Add SSE2 and SSE4.1 linear resamplers
[openal-soft.git] / Alc / ALu.c
blob488a7273149b41b99aca01a67c2d3b936027b353
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <math.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <ctype.h>
27 #include <assert.h>
29 #include "alMain.h"
30 #include "alSource.h"
31 #include "alBuffer.h"
32 #include "alListener.h"
33 #include "alAuxEffectSlot.h"
34 #include "alu.h"
35 #include "bs2b.h"
36 #include "hrtf.h"
37 #include "static_assert.h"
39 #include "mixer_defs.h"
41 #include "midi/base.h"
44 static_assert((INT_MAX>>FRACTIONBITS)/MAX_PITCH > BUFFERSIZE,
45 "MAX_PITCH and/or BUFFERSIZE are too large for FRACTIONBITS!");
47 struct ChanMap {
48 enum Channel channel;
49 ALfloat angle;
52 /* Cone scalar */
53 ALfloat ConeScale = 1.0f;
55 /* Localized Z scalar for mono sources */
56 ALfloat ZScale = 1.0f;
58 extern inline ALfloat minf(ALfloat a, ALfloat b);
59 extern inline ALfloat maxf(ALfloat a, ALfloat b);
60 extern inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max);
62 extern inline ALdouble mind(ALdouble a, ALdouble b);
63 extern inline ALdouble maxd(ALdouble a, ALdouble b);
64 extern inline ALdouble clampd(ALdouble val, ALdouble min, ALdouble max);
66 extern inline ALuint minu(ALuint a, ALuint b);
67 extern inline ALuint maxu(ALuint a, ALuint b);
68 extern inline ALuint clampu(ALuint val, ALuint min, ALuint max);
70 extern inline ALint mini(ALint a, ALint b);
71 extern inline ALint maxi(ALint a, ALint b);
72 extern inline ALint clampi(ALint val, ALint min, ALint max);
74 extern inline ALint64 mini64(ALint64 a, ALint64 b);
75 extern inline ALint64 maxi64(ALint64 a, ALint64 b);
76 extern inline ALint64 clampi64(ALint64 val, ALint64 min, ALint64 max);
78 extern inline ALuint64 minu64(ALuint64 a, ALuint64 b);
79 extern inline ALuint64 maxu64(ALuint64 a, ALuint64 b);
80 extern inline ALuint64 clampu64(ALuint64 val, ALuint64 min, ALuint64 max);
82 extern inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu);
83 extern inline ALfloat cubic(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALfloat mu);
85 static ResamplerFunc SelectResampler(enum Resampler Resampler, ALuint increment)
87 if(increment == FRACTIONONE)
88 return Resample_copy32_C;
89 switch(Resampler)
91 case PointResampler:
92 return Resample_point32_C;
93 case LinearResampler:
94 #ifdef HAVE_SSE4_1
95 if((CPUCapFlags&CPU_CAP_SSE4_1))
96 return Resample_lerp32_SSE41;
97 #endif
98 #ifdef HAVE_SSE2
99 if((CPUCapFlags&CPU_CAP_SSE2))
100 return Resample_lerp32_SSE2;
101 #endif
102 return Resample_lerp32_C;
103 case CubicResampler:
104 return Resample_cubic32_C;
105 case ResamplerMax:
106 /* Shouldn't happen */
107 break;
110 return Resample_point32_C;
114 static HrtfMixerFunc SelectHrtfMixer(void)
116 #ifdef HAVE_SSE
117 if((CPUCapFlags&CPU_CAP_SSE))
118 return MixDirect_Hrtf_SSE;
119 #endif
120 #ifdef HAVE_NEON
121 if((CPUCapFlags&CPU_CAP_NEON))
122 return MixDirect_Hrtf_Neon;
123 #endif
125 return MixDirect_Hrtf_C;
128 static DryMixerFunc SelectDirectMixer(void)
130 #ifdef HAVE_SSE
131 if((CPUCapFlags&CPU_CAP_SSE))
132 return MixDirect_SSE;
133 #endif
134 #ifdef HAVE_NEON
135 if((CPUCapFlags&CPU_CAP_NEON))
136 return MixDirect_Neon;
137 #endif
139 return MixDirect_C;
142 static WetMixerFunc SelectSendMixer(void)
144 #ifdef HAVE_SSE
145 if((CPUCapFlags&CPU_CAP_SSE))
146 return MixSend_SSE;
147 #endif
148 #ifdef HAVE_NEON
149 if((CPUCapFlags&CPU_CAP_NEON))
150 return MixSend_Neon;
151 #endif
153 return MixSend_C;
157 static inline void aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
159 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
160 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
161 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
164 static inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2)
166 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
167 inVector1[2]*inVector2[2];
170 static inline void aluNormalize(ALfloat *inVector)
172 ALfloat lengthsqr = aluDotproduct(inVector, inVector);
173 if(lengthsqr > 0.0f)
175 ALfloat inv_length = 1.0f/sqrtf(lengthsqr);
176 inVector[0] *= inv_length;
177 inVector[1] *= inv_length;
178 inVector[2] *= inv_length;
182 static inline ALvoid aluMatrixVector(ALfloat *vector, ALfloat w, ALfloat (*restrict matrix)[4])
184 ALfloat temp[4] = {
185 vector[0], vector[1], vector[2], w
188 vector[0] = temp[0]*matrix[0][0] + temp[1]*matrix[1][0] + temp[2]*matrix[2][0] + temp[3]*matrix[3][0];
189 vector[1] = temp[0]*matrix[0][1] + temp[1]*matrix[1][1] + temp[2]*matrix[2][1] + temp[3]*matrix[3][1];
190 vector[2] = temp[0]*matrix[0][2] + temp[1]*matrix[1][2] + temp[2]*matrix[2][2] + temp[3]*matrix[3][2];
194 static ALvoid CalcListenerParams(ALlistener *Listener)
196 ALfloat N[3], V[3], U[3], P[3];
198 /* AT then UP */
199 N[0] = Listener->Forward[0];
200 N[1] = Listener->Forward[1];
201 N[2] = Listener->Forward[2];
