Keep track of the real output's channel names
[openal-soft.git] / Alc / panning.c
blobbeb928d9ac524faa69c5b211a6e570624bcf3210
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2010 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <math.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <ctype.h>
27 #include <assert.h>
29 #include "alMain.h"
30 #include "alAuxEffectSlot.h"
31 #include "alu.h"
32 #include "bool.h"
35 extern inline void CalcXYZCoeffs(ALfloat x, ALfloat y, ALfloat z, ALfloat coeffs[MAX_AMBI_COEFFS]);
38 #define ZERO_ORDER_SCALE 0.0f
39 #define FIRST_ORDER_SCALE 1.0f
40 #define SECOND_ORDER_SCALE (1.0f / 1.22474f)
41 #define THIRD_ORDER_SCALE (1.0f / 1.30657f)
44 static const ALuint FuMa2ACN[MAX_AMBI_COEFFS] = {
45 0, /* W */
46 3, /* X */
47 1, /* Y */
48 2, /* Z */
49 6, /* R */
50 7, /* S */
51 5, /* T */
52 8, /* U */
53 4, /* V */
54 12, /* K */
55 13, /* L */
56 11, /* M */
57 14, /* N */
58 10, /* O */
59 15, /* P */
60 9, /* Q */
63 /* NOTE: These are scale factors as applied to Ambisonics content. FuMa
64 * decoder coefficients should be divided by these values to get N3D decoder
65 * coefficients.
67 static const ALfloat FuMa2N3DScale[MAX_AMBI_COEFFS] = {
68 1.414213562f, /* ACN 0 (W), sqrt(2) */
69 1.732050808f, /* ACN 1 (Y), sqrt(3) */
70 1.732050808f, /* ACN 2 (Z), sqrt(3) */
71 1.732050808f, /* ACN 3 (X), sqrt(3) */
72 1.936491673f, /* ACN 4 (V), sqrt(15)/2 */
73 1.936491673f, /* ACN 5 (T), sqrt(15)/2 */
74 2.236067978f, /* ACN 6 (R), sqrt(5) */
75 1.936491673f, /* ACN 7 (S), sqrt(15)/2 */
76 1.936491673f, /* ACN 8 (U), sqrt(15)/2 */
77 2.091650066f, /* ACN 9 (Q), sqrt(35/8) */
78 1.972026594f, /* ACN 10 (O), sqrt(35)/3 */
79 2.231093404f, /* ACN 11 (M), sqrt(224/45) */
80 2.645751311f, /* ACN 12 (K), sqrt(7) */
81 2.231093404f, /* ACN 13 (L), sqrt(224/45) */
82 1.972026594f, /* ACN 14 (N), sqrt(35)/3 */
83 2.091650066f, /* ACN 15 (P), sqrt(35/8) */
87 void CalcDirectionCoeffs(const ALfloat dir[3], ALfloat coeffs[MAX_AMBI_COEFFS])
89 /* Convert from OpenAL coords to Ambisonics. */
90 ALfloat x = -dir[2];
91 ALfloat y = -dir[0];
92 ALfloat z = dir[1];
94 /* Zeroth-order */
95 coeffs[0] = 1.0f; /* ACN 0 = 1 */
96 /* First-order */
97 coeffs[1] = 1.732050808f * y; /* ACN 1 = sqrt(3) * Y */
98 coeffs[2] = 1.732050808f * z; /* ACN 2 = sqrt(3) * Z */
99 coeffs[3] = 1.732050808f * x; /* ACN 3 = sqrt(3) * X */
100 /* Second-order */
101 coeffs[4] = 3.872983346f * x * y; /* ACN 4 = sqrt(15) * X * Y */
102 coeffs[5] = 3.872983346f * y * z; /* ACN 5 = sqrt(15) * Y * Z */
103 coeffs[6] = 1.118033989f * (3.0f*z*z - 1.0f); /* ACN 6 = sqrt(5)/2 * (3*Z*Z - 1) */
104 coeffs[7] = 3.872983346f * x * z; /* ACN 7 = sqrt(15) * X * Z */
105 coeffs[8] = 1.936491673f * (x*x - y*y); /* ACN 8 = sqrt(15)/2 * (X*X - Y*Y) */
106 /* Third-order */
107 coeffs[9] = 2.091650066f * y * (3.0f*x*x - y*y); /* ACN 9 = sqrt(35/8) * Y * (3*X*X - Y*Y) */
108 coeffs[10] = 10.246950766f * z * x * y; /* ACN 10 = sqrt(105) * Z * X * Y */
