2u(frac
);
277 // Get the two samples crossed by the offset, and feed the delay line
278 // with the next input sample.
279 out0
= DelayLineOut(&State
->Mod
.Delay
, State
->Offset
- offset
);
280 out1
= DelayLineOut(&State
->Mod
.Delay
, State
->Offset
- offset
- 1);
281 DelayLineIn(&State
->Mod
.Delay
, State
->Offset
, in
);
283 // Step the modulation index forward, keeping it bound to its range.
284 State
->Mod
.Index
= (State
->Mod
.Index
+ 1) % State
->Mod
.Range
;
286 // The output is obtained by linearly interpolating the two samples that
287 // were acquired above.
288 return lerp(out0
, out1
, frac
);
291 // Delay line output routine for early reflections.
292 static __inline ALfloat
EarlyDelayLineOut(ALverbState
*State
, ALuint index
)
294 return AttenuatedDelayLineOut(&State
->Early
.Delay
[index
],
295 State
->Offset
- State
->Early
.Offset
[index
],
296 State
->Early
.Coeff
[index
]);
299 // Given an input sample, this function produces four-channel output for the
300 // early reflections.
301 static __inline ALvoid
EarlyReflection(ALverbState
*State
, ALfloat in
, ALfloat
*out
)
303 ALfloat d
[4], v
, f
[4];
305 // Obtain the decayed results of each early delay line.
306 d
[0] = EarlyDelayLineOut(State
, 0);
307 d
[1] = EarlyDelayLineOut(State
, 1);
308 d
[2] = EarlyDelayLineOut(State
, 2);
309 d
[3] = EarlyDelayLineOut(State
, 3);
311 /* The following uses a lossless scattering junction from waveguide
312 * theory. It actually amounts to a householder mixing matrix, which
313 * will produce a maximally diffuse response, and means this can probably
314 * be considered a simple feed-back delay network (FDN).
322 v
= (d
[0] + d
[1] + d
[2] + d
[3]) * 0.5f
;
323 // The junction is loaded with the input here.
326 // Calculate the feed values for the delay lines.
332 // Re-feed the delay lines.
333 DelayLineIn(&State
->Early
.Delay
[0], State
->Offset
, f
[0]);
334 DelayLineIn(&State
->Early
.Delay
[1], State
->Offset
, f
[1]);
335 DelayLineIn(&State
->Early
.Delay
[2], State
->Offset
, f
[2]);
336 DelayLineIn(&State
->Early
.Delay
[3], State
->Offset
, f
[3]);
338 // Output the results of the junction for all four channels.
339 out
[0] = State
->Early
.Gain
* f
[0];
340 out
[1] = State
->Early
.Gain
* f
[1];
341 out
[2] = State
->Early
.Gain
* f
[2];
342 out
[3] = State
->Early
.Gain
* f
[3];
345 // All-pass input/output routine for late reverb.
346 static __inline ALfloat
LateAllPassInOut(ALverbState
*State
, ALuint index
, ALfloat in
)
348 return AllpassInOut(&State
->Late
.ApDelay
[index
],
349 State
->Offset
- State
->Late
.ApOffset
[index
],
350 State
->Offset
, in
, State
->Late
.ApFeedCoeff
,
351 State
->Late
.ApCoeff
[index
]);
354 // Delay line output routine for late reverb.
355 static __inline ALfloat
LateDelayLineOut(ALverbState
*State
, ALuint index
)
357 return AttenuatedDelayLineOut(&State
->Late
.Delay
[index
],
358 State
->Offset
- State
->Late
.Offset
[index
],
359 State
->Late
.Coeff
[index
]);
362 // Low-pass filter input/output routine for late reverb.
363 static __inline ALfloat
LateLowPassInOut(ALverbState
*State
, ALuint index
, ALfloat in
)
365 in
= lerp(in
, State
->Late
.LpSample
[index
], State
->Late
.LpCoeff
[index
]);
366 State
->Late
.LpSample
[index
] = in
;
370 // Given four decorrelated input samples, this function produces four-channel
371 // output for the late reverb.
372 static __inline ALvoid
LateReverb(ALverbState
*State
, ALfloat
*in
, ALfloat
*out
)
376 // Obtain the decayed results of the cyclical delay lines, and add the
377 // corresponding input channels. Then pass the results through the
380 // This is where the feed-back cycles from line 0 to 1 to 3 to 2 and back
382 d
[0] = LateLowPassInOut(State
, 2, in
[2] + LateDelayLineOut(State
, 2));
383 d
[1] = LateLowPassInOut(State
, 0, in
[0] + LateDelayLineOut(State
, 0));
384 d
[2] = LateLowPassInOut(State
, 3, in
[3] + LateDelayLineOut(State
, 3));
385 d
[3] = LateLowPassInOut(State
, 1, in
[1] + LateDelayLineOut(State
, 1));
387 // To help increase diffusion, run each line through an all-pass filter.
388 // When there is no diffusion, the shortest all-pass filter will feed the
389 // shortest delay line.
390 d
[0] = LateAllPassInOut(State
, 0, d
[0]);
391 d
[1] = LateAllPassInOut(State
, 1, d
[1]);
392 d
[2] = LateAllPassInOut(State
, 2, d
[2]);
393 d
[3] = LateAllPassInOut(State
, 3, d
[3]);
395 /* Late reverb is done with a modified feed-back delay network (FDN)
396 * topology. Four input lines are each fed through their own all-pass
397 * filter and then into the mixing matrix. The four outputs of the
398 * mixing matrix are then cycled back to the inputs. Each output feeds
399 * a different input to form a circlular feed cycle.