202 aluNormalize(N);
203 V[0] = Listener->Up[0];
204 V[1] = Listener->Up[1];
205 V[2] = Listener->Up[2];
206 aluNormalize(V);
207 /* Build and normalize right-vector */
208 aluCrossproduct(N, V, U);
209 aluNormalize(U);
211 Listener->Params.Matrix[0][0] = U[0];
212 Listener->Params.Matrix[0][1] = V[0];
213 Listener->Params.Matrix[0][2] = -N[0];
214 Listener->Params.Matrix[0][3] = 0.0f;
215 Listener->Params.Matrix[1][0] = U[1];
216 Listener->Params.Matrix[1][1] = V[1];
217 Listener->Params.Matrix[1][2] = -N[1];
218 Listener->Params.Matrix[1][3] = 0.0f;
219 Listener->Params.Matrix[2][0] = U[2];
220 Listener->Params.Matrix[2][1] = V[2];
221 Listener->Params.Matrix[2][2] = -N[2];
222 Listener->Params.Matrix[2][3] = 0.0f;
223 Listener->Params.Matrix[3][0] = 0.0f;
224 Listener->Params.Matrix[3][1] = 0.0f;
225 Listener->Params.Matrix[3][2] = 0.0f;
226 Listener->Params.Matrix[3][3] = 1.0f;
228 P[0] = Listener->Position[0];
229 P[1] = Listener->Position[1];
230 P[2] = Listener->Position[2];
231 aluMatrixVector(P, 1.0f, Listener->Params.Matrix);
232 Listener->Params.Matrix[3][0] = -P[0];
233 Listener->Params.Matrix[3][1] = -P[1];
234 Listener->Params.Matrix[3][2] = -P[2];
236 Listener->Params.Velocity[0] = Listener->Velocity[0];
237 Listener->Params.Velocity[1] = Listener->Velocity[1];
238 Listener->Params.Velocity[2] = Listener->Velocity[2];
239 aluMatrixVector(Listener->Params.Velocity, 0.0f, Listener->Params.Matrix);
242 ALvoid CalcNonAttnSourceParams(ALactivesource *src, const ALCcontext *ALContext)
244 static const struct ChanMap MonoMap[1] = { { FrontCenter, 0.0f } };
245 static const struct ChanMap StereoMap[2] = {
246 { FrontLeft, DEG2RAD(-30.0f) },
247 { FrontRight, DEG2RAD( 30.0f) }
249 static const struct ChanMap StereoWideMap[2] = {
250 { FrontLeft, DEG2RAD(-90.0f) },
251 { FrontRight, DEG2RAD( 90.0f) }
253 static const struct ChanMap RearMap[2] = {
254 { BackLeft, DEG2RAD(-150.0f) },
255 { BackRight, DEG2RAD( 150.0f) }
257 static const struct ChanMap QuadMap[4] = {
258 { FrontLeft, DEG2RAD( -45.0f) },
259 { FrontRight, DEG2RAD( 45.0f) },
260 { BackLeft, DEG2RAD(-135.0f) },
261 { BackRight, DEG2RAD( 135.0f) }
263 static const struct ChanMap X51Map[6] = {
264 { FrontLeft, DEG2RAD( -30.0f) },
265 { FrontRight, DEG2RAD( 30.0f) },
266 { FrontCenter, DEG2RAD( 0.0f) },
267 { LFE, 0.0f },
268 { BackLeft, DEG2RAD(-110.0f) },
269 { BackRight, DEG2RAD( 110.0f) }
271 static const struct ChanMap X61Map[7] = {
272 { FrontLeft, DEG2RAD(-30.0f) },
273 { FrontRight, DEG2RAD( 30.0f) },
274 { FrontCenter, DEG2RAD( 0.0f) },
275 { LFE, 0.0f },
276 { BackCenter, DEG2RAD(180.0f) },
277 { SideLeft, DEG2RAD(-90.0f) },
278 { SideRight, DEG2RAD( 90.0f) }
280 static const struct ChanMap X71Map[8] = {
281 { FrontLeft, DEG2RAD( -30.0f) },
282 { FrontRight, DEG2RAD( 30.0f) },
283 { FrontCenter, DEG2RAD( 0.0f) },
284 { LFE, 0.0f },
285 { BackLeft, DEG2RAD(-150.0f) },
286 { BackRight, DEG2RAD( 150.0f) },
287 { SideLeft, DEG2RAD( -90.0f) },
288 { SideRight, DEG2RAD( 90.0f) }
291 ALCdevice *Device = ALContext->Device;
292 const ALsource *ALSource = src->Source;
293 ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
294 ALbufferlistitem *BufferListItem;
295 enum FmtChannels Channels;
296 ALfloat DryGain, DryGainHF, DryGainLF;
297 ALfloat WetGain[MAX_SENDS];
298 ALfloat WetGainHF[MAX_SENDS];
299 ALfloat WetGainLF[MAX_SENDS];
300 ALint NumSends, Frequency;
301 const struct ChanMap *chans = NULL;
302 enum Resampler Resampler;
303 ALint num_channels = 0;
304 ALboolean DirectChannels;
305 ALfloat hwidth = 0.0f;
306 ALfloat Pitch;
307 ALint i, j, c;
309 /* Get device properties */
310 NumSends = Device->NumAuxSends;
311 Frequency = Device->Frequency;
313 /* Get listener properties */
314 ListenerGain = ALContext->Listener->Gain;
316 /* Get source properties */
317 SourceVolume = ALSource->Gain;
318 MinVolume = ALSource->MinGain;
319 MaxVolume = ALSource->MaxGain;
320 Pitch = ALSource->Pitch;
321 Resampler = ALSource->Resampler;
322 DirectChannels = ALSource->DirectChannels;
324 src->Direct.OutBuffer = Device->DryBuffer;
325 for(i = 0;i < NumSends;i++)
327 ALeffectslot *Slot = ALSource->Send[i].Slot;
328 if(!Slot && i == 0)
329 Slot = Device->DefaultSlot;
330 if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
331 src->Send[i].OutBuffer = NULL;
332 else
333 src->Send[i].OutBuffer = Slot->WetBuffer;
336 /* Calculate the stepping value */
337 Channels = FmtMono;
338 BufferListItem = ALSource->queue;
339 while(BufferListItem != NULL)
341 ALbuffer *ALBuffer;
342 if((ALBuffer=BufferListItem->buffer) != NULL)
344 Pitch = Pitch * ALBuffer->Frequency / Frequency;
345 if(Pitch > (ALfloat)MAX_PITCH)
346 src->Step = MAX_PITCH<<FRACTIONBITS;
347 else
349 src->Step = fastf2i(Pitch*FRACTIONONE);
350 if(src->Step == 0)
351 src->Step = 1;
353 src->Resample = SelectResampler(Resampler, src->Step);
355 Channels = ALBuffer->FmtChannels;