109 coeffs[11] = 1.620185175f * y * (5.0f*z*z - 1.0f); /* ACN 11 = sqrt(21/8) * Y * (5*Z*Z - 1) */
110 coeffs[12] = 1.322875656f * z * (5.0f*z*z - 3.0f); /* ACN 12 = sqrt(7)/2 * Z * (5*Z*Z - 3) */
111 coeffs[13] = 1.620185175f * x * (5.0f*z*z - 1.0f); /* ACN 13 = sqrt(21/8) * X * (5*Z*Z - 1) */
112 coeffs[14] = 5.123475383f * z * (x*x - y*y); /* ACN 14 = sqrt(105)/2 * Z * (X*X - Y*Y) */
113 coeffs[15] = 2.091650066f * x * (x*x - 3.0f*y*y); /* ACN 15 = sqrt(35/8) * X * (X*X - 3*Y*Y) */
116 void CalcAngleCoeffs(ALfloat angle, ALfloat elevation, ALfloat coeffs[MAX_AMBI_COEFFS])
118 ALfloat dir[3] = {
119 sinf(angle) * cosf(elevation),
120 sinf(elevation),
121 -cosf(angle) * cosf(elevation)
123 CalcDirectionCoeffs(dir, coeffs);
127 void ComputeAmbientGains(const ChannelConfig *chancoeffs, ALuint numchans, ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS])
129 ALuint i;
131 for(i = 0;i < numchans;i++)
133 // The W coefficients are based on a mathematical average of the
134 // output. The square root of the base average provides for a more
135 // perceptual average volume, better suited to non-directional gains.
136 gains[i] = sqrtf(chancoeffs[i][0]) * ingain;
138 for(;i < MAX_OUTPUT_CHANNELS;i++)
139 gains[i] = 0.0f;
142 void ComputePanningGains(const ChannelConfig *chancoeffs, ALuint numchans, const ALfloat coeffs[MAX_AMBI_COEFFS], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS])
144 ALuint i, j;
146 for(i = 0;i < numchans;i++)
148 float gain = 0.0f;
149 for(j = 0;j < MAX_AMBI_COEFFS;j++)
150 gain += chancoeffs[i][j]*coeffs[j];
151 gains[i] = gain * ingain;
153 for(;i < MAX_OUTPUT_CHANNELS;i++)
154 gains[i] = 0.0f;
157 void ComputeFirstOrderGains(const ChannelConfig *chancoeffs, ALuint numchans, const ALfloat mtx[4], ALfloat ingain, ALfloat gains[MAX_OUTPUT_CHANNELS])
159 ALuint i, j;
161 for(i = 0;i < numchans;i++)
163 float gain = 0.0f;
164 for(j = 0;j < 4;j++)
165 gain += chancoeffs[i][j] * mtx[j];
166 gains[i] = gain * ingain;
168 for(;i < MAX_OUTPUT_CHANNELS;i++)
169 gains[i] = 0.0f;
173 DECL_CONST static inline const char *GetLabelFromChannel(enum Channel channel)
175 switch(channel)
177 case FrontLeft: return "front-left";
178 case FrontRight: return "front-right";
179 case FrontCenter: return "front-center";
180 case LFE: return "lfe";
181 case BackLeft: return "back-left";
182 case BackRight: return "back-right";
183 case BackCenter: return "back-center";
184 case SideLeft: return "side-left";
185 case SideRight: return "side-right";
187 case UpperFrontLeft: return "upper-front-left";
188 case UpperFrontRight: return "upper-front-right";
189 case UpperBackLeft: return "upper-back-left";
190 case UpperBackRight: return "upper-back-right";
191 case LowerFrontLeft: return "lower-front-left";
192 case LowerFrontRight: return "lower-front-right";
193 case LowerBackLeft: return "lower-back-left";
194 case LowerBackRight: return "lower-back-right";
196 case BFormatW: return "bformat-w";
197 case BFormatX: return "bformat-x";