401 * The mixing matrix used is a 4D skew-symmetric rotation matrix derived
402 * using a single unitary rotational parameter:
404 * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
409 * The rotation is constructed from the effect's diffusion parameter,
410 * yielding: 1 = x^2 + 3 y^2; where a, b, and c are the coefficient y
411 * with differing signs, and d is the coefficient x. The matrix is thus:
413 * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
414 * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
415 * [ y, -y, x, y ] x = cos(t)
416 * [ -y, -y, -y, x ] y = sin(t) / n
418 * To reduce the number of multiplies, the x coefficient is applied with
419 * the cyclical delay line coefficients. Thus only the y coefficient is
420 * applied when mixing, and is modified to be: y / x.
422 f
[0] = d
[0] + (State
->Late
.MixCoeff
* ( d
[1] + -d
[2] + d
[3]));
423 f
[1] = d
[1] + (State
->Late
.MixCoeff
* (-d
[0] + d
[2] + d
[3]));
424 f
[2] = d
[2] + (State
->Late
.MixCoeff
* ( d
[0] + -d
[1] + d
[3]));
425 f
[3] = d
[3] + (State
->Late
.MixCoeff
* (-d
[0] + -d
[1] + -d
[2] ));
427 // Output the results of the matrix for all four channels, attenuated by
428 // the late reverb gain (which is attenuated by the 'x' mix coefficient).
429 out
[0] = State
->Late
.Gain
* f
[0];
430 out
[1] = State
->Late
.Gain
* f
[1];
431 out
[2] = State
->Late
.Gain
* f
[2];
432 out
[3] = State
->Late
.Gain
* f
[3];
434 // Re-feed the cyclical delay lines.
435 DelayLineIn(&State
->Late
.Delay
[0], State
->Offset
, f
[0]);
436 DelayLineIn(&State
->Late
.Delay
[1], State
->Offset
, f
[1]);
437 DelayLineIn(&State
->Late
.Delay
[2], State
->Offset
, f
[2]);
438 DelayLineIn(&State
->Late
.Delay
[3], State
->Offset
, f
[3]);
441 // Given an input sample, this function mixes echo into the four-channel late
443 static __inline ALvoid
EAXEcho(ALverbState
*State
, ALfloat in
, ALfloat
*late
)
447 // Get the latest attenuated echo sample for output.
448 feed
= AttenuatedDelayLineOut(&State
->Echo
.Delay
,
449 State
->Offset
- State
->Echo
.Offset
,
452 // Mix the output into the late reverb channels.
453 out
= State
->Echo
.MixCoeff
[0] * feed
;
454 late
[0] = (State
->Echo
.MixCoeff
[1] * late
[0]) + out
;
455 late
[1] = (State
->Echo
.MixCoeff
[1] * late
[1]) + out
;
456 late
[2] = (State
->Echo
.MixCoeff
[1] * late
[2]) + out
;
457 late
[3] = (State
->Echo
.MixCoeff
[1] * late
[3]) + out
;
459 // Mix the energy-attenuated input with the output and pass it through
460 // the echo low-pass filter.
461 feed
+= State
->Echo
.DensityGain
* in
;
462 feed
= lerp(feed
, State
->Echo
.LpSample
, State
->Echo
.LpCoeff
);
463 State
->Echo
.LpSample
= feed
;
465 // Then the echo all-pass filter.
466 feed
= AllpassInOut(&State
->Echo
.ApDelay
,
467 State
->Offset
- State
->Echo
.ApOffset
,
468 State
->Offset
, feed
, State
->Echo
.ApFeedCoeff
,
469 State
->Echo
.ApCoeff
);
471 // Feed the delay with the mixed and filtered sample.
472 DelayLineIn(&State
->Echo
.Delay
, State
->Offset
, feed
);
475 // Perform the non-EAX reverb pass on a given input sample, resulting in
476 // four-channel output.
477 static __inline ALvoid
VerbPass(ALverbState
*State
, ALfloat in
, ALfloat
*early
, ALfloat
*late
)
479 ALfloat feed
, taps
[4];
481 // Low-pass filter the incoming sample.
482 in
= lpFilter2P(&State
->LpFilter
, 0, in
);
484 // Feed the initial delay line.
485 DelayLineIn(&State
->Delay
, State
->Offset
, in
);
487 // Calculate the early reflection from the first delay tap.
488 in
= DelayLineOut(&State
->Delay
, State
->Offset
- State
->DelayTap
[0]);
489 EarlyReflection(State
, in
, early
);
491 // Feed the decorrelator from the energy-attenuated output of the second
493 in
= DelayLineOut(&State
->Delay
, State
->Offset
- State
->DelayTap
[1]);
494 feed
= in
* State
->Late
.DensityGain
;
495 DelayLineIn(&State
->Decorrelator
, State
->Offset
, feed
);
497 // Calculate the late reverb from the decorrelator taps.
499 taps
[1] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[0]);
500 taps
[2] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[1]);
501 taps
[3] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[2]);
502 LateReverb(State
, taps
, late
);
504 // Step all delays forward one sample.
508 // Perform the EAX reverb pass on a given input sample, resulting in four-
510 static __inline ALvoid
EAXVerbPass(ALverbState
*State
, ALfloat in
, ALfloat
*early
, ALfloat
*late
)
512 ALfloat feed
, taps
[4];
514 // Low-pass filter the incoming sample.
515 in
= lpFilter2P(&State
->LpFilter
, 0, in
);
517 // Perform any modulation on the input.
518 in
= EAXModulation(State
, in
);
520 // Feed the initial delay line.
521 DelayLineIn(&State
->Delay
, State
->Offset
, in
);
523 // Calculate the early reflection from the first delay tap.