356 break;
358 BufferListItem = BufferListItem->next;
361 /* Calculate gains */
362 DryGain = clampf(SourceVolume, MinVolume, MaxVolume);
363 DryGain *= ALSource->Direct.Gain * ListenerGain;
364 DryGainHF = ALSource->Direct.GainHF;
365 DryGainLF = ALSource->Direct.GainLF;
366 for(i = 0;i < NumSends;i++)
368 WetGain[i] = clampf(SourceVolume, MinVolume, MaxVolume);
369 WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
370 WetGainHF[i] = ALSource->Send[i].GainHF;
371 WetGainLF[i] = ALSource->Send[i].GainLF;
374 switch(Channels)
376 case FmtMono:
377 chans = MonoMap;
378 num_channels = 1;
379 break;
381 case FmtStereo:
382 if(!(Device->Flags&DEVICE_WIDE_STEREO))
384 /* HACK: Place the stereo channels at +/-90 degrees when using non-
385 * HRTF stereo output. This helps reduce the "monoization" caused
386 * by them panning towards the center. */
387 if(Device->FmtChans == DevFmtStereo && !Device->Hrtf)
388 chans = StereoWideMap;
389 else
390 chans = StereoMap;
392 else
394 chans = StereoWideMap;
395 hwidth = DEG2RAD(60.0f);
397 num_channels = 2;
398 break;
400 case FmtRear:
401 chans = RearMap;
402 num_channels = 2;
403 break;
405 case FmtQuad:
406 chans = QuadMap;
407 num_channels = 4;
408 break;
410 case FmtX51:
411 chans = X51Map;
412 num_channels = 6;
413 break;
415 case FmtX61:
416 chans = X61Map;
417 num_channels = 7;
418 break;
420 case FmtX71:
421 chans = X71Map;
422 num_channels = 8;
423 break;
426 if(DirectChannels != AL_FALSE)
428 for(c = 0;c < num_channels;c++)
430 ALfloat *restrict Target = src->Direct.Mix.Gains[c].Target;
431 for(j = 0;j < MaxChannels;j++)
432 Target[j] = 0.0f;
435 for(c = 0;c < num_channels;c++)
437 ALfloat *restrict Target = src->Direct.Mix.Gains[c].Target;
438 for(i = 0;i < (ALint)Device->NumChan;i++)
440 enum Channel chan = Device->Speaker2Chan[i];
441 if(chan == chans[c].channel)
443 Target[chan] = DryGain;
444 break;
449 if(!src->Direct.Moving)
451 for(i = 0;i < num_channels;i++)
453 ALfloat *restrict Current = src->Direct.Mix.Gains[i].Current;
454 ALfloat *restrict Step = src->Direct.Mix.Gains[i].Step;
455 ALfloat *restrict Target = src->Direct.Mix.Gains[i].Target;
456 for(j = 0;j < MaxChannels;j++)
458 Current[j] = Target[j];
459 Step[j] = 1.0f;
462 src->Direct.Counter = 0;
463 src->Direct.Moving = AL_TRUE;
465 else
467 for(i = 0;i < num_channels;i++)
469 ALfloat *restrict Current = src->Direct.Mix.Gains[i].Current;
470 ALfloat *restrict Step = src->Direct.Mix.Gains[i].Step;
471 ALfloat *restrict Target = src->Direct.Mix.Gains[i].Target;
472 for(j = 0;j < MaxChannels;j++)
474 ALfloat cur = maxf(Current[j], FLT_EPSILON);
475 ALfloat trg = maxf(Target[j], FLT_EPSILON);
476 if(fabs(trg - cur) >= GAIN_SILENCE_THRESHOLD)
477 Step[j] = powf(trg/cur, 1.0f/64.0f);
478 else
479 Step[j] = 1.0f;
480 Current[j] = cur;
483 src->Direct.Counter = 64;
486 src->IsHrtf = AL_FALSE;
487 src->Dry.Mix = SelectDirectMixer();
489 else if(Device->Hrtf)
491 for(c = 0;c < num_channels;c++)
493 if(chans[c].channel == LFE)
495 /* Skip LFE */
496 src->Direct.Mix.Hrtf.Params[c].Delay[0] = 0;
497 src->Direct.Mix.Hrtf.Params[c].Delay[1] = 0;
498 for(i = 0;i < HRIR_LENGTH;i++)
500 src->Direct.Mix.Hrtf.Params[c].Coeffs[i][0] = 0.0f;
501 src->Direct.Mix.Hrtf.Params[c].Coeffs[i][1] = 0.0f;
504 else
506 /* Get the static HRIR coefficients and delays for this
507 * channel. */
508 GetLerpedHrtfCoeffs(Device->Hrtf,
509 0.0f, chans[c].angle, DryGain,
510 src->Direct.Mix.Hrtf.Params[c].Coeffs,
511 src->Direct.Mix.Hrtf.Params[c].Delay);
514 src->Direct.Counter = 0;
515 src->Direct.Moving = AL_TRUE;
516 src->Direct.Mix.Hrtf.IrSize = GetHrtfIrSize(Device->Hrtf);
518 src->IsHrtf = AL_TRUE;
519 src->Dry.HrtfMix = SelectHrtfMixer();
521 else
523 for(i = 0;i < num_channels;i++)
525 ALfloat *restrict Target = src->Direct.Mix.Gains[i].Target;
526 for(j = 0;j < MaxChannels;j++)
527 Target[j] = 0.0f;
530 DryGain *= lerp(1.0f, 1.0f/sqrtf((float)Device->NumChan), hwidth/F_PI);
531 for(c = 0;c < num_channels;c++)
533 ALfloat *restrict Target = src->Direct.Mix.Gains[c].Target;
534 /* Special-case LFE */
535 if(chans[c].channel == LFE)
537 Target[chans[c].channel] = DryGain;
538 continue;
540 ComputeAngleGains(Device, chans[c].angle, hwidth, DryGain, Target);
543 if(!src->Direct.Moving)
545 for(i = 0;i < num_channels;i++)
547 ALfloat *restrict Current = src->Direct.Mix.Gains[i].Current;
548 ALfloat *restrict Step = src->Direct.Mix.Gains[i].Step;
549 ALfloat *restrict Target = src->Direct.Mix.Gains[i].Target;
550 for(j = 0;j < MaxChannels;j++)
552 Current[j] = Target[j];
553 Step[j] = 1.0f;
556 src->Direct.Counter = 0;
557 src->Direct.Moving = AL_TRUE;
559 else
561 for(i = 0;i < num_channels;i++)
563 ALfloat *restrict Current = src->Direct.Mix.Gains[i].Current;
564 ALfloat *restrict Step = src->Direct.Mix.Gains[i].Step;
565 ALfloat *restrict Target = src->Direct.Mix.Gains[i].Target;
