Use the local Device variable
[openal-soft/android.git] / Alc / ALu.c
blobbc61e579bbb95f403b8ebc65082d30ef6f2a9a2b
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <math.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <ctype.h>
27 #include <assert.h>
29 #include "alMain.h"
30 #include "AL/al.h"
31 #include "AL/alc.h"
32 #include "alSource.h"
33 #include "alBuffer.h"
34 #include "alListener.h"
35 #include "alAuxEffectSlot.h"
36 #include "alu.h"
37 #include "bs2b.h"
40 /* Cone scalar */
41 ALfloat ConeScale = 0.5f;
43 /* Localized Z scalar for mono sources */
44 ALfloat ZScale = 1.0f;
47 static __inline ALvoid aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
49 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
50 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
51 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
54 static __inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2)
56 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
57 inVector1[2]*inVector2[2];
60 static __inline ALvoid aluNormalize(ALfloat *inVector)
62 ALfloat length, inverse_length;
64 length = aluSqrt(aluDotproduct(inVector, inVector));
65 if(length != 0.0f)
67 inverse_length = 1.0f/length;
68 inVector[0] *= inverse_length;
69 inVector[1] *= inverse_length;
70 inVector[2] *= inverse_length;
74 static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat w,ALfloat matrix[4][4])
76 ALfloat temp[4] = {
77 vector[0], vector[1], vector[2], w
80 vector[0] = temp[0]*matrix[0][0] + temp[1]*matrix[1][0] + temp[2]*matrix[2][0] + temp[3]*matrix[3][0];
81 vector[1] = temp[0]*matrix[0][1] + temp[1]*matrix[1][1] + temp[2]*matrix[2][1] + temp[3]*matrix[3][1];
82 vector[2] = temp[0]*matrix[0][2] + temp[1]*matrix[1][2] + temp[2]*matrix[2][2] + temp[3]*matrix[3][2];
86 ALvoid CalcNonAttnSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
88 static const ALfloat angles_Mono[1] = { 0.0f };
89 static const ALfloat angles_Stereo[2] = { -30.0f, 30.0f };
90 static const ALfloat angles_Rear[2] = { -150.0f, 150.0f };
91 static const ALfloat angles_Quad[4] = { -45.0f, 45.0f, -135.0f, 135.0f };
92 static const ALfloat angles_X51[6] = { -30.0f, 30.0f, 0.0f, 0.0f,
93 -110.0f, 110.0f };
94 static const ALfloat angles_X61[7] = { -30.0f, 30.0f, 0.0f, 0.0f,
95 180.0f, -90.0f, 90.0f };
96 static const ALfloat angles_X71[8] = { -30.0f, 30.0f, 0.0f, 0.0f,
97 -110.0f, 110.0f, -90.0f, 90.0f };
99 static const enum Channel chans_Mono[1] = { FRONT_CENTER };
100 static const enum Channel chans_Stereo[2] = { FRONT_LEFT, FRONT_RIGHT };
101 static const enum Channel chans_Rear[2] = { BACK_LEFT, BACK_RIGHT };
102 static const enum Channel chans_Quad[4] = { FRONT_LEFT, FRONT_RIGHT,
103 BACK_LEFT, BACK_RIGHT };
104 static const enum Channel chans_X51[6] = { FRONT_LEFT, FRONT_RIGHT,
105 FRONT_CENTER, LFE,
106 BACK_LEFT, BACK_RIGHT };
107 static const enum Channel chans_X61[7] = { FRONT_LEFT, FRONT_RIGHT,
108 FRONT_CENTER, LFE, BACK_CENTER,
109 SIDE_LEFT, SIDE_RIGHT };
110 static const enum Channel chans_X71[8] = { FRONT_LEFT, FRONT_RIGHT,
111 FRONT_CENTER, LFE,
112 BACK_LEFT, BACK_RIGHT,
113 SIDE_LEFT, SIDE_RIGHT };
115 ALCdevice *Device = ALContext->Device;
116 ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
117 ALbufferlistitem *BufferListItem;
118 enum DevFmtChannels DevChans;
119 enum FmtChannels Channels;
120 ALfloat (*SrcMatrix)[MAXCHANNELS];
121 ALfloat DryGain, DryGainHF;
122 ALfloat WetGain[MAX_SENDS];
123 ALfloat WetGainHF[MAX_SENDS];
124 ALint NumSends, Frequency;
125 const ALfloat *SpeakerGain;
126 const ALfloat *angles = NULL;
127 const enum Channel *chans = NULL;
128 enum Resampler Resampler;
129 ALint num_channels = 0;
130 ALboolean VirtualChannels;
131 ALfloat Pitch;
132 ALfloat cw;
133 ALuint pos;
134 ALint i, c;
136 /* Get device properties */
137 DevChans = Device->FmtChans;
138 NumSends = Device->NumAuxSends;
139 Frequency = Device->Frequency;
141 /* Get listener properties */
142 ListenerGain = ALContext->Listener.Gain;
144 /* Get source properties */
145 SourceVolume = ALSource->flGain;
146 MinVolume = ALSource->flMinGain;
147 MaxVolume = ALSource->flMaxGain;
148 Pitch = ALSource->flPitch;
149 Resampler = ALSource->Resampler;
150 VirtualChannels = ALSource->VirtualChannels;
152 /* Calculate the stepping value */
153 Channels = FmtMono;
154 BufferListItem = ALSource->queue;
155 while(BufferListItem != NULL)
157 ALbuffer *ALBuffer;
158 if((ALBuffer=BufferListItem->buffer) != NULL)
160 ALint maxstep = STACK_DATA_SIZE / ALSource->NumChannels /
161 ALSource->SampleSize;
162 maxstep -= ResamplerPadding[Resampler] +
163 ResamplerPrePadding[Resampler] + 1;
164 maxstep = mini(maxstep, INT_MAX>>FRACTIONBITS);
166 Pitch = Pitch * ALBuffer->Frequency / Frequency;
167 if(Pitch > (ALfloat)maxstep)
168 ALSource->Params.Step = maxstep<<FRACTIONBITS;
169 else
171 ALSource->Params.Step = fastf2i(Pitch*FRACTIONONE);
172 if(ALSource->Params.Step == 0)
173 ALSource->Params.Step = 1;
176 Channels = ALBuffer->FmtChannels;
177 break;
179 BufferListItem = BufferListItem->next;
181 if(VirtualChannels && Device->Hrtf)