524 in
= DelayLineOut(&State
->Delay
, State
->Offset
- State
->DelayTap
[0]);
525 EarlyReflection(State
, in
, early
);
527 // Feed the decorrelator from the energy-attenuated output of the second
529 in
= DelayLineOut(&State
->Delay
, State
->Offset
- State
->DelayTap
[1]);
530 feed
= in
* State
->Late
.DensityGain
;
531 DelayLineIn(&State
->Decorrelator
, State
->Offset
, feed
);
533 // Calculate the late reverb from the decorrelator taps.
535 taps
[1] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[0]);
536 taps
[2] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[1]);
537 taps
[3] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[2]);
538 LateReverb(State
, taps
, late
);
540 // Calculate and mix in any echo.
541 EAXEcho(State
, in
, late
);
543 // Step all delays forward one sample.
547 // This processes the reverb state, given the input samples and an output
549 static ALvoid
VerbProcess(ALeffectState
*effect
, ALuint SamplesToDo
, const ALfloat
*SamplesIn
, ALfloat (*SamplesOut
)[MAXCHANNELS
])
551 ALverbState
*State
= (ALverbState
*)effect
;
553 ALfloat early
[4], late
[4], out
[4];
554 const ALfloat
*panGain
= State
->Gain
;
556 for(index
= 0;index
< SamplesToDo
;index
++)
558 // Process reverb for this sample.
559 VerbPass(State
, SamplesIn
[index
], early
, late
);
561 // Mix early reflections and late reverb.
562 out
[0] = (early
[0] + late
[0]);
563 out
[1] = (early
[1] + late
[1]);
564 out
[2] = (early
[2] + late
[2]);
565 out
[3] = (early
[3] + late
[3]);
567 // Output the results.
568 for(c
= 0;c
< MAXCHANNELS
;c
++)
569 SamplesOut
[index
][c
] += panGain
[c
] * out
[c
&3];
573 // This processes the EAX reverb state, given the input samples and an output
575 static ALvoid
EAXVerbProcess(ALeffectState
*effect
, ALuint SamplesToDo
, const ALfloat
*SamplesIn
, ALfloat (*SamplesOut
)[MAXCHANNELS
])
577 ALverbState
*State
= (ALverbState
*)effect
;
579 ALfloat early
[4], late
[4];
581 for(index
= 0;index
< SamplesToDo
;index
++)
583 // Process reverb for this sample.
584 EAXVerbPass(State
, SamplesIn
[index
], early
, late
);
586 for(c
= 0;c
< MAXCHANNELS
;c
++)
587 SamplesOut
[index
][c
] += State
->Early
.PanGain
[c
]*early
[c
&3] +
588 State
->Late
.PanGain
[c
]*late
[c
&3];
593 // Given the allocated sample buffer, this function updates each delay line
595 static __inline ALvoid
RealizeLineOffset(ALfloat
* sampleBuffer
, DelayLine
*Delay
)
597 Delay
->Line
= &sampleBuffer
[(ALintptrEXT
)Delay
->Line
];
600 // Calculate the length of a delay line and store its mask and offset.
601 static ALuint
CalcLineLength(ALfloat length
, ALintptrEXT offset
, ALuint frequency
, DelayLine
*Delay
)
605 // All line lengths are powers of 2, calculated from their lengths, with
606 // an additional sample in case of rounding errors.
607 samples
= NextPowerOf2(fastf2u(length
* frequency
) + 1);
608 // All lines share a single sample buffer.
609 Delay
->Mask
= samples
- 1;
610 Delay
->Line
= (ALfloat
*)offset
;
611 // Return the sample count for accumulation.
615 /* Calculates the delay line metrics and allocates the shared sample buffer
616 * for all lines given the sample rate (frequency). If an allocation failure
617 * occurs, it returns AL_FALSE.
619 static ALboolean
AllocLines(ALuint frequency
, ALverbState
*State
)
621 ALuint totalSamples
, index
;
623 ALfloat
*newBuffer
= NULL
;
625 // All delay line lengths are calculated to accomodate the full range of
626 // lengths given their respective paramters.
629 /* The modulator's line length is calculated from the maximum modulation
630 * time and depth coefficient, and halfed for the low-to-high frequency
631 * swing. An additional sample is added to keep it stable when there is no
634 length
= (AL_EAXREVERB_MAX_MODULATION_TIME
*MODULATION_DEPTH_COEFF
/2.0f
) +
636 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
,
639 // The initial delay is the sum of the reflections and late reverb
641 length
= AL_EAXREVERB_MAX_REFLECTIONS_DELAY
+
642 AL_EAXREVERB_MAX_LATE_REVERB_DELAY
;
643 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
,
646 // The early reflection lines.
647 for(index
= 0;index
< 4;index
++)
648 totalSamples
+= CalcLineLength(EARLY_LINE_LENGTH
[index
], totalSamples
,
649 frequency
, &State
->Early
.Delay
[index
]);
651 // The decorrelator line is calculated from the lowest reverb density (a
652 // parameter value of 1).
653 length
= (DECO_FRACTION
* DECO_MULTIPLIER
* DECO_MULTIPLIER
) *
654 LATE_LINE_LENGTH
[0] * (1.0f
+ LATE_LINE_MULTIPLIER
);
655 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
,
656 &State
->Decorrelator
);
658 // The late all-pass lines.
659 for(index
= 0;index
< 4;index
++)
660 totalSamples
+= CalcLineLength(ALLPASS_LINE_LENGTH
[index
], totalSamples
,
661 frequency
, &State
->Late
.ApDelay
[index
]);
663 // The late delay lines are calculated from the lowest reverb density.