566 for(j = 0;j < MaxChannels;j++)
568 ALfloat trg = maxf(Target[j], FLT_EPSILON);
569 ALfloat cur = maxf(Current[j], FLT_EPSILON);
570 if(fabs(trg - cur) >= GAIN_SILENCE_THRESHOLD)
571 Step[j] = powf(trg/cur, 1.0f/64.0f);
572 else
573 Step[j] = 1.0f;
574 Current[j] = cur;
577 src->Direct.Counter = 64;
580 src->IsHrtf = AL_FALSE;
581 src->Dry.Mix = SelectDirectMixer();
583 for(i = 0;i < NumSends;i++)
585 src->Send[i].Gain.Target = WetGain[i];
586 if(!src->Send[i].Moving)
588 src->Send[i].Gain.Current = src->Send[i].Gain.Target;
589 src->Send[i].Gain.Step = 1.0f;
590 src->Send[i].Counter = 0;
591 src->Send[i].Moving = AL_TRUE;
593 else
595 ALfloat cur = maxf(src->Send[i].Gain.Current, FLT_EPSILON);
596 ALfloat trg = maxf(src->Send[i].Gain.Target, FLT_EPSILON);
597 if(fabs(trg - cur) >= GAIN_SILENCE_THRESHOLD)
598 src->Send[i].Gain.Step = powf(trg/cur, 1.0f/64.0f);
599 else
600 src->Send[i].Gain.Step = 1.0f;
601 src->Send[i].Gain.Current = cur;
602 src->Send[i].Counter = 64;
605 src->WetMix = SelectSendMixer();
608 ALfloat gainhf = maxf(0.01f, DryGainHF);
609 ALfloat gainlf = maxf(0.01f, DryGainLF);
610 ALfloat hfscale = ALSource->Direct.HFReference / Frequency;
611 ALfloat lfscale = ALSource->Direct.LFReference / Frequency;
612 for(c = 0;c < num_channels;c++)
614 src->Direct.Filters[c].ActiveType = AF_None;
615 if(gainhf != 1.0f) src->Direct.Filters[c].ActiveType |= AF_LowPass;
616 if(gainlf != 1.0f) src->Direct.Filters[c].ActiveType |= AF_HighPass;
617 ALfilterState_setParams(
618 &src->Direct.Filters[c].LowPass, ALfilterType_HighShelf, gainhf,
619 hfscale, 0.0f
621 ALfilterState_setParams(
622 &src->Direct.Filters[c].HighPass, ALfilterType_LowShelf, gainlf,
623 lfscale, 0.0f
627 for(i = 0;i < NumSends;i++)
629 ALfloat gainhf = maxf(0.01f, WetGainHF[i]);
630 ALfloat gainlf = maxf(0.01f, WetGainLF[i]);
631 ALfloat hfscale = ALSource->Send[i].HFReference / Frequency;
632 ALfloat lfscale = ALSource->Send[i].LFReference / Frequency;
633 for(c = 0;c < num_channels;c++)
635 src->Send[i].Filters[c].ActiveType = AF_None;
636 if(gainhf != 1.0f) src->Send[i].Filters[c].ActiveType |= AF_LowPass;
637 if(gainlf != 1.0f) src->Send[i].Filters[c].ActiveType |= AF_HighPass;
638 ALfilterState_setParams(
639 &src->Send[i].Filters[c].LowPass, ALfilterType_HighShelf, gainhf,
640 hfscale, 0.0f
642 ALfilterState_setParams(
643 &src->Send[i].Filters[c].HighPass, ALfilterType_LowShelf, gainlf,
644 lfscale, 0.0f
650 ALvoid CalcSourceParams(ALactivesource *src, const ALCcontext *ALContext)
652 ALCdevice *Device = ALContext->Device;
653 const ALsource *ALSource = src->Source;
654 ALfloat Velocity[3],Direction[3],Position[3],SourceToListener[3];
655 ALfloat InnerAngle,OuterAngle,Angle,Distance,ClampedDist;
656 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff;
657 ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain;
658 ALfloat DopplerFactor, SpeedOfSound;
659 ALfloat AirAbsorptionFactor;
660 ALfloat RoomAirAbsorption[MAX_SENDS];
661 ALbufferlistitem *BufferListItem;
662 ALfloat Attenuation;
663 ALfloat RoomAttenuation[MAX_SENDS];
664 ALfloat MetersPerUnit;
665 ALfloat RoomRolloffBase;
666 ALfloat RoomRolloff[MAX_SENDS];
667 ALfloat DecayDistance[MAX_SENDS];
668 ALfloat DryGain;
669 ALfloat DryGainHF;
670 ALfloat DryGainLF;
671 ALboolean DryGainHFAuto;
672 ALfloat WetGain[MAX_SENDS];
673 ALfloat WetGainHF[MAX_SENDS];
674 ALfloat WetGainLF[MAX_SENDS];
675 ALboolean WetGainAuto;
676 ALboolean WetGainHFAuto;
677 enum Resampler Resampler;
678 ALfloat Pitch;
679 ALuint Frequency;
680 ALint NumSends;
681 ALint i, j;
683 DryGainHF = 1.0f;
684 DryGainLF = 1.0f;
685 for(i = 0;i < MAX_SENDS;i++)
687 WetGainHF[i] = 1.0f;
688 WetGainLF[i] = 1.0f;
691 /* Get context/device properties */
692 DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
693 SpeedOfSound = ALContext->SpeedOfSound * ALContext->DopplerVelocity;
694 NumSends = Device->NumAuxSends;
695 Frequency = Device->Frequency;
697 /* Get listener properties */
698 ListenerGain = ALContext->Listener->Gain;
699 MetersPerUnit = ALContext->Listener->MetersPerUnit;
701 /* Get source properties */
702 SourceVolume = ALSource->Gain;
703 MinVolume = ALSource->MinGain;
704 MaxVolume = ALSource->MaxGain;
705 Pitch = ALSource->Pitch;
706 Resampler = ALSource->Resampler;
707 Position[0] = ALSource->Position[0];
708 Position[1] = ALSource->Position[1];
709 Position[2] = ALSource->Position[2];
710 Direction[0] = ALSource->Orientation[0];
711 Direction[1] = ALSource->Orientation[1];
712 Direction[2] = ALSource->Orientation[2];
713 Velocity[0] = ALSource->Velocity[0];
714 Velocity[1] = ALSource->Velocity[1];
715 Velocity[2] = ALSource->Velocity[2];
716 MinDist = ALSource->RefDistance;
717 MaxDist = ALSource->MaxDistance;
718 Rolloff = ALSource->RollOffFactor;
719 InnerAngle = ALSource->InnerAngle;
720 OuterAngle = ALSource->OuterAngle;