182 ALSource->Params.DoMix = SelectHrtfMixer((ALSource->Params.Step==FRACTIONONE) ?
183 POINT_RESAMPLER : Resampler);
184 else
185 ALSource->Params.DoMix = SelectMixer((ALSource->Params.Step==FRACTIONONE) ?
186 POINT_RESAMPLER : Resampler);
188 /* Calculate gains */
189 DryGain = clampf(SourceVolume, MinVolume, MaxVolume);
190 DryGain *= ALSource->DirectGain;
191 DryGainHF = ALSource->DirectGainHF;
192 for(i = 0;i < NumSends;i++)
194 WetGain[i] = clampf(SourceVolume, MinVolume, MaxVolume);
195 WetGain[i] *= ALSource->Send[i].WetGain;
196 WetGainHF[i] = ALSource->Send[i].WetGainHF;
199 SrcMatrix = ALSource->Params.DryGains;
200 for(i = 0;i < MAXCHANNELS;i++)
202 for(c = 0;c < MAXCHANNELS;c++)
203 SrcMatrix[i][c] = 0.0f;
205 switch(Channels)
207 case FmtMono:
208 angles = angles_Mono;
209 chans = chans_Mono;
210 num_channels = 1;
211 break;
212 case FmtStereo:
213 if(VirtualChannels && (Device->Flags&DEVICE_DUPLICATE_STEREO))
215 DryGain *= aluSqrt(2.0f/4.0f);
216 for(c = 0;c < 2;c++)
218 pos = aluCart2LUTpos(aluCos(F_PI/180.0f * angles_Rear[c]),
219 aluSin(F_PI/180.0f * angles_Rear[c]));
220 SpeakerGain = Device->PanningLUT[pos];
222 for(i = 0;i < (ALint)Device->NumChan;i++)
224 enum Channel chan = Device->Speaker2Chan[i];
225 SrcMatrix[c][chan] += DryGain * ListenerGain *
226 SpeakerGain[chan];
230 angles = angles_Stereo;
231 chans = chans_Stereo;
232 num_channels = 2;
233 break;
235 case FmtRear:
236 angles = angles_Rear;
237 chans = chans_Rear;
238 num_channels = 2;
239 break;
241 case FmtQuad:
242 angles = angles_Quad;
243 chans = chans_Quad;
244 num_channels = 4;
245 break;
247 case FmtX51:
248 angles = angles_X51;
249 chans = chans_X51;
250 num_channels = 6;
251 break;
253 case FmtX61:
254 angles = angles_X61;
255 chans = chans_X61;
256 num_channels = 7;
257 break;
259 case FmtX71:
260 angles = angles_X71;
261 chans = chans_X71;
262 num_channels = 8;
263 break;
266 if(VirtualChannels == AL_FALSE)
268 for(c = 0;c < num_channels;c++)
269 SrcMatrix[c][chans[c]] += DryGain * ListenerGain;
271 else if(Device->Hrtf)
273 for(c = 0;c < num_channels;c++)
275 if(chans[c] == LFE)
277 /* Skip LFE */
278 ALSource->Params.HrtfDelay[c][0] = 0;
279 ALSource->Params.HrtfDelay[c][1] = 0;
280 for(i = 0;i < HRIR_LENGTH;i++)
282 ALSource->Params.HrtfCoeffs[c][i][0] = 0.0f;
283 ALSource->Params.HrtfCoeffs[c][i][1] = 0.0f;
286 else
288 /* Get the static HRIR coefficients and delays for this
289 * channel. */
290 GetLerpedHrtfCoeffs(Device->Hrtf,
291 0.0f, F_PI/180.0f * angles[c],
292 DryGain*ListenerGain,
293 ALSource->Params.HrtfCoeffs[c],
294 ALSource->Params.HrtfDelay[c]);
296 ALSource->HrtfCounter = 0;
299 else
301 for(c = 0;c < num_channels;c++)
303 if(chans[c] == LFE) /* Special-case LFE */
305 SrcMatrix[c][LFE] += DryGain * ListenerGain;
306 continue;
308 pos = aluCart2LUTpos(aluCos(F_PI/180.0f * angles[c]),
309 aluSin(F_PI/180.0f * angles[c]));
310 SpeakerGain = Device->PanningLUT[pos];
312 for(i = 0;i < (ALint)Device->NumChan;i++)
314 enum Channel chan = Device->Speaker2Chan[i];
315 SrcMatrix[c][chan] += DryGain * ListenerGain *
316 SpeakerGain[chan];
320 for(i = 0;i < NumSends;i++)
322 ALSource->Params.Send[i].Slot = ALSource->Send[i].Slot;
323 ALSource->Params.Send[i].WetGain = WetGain[i] * ListenerGain;
326 /* Update filter coefficients. Calculations based on the I3DL2
327 * spec. */
328 cw = aluCos(F_PI*2.0f * LOWPASSFREQREF / Frequency);
330 /* We use two chained one-pole filters, so we need to take the
331 * square root of the squared gain, which is the same as the base
332 * gain. */
333 ALSource->Params.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw);
334 for(i = 0;i < NumSends;i++)
336 /* We use a one-pole filter, so we need to take the squared gain */
337 ALfloat a = lpCoeffCalc(WetGainHF[i]*WetGainHF[i], cw);
338 ALSource->Params.Send[i].iirFilter.coeff = a;
342 ALvoid CalcSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