198 case BFormatY: return "bformat-y";
199 case BFormatZ: return "bformat-z";
201 case InvalidChannel: break;
203 return "(unknown)";
207 typedef struct ChannelMap {
208 enum Channel ChanName;
209 ChannelConfig Config;
210 } ChannelMap;
212 static void SetChannelMap(const enum Channel *devchans, ChannelConfig *ambicoeffs,
213 const ChannelMap *chanmap, size_t count, ALuint *outcount,
214 ALboolean isfuma)
216 size_t j, k;
217 ALuint i;
219 for(i = 0;i < MAX_OUTPUT_CHANNELS && devchans[i] != InvalidChannel;i++)
221 if(devchans[i] == LFE)
223 for(j = 0;j < MAX_AMBI_COEFFS;j++)
224 ambicoeffs[i][j] = 0.0f;
225 continue;
228 for(j = 0;j < count;j++)
230 if(devchans[i] != chanmap[j].ChanName)
231 continue;
233 if(isfuma)
235 /* Reformat FuMa -> ACN/N3D */
236 for(k = 0;k < MAX_AMBI_COEFFS;++k)
238 ALuint acn = FuMa2ACN[k];
239 ambicoeffs[i][acn] = chanmap[j].Config[k] / FuMa2N3DScale[acn];
242 else
244 for(k = 0;k < MAX_AMBI_COEFFS;++k)
245 ambicoeffs[i][k] = chanmap[j].Config[k];
247 break;
249 if(j == count)
250 ERR("Failed to match %s channel (%u) in channel map\n", GetLabelFromChannel(devchans[i]), i);
252 *outcount = i;
255 static bool LoadChannelSetup(ALCdevice *device)
257 static const enum Channel mono_chans[1] = {
258 FrontCenter
259 }, stereo_chans[2] = {
260 FrontLeft, FrontRight
261 }, quad_chans[4] = {
262 FrontLeft, FrontRight,
263 BackLeft, BackRight
264 }, surround51_chans[5] = {
265 FrontLeft, FrontRight, FrontCenter,
266 SideLeft, SideRight
267 }, surround51rear_chans[5] = {
268 FrontLeft, FrontRight, FrontCenter,
269 BackLeft, BackRight
270 }, surround61_chans[6] = {
271 FrontLeft, FrontRight,
272 FrontCenter, BackCenter,
273 SideLeft, SideRight
274 }, surround71_chans[7] = {
275 FrontLeft, FrontRight, FrontCenter,
276 BackLeft, BackRight,
277 SideLeft, SideRight
279 ChannelMap chanmap[MAX_OUTPUT_CHANNELS];
280 const enum Channel *channels = NULL;
281 const char *layout = NULL;
282 ALfloat ambiscale = 1.0f;
283 size_t count = 0;
284 int isfuma;
285 int order;
286 size_t i;
288 switch(device->FmtChans)
290 case DevFmtMono:
291 layout = "mono";
292 channels = mono_chans;
293 count = COUNTOF(mono_chans);
294 break;
295 case DevFmtStereo:
296 layout = "stereo";
297 channels = stereo_chans;
298 count = COUNTOF(stereo_chans);
299 break;
300 case DevFmtQuad:
301 layout = "quad";
302 channels = quad_chans;
303 count = COUNTOF(quad_chans);
304 break;
305 case DevFmtX51:
306 layout = "surround51";
307 channels = surround51_chans;
308 count = COUNTOF(surround51_chans);
309 break;
310 case DevFmtX51Rear:
311 layout = "surround51rear";
312 channels = surround51rear_chans;
313 count = COUNTOF(surround51rear_chans);
314 break;
315 case DevFmtX61:
316 layout = "surround61";
317 channels = surround61_chans;
318 count = COUNTOF(surround61_chans);
319 break;
320 case DevFmtX71:
321 layout = "surround71";
322 channels = surround71_chans;
323 count = COUNTOF(surround71_chans);
324 break;
325 case DevFmtBFormat3D:
326 break;
329 if(!layout)
330 return false;
331 else