721 AirAbsorptionFactor = ALSource->AirAbsorptionFactor;
722 DryGainHFAuto = ALSource->DryGainHFAuto;
723 WetGainAuto = ALSource->WetGainAuto;
724 WetGainHFAuto = ALSource->WetGainHFAuto;
725 RoomRolloffBase = ALSource->RoomRolloffFactor;
727 src->Direct.OutBuffer = Device->DryBuffer;
728 for(i = 0;i < NumSends;i++)
730 ALeffectslot *Slot = ALSource->Send[i].Slot;
732 if(!Slot && i == 0)
733 Slot = Device->DefaultSlot;
734 if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
736 Slot = NULL;
737 RoomRolloff[i] = 0.0f;
738 DecayDistance[i] = 0.0f;
739 RoomAirAbsorption[i] = 1.0f;
741 else if(Slot->AuxSendAuto)
743 RoomRolloff[i] = RoomRolloffBase;
744 if(IsReverbEffect(Slot->EffectType))
746 RoomRolloff[i] += Slot->EffectProps.Reverb.RoomRolloffFactor;
747 DecayDistance[i] = Slot->EffectProps.Reverb.DecayTime *
748 SPEEDOFSOUNDMETRESPERSEC;
749 RoomAirAbsorption[i] = Slot->EffectProps.Reverb.AirAbsorptionGainHF;
751 else
753 DecayDistance[i] = 0.0f;
754 RoomAirAbsorption[i] = 1.0f;
757 else
759 /* If the slot's auxiliary send auto is off, the data sent to the
760 * effect slot is the same as the dry path, sans filter effects */
761 RoomRolloff[i] = Rolloff;
762 DecayDistance[i] = 0.0f;
763 RoomAirAbsorption[i] = AIRABSORBGAINHF;
766 if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
767 src->Send[i].OutBuffer = NULL;
768 else
769 src->Send[i].OutBuffer = Slot->WetBuffer;
772 /* Transform source to listener space (convert to head relative) */
773 if(ALSource->HeadRelative == AL_FALSE)
775 ALfloat (*restrict Matrix)[4] = ALContext->Listener->Params.Matrix;
776 /* Transform source vectors */
777 aluMatrixVector(Position, 1.0f, Matrix);
778 aluMatrixVector(Direction, 0.0f, Matrix);
779 aluMatrixVector(Velocity, 0.0f, Matrix);
781 else
783 const ALfloat *ListenerVel = ALContext->Listener->Params.Velocity;
784 /* Offset the source velocity to be relative of the listener velocity */
785 Velocity[0] += ListenerVel[0];
786 Velocity[1] += ListenerVel[1];
787 Velocity[2] += ListenerVel[2];
790 SourceToListener[0] = -Position[0];
791 SourceToListener[1] = -Position[1];
792 SourceToListener[2] = -Position[2];
793 aluNormalize(SourceToListener);
794 aluNormalize(Direction);
796 /* Calculate distance attenuation */
797 Distance = sqrtf(aluDotproduct(Position, Position));
798 ClampedDist = Distance;
800 Attenuation = 1.0f;
801 for(i = 0;i < NumSends;i++)
802 RoomAttenuation[i] = 1.0f;
803 switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel :
804 ALContext->DistanceModel)
806 case InverseDistanceClamped:
807 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
808 if(MaxDist < MinDist)
809 break;
810 /*fall-through*/
811 case InverseDistance:
812 if(MinDist > 0.0f)
814 if((MinDist + (Rolloff * (ClampedDist - MinDist))) > 0.0f)
815 Attenuation = MinDist / (MinDist + (Rolloff * (ClampedDist - MinDist)));
816 for(i = 0;i < NumSends;i++)
818 if((MinDist + (RoomRolloff[i] * (ClampedDist - MinDist))) > 0.0f)
819 RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (ClampedDist - MinDist)));
822 break;
824 case LinearDistanceClamped:
825 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
826 if(MaxDist < MinDist)
827 break;
828 /*fall-through*/
829 case LinearDistance:
830 if(MaxDist != MinDist)
832 Attenuation = 1.0f - (Rolloff*(ClampedDist-MinDist)/(MaxDist - MinDist));
833 Attenuation = maxf(Attenuation, 0.0f);
834 for(i = 0;i < NumSends;i++)
836 RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(ClampedDist-MinDist)/(MaxDist - MinDist));
837 RoomAttenuation[i] = maxf(RoomAttenuation[i], 0.0f);
840 break;
842 case ExponentDistanceClamped:
843 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
844 if(MaxDist < MinDist)
845 break;
846 /*fall-through*/
847 case ExponentDistance:
848 if(ClampedDist > 0.0f && MinDist > 0.0f)
850 Attenuation = powf(ClampedDist/MinDist, -Rolloff);
851 for(i = 0;i < NumSends;i++)
852 RoomAttenuation[i] = powf(ClampedDist/MinDist, -RoomRolloff[i]);
854 break;
856 case DisableDistance:
857 ClampedDist = MinDist;
858 break;
861 /* Source Gain + Attenuation */
862 DryGain = SourceVolume * Attenuation;
863 for(i = 0;i < NumSends;i++)
864 WetGain[i] = SourceVolume * RoomAttenuation[i];
866 /* Distance-based air absorption */
867 if(AirAbsorptionFactor > 0.0f && ClampedDist > MinDist)
869 ALfloat meters = maxf(ClampedDist-MinDist, 0.0f) * MetersPerUnit;
870 DryGainHF *= powf(AIRABSORBGAINHF, AirAbsorptionFactor*meters);
871 for(i = 0;i < NumSends;i++)
872 WetGainHF[i] *= powf(RoomAirAbsorption[i], AirAbsorptionFactor*meters);
875 if(WetGainAuto)
877 ALfloat ApparentDist = 1.0f/maxf(Attenuation, 0.00001f) - 1.0f;
879 /* Apply a decay-time transformation to the wet path, based on the
880 * attenuation of the dry path.
882 * Using the apparent distance, based on the distance attenuation, the
883 * initial decay of the reverb effect is calculated and applied to the
884 * wet path.