344 const ALCdevice *Device = ALContext->Device;
345 ALfloat InnerAngle,OuterAngle,Angle,Distance,ClampedDist;
346 ALfloat Direction[3],Position[3],SourceToListener[3];
347 ALfloat Velocity[3],ListenerVel[3];
348 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff;
349 ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain;
350 ALfloat DopplerFactor, DopplerVelocity, SpeedOfSound;
351 ALfloat AirAbsorptionFactor;
352 ALfloat RoomAirAbsorption[MAX_SENDS];
353 ALbufferlistitem *BufferListItem;
354 ALfloat Attenuation, EffectiveDist;
355 ALfloat RoomAttenuation[MAX_SENDS];
356 ALfloat MetersPerUnit;
357 ALfloat RoomRolloffBase;
358 ALfloat RoomRolloff[MAX_SENDS];
359 ALfloat DecayDistance[MAX_SENDS];
360 ALfloat DryGain;
361 ALfloat DryGainHF;
362 ALboolean DryGainHFAuto;
363 ALfloat WetGain[MAX_SENDS];
364 ALfloat WetGainHF[MAX_SENDS];
365 ALboolean WetGainAuto;
366 ALboolean WetGainHFAuto;
367 enum Resampler Resampler;
368 ALfloat Pitch;
369 ALuint Frequency;
370 ALint NumSends;
371 ALfloat cw;
372 ALint i;
374 DryGainHF = 1.0f;
375 for(i = 0;i < MAX_SENDS;i++)
376 WetGainHF[i] = 1.0f;
378 //Get context properties
379 DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
380 DopplerVelocity = ALContext->DopplerVelocity;
381 SpeedOfSound = ALContext->flSpeedOfSound;
382 NumSends = Device->NumAuxSends;
383 Frequency = Device->Frequency;
385 //Get listener properties
386 ListenerGain = ALContext->Listener.Gain;
387 MetersPerUnit = ALContext->Listener.MetersPerUnit;
388 ListenerVel[0] = ALContext->Listener.Velocity[0];
389 ListenerVel[1] = ALContext->Listener.Velocity[1];
390 ListenerVel[2] = ALContext->Listener.Velocity[2];
392 //Get source properties
393 SourceVolume = ALSource->flGain;
394 MinVolume = ALSource->flMinGain;
395 MaxVolume = ALSource->flMaxGain;
396 Pitch = ALSource->flPitch;
397 Resampler = ALSource->Resampler;
398 Position[0] = ALSource->vPosition[0];
399 Position[1] = ALSource->vPosition[1];
400 Position[2] = ALSource->vPosition[2];
401 Direction[0] = ALSource->vOrientation[0];
402 Direction[1] = ALSource->vOrientation[1];
403 Direction[2] = ALSource->vOrientation[2];
404 Velocity[0] = ALSource->vVelocity[0];
405 Velocity[1] = ALSource->vVelocity[1];
406 Velocity[2] = ALSource->vVelocity[2];
407 MinDist = ALSource->flRefDistance;
408 MaxDist = ALSource->flMaxDistance;
409 Rolloff = ALSource->flRollOffFactor;
410 InnerAngle = ALSource->flInnerAngle * ConeScale;
411 OuterAngle = ALSource->flOuterAngle * ConeScale;
412 AirAbsorptionFactor = ALSource->AirAbsorptionFactor;
413 DryGainHFAuto = ALSource->DryGainHFAuto;
414 WetGainAuto = ALSource->WetGainAuto;
415 WetGainHFAuto = ALSource->WetGainHFAuto;
416 RoomRolloffBase = ALSource->RoomRolloffFactor;
417 for(i = 0;i < NumSends;i++)
419 ALeffectslot *Slot = ALSource->Send[i].Slot;
421 if(!Slot || Slot->effect.type == AL_EFFECT_NULL)
423 RoomRolloff[i] = 0.0f;
424 DecayDistance[i] = 0.0f;
425 RoomAirAbsorption[i] = 1.0f;
427 else if(Slot->AuxSendAuto)
429 RoomRolloff[i] = RoomRolloffBase;
430 if(IsReverbEffect(Slot->effect.type))
432 RoomRolloff[i] += Slot->effect.Reverb.RoomRolloffFactor;
433 DecayDistance[i] = Slot->effect.Reverb.DecayTime *
434 SPEEDOFSOUNDMETRESPERSEC;
435 RoomAirAbsorption[i] = Slot->effect.Reverb.AirAbsorptionGainHF;
437 else
439 DecayDistance[i] = 0.0f;
440 RoomAirAbsorption[i] = 1.0f;
443 else
445 /* If the slot's auxiliary send auto is off, the data sent to the
446 * effect slot is the same as the dry path, sans filter effects */
447 RoomRolloff[i] = Rolloff;
448 DecayDistance[i] = 0.0f;
449 RoomAirAbsorption[i] = AIRABSORBGAINHF;
452 ALSource->Params.Send[i].Slot = Slot;
455 //1. Translate Listener to origin (convert to head relative)
456 if(ALSource->bHeadRelative == AL_FALSE)
458 ALfloat U[3],V[3],N[3];
459 ALfloat Matrix[4][4];
461 // Build transform matrix
462 N[0] = ALContext->Listener.Forward[0]; // At-vector
463 N[1] = ALContext->Listener.Forward[1];
464 N[2] = ALContext->Listener.Forward[2];