664 for(index
= 0;index
< 4;index
++)
666 length
= LATE_LINE_LENGTH
[index
] * (1.0f
+ LATE_LINE_MULTIPLIER
);
667 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
,
668 &State
->Late
.Delay
[index
]);
671 // The echo all-pass and delay lines.
672 totalSamples
+= CalcLineLength(ECHO_ALLPASS_LENGTH
, totalSamples
,
673 frequency
, &State
->Echo
.ApDelay
);
674 totalSamples
+= CalcLineLength(AL_EAXREVERB_MAX_ECHO_TIME
, totalSamples
,
675 frequency
, &State
->Echo
.Delay
);
677 if(totalSamples
!= State
->TotalSamples
)
679 TRACE("New reverb buffer length: %u samples (%f sec)\n", totalSamples
, totalSamples
/(float)frequency
);
680 newBuffer
= realloc(State
->SampleBuffer
, sizeof(ALfloat
) * totalSamples
);
681 if(newBuffer
== NULL
)
683 State
->SampleBuffer
= newBuffer
;
684 State
->TotalSamples
= totalSamples
;
687 // Update all delays to reflect the new sample buffer.
688 RealizeLineOffset(State
->SampleBuffer
, &State
->Delay
);
689 RealizeLineOffset(State
->SampleBuffer
, &State
->Decorrelator
);
690 for(index
= 0;index
< 4;index
++)
692 RealizeLineOffset(State
->SampleBuffer
, &State
->Early
.Delay
[index
]);
693 RealizeLineOffset(State
->SampleBuffer
, &State
->Late
.ApDelay
[index
]);
694 RealizeLineOffset(State
->SampleBuffer
, &State
->Late
.Delay
[index
]);
696 RealizeLineOffset(State
->SampleBuffer
, &State
->Mod
.Delay
);
697 RealizeLineOffset(State
->SampleBuffer
, &State
->Echo
.ApDelay
);
698 RealizeLineOffset(State
->SampleBuffer
, &State
->Echo
.Delay
);
700 // Clear the sample buffer.
701 for(index
= 0;index
< State
->TotalSamples
;index
++)
702 State
->SampleBuffer
[index
] = 0.0f
;
707 // This updates the device-dependant EAX reverb state. This is called on
708 // initialization and any time the device parameters (eg. playback frequency,
709 // format) have been changed.
710 static ALboolean
ReverbDeviceUpdate(ALeffectState
*effect
, ALCdevice
*Device
)
712 ALverbState
*State
= (ALverbState
*)effect
;
713 ALuint frequency
= Device
->Frequency
, index
;
715 // Allocate the delay lines.
716 if(!AllocLines(frequency
, State
))
719 // Calculate the modulation filter coefficient. Notice that the exponent
720 // is calculated given the current sample rate. This ensures that the
721 // resulting filter response over time is consistent across all sample
723 State
->Mod
.Coeff
= aluPow(MODULATION_FILTER_COEFF
,
724 MODULATION_FILTER_CONST
/ frequency
);
726 // The early reflection and late all-pass filter line lengths are static,
727 // so their offsets only need to be calculated once.
728 for(index
= 0;index
< 4;index
++)
730 State
->Early
.Offset
[index
] = fastf2u(EARLY_LINE_LENGTH
[index
] *
732 State
->Late
.ApOffset
[index
] = fastf2u(ALLPASS_LINE_LENGTH
[index
] *
736 // The echo all-pass filter line length is static, so its offset only
737 // needs to be calculated once.
738 State
->Echo
.ApOffset
= fastf2u(ECHO_ALLPASS_LENGTH
* frequency
);
743 // Calculate a decay coefficient given the length of each cycle and the time
744 // until the decay reaches -60 dB.
745 static __inline ALfloat
CalcDecayCoeff(ALfloat length
, ALfloat decayTime
)
747 return aluPow(0.001f
/*-60 dB*/, length
/decayTime
);
750 // Calculate a decay length from a coefficient and the time until the decay
752 static __inline ALfloat
CalcDecayLength(ALfloat coeff
, ALfloat decayTime
)
754 return aluLog10(coeff
) * decayTime
/ aluLog10(0.001f
)/*-60 dB*/;
757 // Calculate the high frequency parameter for the I3DL2 coefficient
759 static __inline ALfloat
CalcI3DL2HFreq(ALfloat hfRef
, ALuint frequency
)
761 return aluCos(F_PI
*2.0f
* hfRef
/ frequency
);
764 // Calculate an attenuation to be applied to the input of any echo models to
765 // compensate for modal density and decay time.
766 static __inline ALfloat
CalcDensityGain(ALfloat a
)
768 /* The energy of a signal can be obtained by finding the area under the
769 * squared signal. This takes the form of Sum(x_n^2), where x is the
770 * amplitude for the sample n.
772 * Decaying feedback matches exponential decay of the form Sum(a^n),
773 * where a is the attenuation coefficient, and n is the sample. The area
774 * under this decay curve can be calculated as: 1 / (1 - a).
776 * Modifying the above equation to find the squared area under the curve
777 * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
778 * calculated by inverting the square root of this approximation,
779 * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
781 return aluSqrt(1.0f
- (a
* a
));
784 // Calculate the mixing matrix coefficients given a diffusion factor.
785 static __inline ALvoid
CalcMatrixCoeffs(ALfloat diffusion
, ALfloat
*x
, ALfloat
*y
)
789 // The matrix is of order 4, so n is sqrt (4 - 1).
791 t
= diffusion
* aluAtan(n
);
793 // Calculate the first mixing matrix coefficient.
795 // Calculate the second mixing matrix coefficient.