333 char name[32] = {0};
334 const char *type;
335 char eol;
337 snprintf(name, sizeof(name), "%s/type", layout);
338 if(!ConfigValueStr(al_string_get_cstr(device->DeviceName), "layouts", name, &type))
339 return false;
341 if(sscanf(type, " %31[^: ] : %d%c", name, &order, &eol) != 2)
343 ERR("Invalid type value '%s' (expected name:order) for layout %s\n", type, layout);
344 return false;
347 if(strcasecmp(name, "fuma") == 0)
348 isfuma = 1;
349 else if(strcasecmp(name, "n3d") == 0)
350 isfuma = 0;
351 else
353 ERR("Unhandled type name '%s' (expected FuMa or N3D) for layout %s\n", name, layout);
354 return false;
357 if(order == 3)
358 ambiscale = THIRD_ORDER_SCALE;
359 else if(order == 2)
360 ambiscale = SECOND_ORDER_SCALE;
361 else if(order == 1)
362 ambiscale = FIRST_ORDER_SCALE;
363 else if(order == 0)
364 ambiscale = ZERO_ORDER_SCALE;
365 else
367 ERR("Unhandled type order %d (expected 0, 1, 2, or 3) for layout %s\n", order, layout);
368 return false;
372 for(i = 0;i < count;i++)
374 float coeffs[MAX_AMBI_COEFFS] = {0.0f};
375 const char *channame;
376 char chanlayout[32];
377 const char *value;
378 int props = 0;
379 char eol = 0;
380 int j;
382 chanmap[i].ChanName = channels[i];
383 channame = GetLabelFromChannel(channels[i]);
385 snprintf(chanlayout, sizeof(chanlayout), "%s/%s", layout, channame);
386 if(!ConfigValueStr(al_string_get_cstr(device->DeviceName), "layouts", chanlayout, &value))
388 ERR("Missing channel %s\n", channame);
389 return false;
391 if(order == 3)
392 props = sscanf(value, " %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %c",
393 &coeffs[0], &coeffs[1], &coeffs[2], &coeffs[3],
394 &coeffs[4], &coeffs[5], &coeffs[6], &coeffs[7],
395 &coeffs[8], &coeffs[9], &coeffs[10], &coeffs[11],
396 &coeffs[12], &coeffs[13], &coeffs[14], &coeffs[15],
397 &eol
399 else if(order == 2)
400 props = sscanf(value, " %f %f %f %f %f %f %f %f %f %c",
401 &coeffs[0], &coeffs[1], &coeffs[2],
402 &coeffs[3], &coeffs[4], &coeffs[5],
403 &coeffs[6], &coeffs[7], &coeffs[8],
404 &eol
406 else if(order == 1)
407 props = sscanf(value, " %f %f %f %f %c",
408 &coeffs[0], &coeffs[1],
409 &coeffs[2], &coeffs[3],
410 &eol
412 else if(order == 0)
413 props = sscanf(value, " %f %c", &coeffs[0], &eol);
414 if(props == 0)
416 ERR("Failed to parse option %s properties\n", chanlayout);
417 return false;
420 if(props > (order+1)*(order+1))
422 ERR("Excess elements in option %s (expected %d)\n", chanlayout, (order+1)*(order+1));
423 return false;
426 for(j = 0;j < MAX_AMBI_COEFFS;++j)
427 chanmap[i].Config[j] = coeffs[j];
429 SetChannelMap(device->Dry.ChannelName, device->Dry.AmbiCoeffs, chanmap, count,
430 &device->Dry.NumChannels, isfuma);
431 device->Dry.AmbiScale = ambiscale;
432 return true;
435 ALvoid aluInitPanning(ALCdevice *device)
437 /* NOTE: These decoder coefficients are using FuMa channel ordering and
438 * normalization, since that's what was produced by the Ambisonic Decoder
439 * Toolbox. SetChannelMap will convert them to N3D.