465 aluNormalize(N); // Normalized At-vector
466 V[0] = ALContext->Listener.Up[0]; // Up-vector
467 V[1] = ALContext->Listener.Up[1];
468 V[2] = ALContext->Listener.Up[2];
469 aluNormalize(V); // Normalized Up-vector
470 aluCrossproduct(N, V, U); // Right-vector
471 aluNormalize(U); // Normalized Right-vector
472 Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0]; Matrix[0][3] = 0.0f;
473 Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1]; Matrix[1][3] = 0.0f;
474 Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2]; Matrix[2][3] = 0.0f;
475 Matrix[3][0] = 0.0f; Matrix[3][1] = 0.0f; Matrix[3][2] = 0.0f; Matrix[3][3] = 1.0f;
477 // Translate position
478 Position[0] -= ALContext->Listener.Position[0];
479 Position[1] -= ALContext->Listener.Position[1];
480 Position[2] -= ALContext->Listener.Position[2];
482 // Transform source position and direction into listener space
483 aluMatrixVector(Position, 1.0f, Matrix);
484 aluMatrixVector(Direction, 0.0f, Matrix);
485 // Transform source and listener velocity into listener space
486 aluMatrixVector(Velocity, 0.0f, Matrix);
487 aluMatrixVector(ListenerVel, 0.0f, Matrix);
489 else
490 ListenerVel[0] = ListenerVel[1] = ListenerVel[2] = 0.0f;
492 SourceToListener[0] = -Position[0];
493 SourceToListener[1] = -Position[1];
494 SourceToListener[2] = -Position[2];
495 aluNormalize(SourceToListener);
496 aluNormalize(Direction);
498 //2. Calculate distance attenuation
499 Distance = aluSqrt(aluDotproduct(Position, Position));
500 ClampedDist = Distance;
502 Attenuation = 1.0f;
503 for(i = 0;i < NumSends;i++)
504 RoomAttenuation[i] = 1.0f;
505 switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel :
506 ALContext->DistanceModel)
508 case InverseDistanceClamped:
509 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
510 if(MaxDist < MinDist)
511 break;
512 //fall-through
513 case InverseDistance:
514 if(MinDist > 0.0f)
516 if((MinDist + (Rolloff * (ClampedDist - MinDist))) > 0.0f)
517 Attenuation = MinDist / (MinDist + (Rolloff * (ClampedDist - MinDist)));
518 for(i = 0;i < NumSends;i++)
520 if((MinDist + (RoomRolloff[i] * (ClampedDist - MinDist))) > 0.0f)
521 RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (ClampedDist - MinDist)));
524 break;
526 case LinearDistanceClamped:
527 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
528 if(MaxDist < MinDist)
529 break;
530 //fall-through
531 case LinearDistance:
532 if(MaxDist != MinDist)
534 Attenuation = 1.0f - (Rolloff*(ClampedDist-MinDist)/(MaxDist - MinDist));
535 Attenuation = maxf(Attenuation, 0.0f);
536 for(i = 0;i < NumSends;i++)
538 RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(ClampedDist-MinDist)/(MaxDist - MinDist));
539 RoomAttenuation[i] = maxf(RoomAttenuation[i], 0.0f);
542 break;
544 case ExponentDistanceClamped:
545 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
546 if(MaxDist < MinDist)
547 break;
548 //fall-through
549 case ExponentDistance:
550 if(ClampedDist > 0.0f && MinDist > 0.0f)
552 Attenuation = aluPow(ClampedDist/MinDist, -Rolloff);
553 for(i = 0;i < NumSends;i++)
554 RoomAttenuation[i] = aluPow(ClampedDist/MinDist, -RoomRolloff[i]);
556 break;
558 case DisableDistance:
559 break;
562 // Source Gain + Attenuation
563 DryGain = SourceVolume * Attenuation;
564 for(i = 0;i < NumSends;i++)
565 WetGain[i] = SourceVolume * RoomAttenuation[i];
567 // Distance-based air absorption
568 EffectiveDist = 0.0f;
569 if(MinDist > 0.0f && Attenuation < 1.0f)
570 EffectiveDist = (MinDist/Attenuation - MinDist)*MetersPerUnit;
571 if(AirAbsorptionFactor > 0.0f && EffectiveDist > 0.0f)
573 DryGainHF *= aluPow(AIRABSORBGAINHF, AirAbsorptionFactor*EffectiveDist);
574 for(i = 0;i < NumSends;i++)
575 WetGainHF[i] *= aluPow(RoomAirAbsorption[i],
576 AirAbsorptionFactor*EffectiveDist);
579 if(WetGainAuto)
581 /* Apply a decay-time transformation to the wet path, based on the
582 * attenuation of the dry path.
