Move a couple methods to where they're used
[openal-soft.git] / OpenAL32 / Include / alu.h
blob0c7cc28bfc35703d8e7a6f235e6411dc1a330237
1 #ifndef _ALU_H_
2 #define _ALU_H_
4 #include "AL/al.h"
5 #include "AL/alc.h"
6 #include "AL/alext.h"
8 #include <limits.h>
9 #include <math.h>
10 #ifdef HAVE_FLOAT_H
11 #include <float.h>
12 #endif
13 #ifdef HAVE_IEEEFP_H
14 #include <ieeefp.h>
15 #endif
18 #define F_PI (3.14159265358979323846f) /* pi */
19 #define F_PI_2 (1.57079632679489661923f) /* pi/2 */
21 #ifndef HAVE_POWF
22 static __inline float powf(float x, float y)
23 { return (float)pow(x, y); }
24 #endif
26 #ifndef HAVE_SQRTF
27 static __inline float sqrtf(float x)
28 { return (float)sqrt(x); }
29 #endif
31 #ifndef HAVE_COSF
32 static __inline float cosf(float x)
33 { return (float)cos(x); }
34 #endif
36 #ifndef HAVE_SINF
37 static __inline float sinf(float x)
38 { return (float)sin(x); }
39 #endif
41 #ifndef HAVE_ACOSF
42 static __inline float acosf(float x)
43 { return (float)acos(x); }
44 #endif
46 #ifndef HAVE_ASINF
47 static __inline float asinf(float x)
48 { return (float)asin(x); }
49 #endif
51 #ifndef HAVE_ATANF
52 static __inline float atanf(float x)
53 { return (float)atan(x); }
54 #endif
56 #ifndef HAVE_ATAN2F
57 static __inline float atan2f(float x, float y)
58 { return (float)atan2(x, y); }
59 #endif
61 #ifndef HAVE_FABSF
62 static __inline float fabsf(float x)
63 { return (float)fabs(x); }
64 #endif
66 #ifndef HAVE_LOG10F
67 static __inline float log10f(float x)
68 { return (float)log10(x); }
69 #endif
71 #ifndef HAVE_FLOORF
72 static __inline float floorf(float x)
73 { return (float)floor(x); }
74 #endif
76 #ifdef __cplusplus
77 extern "C" {
78 #endif
80 struct ALsource;
81 struct ALbuffer;
82 struct DirectParams;
83 struct SendParams;
85 typedef ALvoid (*DryMixerFunc)(struct ALsource *self, ALCdevice *Device,
86 struct DirectParams *params,
87 const ALfloat *RESTRICT data, ALuint srcchan,
88 ALuint OutPos, ALuint SamplesToDo,
89 ALuint BufferSize);
90 typedef ALvoid (*WetMixerFunc)(struct SendParams *params,
91 const ALfloat *RESTRICT data,
92 ALuint OutPos, ALuint SamplesToDo,
93 ALuint BufferSize);
95 enum Resampler {
96 PointResampler,
97 LinearResampler,
98 CubicResampler,
100 ResamplerMax,
103 enum Channel {
104 FrontLeft = 0,
105 FrontRight,
106 FrontCenter,
107 LFE,
108 BackLeft,
109 BackRight,
110 BackCenter,
111 SideLeft,
112 SideRight,
114 MaxChannels,
117 enum DistanceModel {
118 InverseDistanceClamped = AL_INVERSE_DISTANCE_CLAMPED,
119 LinearDistanceClamped = AL_LINEAR_DISTANCE_CLAMPED,
120 ExponentDistanceClamped = AL_EXPONENT_DISTANCE_CLAMPED,
121 InverseDistance = AL_INVERSE_DISTANCE,
122 LinearDistance = AL_LINEAR_DISTANCE,
123 ExponentDistance = AL_EXPONENT_DISTANCE,
124 DisableDistance = AL_NONE,
126 DefaultDistanceModel = InverseDistanceClamped
130 /* Size for temporary storage of buffer data, in ALfloats. Larger values need
131 * more stack, while smaller values may need more iterations. The value needs
132 * to be a sensible size, however, as it constrains the max stepping value used
133 * for mixing, as well as the maximum number of samples per mixing iteration.
134 * The mixer requires being able to do two samplings per mixing loop. A 16KB
135 * buffer can hold 512 sample frames for a 7.1 float buffer. With the cubic
136 * resampler (which requires 3 padding sample frames), this limits the maximum
137 * step to about 508. This means that buffer_freq*source_pitch cannot exceed
138 * device_freq*508 for an 8-channel 32-bit buffer.