799 // Calculate the limited HF ratio for use with the late reverb low-pass
801 static ALfloat
CalcLimitedHfRatio(ALfloat hfRatio
, ALfloat airAbsorptionGainHF
, ALfloat decayTime
)
805 /* Find the attenuation due to air absorption in dB (converting delay
806 * time to meters using the speed of sound). Then reversing the decay
807 * equation, solve for HF ratio. The delay length is cancelled out of
808 * the equation, so it can be calculated once for all lines.
810 limitRatio
= 1.0f
/ (CalcDecayLength(airAbsorptionGainHF
, decayTime
) *
811 SPEEDOFSOUNDMETRESPERSEC
);
812 /* Using the limit calculated above, apply the upper bound to the HF
813 * ratio. Also need to limit the result to a minimum of 0.1, just like the
814 * HF ratio parameter. */
815 return clampf(limitRatio
, 0.1f
, hfRatio
);
818 // Calculate the coefficient for a HF (and eventually LF) decay damping
820 static __inline ALfloat
CalcDampingCoeff(ALfloat hfRatio
, ALfloat length
, ALfloat decayTime
, ALfloat decayCoeff
, ALfloat cw
)
824 // Eventually this should boost the high frequencies when the ratio
829 // Calculate the low-pass coefficient by dividing the HF decay
830 // coefficient by the full decay coefficient.
831 g
= CalcDecayCoeff(length
, decayTime
* hfRatio
) / decayCoeff
;
833 // Damping is done with a 1-pole filter, so g needs to be squared.
835 coeff
= lpCoeffCalc(g
, cw
);
837 // Very low decay times will produce minimal output, so apply an
838 // upper bound to the coefficient.
839 coeff
= minf(coeff
, 0.98f
);
844 // Update the EAX modulation index, range, and depth. Keep in mind that this
845 // kind of vibrato is additive and not multiplicative as one may expect. The
846 // downswing will sound stronger than the upswing.
847 static ALvoid
UpdateModulator(ALfloat modTime
, ALfloat modDepth
, ALuint frequency
, ALverbState
*State
)
851 /* Modulation is calculated in two parts.
853 * The modulation time effects the sinus applied to the change in
854 * frequency. An index out of the current time range (both in samples)
855 * is incremented each sample. The range is bound to a reasonable
856 * minimum (1 sample) and when the timing changes, the index is rescaled
857 * to the new range (to keep the sinus consistent).
859 range
= maxu(fastf2u(modTime
*frequency
), 1);
860 State
->Mod
.Index
= (ALuint
)(State
->Mod
.Index
* (ALuint64
)range
/
862 State
->Mod
.Range
= range
;
864 /* The modulation depth effects the amount of frequency change over the
865 * range of the sinus. It needs to be scaled by the modulation time so
866 * that a given depth produces a consistent change in frequency over all
867 * ranges of time. Since the depth is applied to a sinus value, it needs
868 * to be halfed once for the sinus range and again for the sinus swing
869 * in time (half of it is spent decreasing the frequency, half is spent
872 State
->Mod
.Depth
= modDepth
* MODULATION_DEPTH_COEFF
* modTime
/ 2.0f
/
876 // Update the offsets for the initial effect delay line.
877 static ALvoid
UpdateDelayLine(ALfloat earlyDelay
, ALfloat lateDelay
, ALuint frequency
, ALverbState
*State
)
879 // Calculate the initial delay taps.
880 State
->DelayTap
[0] = fastf2u(earlyDelay
* frequency
);
881 State
->DelayTap
[1] = fastf2u((earlyDelay
+ lateDelay
) * frequency
);
884 // Update the early reflections gain and line coefficients.
885 static ALvoid
UpdateEarlyLines(ALfloat reverbGain
, ALfloat earlyGain
, ALfloat lateDelay
, ALverbState
*State
)
889 // Calculate the early reflections gain (from the master effect gain, and
890 // reflections gain parameters) with a constant attenuation of 0.5.
891 State
->Early
.Gain
= 0.5f
* reverbGain
* earlyGain
;
893 // Calculate the gain (coefficient) for each early delay line using the
894 // late delay time. This expands the early reflections to the start of
896 for(index
= 0;index
< 4;index
++)
897 State
->Early
.Coeff
[index
] = CalcDecayCoeff(EARLY_LINE_LENGTH
[index
],
901 // Update the offsets for the decorrelator line.
902 static ALvoid
UpdateDecorrelator(ALfloat density
, ALuint frequency
, ALverbState
*State
)
907 /* The late reverb inputs are decorrelated to smooth the reverb tail and
908 * reduce harsh echos. The first tap occurs immediately, while the
909 * remaining taps are delayed by multiples of a fraction of the smallest
910 * cyclical delay time.
912 * offset[index] = (FRACTION (MULTIPLIER^index)) smallest_delay
914 for(index
= 0;index
< 3;index
++)
916 length
= (DECO_FRACTION
* aluPow(DECO_MULTIPLIER
, (ALfloat
)index
)) *
917 LATE_LINE_LENGTH
[0] * (1.0f
+ (density
* LATE_LINE_MULTIPLIER
));
918 State
->DecoTap
[index
] = fastf2u(length
* frequency
);
922 // Update the late reverb gains, line lengths, and line coefficients.
923 static ALvoid
UpdateLateLines(ALfloat reverbGain
, ALfloat lateGain
, ALfloat xMix
, ALfloat density
, ALfloat decayTime
, ALfloat diffusion
, ALfloat hfRatio
, ALfloat cw
, ALuint frequency
, ALverbState
*State
)
928 /* Calculate the late reverb gain (from the master effect gain, and late
929 * reverb gain parameters). Since the output is tapped prior to the
930 * application of the next delay line coefficients, this gain needs to be
931 * attenuated by the 'x' mixing matrix coefficient as well.