584 * Using the approximate (effective) source to listener distance, the
585 * initial decay of the reverb effect is calculated and applied to the
586 * wet path.
588 for(i = 0;i < NumSends;i++)
590 if(DecayDistance[i] > 0.0f)
591 WetGain[i] *= aluPow(0.001f /* -60dB */,
592 EffectiveDist / DecayDistance[i]);
596 /* Calculate directional soundcones */
597 Angle = aluAcos(aluDotproduct(Direction,SourceToListener)) * (180.0f/F_PI);
598 if(Angle >= InnerAngle && Angle <= OuterAngle)
600 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
601 ConeVolume = lerp(1.0f, ALSource->flOuterGain, scale);
602 ConeHF = lerp(1.0f, ALSource->OuterGainHF, scale);
604 else if(Angle > OuterAngle)
606 ConeVolume = ALSource->flOuterGain;
607 ConeHF = ALSource->OuterGainHF;
609 else
611 ConeVolume = 1.0f;
612 ConeHF = 1.0f;
615 DryGain *= ConeVolume;
616 if(WetGainAuto)
618 for(i = 0;i < NumSends;i++)
619 WetGain[i] *= ConeVolume;
621 if(DryGainHFAuto)
622 DryGainHF *= ConeHF;
623 if(WetGainHFAuto)
625 for(i = 0;i < NumSends;i++)
626 WetGainHF[i] *= ConeHF;
629 // Clamp to Min/Max Gain
630 DryGain = clampf(DryGain, MinVolume, MaxVolume);
631 for(i = 0;i < NumSends;i++)
632 WetGain[i] = clampf(WetGain[i], MinVolume, MaxVolume);
634 // Apply filter gains and filters
635 DryGain *= ALSource->DirectGain * ListenerGain;
636 DryGainHF *= ALSource->DirectGainHF;
637 for(i = 0;i < NumSends;i++)
639 WetGain[i] *= ALSource->Send[i].WetGain * ListenerGain;
640 WetGainHF[i] *= ALSource->Send[i].WetGainHF;
643 // Calculate Velocity
644 if(DopplerFactor != 0.0f)
646 ALfloat VSS, VLS;
647 ALfloat MaxVelocity = (SpeedOfSound*DopplerVelocity) /
648 DopplerFactor;
650 VSS = aluDotproduct(Velocity, SourceToListener);
651 if(VSS >= MaxVelocity)
652 VSS = (MaxVelocity - 1.0f);
653 else if(VSS <= -MaxVelocity)
654 VSS = -MaxVelocity + 1.0f;
656 VLS = aluDotproduct(ListenerVel, SourceToListener);
657 if(VLS >= MaxVelocity)
658 VLS = (MaxVelocity - 1.0f);
659 else if(VLS <= -MaxVelocity)
660 VLS = -MaxVelocity + 1.0f;
662 Pitch *= ((SpeedOfSound*DopplerVelocity) - (DopplerFactor*VLS)) /
663 ((SpeedOfSound*DopplerVelocity) - (DopplerFactor*VSS));
666 BufferListItem = ALSource->queue;
667 while(BufferListItem != NULL)
669 ALbuffer *ALBuffer;
670 if((ALBuffer=BufferListItem->buffer) != NULL)
672 ALint maxstep = STACK_DATA_SIZE / ALSource->NumChannels /
673 ALSource->SampleSize;
674 maxstep -= ResamplerPadding[Resampler] +
675 ResamplerPrePadding[Resampler] + 1;
676 maxstep = mini(maxstep, INT_MAX>>FRACTIONBITS);
678 Pitch = Pitch * ALBuffer->Frequency / Frequency;
679 if(Pitch > (ALfloat)maxstep)
680 ALSource->Params.Step = maxstep<<FRACTIONBITS;
681 else
683 ALSource->Params.Step = fastf2i(Pitch*FRACTIONONE);
684 if(ALSource->Params.Step == 0)
685 ALSource->Params.Step = 1;
688 break;
690 BufferListItem = BufferListItem->next;
692 if(Device->Hrtf)
693 ALSource->Params.DoMix = SelectHrtfMixer((ALSource->Params.Step==FRACTIONONE) ?
694 POINT_RESAMPLER : Resampler);
695 else
696 ALSource->Params.DoMix = SelectMixer((ALSource->Params.Step==FRACTIONONE) ?
697 POINT_RESAMPLER : Resampler);
699 if(Device->Hrtf)
701 // Use a binaural HRTF algorithm for stereo headphone playback
702 ALfloat delta, ev = 0.0f, az = 0.0f;
704 if(Distance > 0.0f)
706 ALfloat invlen = 1.0f/Distance;
707 Position[0] *= invlen;
708 Position[1] *= invlen;
709 Position[2] *= invlen;
711 // Calculate elevation and azimuth only when the source is not at
712 // the listener. This prevents +0 and -0 Z from producing
713 // inconsistent panning.