441 static const ChannelMap MonoCfg[1] = {
442 { FrontCenter, { 1.414213562f } },
443 }, StereoCfg[2] = {
444 { FrontLeft, { 0.707106781f, 0.0f, 0.5f, 0.0f } },
445 { FrontRight, { 0.707106781f, 0.0f, -0.5f, 0.0f } },
446 }, QuadCfg[4] = {
447 { FrontLeft, { 0.353553f, 0.306184f, 0.306184f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.117186f } },
448 { FrontRight, { 0.353553f, 0.306184f, -0.306184f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.117186f } },
449 { BackLeft, { 0.353553f, -0.306184f, 0.306184f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.117186f } },
450 { BackRight, { 0.353553f, -0.306184f, -0.306184f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.117186f } },
451 }, X51SideCfg[5] = {
452 { FrontLeft, { 0.208954f, 0.212846f, 0.238350f, 0.0f, 0.0f, 0.0f, 0.0f, -0.017738f, 0.204014f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.051023f, 0.047490f } },
453 { FrontRight, { 0.208954f, 0.212846f, -0.238350f, 0.0f, 0.0f, 0.0f, 0.0f, -0.017738f, -0.204014f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.051023f, -0.047490f } },
454 { FrontCenter, { 0.109403f, 0.179490f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.142031f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.072024f, 0.000000f } },
455 { SideLeft, { 0.470936f, -0.369626f, 0.349386f, 0.0f, 0.0f, 0.0f, 0.0f, -0.031375f, -0.058144f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.007119f, -0.043968f } },
456 { SideRight, { 0.470936f, -0.369626f, -0.349386f, 0.0f, 0.0f, 0.0f, 0.0f, -0.031375f, 0.058144f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.007119f, 0.043968f } },
457 }, X51RearCfg[5] = {
458 { FrontLeft, { 0.208954f, 0.212846f, 0.238350f, 0.0f, 0.0f, 0.0f, 0.0f, -0.017738f, 0.204014f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.051023f, 0.047490f } },
459 { FrontRight, { 0.208954f, 0.212846f, -0.238350f, 0.0f, 0.0f, 0.0f, 0.0f, -0.017738f, -0.204014f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.051023f, -0.047490f } },
460 { FrontCenter, { 0.109403f, 0.179490f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.142031f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.072024f, 0.000000f } },
461 { BackLeft, { 0.470936f, -0.369626f, 0.349386f, 0.0f, 0.0f, 0.0f, 0.0f, -0.031375f, -0.058144f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.007119f, -0.043968f } },
462 { BackRight, { 0.470936f, -0.369626f, -0.349386f, 0.0f, 0.0f, 0.0f, 0.0f, -0.031375f, 0.058144f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.007119f, 0.043968f } },
463 }, X61Cfg[6] = {
464 { FrontLeft, { 0.167065f, 0.200583f, 0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, 0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, 0.068910f } },
465 { FrontRight, { 0.167065f, 0.200583f, -0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, -0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, -0.068910f } },
466 { FrontCenter, { 0.109403f, 0.179490f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.142031f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.072024f, 0.000000f } },
467 { BackCenter, { 0.353556f, -0.461940f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.165723f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.000000f } },