933 State
->Late
.Gain
= reverbGain
* lateGain
* xMix
;
935 /* To compensate for changes in modal density and decay time of the late
936 * reverb signal, the input is attenuated based on the maximal energy of
937 * the outgoing signal. This approximation is used to keep the apparent
938 * energy of the signal equal for all ranges of density and decay time.
940 * The average length of the cyclcical delay lines is used to calculate
941 * the attenuation coefficient.
943 length
= (LATE_LINE_LENGTH
[0] + LATE_LINE_LENGTH
[1] +
944 LATE_LINE_LENGTH
[2] + LATE_LINE_LENGTH
[3]) / 4.0f
;
945 length
*= 1.0f
+ (density
* LATE_LINE_MULTIPLIER
);
946 State
->Late
.DensityGain
= CalcDensityGain(CalcDecayCoeff(length
,
949 // Calculate the all-pass feed-back and feed-forward coefficient.
950 State
->Late
.ApFeedCoeff
= 0.5f
* aluPow(diffusion
, 2.0f
);
952 for(index
= 0;index
< 4;index
++)
954 // Calculate the gain (coefficient) for each all-pass line.
955 State
->Late
.ApCoeff
[index
] = CalcDecayCoeff(ALLPASS_LINE_LENGTH
[index
],
958 // Calculate the length (in seconds) of each cyclical delay line.
959 length
= LATE_LINE_LENGTH
[index
] * (1.0f
+ (density
*
960 LATE_LINE_MULTIPLIER
));
962 // Calculate the delay offset for each cyclical delay line.
963 State
->Late
.Offset
[index
] = fastf2u(length
* frequency
);
965 // Calculate the gain (coefficient) for each cyclical line.
966 State
->Late
.Coeff
[index
] = CalcDecayCoeff(length
, decayTime
);
968 // Calculate the damping coefficient for each low-pass filter.
969 State
->Late
.LpCoeff
[index
] =
970 CalcDampingCoeff(hfRatio
, length
, decayTime
,
971 State
->Late
.Coeff
[index
], cw
);
973 // Attenuate the cyclical line coefficients by the mixing coefficient
975 State
->Late
.Coeff
[index
] *= xMix
;
979 // Update the echo gain, line offset, line coefficients, and mixing
981 static ALvoid
UpdateEchoLine(ALfloat reverbGain
, ALfloat lateGain
, ALfloat echoTime
, ALfloat decayTime
, ALfloat diffusion
, ALfloat echoDepth
, ALfloat hfRatio
, ALfloat cw
, ALuint frequency
, ALverbState
*State
)
983 // Update the offset and coefficient for the echo delay line.
984 State
->Echo
.Offset
= fastf2u(echoTime
* frequency
);
986 // Calculate the decay coefficient for the echo line.
987 State
->Echo
.Coeff
= CalcDecayCoeff(echoTime
, decayTime
);
989 // Calculate the energy-based attenuation coefficient for the echo delay
991 State
->Echo
.DensityGain
= CalcDensityGain(State
->Echo
.Coeff
);
993 // Calculate the echo all-pass feed coefficient.
994 State
->Echo
.ApFeedCoeff
= 0.5f
* aluPow(diffusion
, 2.0f
);
996 // Calculate the echo all-pass attenuation coefficient.
997 State
->Echo
.ApCoeff
= CalcDecayCoeff(ECHO_ALLPASS_LENGTH
, decayTime
);
999 // Calculate the damping coefficient for each low-pass filter.
1000 State
->Echo
.LpCoeff
= CalcDampingCoeff(hfRatio
, echoTime
, decayTime
,
1001 State
->Echo
.Coeff
, cw
);
1003 /* Calculate the echo mixing coefficients. The first is applied to the
1004 * echo itself. The second is used to attenuate the late reverb when
1005 * echo depth is high and diffusion is low, so the echo is slightly
1006 * stronger than the decorrelated echos in the reverb tail.
1008 State
->Echo
.MixCoeff
[0] = reverbGain
* lateGain
* echoDepth
;
1009 State
->Echo
.MixCoeff
[1] = 1.0f
- (echoDepth
* 0.5f
* (1.0f
- diffusion
));
1012 // Update the early and late 3D panning gains.
1013 static ALvoid
Update3DPanning(const ALCdevice
*Device
, const ALfloat
*ReflectionsPan
, const ALfloat
*LateReverbPan
, ALfloat Gain
, ALverbState
*State
)
1015 ALfloat earlyPan
[3] = { ReflectionsPan
[0], ReflectionsPan
[1],
1016 ReflectionsPan
[2] };
1017 ALfloat latePan
[3] = { LateReverbPan
[0], LateReverbPan
[1],
1019 const ALfloat
*speakerGain
;
1020 ALfloat ambientGain
;
1026 Gain
*= ReverbBoost
;
1028 // Attenuate non-directional reverb according to the number of channels
1029 ambientGain
= aluSqrt(2.0f
/Device
->NumChan
);
1031 // Calculate the 3D-panning gains for the early reflections and late
1033 length
= earlyPan
[0]*earlyPan
[0] + earlyPan
[1]*earlyPan
[1] + earlyPan
[2]*earlyPan
[2];
1036 length
= 1.0f
/ aluSqrt(length
);
1037 earlyPan
[0] *= length
;
1038 earlyPan
[1] *= length
;
1039 earlyPan
[2] *= length
;
1041 length
= latePan
[0]*latePan
[0] + latePan
[1]*latePan
[1] + latePan
[2]*latePan
[2];
1044 length
= 1.0f
/ aluSqrt(length
);
1045 latePan
[0] *= length
;
1046 latePan
[1] *= length
;
1047 latePan
[2] *= length
;
1050 /* This code applies directional reverb just like the mixer applies
1051 * directional sources. It diffuses the sound toward all speakers as the
1052 * magnitude of the panning vector drops, which is only a rough
1053 * approximation of the expansion of sound across the speakers from the
1054 * panning direction.