714 ev = aluAsin(Position[1]);
715 az = aluAtan2(Position[0], -Position[2]*ZScale);
718 // Check to see if the HRIR is already moving.
719 if(ALSource->HrtfMoving)
721 // Calculate the normalized HRTF transition factor (delta).
722 delta = CalcHrtfDelta(ALSource->Params.HrtfGain, DryGain,
723 ALSource->Params.HrtfDir, Position);
724 // If the delta is large enough, get the moving HRIR target
725 // coefficients, target delays, steppping values, and counter.
726 if(delta > 0.001f)
728 ALSource->HrtfCounter = GetMovingHrtfCoeffs(Device->Hrtf,
729 ev, az, DryGain, delta,
730 ALSource->HrtfCounter,
731 ALSource->Params.HrtfCoeffs[0],
732 ALSource->Params.HrtfDelay[0],
733 ALSource->Params.HrtfCoeffStep,
734 ALSource->Params.HrtfDelayStep);
735 ALSource->Params.HrtfGain = DryGain;
736 ALSource->Params.HrtfDir[0] = Position[0];
737 ALSource->Params.HrtfDir[1] = Position[1];
738 ALSource->Params.HrtfDir[2] = Position[2];
741 else
743 // Get the initial (static) HRIR coefficients and delays.
744 GetLerpedHrtfCoeffs(Device->Hrtf, ev, az, DryGain,
745 ALSource->Params.HrtfCoeffs[0],
746 ALSource->Params.HrtfDelay[0]);
747 ALSource->HrtfCounter = 0;
748 ALSource->Params.HrtfGain = DryGain;
749 ALSource->Params.HrtfDir[0] = Position[0];
750 ALSource->Params.HrtfDir[1] = Position[1];
751 ALSource->Params.HrtfDir[2] = Position[2];
754 else
756 // Use energy-preserving panning algorithm for multi-speaker playback
757 ALfloat DirGain, AmbientGain;
758 const ALfloat *SpeakerGain;
759 ALfloat length;
760 ALint pos;
762 length = maxf(Distance, MinDist);
763 if(length > 0.0f)
765 ALfloat invlen = 1.0f/length;
766 Position[0] *= invlen;
767 Position[1] *= invlen;
768 Position[2] *= invlen;
771 pos = aluCart2LUTpos(-Position[2]*ZScale, Position[0]);
772 SpeakerGain = Device->PanningLUT[pos];
774 DirGain = aluSqrt(Position[0]*Position[0] + Position[2]*Position[2]);
775 // elevation adjustment for directional gain. this sucks, but
776 // has low complexity
777 AmbientGain = aluSqrt(1.0f/Device->NumChan);
778 for(i = 0;i < MAXCHANNELS;i++)
780 ALuint i2;
781 for(i2 = 0;i2 < MAXCHANNELS;i2++)
782 ALSource->Params.DryGains[i][i2] = 0.0f;
784 for(i = 0;i < (ALint)Device->NumChan;i++)
786 enum Channel chan = Device->Speaker2Chan[i];
787 ALfloat gain = lerp(AmbientGain, SpeakerGain[chan], DirGain);
788 ALSource->Params.DryGains[0][chan] = DryGain * gain;
791 for(i = 0;i < NumSends;i++)
792 ALSource->Params.Send[i].WetGain = WetGain[i];
794 /* Update filter coefficients. */
795 cw = aluCos(F_PI*2.0f * LOWPASSFREQREF / Frequency);
797 ALSource->Params.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw);
798 for(i = 0;i < NumSends;i++)
800 ALfloat a = lpCoeffCalc(WetGainHF[i]*WetGainHF[i], cw);
801 ALSource->Params.Send[i].iirFilter.coeff = a;
806 static __inline ALfloat aluF2F(ALfloat val)
807 { return val; }
808 static __inline ALshort aluF2S(ALfloat val)
810 if(val > 1.0f) return 32767;
811 if(val < -1.0f) return -32768;
812 return fastf2i(val*32767.0f);
814 static __inline ALushort aluF2US(ALfloat val)
815 { return aluF2S(val)+32768; }
816 static __inline ALbyte aluF2B(ALfloat val)
817 { return aluF2S(val)>>8; }
818 static __inline ALubyte aluF2UB(ALfloat val)
819 { return aluF2US(val)>>8; }
821 #define DECL_TEMPLATE(T, N, func) \
822 static void Write_##T##_##N(ALCdevice *device, T *RESTRICT buffer, \
823 ALuint SamplesToDo) \
825 ALfloat (*RESTRICT DryBuffer)[MAXCHANNELS] = device->DryBuffer; \
826 const enum Channel *ChanMap = device->DevChannels; \
827 ALuint i, j; \