468 { SideLeft, { 0.289151f, -0.081301f, 0.401292f, 0.0f, 0.0f, 0.0f, 0.0f, -0.188208f, -0.071420f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.010099f, -0.032897f } },
469 { SideRight, { 0.289151f, -0.081301f, -0.401292f, 0.0f, 0.0f, 0.0f, 0.0f, -0.188208f, 0.071420f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.010099f, 0.032897f } },
470 }, X71Cfg[7] = {
471 { FrontLeft, { 0.167065f, 0.200583f, 0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, 0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, 0.068910f } },
472 { FrontRight, { 0.167065f, 0.200583f, -0.172695f, 0.0f, 0.0f, 0.0f, 0.0f, 0.029855f, -0.186407f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.039241f, -0.068910f } },
473 { FrontCenter, { 0.109403f, 0.179490f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.142031f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.072024f, 0.000000f } },
474 { BackLeft, { 0.224752f, -0.295009f, 0.170325f, 0.0f, 0.0f, 0.0f, 0.0f, 0.105349f, -0.182473f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.065799f } },
475 { BackRight, { 0.224752f, -0.295009f, -0.170325f, 0.0f, 0.0f, 0.0f, 0.0f, 0.105349f, 0.182473f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.065799f } },
476 { SideLeft, { 0.224739f, 0.000000f, 0.340644f, 0.0f, 0.0f, 0.0f, 0.0f, -0.210697f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, -0.065795f } },
477 { SideRight, { 0.224739f, 0.000000f, -0.340644f, 0.0f, 0.0f, 0.0f, 0.0f, -0.210697f, 0.000000f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.000000f, 0.065795f } },
478 }, Cube8Cfg[8] = {
479 { UpperFrontLeft, { 0.176776695f, 0.072168784f, 0.072168784f, 0.072168784f } },
480 { UpperFrontRight, { 0.176776695f, 0.072168784f, -0.072168784f, 0.072168784f } },
481 { UpperBackLeft, { 0.176776695f, -0.072168784f, 0.072168784f, 0.072168784f } },
482 { UpperBackRight, { 0.176776695f, -0.072168784f, -0.072168784f, 0.072168784f } },
483 { LowerFrontLeft, { 0.176776695f, 0.072168784f, 0.072168784f, -0.072168784f } },
484 { LowerFrontRight, { 0.176776695f, 0.072168784f, -0.072168784f, -0.072168784f } },
485 { LowerBackLeft, { 0.176776695f, -0.072168784f, 0.072168784f, -0.072168784f } },
486 { LowerBackRight, { 0.176776695f, -0.072168784f, -0.072168784f, -0.072168784f } },
487 }, BFormat2D[3] = {
488 { BFormatW, { 1.0f, 0.0f, 0.0f, 0.0f } },
489 { BFormatX, { 0.0f, 1.0f, 0.0f, 0.0f } },
490 { BFormatY, { 0.0f, 0.0f, 1.0f, 0.0f } },
491 }, BFormat3D[4] = {
492 { BFormatW, { 1.0f, 0.0f, 0.0f, 0.0f } },
493 { BFormatX, { 0.0f, 1.0f, 0.0f, 0.0f } },
494 { BFormatY, { 0.0f, 0.0f, 1.0f, 0.0f } },
495 { BFormatZ, { 0.0f, 0.0f, 0.0f, 1.0f } },
497 const ChannelMap *chanmap = NULL;
498 ALfloat ambiscale = 1.0f;
499 size_t count = 0;
500 ALuint i;
502 device->Dry.AmbiScale = 1.0f;
503 memset(device->Dry.AmbiCoeffs, 0, sizeof(device->Dry.AmbiCoeffs));
504 device->Dry.NumChannels = 0;
506 if(device->Hrtf)
508 static const struct {
509 enum Channel Channel;
510 ALfloat Angle;
511 ALfloat Elevation;
512 } CubeInfo[8] = {
513 { UpperFrontLeft, DEG2RAD( -45.0f), DEG2RAD( 45.0f) },
514 { UpperFrontRight, DEG2RAD( 45.0f), DEG2RAD( 45.0f) },
515 { UpperBackLeft, DEG2RAD(-135.0f), DEG2RAD( 45.0f) },
516 { UpperBackRight, DEG2RAD( 135.0f), DEG2RAD( 45.0f) },
517 { LowerFrontLeft, DEG2RAD( -45.0f), DEG2RAD(-45.0f) },