1056 pos
= aluCart2LUTpos(earlyPan
[2], earlyPan
[0]);
1057 speakerGain
= Device
->PanningLUT
[pos
];
1058 dirGain
= aluSqrt((earlyPan
[0] * earlyPan
[0]) + (earlyPan
[2] * earlyPan
[2]));
1060 for(index
= 0;index
< MAXCHANNELS
;index
++)
1061 State
->Early
.PanGain
[index
] = 0.0f
;
1062 for(index
= 0;index
< Device
->NumChan
;index
++)
1064 enum Channel chan
= Device
->Speaker2Chan
[index
];
1065 State
->Early
.PanGain
[chan
] = lerp(ambientGain
, speakerGain
[chan
], dirGain
) * Gain
;
1069 pos
= aluCart2LUTpos(latePan
[2], latePan
[0]);
1070 speakerGain
= Device
->PanningLUT
[pos
];
1071 dirGain
= aluSqrt((latePan
[0] * latePan
[0]) + (latePan
[2] * latePan
[2]));
1073 for(index
= 0;index
< MAXCHANNELS
;index
++)
1074 State
->Late
.PanGain
[index
] = 0.0f
;
1075 for(index
= 0;index
< Device
->NumChan
;index
++)
1077 enum Channel chan
= Device
->Speaker2Chan
[index
];
1078 State
->Late
.PanGain
[chan
] = lerp(ambientGain
, speakerGain
[chan
], dirGain
) * Gain
;
1082 // This updates the EAX reverb state. This is called any time the EAX reverb
1083 // effect is loaded into a slot.
1084 static ALvoid
ReverbUpdate(ALeffectState
*effect
, ALCcontext
*Context
, const ALeffectslot
*Slot
)
1086 ALverbState
*State
= (ALverbState
*)effect
;
1087 ALuint frequency
= Context
->Device
->Frequency
;
1088 ALboolean isEAX
= AL_FALSE
;
1089 ALfloat cw
, x
, y
, hfRatio
;
1091 if(Slot
->effect
.type
== AL_EFFECT_EAXREVERB
&& !EmulateEAXReverb
)
1093 State
->state
.Process
= EAXVerbProcess
;
1096 else if(Slot
->effect
.type
== AL_EFFECT_REVERB
|| EmulateEAXReverb
)
1098 State
->state
.Process
= VerbProcess
;
1102 // Calculate the master low-pass filter (from the master effect HF gain).
1103 if(isEAX
) cw
= CalcI3DL2HFreq(Slot
->effect
.Reverb
.HFReference
, frequency
);
1104 else cw
= CalcI3DL2HFreq(LOWPASSFREQREF
, frequency
);
1105 // This is done with 2 chained 1-pole filters, so no need to square g.
1106 State
->LpFilter
.coeff
= lpCoeffCalc(Slot
->effect
.Reverb
.GainHF
, cw
);
1110 // Update the modulator line.
1111 UpdateModulator(Slot
->effect
.Reverb
.ModulationTime
,
1112 Slot
->effect
.Reverb
.ModulationDepth
,
1116 // Update the initial effect delay.
1117 UpdateDelayLine(Slot
->effect
.Reverb
.ReflectionsDelay
,
1118 Slot
->effect
.Reverb
.LateReverbDelay
,
1121 // Update the early lines.
1122 UpdateEarlyLines(Slot
->effect
.Reverb
.Gain
,
1123 Slot
->effect
.Reverb
.ReflectionsGain
,
1124 Slot
->effect
.Reverb
.LateReverbDelay
, State
);
1126 // Update the decorrelator.
1127 UpdateDecorrelator(Slot
->effect
.Reverb
.Density
, frequency
, State
);
1129 // Get the mixing matrix coefficients (x and y).
1130 CalcMatrixCoeffs(Slot
->effect
.Reverb
.Diffusion
, &x
, &y
);
1131 // Then divide x into y to simplify the matrix calculation.
1132 State
->Late
.MixCoeff
= y
/ x
;
1134 // If the HF limit parameter is flagged, calculate an appropriate limit
1135 // based on the air absorption parameter.
1136 hfRatio
= Slot
->effect
.Reverb
.DecayHFRatio
;
1137 if(Slot
->effect
.Reverb
.DecayHFLimit
&&
1138 Slot
->effect
.Reverb
.AirAbsorptionGainHF
< 1.0f
)
1139 hfRatio
= CalcLimitedHfRatio(hfRatio
,
1140 Slot
->effect
.Reverb
.AirAbsorptionGainHF
,
1141 Slot
->effect
.Reverb
.DecayTime
);
1143 // Update the late lines.
1144 UpdateLateLines(Slot
->effect
.Reverb
.Gain
, Slot
->effect
.Reverb
.LateReverbGain
,
1145 x
, Slot
->effect
.Reverb
.Density
, Slot
->effect
.Reverb
.DecayTime
,
1146 Slot
->effect
.Reverb
.Diffusion
, hfRatio
, cw
, frequency
, State
);
1150 // Update the echo line.
1151 UpdateEchoLine(Slot
->effect
.Reverb
.Gain
, Slot
->effect
.Reverb
.LateReverbGain
,
1152 Slot
->effect
.Reverb
.EchoTime
, Slot
->effect
.Reverb
.DecayTime
,
1153 Slot
->effect
.Reverb
.Diffusion
, Slot
->effect
.Reverb
.EchoDepth
,
1154 hfRatio
, cw
, frequency
, State
);
1156 // Update early and late 3D panning.