829 for(i = 0;i < SamplesToDo;i++) \
831 for(j = 0;j < N;j++) \
832 *(buffer++) = func(DryBuffer[i][ChanMap[j]]); \
836 DECL_TEMPLATE(ALfloat, 1, aluF2F)
837 DECL_TEMPLATE(ALfloat, 4, aluF2F)
838 DECL_TEMPLATE(ALfloat, 6, aluF2F)
839 DECL_TEMPLATE(ALfloat, 7, aluF2F)
840 DECL_TEMPLATE(ALfloat, 8, aluF2F)
842 DECL_TEMPLATE(ALushort, 1, aluF2US)
843 DECL_TEMPLATE(ALushort, 4, aluF2US)
844 DECL_TEMPLATE(ALushort, 6, aluF2US)
845 DECL_TEMPLATE(ALushort, 7, aluF2US)
846 DECL_TEMPLATE(ALushort, 8, aluF2US)
848 DECL_TEMPLATE(ALshort, 1, aluF2S)
849 DECL_TEMPLATE(ALshort, 4, aluF2S)
850 DECL_TEMPLATE(ALshort, 6, aluF2S)
851 DECL_TEMPLATE(ALshort, 7, aluF2S)
852 DECL_TEMPLATE(ALshort, 8, aluF2S)
854 DECL_TEMPLATE(ALubyte, 1, aluF2UB)
855 DECL_TEMPLATE(ALubyte, 4, aluF2UB)
856 DECL_TEMPLATE(ALubyte, 6, aluF2UB)
857 DECL_TEMPLATE(ALubyte, 7, aluF2UB)
858 DECL_TEMPLATE(ALubyte, 8, aluF2UB)
860 DECL_TEMPLATE(ALbyte, 1, aluF2B)
861 DECL_TEMPLATE(ALbyte, 4, aluF2B)
862 DECL_TEMPLATE(ALbyte, 6, aluF2B)
863 DECL_TEMPLATE(ALbyte, 7, aluF2B)
864 DECL_TEMPLATE(ALbyte, 8, aluF2B)
866 #undef DECL_TEMPLATE
868 #define DECL_TEMPLATE(T, N, func) \
869 static void Write_##T##_##N(ALCdevice *device, T *RESTRICT buffer, \
870 ALuint SamplesToDo) \
872 ALfloat (*RESTRICT DryBuffer)[MAXCHANNELS] = device->DryBuffer; \
873 const enum Channel *ChanMap = device->DevChannels; \
874 ALuint i, j; \
876 if(device->Bs2b) \
878 for(i = 0;i < SamplesToDo;i++) \
880 float samples[2]; \
881 samples[0] = DryBuffer[i][ChanMap[0]]; \
882 samples[1] = DryBuffer[i][ChanMap[1]]; \
883 bs2b_cross_feed(device->Bs2b, samples); \
884 *(buffer++) = func(samples[0]); \
885 *(buffer++) = func(samples[1]); \
888 else \
890 for(i = 0;i < SamplesToDo;i++) \
892 for(j = 0;j < N;j++) \
893 *(buffer++) = func(DryBuffer[i][ChanMap[j]]); \
898 DECL_TEMPLATE(ALfloat, 2, aluF2F)
899 DECL_TEMPLATE(ALushort, 2, aluF2US)
900 DECL_TEMPLATE(ALshort, 2, aluF2S)
901 DECL_TEMPLATE(ALubyte, 2, aluF2UB)
902 DECL_TEMPLATE(ALbyte, 2, aluF2B)
904 #undef DECL_TEMPLATE
906 #define DECL_TEMPLATE(T) \
907 static void Write_##T(ALCdevice *device, T *buffer, ALuint SamplesToDo) \
909 switch(device->FmtChans) \
911 case DevFmtMono: \
912 Write_##T##_1(device, buffer, SamplesToDo); \
913 break; \
914 case DevFmtStereo: \
915 Write_##T##_2(device, buffer, SamplesToDo); \
916 break; \
917 case DevFmtQuad: \
918 Write_##T##_4(device, buffer, SamplesToDo); \
919 break; \
920 case DevFmtX51: \
921 case DevFmtX51Side: \
922 Write_##T##_6(device, buffer, SamplesToDo); \
923 break; \
924 case DevFmtX61: \
925 Write_##T##_7(device, buffer, SamplesToDo); \
926 break; \
927 case DevFmtX71: \
928 Write_##T##_8(device, buffer, SamplesToDo); \
929 break; \
933 DECL_TEMPLATE(ALfloat)
934 DECL_TEMPLATE(ALushort)
935 DECL_TEMPLATE(ALshort)
936 DECL_TEMPLATE(ALubyte)
937 DECL_TEMPLATE(ALbyte)
939 #undef DECL_TEMPLATE
941 ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
943 ALuint SamplesToDo;
944 ALeffectslot **slot, **slot_end;
945 ALsource **src, **src_end;
946 ALCcontext *ctx;
947 int fpuState;
948 ALuint i, c;
950 fpuState = SetMixerFPUMode();
952 while(size > 0)
954 /* Setup variables */
955 SamplesToDo = minu(size, BUFFERSIZE);
957 /* Clear mixing buffer */
958 memset(device->DryBuffer, 0, SamplesToDo*MAXCHANNELS*sizeof(ALfloat));
960 LockDevice(device);
961 ctx = device->ContextList;
962 while(ctx)
964 ALenum DeferUpdates = ctx->DeferUpdates;
965 ALenum UpdateSources = AL_FALSE;
967 if(!DeferUpdates)
968 UpdateSources = ExchangeInt(&ctx->UpdateSources, AL_FALSE);