886 for(i = 0;i < NumSends;i++)
888 if(DecayDistance[i] > 0.0f)
889 WetGain[i] *= powf(0.001f/*-60dB*/, ApparentDist/DecayDistance[i]);
893 /* Calculate directional soundcones */
894 Angle = RAD2DEG(acosf(aluDotproduct(Direction,SourceToListener)) * ConeScale) * 2.0f;
895 if(Angle > InnerAngle && Angle <= OuterAngle)
897 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
898 ConeVolume = lerp(1.0f, ALSource->OuterGain, scale);
899 ConeHF = lerp(1.0f, ALSource->OuterGainHF, scale);
901 else if(Angle > OuterAngle)
903 ConeVolume = ALSource->OuterGain;
904 ConeHF = ALSource->OuterGainHF;
906 else
908 ConeVolume = 1.0f;
909 ConeHF = 1.0f;
912 DryGain *= ConeVolume;
913 if(WetGainAuto)
915 for(i = 0;i < NumSends;i++)
916 WetGain[i] *= ConeVolume;
918 if(DryGainHFAuto)
919 DryGainHF *= ConeHF;
920 if(WetGainHFAuto)
922 for(i = 0;i < NumSends;i++)
923 WetGainHF[i] *= ConeHF;
926 /* Clamp to Min/Max Gain */
927 DryGain = clampf(DryGain, MinVolume, MaxVolume);
928 for(i = 0;i < NumSends;i++)
929 WetGain[i] = clampf(WetGain[i], MinVolume, MaxVolume);
931 /* Apply gain and frequency filters */
932 DryGain *= ALSource->Direct.Gain * ListenerGain;
933 DryGainHF *= ALSource->Direct.GainHF;
934 DryGainLF *= ALSource->Direct.GainLF;
935 for(i = 0;i < NumSends;i++)
937 WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
938 WetGainHF[i] *= ALSource->Send[i].GainHF;
939 WetGainLF[i] *= ALSource->Send[i].GainLF;
942 /* Calculate velocity-based doppler effect */
943 if(DopplerFactor > 0.0f)
945 const ALfloat *ListenerVel = ALContext->Listener->Params.Velocity;
946 ALfloat VSS, VLS;
948 if(SpeedOfSound < 1.0f)
950 DopplerFactor *= 1.0f/SpeedOfSound;
951 SpeedOfSound = 1.0f;
954 VSS = aluDotproduct(Velocity, SourceToListener) * DopplerFactor;
955 VLS = aluDotproduct(ListenerVel, SourceToListener) * DopplerFactor;
957 Pitch *= clampf(SpeedOfSound-VLS, 1.0f, SpeedOfSound*2.0f - 1.0f) /
958 clampf(SpeedOfSound-VSS, 1.0f, SpeedOfSound*2.0f - 1.0f);
961 BufferListItem = ALSource->queue;
962 while(BufferListItem != NULL)
964 ALbuffer *ALBuffer;
965 if((ALBuffer=BufferListItem->buffer) != NULL)
967 /* Calculate fixed-point stepping value, based on the pitch, buffer
968 * frequency, and output frequency. */
969 Pitch = Pitch * ALBuffer->Frequency / Frequency;
970 if(Pitch > (ALfloat)MAX_PITCH)
971 src->Step = MAX_PITCH<<FRACTIONBITS;
972 else
974 src->Step = fastf2i(Pitch*FRACTIONONE);
975 if(src->Step == 0)
976 src->Step = 1;
978 src->Resample = SelectResampler(Resampler, src->Step);
980 break;
982 BufferListItem = BufferListItem->next;
985 if(Device->Hrtf)
987 /* Use a binaural HRTF algorithm for stereo headphone playback */
988 ALfloat delta, ev = 0.0f, az = 0.0f;
990 if(Distance > FLT_EPSILON)
992 ALfloat invlen = 1.0f/Distance;
993 Position[0] *= invlen;
994 Position[1] *= invlen;
995 Position[2] *= invlen;
997 /* Calculate elevation and azimuth only when the source is not at
998 * the listener. This prevents +0 and -0 Z from producing
999 * inconsistent panning. Also, clamp Y in case FP precision errors
1000 * cause it to land outside of -1..+1. */
1001 ev = asinf(clampf(Position[1], -1.0f, 1.0f));
1002 az = atan2f(Position[0], -Position[2]*ZScale);
1005 /* Check to see if the HRIR is already moving. */
1006 if(src->Direct.Moving)
1008 /* Calculate the normalized HRTF transition factor (delta). */
1009 delta = CalcHrtfDelta(src->Direct.Mix.Hrtf.Gain, DryGain,
1010 src->Direct.Mix.Hrtf.Dir, Position);
1011 /* If the delta is large enough, get the moving HRIR target
1012 * coefficients, target delays, steppping values, and counter. */
1013 if(delta > 0.001f)
1015 ALuint counter = GetMovingHrtfCoeffs(Device->Hrtf,
1016 ev, az, DryGain, delta,
1017 src->Direct.Counter,
1018 src->Direct.Mix.Hrtf.Params[0].Coeffs,
1019 src->Direct.Mix.Hrtf.Params[0].Delay,
1020 src->Direct.Mix.Hrtf.Params[0].CoeffStep,
1021 src->Direct.Mix.Hrtf.Params[0].DelayStep);
1022 src->Direct.Counter = counter;
1023 src->Direct.Mix.Hrtf.Gain = DryGain;
1024 src->Direct.Mix.Hrtf.Dir[0] = Position[0];
1025 src->Direct.Mix.Hrtf.Dir[1] = Position[1];
1026 src->Direct.Mix.Hrtf.Dir[2] = Position[2];
1029 else
1031 /* Get the initial (static) HRIR coefficients and delays. */
1032 GetLerpedHrtfCoeffs(Device->Hrtf, ev, az, DryGain,
1033 src->Direct.Mix.Hrtf.Params[0].Coeffs,
1034 src->Direct.Mix.Hrtf.Params[0].Delay);
1035 src->Direct.Counter = 0;
1036 src->Direct.Moving = AL_TRUE;
1037 src->Direct.Mix.Hrtf.Gain = DryGain;
1038 src->Direct.Mix.Hrtf.Dir[0] = Position[0];
1039 src->Direct.Mix.Hrtf.Dir[1] = Position[1];
1040 src->Direct.Mix.Hrtf.Dir[2] = Position[2];
1042 src->Direct.Mix.Hrtf.IrSize = GetHrtfIrSize(Device->Hrtf);
1044 src->IsHrtf = AL_TRUE;
1045 src->Dry.HrtfMix = SelectHrtfMixer();
1047 else
1049 ALfloat *restrict Target = src->Direct.Mix.Gains[0].Target;
1050 ALfloat DirGain = 0.0f;
1051 ALfloat AmbientGain;
1053 for(j = 0;j < MaxChannels;j++)