518 { LowerFrontRight, DEG2RAD( 45.0f), DEG2RAD(-45.0f) },
519 { LowerBackLeft, DEG2RAD(-135.0f), DEG2RAD(-45.0f) },
520 { LowerBackRight, DEG2RAD( 135.0f), DEG2RAD(-45.0f) },
523 count = COUNTOF(Cube8Cfg);
524 chanmap = Cube8Cfg;
525 ambiscale = FIRST_ORDER_SCALE;
527 for(i = 0;i < count;i++)
528 device->Dry.ChannelName[i] = chanmap[i].ChanName;
529 for(;i < MAX_OUTPUT_CHANNELS;i++)
530 device->Dry.ChannelName[i] = InvalidChannel;
531 SetChannelMap(device->Dry.ChannelName, device->Dry.AmbiCoeffs, chanmap, count,
532 &device->Dry.NumChannels, AL_TRUE);
533 device->Dry.AmbiScale = ambiscale;
535 for(i = 0;i < device->Dry.NumChannels;i++)
537 int chan = GetChannelIdxByName(device, CubeInfo[i].Channel);
538 GetLerpedHrtfCoeffs(device->Hrtf, CubeInfo[i].Elevation, CubeInfo[i].Angle, 1.0f, 1.0f,
539 device->Hrtf_Params[chan].Coeffs, device->Hrtf_Params[chan].Delay);
541 return;
543 if(device->Uhj_Encoder)
545 count = COUNTOF(BFormat2D);
546 chanmap = BFormat2D;
547 ambiscale = FIRST_ORDER_SCALE;
549 for(i = 0;i < count;i++)
550 device->Dry.ChannelName[i] = chanmap[i].ChanName;
551 for(;i < MAX_OUTPUT_CHANNELS;i++)
552 device->Dry.ChannelName[i] = InvalidChannel;
553 SetChannelMap(device->Dry.ChannelName, device->Dry.AmbiCoeffs, chanmap, count,
554 &device->Dry.NumChannels, AL_TRUE);
555 device->Dry.AmbiScale = ambiscale;
557 return;
560 for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
561 device->Dry.ChannelName[i] = device->RealOut.ChannelName[i];
563 if(LoadChannelSetup(device))
564 return;
566 switch(device->FmtChans)
568 case DevFmtMono:
569 count = COUNTOF(MonoCfg);
570 chanmap = MonoCfg;
571 ambiscale = ZERO_ORDER_SCALE;
572 break;
574 case DevFmtStereo:
575 count = COUNTOF(StereoCfg);
576 chanmap = StereoCfg;
577 ambiscale = FIRST_ORDER_SCALE;
578 break;
580 case DevFmtQuad:
581 count = COUNTOF(QuadCfg);
582 chanmap = QuadCfg;
583 ambiscale = SECOND_ORDER_SCALE;
584 break;
586 case DevFmtX51:
587 count = COUNTOF(X51SideCfg);
588 chanmap = X51SideCfg;
589 ambiscale = THIRD_ORDER_SCALE;
590 break;
592 case DevFmtX51Rear:
593 count = COUNTOF(X51RearCfg);
594 chanmap = X51RearCfg;
595 ambiscale = THIRD_ORDER_SCALE;
596 break;
598 case DevFmtX61:
599 count = COUNTOF(X61Cfg);
600 chanmap = X61Cfg;
601 ambiscale = THIRD_ORDER_SCALE;
602 break;
604 case DevFmtX71:
605 count = COUNTOF(X71Cfg);
606 chanmap = X71Cfg;
607 ambiscale = THIRD_ORDER_SCALE;
608 break;
610 case DevFmtBFormat3D:
611 count = COUNTOF(BFormat3D);
612 chanmap = BFormat3D;
613 ambiscale = 1.0f;
614 break;
617 SetChannelMap(device->Dry.ChannelName, device->Dry.AmbiCoeffs, chanmap, count,
618 &device->Dry.NumChannels, AL_TRUE);
619 device->Dry.AmbiScale = ambiscale;
622 void aluInitEffectPanning(ALeffectslot *slot)
624 static const ChannelMap FirstOrderN3D[4] = {
625 { BFormatW, { 1.0f, 0.0f, 0.0f, 0.0f } },
626 { BFormatY, { 0.0f, 1.0f, 0.0f, 0.0f } },
627 { BFormatZ, { 0.0f, 0.0f, 1.0f, 0.0f } },
628 { BFormatX, { 0.0f, 0.0f, 0.0f, 1.0f } },
630 static const enum Channel AmbiChannels[MAX_OUTPUT_CHANNELS] = {
631 BFormatW, BFormatY, BFormatZ, BFormatX, InvalidChannel
634 memset(slot->AmbiCoeffs, 0, sizeof(slot->AmbiCoeffs));
635 slot->NumChannels = 0;
637 SetChannelMap(AmbiChannels, slot->AmbiCoeffs, FirstOrderN3D, COUNTOF(FirstOrderN3D),
638 &slot->NumChannels, AL_FALSE);