970 src = ctx->ActiveSources;
971 src_end = src + ctx->ActiveSourceCount;
972 while(src != src_end)
974 if((*src)->state != AL_PLAYING)
976 --(ctx->ActiveSourceCount);
977 *src = *(--src_end);
978 continue;
981 if(!DeferUpdates && (ExchangeInt(&(*src)->NeedsUpdate, AL_FALSE) ||
982 UpdateSources))
983 ALsource_Update(*src, ctx);
985 MixSource(*src, device, SamplesToDo);
986 src++;
989 /* effect slot processing */
990 slot = ctx->ActiveEffectSlots;
991 slot_end = slot + ctx->ActiveEffectSlotCount;
992 while(slot != slot_end)
994 for(c = 0;c < SamplesToDo;c++)
996 (*slot)->WetBuffer[c] += (*slot)->ClickRemoval[0];
997 (*slot)->ClickRemoval[0] -= (*slot)->ClickRemoval[0] * (1.0f/256.0f);
999 (*slot)->ClickRemoval[0] += (*slot)->PendingClicks[0];
1000 (*slot)->PendingClicks[0] = 0.0f;
1002 if(!DeferUpdates && ExchangeInt(&(*slot)->NeedsUpdate, AL_FALSE))
1003 ALeffectState_Update((*slot)->EffectState, ctx, *slot);
1005 ALeffectState_Process((*slot)->EffectState, SamplesToDo,
1006 (*slot)->WetBuffer, device->DryBuffer);
1008 for(i = 0;i < SamplesToDo;i++)
1009 (*slot)->WetBuffer[i] = 0.0f;
1011 slot++;
1014 ctx = ctx->next;
1016 UnlockDevice(device);
1018 //Post processing loop
1019 if(device->FmtChans == DevFmtMono)
1021 for(i = 0;i < SamplesToDo;i++)
1023 device->DryBuffer[i][FRONT_CENTER] += device->ClickRemoval[FRONT_CENTER];
1024 device->ClickRemoval[FRONT_CENTER] -= device->ClickRemoval[FRONT_CENTER] * (1.0f/256.0f);
1026 device->ClickRemoval[FRONT_CENTER] += device->PendingClicks[FRONT_CENTER];
1027 device->PendingClicks[FRONT_CENTER] = 0.0f;
1029 else if(device->FmtChans == DevFmtStereo)
1031 /* Assumes the first two channels are FRONT_LEFT and FRONT_RIGHT */
1032 for(i = 0;i < SamplesToDo;i++)
1034 for(c = 0;c < 2;c++)
1036 device->DryBuffer[i][c] += device->ClickRemoval[c];
1037 device->ClickRemoval[c] -= device->ClickRemoval[c] * (1.0f/256.0f);
1040 for(c = 0;c < 2;c++)
1042 device->ClickRemoval[c] += device->PendingClicks[c];
1043 device->PendingClicks[c] = 0.0f;
1046 else
1048 for(i = 0;i < SamplesToDo;i++)
1050 for(c = 0;c < MAXCHANNELS;c++)
1052 device->DryBuffer[i][c] += device->ClickRemoval[c];
1053 device->ClickRemoval[c] -= device->ClickRemoval[c] * (1.0f/256.0f);
1056 for(c = 0;c < MAXCHANNELS;c++)
1058 device->ClickRemoval[c] += device->PendingClicks[c];
1059 device->PendingClicks[c] = 0.0f;
1063 if(buffer)
1065 switch(device->FmtType)
1067 case DevFmtByte:
1068 Write_ALbyte(device, buffer, SamplesToDo);
1069 break;
1070 case DevFmtUByte:
1071 Write_ALubyte(device, buffer, SamplesToDo);
1072 break;
1073 case DevFmtShort:
1074 Write_ALshort(device, buffer, SamplesToDo);
1075 break;
1076 case DevFmtUShort:
1077 Write_ALushort(device, buffer, SamplesToDo);
1078 break;
1079 case DevFmtFloat:
1080 Write_ALfloat(device, buffer, SamplesToDo);
1081 break;
1085 size -= SamplesToDo;
1088 RestoreFPUMode(fpuState);
1092 ALvoid aluHandleDisconnect(ALCdevice *device)
1094 ALCcontext *Context;
1096 LockDevice(device);
1097 device->Connected = ALC_FALSE;
1099 Context = device->ContextList;
1100 while(Context)
1102 ALsource **src, **src_end;
1104 src = Context->ActiveSources;
1105 src_end = src + Context->ActiveSourceCount;
1106 while(src != src_end)
1108 if((*src)->state == AL_PLAYING)
1110 (*src)->state = AL_STOPPED;
1111 (*src)->BuffersPlayed = (*src)->BuffersInQueue;
1112 (*src)->position = 0;
1113 (*src)->position_fraction = 0;
1115 src++;
1117 Context->ActiveSourceCount = 0;
1119 Context = Context->next;
1121 UnlockDevice(device);