1054 Target[j] = 0.0f;
1056 /* Normalize the length, and compute panned gains. */
1057 if(Distance > FLT_EPSILON)
1059 ALfloat invlen = 1.0f/Distance;
1060 Position[0] *= invlen;
1061 Position[1] *= invlen;
1062 Position[2] *= invlen;
1064 DirGain = sqrtf(Position[0]*Position[0] + Position[2]*Position[2]);
1065 ComputeAngleGains(Device, atan2f(Position[0], -Position[2]*ZScale), 0.0f,
1066 DryGain*DirGain, Target);
1069 /* Adjustment for vertical offsets. Not the greatest, but simple
1070 * enough. */
1071 AmbientGain = DryGain * sqrtf(1.0f/Device->NumChan) * (1.0f-DirGain);
1072 for(i = 0;i < (ALint)Device->NumChan;i++)
1074 enum Channel chan = Device->Speaker2Chan[i];
1075 Target[chan] = maxf(Target[chan], AmbientGain);
1078 if(!src->Direct.Moving)
1080 ALfloat *restrict Current = src->Direct.Mix.Gains[0].Current;
1081 ALfloat *restrict Step = src->Direct.Mix.Gains[0].Step;
1082 for(j = 0;j < MaxChannels;j++)
1084 Current[j] = Target[j];
1085 Step[j] = 1.0f;
1087 src->Direct.Counter = 0;
1088 src->Direct.Moving = AL_TRUE;
1090 else
1092 ALfloat *restrict Current = src->Direct.Mix.Gains[0].Current;
1093 ALfloat *restrict Step = src->Direct.Mix.Gains[0].Step;
1094 for(j = 0;j < MaxChannels;j++)
1096 ALfloat cur = maxf(Current[j], FLT_EPSILON);
1097 ALfloat trg = maxf(Target[j], FLT_EPSILON);
1098 if(fabs(trg - cur) >= GAIN_SILENCE_THRESHOLD)
1099 Step[j] = powf(trg/cur, 1.0f/64.0f);
1100 else
1101 Step[j] = 1.0f;
1102 Current[j] = cur;
1104 src->Direct.Counter = 64;
1107 src->IsHrtf = AL_FALSE;
1108 src->Dry.Mix = SelectDirectMixer();
1110 for(i = 0;i < NumSends;i++)
1112 src->Send[i].Gain.Target = WetGain[i];
1113 if(!src->Send[i].Moving)
1115 src->Send[i].Gain.Current = src->Send[i].Gain.Target;
1116 src->Send[i].Gain.Step = 1.0f;
1117 src->Send[i].Counter = 0;
1118 src->Send[i].Moving = AL_TRUE;
1120 else
1122 ALfloat cur = maxf(src->Send[i].Gain.Current, FLT_EPSILON);
1123 ALfloat trg = maxf(src->Send[i].Gain.Target, FLT_EPSILON);
1124 if(fabs(trg - cur) >= GAIN_SILENCE_THRESHOLD)
1125 src->Send[i].Gain.Step = powf(trg/cur, 1.0f/64.0f);
1126 else
1127 src->Send[i].Gain.Step = 1.0f;
1128 src->Send[i].Gain.Current = cur;
1129 src->Send[i].Counter = 64;
1132 src->WetMix = SelectSendMixer();
1135 ALfloat gainhf = maxf(0.01f, DryGainHF);
1136 ALfloat gainlf = maxf(0.01f, DryGainLF);
1137 ALfloat hfscale = ALSource->Direct.HFReference / Frequency;
1138 ALfloat lfscale = ALSource->Direct.LFReference / Frequency;
1139 src->Direct.Filters[0].ActiveType = AF_None;
1140 if(gainhf != 1.0f) src->Direct.Filters[0].ActiveType |= AF_LowPass;
1141 if(gainlf != 1.0f) src->Direct.Filters[0].ActiveType |= AF_HighPass;
1142 ALfilterState_setParams(
1143 &src->Direct.Filters[0].LowPass, ALfilterType_HighShelf, gainhf,
1144 hfscale, 0.0f
1146 ALfilterState_setParams(
1147 &src->Direct.Filters[0].HighPass, ALfilterType_LowShelf, gainlf,
1148 lfscale, 0.0f
1151 for(i = 0;i < NumSends;i++)
1153 ALfloat gainhf = maxf(0.01f, WetGainHF[i]);
1154 ALfloat gainlf = maxf(0.01f, WetGainLF[i]);
1155 ALfloat hfscale = ALSource->Send[i].HFReference / Frequency;
1156 ALfloat lfscale = ALSource->Send[i].LFReference / Frequency;
1157 src->Send[i].Filters[0].ActiveType = AF_None;
1158 if(gainhf != 1.0f) src->Send[i].Filters[0].ActiveType |= AF_LowPass;
1159 if(gainlf != 1.0f) src->Send[i].Filters[0].ActiveType |= AF_HighPass;
1160 ALfilterState_setParams(
1161 &src->Send[i].Filters[0].LowPass, ALfilterType_HighShelf, gainhf,
1162 hfscale, 0.0f
1164 ALfilterState_setParams(
1165 &src->Send[i].Filters[0].HighPass, ALfilterType_LowShelf, gainlf,
1166 lfscale, 0.0f
1172 static inline ALint aluF2I25(ALfloat val)
1174 /* Clamp the value between -1 and +1. This handles that with only a single branch. */
1175 if(fabsf(val) > 1.0f)
1176 val = (ALfloat)((0.0f < val) - (val < 0.0f));
1177 /* Convert to a signed integer, between -16777215 and +16777215. */
1178 return fastf2i(val*16777215.0f);
1181 static inline ALfloat aluF2F(ALfloat val)
1182 { return val; }
1183 static inline ALint aluF2I(ALfloat val)
1184 { return aluF2I25(val)<<7; }
1185 static inline ALuint aluF2UI(ALfloat val)
1186 { return aluF2I(val)+2147483648u; }
1187 static inline ALshort aluF2S(ALfloat val)
1188 { return aluF2I25(val)>>9; }
1189 static inline ALushort aluF2US(ALfloat val)
1190 { return aluF2S(val)+32768; }
1191 static inline ALbyte aluF2B(ALfloat val)
1192 { return aluF2I25(val)>>17; }
1193 static inline ALubyte aluF2UB(ALfloat val)
1194 { return aluF2B(val)+128; }
1196 #define DECL_TEMPLATE(T, func) \
1197 static void Write_##T(ALCdevice *device, ALvoid **buffer, ALuint SamplesToDo) \
1199 ALfloat (*restrict DryBuffer)[BUFFERSIZE] = device->DryBuffer; \
1200 const ALuint numchans = ChannelsFromDevFmt(device->FmtChans); \
1201 const ALuint *offsets = device->ChannelOffsets; \
1202 ALuint i, j; \
1204 for(j = 0;j < MaxChannels;j++) \
1206 T *restrict out; \
1208 if(offsets[j] == INVALID_OFFSET) \