140 #ifndef BUFFERSIZE
141 #define BUFFERSIZE 4096
142 #endif
144 #define FRACTIONBITS (14)
145 #define FRACTIONONE (1<<FRACTIONBITS)
146 #define FRACTIONMASK (FRACTIONONE-1)
149 static __inline ALfloat minf(ALfloat a, ALfloat b)
150 { return ((a > b) ? b : a); }
151 static __inline ALfloat maxf(ALfloat a, ALfloat b)
152 { return ((a > b) ? a : b); }
153 static __inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max)
154 { return minf(max, maxf(min, val)); }
156 static __inline ALuint minu(ALuint a, ALuint b)
157 { return ((a > b) ? b : a); }
158 static __inline ALuint maxu(ALuint a, ALuint b)
159 { return ((a > b) ? a : b); }
160 static __inline ALuint clampu(ALuint val, ALuint min, ALuint max)
161 { return minu(max, maxu(min, val)); }
163 static __inline ALint mini(ALint a, ALint b)
164 { return ((a > b) ? b : a); }
165 static __inline ALint maxi(ALint a, ALint b)
166 { return ((a > b) ? a : b); }
167 static __inline ALint clampi(ALint val, ALint min, ALint max)
168 { return mini(max, maxi(min, val)); }
170 static __inline ALint64 mini64(ALint64 a, ALint64 b)
171 { return ((a > b) ? b : a); }
172 static __inline ALint64 maxi64(ALint64 a, ALint64 b)
173 { return ((a > b) ? a : b); }
174 static __inline ALint64 clampi64(ALint64 val, ALint64 min, ALint64 max)
175 { return mini64(max, maxi64(min, val)); }
177 static __inline ALuint64 minu64(ALuint64 a, ALuint64 b)
178 { return ((a > b) ? b : a); }
179 static __inline ALuint64 maxu64(ALuint64 a, ALuint64 b)
180 { return ((a > b) ? a : b); }
181 static __inline ALuint64 clampu64(ALuint64 val, ALuint64 min, ALuint64 max)
182 { return minu64(max, maxu64(min, val)); }
185 static __inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu)
187 return val1 + (val2-val1)*mu;
189 static __inline ALfloat cubic(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALfloat mu)
191 ALfloat mu2 = mu*mu;
192 ALfloat a0 = -0.5f*val0 + 1.5f*val1 + -1.5f*val2 + 0.5f*val3;
193 ALfloat a1 = val0 + -2.5f*val1 + 2.0f*val2 + -0.5f*val3;
194 ALfloat a2 = -0.5f*val0 + 0.5f*val2;
195 ALfloat a3 = val1;
197 return a0*mu*mu2 + a1*mu2 + a2*mu + a3;
201 static __inline int SetMixerFPUMode(void)
203 #if defined(_FPU_GETCW) && defined(_FPU_SETCW) && (defined(__i386__) || defined(__x86_64__))
204 fpu_control_t fpuState, newState;
205 _FPU_GETCW(fpuState);
206 newState = fpuState&~(_FPU_EXTENDED|_FPU_DOUBLE|_FPU_SINGLE |
207 _FPU_RC_NEAREST|_FPU_RC_DOWN|_FPU_RC_UP|_FPU_RC_ZERO);
208 newState |= _FPU_SINGLE | _FPU_RC_ZERO;
209 _FPU_SETCW(newState);
210 #else
211 int fpuState;
212 #if defined(HAVE__CONTROLFP)
213 fpuState = _controlfp(0, 0);
214 (void)_controlfp(_RC_CHOP|_PC_24, _MCW_RC|_MCW_PC);
215 #elif defined(HAVE_FESETROUND)
216 fpuState = fegetround();
217 #ifdef FE_TOWARDZERO
218 fesetround(FE_TOWARDZERO);
219 #endif
220 #endif
221 #endif
222 return fpuState;
225 static __inline void RestoreFPUMode(int state)
227 #if defined(_FPU_GETCW) && defined(_FPU_SETCW) && (defined(__i386__) || defined(__x86_64__))
228 fpu_control_t fpuState = state;
229 _FPU_SETCW(fpuState);
230 #elif defined(HAVE__CONTROLFP)
231 _controlfp(state, _MCW_RC|_MCW_PC);
232 #elif defined(HAVE_FESETROUND)
233 fesetround(state);
234 #endif
238 static __inline void aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
240 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
241 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
242 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
245 static __inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2)
247 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
248 inVector1[2]*inVector2[2];
251 static __inline void aluNormalize(ALfloat *inVector)
253 ALfloat lengthsqr = aluDotproduct(inVector, inVector);
254 if(lengthsqr > 0.0f)
256 ALfloat inv_length = 1.0f/sqrtf(lengthsqr);
257 inVector[0] *= inv_length;
258 inVector[1] *= inv_length;
259 inVector[2] *= inv_length;
264 ALvoid aluInitPanning(ALCdevice *Device);
266 ALvoid ComputeAngleGains(const ALCdevice *device, ALfloat angle, ALfloat hwidth, ALfloat ingain, ALfloat *gains);
268 ALvoid CalcSourceParams(struct ALsource *ALSource, const ALCcontext *ALContext);
269 ALvoid CalcNonAttnSourceParams(struct ALsource *ALSource, const ALCcontext *ALContext);
271 ALvoid MixSource(struct ALsource *Source, ALCdevice *Device, ALuint SamplesToDo);
273 ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size);
274 ALvoid aluHandleDisconnect(ALCdevice *device);
276 extern ALfloat ConeScale;
277 extern ALfloat ZScale;
279 #ifdef __cplusplus
281 #endif
283 #endif