1157 Update3DPanning(Context
->Device
, Slot
->effect
.Reverb
.ReflectionsPan
,
1158 Slot
->effect
.Reverb
.LateReverbPan
, Slot
->Gain
, State
);
1162 ALCdevice
*Device
= Context
->Device
;
1163 ALfloat gain
= Slot
->Gain
;
1166 /* Update channel gains */
1167 gain
*= aluSqrt(2.0f
/Device
->NumChan
) * ReverbBoost
;
1168 for(index
= 0;index
< MAXCHANNELS
;index
++)
1169 State
->Gain
[index
] = 0.0f
;
1170 for(index
= 0;index
< Device
->NumChan
;index
++)
1172 enum Channel chan
= Device
->Speaker2Chan
[index
];
1173 State
->Gain
[chan
] = gain
;
1178 // This destroys the reverb state. It should be called only when the effect
1179 // slot has a different (or no) effect loaded over the reverb effect.
1180 static ALvoid
ReverbDestroy(ALeffectState
*effect
)
1182 ALverbState
*State
= (ALverbState
*)effect
;
1185 free(State
->SampleBuffer
);
1186 State
->SampleBuffer
= NULL
;
1191 // This creates the reverb state. It should be called only when the reverb
1192 // effect is loaded into a slot that doesn't already have a reverb effect.
1193 ALeffectState
*ReverbCreate(void)
1195 ALverbState
*State
= NULL
;
1198 State
= malloc(sizeof(ALverbState
));
1202 State
->state
.Destroy
= ReverbDestroy
;
1203 State
->state
.DeviceUpdate
= ReverbDeviceUpdate
;
1204 State
->state
.Update
= ReverbUpdate
;
1205 State
->state
.Process
= VerbProcess
;
1207 State
->TotalSamples
= 0;
1208 State
->SampleBuffer
= NULL
;
1210 State
->LpFilter
.coeff
= 0.0f
;
1211 State
->LpFilter
.history
[0] = 0.0f
;
1212 State
->LpFilter
.history
[1] = 0.0f
;
1214 State
->Mod
.Delay
.Mask
= 0;
1215 State
->Mod
.Delay
.Line
= NULL
;
1216 State
->Mod
.Index
= 0;
1217 State
->Mod
.Range
= 1;
1218 State
->Mod
.Depth
= 0.0f
;
1219 State
->Mod
.Coeff
= 0.0f
;
1220 State
->Mod
.Filter
= 0.0f
;
1222 State
->Delay
.Mask
= 0;
1223 State
->Delay
.Line
= NULL
;
1224 State
->DelayTap
[0] = 0;
1225 State
->DelayTap
[1] = 0;
1227 State
->Early
.Gain
= 0.0f
;
1228 for(index
= 0;index
< 4;index
++)
1230 State
->Early
.Coeff
[index
] = 0.0f
;
1231 State
->Early
.Delay
[index
].Mask
= 0;
1232 State
->Early
.Delay
[index
].Line
= NULL
;
1233 State
->Early
.Offset
[index
] = 0;
1236 State
->Decorrelator
.Mask
= 0;
1237 State
->Decorrelator
.Line
= NULL
;
1238 State
->DecoTap
[0] = 0;
1239 State
->DecoTap
[1] = 0;
1240 State
->DecoTap
[2] = 0;
1242 State
->Late
.Gain
= 0.0f
;
1243 State
->Late
.DensityGain
= 0.0f
;
1244 State
->Late
.ApFeedCoeff
= 0.0f
;
1245 State
->Late
.MixCoeff
= 0.0f
;
1246 for(index
= 0;index
< 4;index
++)
1248 State
->Late
.ApCoeff
[index
] = 0.0f
;
1249 State
->Late
.ApDelay
[index
].Mask
= 0;
1250 State
->Late
.ApDelay
[index
].Line
= NULL
;
1251 State
->Late
.ApOffset
[index
] = 0;
1253 State
->Late
.Coeff
[index
] = 0.0f
;
1254 State
->Late
.Delay
[index
].Mask
= 0;
1255 State
->Late
.Delay
[index
].Line
= NULL
;
1256 State
->Late
.Offset
[index
] = 0;
1258 State
->Late
.LpCoeff
[index
] = 0.0f
;
1259 State
->Late
.LpSample
[index
] = 0.0f
;
1262 for(index
= 0;index
< MAXCHANNELS
;index
++)
1264 State
->Early
.PanGain
[index
] = 0.0f
;
1265 State
->Late
.PanGain
[index
] = 0.0f
;
1268 State
->Echo
.DensityGain
= 0.0f
;
1269 State
->Echo
.Delay
.Mask
= 0;
1270 State
->Echo
.Delay
.Line
= NULL
;
1271 State
->Echo
.ApDelay
.Mask
= 0;
1272 State
->Echo
.ApDelay
.Line
= NULL
;
1273 State
->Echo
.Coeff
= 0.0f
;
1274 State
->Echo
.ApFeedCoeff
= 0.0f
;
1275 State
->Echo
.ApCoeff
= 0.0f
;
1276 State
->Echo
.Offset
= 0;
1277 State
->Echo
.ApOffset
= 0;
1278 State
->Echo
.LpCoeff
= 0.0f
;
1279 State
->Echo
.LpSample
= 0.0f
;
1280 State
->Echo
.MixCoeff
[0] = 0.0f
;
1281 State
->Echo
.MixCoeff
[1] = 0.0f
;
1285 State
->Gain
= State
->Late
.PanGain
;
1287 return &State
->state
;