1209 continue; \
1211 out = (T*)(*buffer) + offsets[j]; \
1212 for(i = 0;i < SamplesToDo;i++) \
1213 out[i*numchans] = func(DryBuffer[j][i]); \
1215 *buffer = (char*)(*buffer) + SamplesToDo*numchans*sizeof(T); \
1218 DECL_TEMPLATE(ALfloat, aluF2F)
1219 DECL_TEMPLATE(ALuint, aluF2UI)
1220 DECL_TEMPLATE(ALint, aluF2I)
1221 DECL_TEMPLATE(ALushort, aluF2US)
1222 DECL_TEMPLATE(ALshort, aluF2S)
1223 DECL_TEMPLATE(ALubyte, aluF2UB)
1224 DECL_TEMPLATE(ALbyte, aluF2B)
1226 #undef DECL_TEMPLATE
1229 ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
1231 ALuint SamplesToDo;
1232 ALeffectslot **slot, **slot_end;
1233 ALactivesource **src, **src_end;
1234 ALCcontext *ctx;
1235 FPUCtl oldMode;
1236 ALuint i, c;
1238 SetMixerFPUMode(&oldMode);
1240 while(size > 0)
1242 IncrementRef(&device->MixCount);
1244 SamplesToDo = minu(size, BUFFERSIZE);
1245 for(c = 0;c < MaxChannels;c++)
1246 memset(device->DryBuffer[c], 0, SamplesToDo*sizeof(ALfloat));
1248 ALCdevice_Lock(device);
1249 V(device->Synth,process)(SamplesToDo, device->DryBuffer);
1251 ctx = device->ContextList;
1252 while(ctx)
1254 ALenum DeferUpdates = ctx->DeferUpdates;
1255 ALenum UpdateSources = AL_FALSE;
1257 if(!DeferUpdates)
1258 UpdateSources = ExchangeInt(&ctx->UpdateSources, AL_FALSE);
1260 if(UpdateSources)
1261 CalcListenerParams(ctx->Listener);
1263 /* source processing */
1264 src = ctx->ActiveSources;
1265 src_end = src + ctx->ActiveSourceCount;
1266 while(src != src_end)
1268 ALsource *source = (*src)->Source;
1270 if(source->state != AL_PLAYING && source->state != AL_PAUSED)
1272 ALactivesource *temp = *(--src_end);
1273 *src_end = *src;
1274 *src = temp;
1275 --(ctx->ActiveSourceCount);
1276 continue;
1279 if(!DeferUpdates && (ExchangeInt(&source->NeedsUpdate, AL_FALSE) ||
1280 UpdateSources))
1281 (*src)->Update(*src, ctx);
1283 if(source->state != AL_PAUSED)
1284 MixSource(*src, device, SamplesToDo);
1285 src++;
1288 /* effect slot processing */
1289 slot = VECTOR_ITER_BEGIN(ctx->ActiveAuxSlots);
1290 slot_end = VECTOR_ITER_END(ctx->ActiveAuxSlots);
1291 while(slot != slot_end)
1293 if(!DeferUpdates && ExchangeInt(&(*slot)->NeedsUpdate, AL_FALSE))
1294 V((*slot)->EffectState,update)(device, *slot);
1296 V((*slot)->EffectState,process)(SamplesToDo, (*slot)->WetBuffer[0],
1297 device->DryBuffer);
1299 for(i = 0;i < SamplesToDo;i++)
1300 (*slot)->WetBuffer[0][i] = 0.0f;
1302 slot++;
1305 ctx = ctx->next;
1308 slot = &device->DefaultSlot;
1309 if(*slot != NULL)
1311 if(ExchangeInt(&(*slot)->NeedsUpdate, AL_FALSE))
1312 V((*slot)->EffectState,update)(device, *slot);
1314 V((*slot)->EffectState,process)(SamplesToDo, (*slot)->WetBuffer[0],
1315 device->DryBuffer);
1317 for(i = 0;i < SamplesToDo;i++)
1318 (*slot)->WetBuffer[0][i] = 0.0f;
1321 /* Increment the clock time. Every second's worth of samples is
1322 * converted and added to clock base so that large sample counts don't
1323 * overflow during conversion. This also guarantees an exact, stable
1324 * conversion. */
1325 device->SamplesDone += SamplesToDo;
1326 device->ClockBase += (device->SamplesDone/device->Frequency) * DEVICE_CLOCK_RES;
1327 device->SamplesDone %= device->Frequency;
1328 ALCdevice_Unlock(device);
1330 if(device->Bs2b)
1332 /* Apply binaural/crossfeed filter */
1333 for(i = 0;i < SamplesToDo;i++)
1335 float samples[2];
1336 samples[0] = device->DryBuffer[FrontLeft][i];
1337 samples[1] = device->DryBuffer[FrontRight][i];
1338 bs2b_cross_feed(device->Bs2b, samples);
1339 device->DryBuffer[FrontLeft][i] = samples[0];
1340 device->DryBuffer[FrontRight][i] = samples[1];
1344 if(buffer)
1346 switch(device->FmtType)
1348 case DevFmtByte:
1349 Write_ALbyte(device, &buffer, SamplesToDo);
1350 break;
1351 case DevFmtUByte:
1352 Write_ALubyte(device, &buffer, SamplesToDo);
1353 break;
1354 case DevFmtShort:
1355 Write_ALshort(device, &buffer, SamplesToDo);
1356 break;
1357 case DevFmtUShort:
1358 Write_ALushort(device, &buffer, SamplesToDo);
1359 break;
1360 case DevFmtInt:
1361 Write_ALint(device, &buffer, SamplesToDo);
1362 break;
1363 case DevFmtUInt:
1364 Write_ALuint(device, &buffer, SamplesToDo);
1365 break;
1366 case DevFmtFloat:
1367 Write_ALfloat(device, &buffer, SamplesToDo);
1368 break;
1372 size -= SamplesToDo;
1373 IncrementRef(&device->MixCount);
1376 RestoreFPUMode(&oldMode);
1380 ALvoid aluHandleDisconnect(ALCdevice *device)
1382 ALCcontext *Context;
1384 device->Connected = ALC_FALSE;
1386 Context = device->ContextList;
1387 while(Context)
1389 ALactivesource **src, **src_end;
1391 src = Context->ActiveSources;
1392 src_end = src + Context->ActiveSourceCount;
1393 while(src != src_end)
1395 ALsource *source = (*src)->Source;
1396 if(source->state == AL_PLAYING)
1398 source->state = AL_STOPPED;
1399 source->current_buffer = NULL;
1400 source->position = 0;
1401 source->position_fraction = 0;
1403 src++;
1405 Context->ActiveSourceCount = 0;
1407 Context = Context->next;