2 * Reverb for the OpenAL cross platform audio library
3 * Copyright (C) 2008-2009 by Christopher Fitzgerald.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
30 #include "alAuxEffectSlot.h"
35 typedef struct DelayLine
37 // The delay lines use sample lengths that are powers of 2 to allow the
38 // use of bit-masking instead of a modulus for wrapping.
43 typedef struct ALverbState
{
44 // Must be first in all effects!
47 // All delay lines are allocated as a single buffer to reduce memory
48 // fragmentation and management code.
49 ALfloat
*SampleBuffer
;
51 // Master effect low-pass filter (2 chained 1-pole filters).
55 // Modulator delay line.
57 // The vibrato time is tracked with an index over a modulus-wrapped
58 // range (in samples).
61 // The depth of frequency change (also in samples) and its filter.
66 // Initial effect delay.
68 // The tap points for the initial delay. First tap goes to early
69 // reflections, the last to late reverb.
72 // Output gain for early reflections.
74 // Early reflections are done with 4 delay lines.
78 // The gain for each output channel based on 3D panning (only for the
80 ALfloat PanGain
[OUTPUTCHANNELS
];
82 // Decorrelator delay line.
83 DelayLine Decorrelator
;
84 // There are actually 4 decorrelator taps, but the first occurs at the
88 // Output gain for late reverb.
90 // Attenuation to compensate for the modal density and decay rate of
93 // The feed-back and feed-forward all-pass coefficient.
95 // Mixing matrix coefficient.
97 // Late reverb has 4 parallel all-pass filters.
101 // In addition to 4 cyclical delay lines.
105 // The cyclical delay lines are 1-pole low-pass filtered.
108 // The gain for each output channel based on 3D panning (only for the
110 ALfloat PanGain
[OUTPUTCHANNELS
];
113 // Attenuation to compensate for the modal density and decay rate of
116 // Echo delay and all-pass lines.
124 // The echo line is 1-pole low-pass filtered.
127 // Echo mixing coefficients.
130 // The current read offset for all delay lines.
133 // The gain for each output channel (non-EAX path only; aliased from
138 /* This coefficient is used to define the maximum frequency range controlled
139 * by the modulation depth. The current value of 0.1 will allow it to swing
140 * from 0.9x to 1.1x. This value must be below 1. At 1 it will cause the
141 * sampler to stall on the downswing, and above 1 it will cause it to sample
144 static const ALfloat MODULATION_DEPTH_COEFF
= 0.1f
;
146 /* A filter is used to avoid the terrible distortion caused by changing
147 * modulation time and/or depth. To be consistent across different sample
148 * rates, the coefficient must be raised to a constant divided by the sample
149 * rate: coeff^(constant / rate).
151 static const ALfloat MODULATION_FILTER_COEFF
= 0.048f
;
152 static const ALfloat MODULATION_FILTER_CONST
= 100000.0f
;
154 // When diffusion is above 0, an all-pass filter is used to take the edge off
155 // the echo effect. It uses the following line length (in seconds).
156 static const ALfloat ECHO_ALLPASS_LENGTH
= 0.0133f
;
158 // Input into the late reverb is decorrelated between four channels. Their
159 // timings are dependent on a fraction and multiplier. See the
160 // UpdateDecorrelator() routine for the calculations involved.
161 static const ALfloat DECO_FRACTION
= 0.15f
;
162 static const ALfloat DECO_MULTIPLIER
= 2.0f
;
164 // All delay line lengths are specified in seconds.
166 // The lengths of the early delay lines.
167 static const ALfloat EARLY_LINE_LENGTH
[4] =
169 0.0015f
, 0.0045f
, 0.0135f
, 0.0405f
172 // The lengths of the late all-pass delay lines.
173 static const ALfloat ALLPASS_LINE_LENGTH
[4] =
175 0.0151f
, 0.0167f
, 0.0183f
, 0.0200f
,
178 // The lengths of the late cyclical delay lines.
179 static const ALfloat LATE_LINE_LENGTH
[4] =
181 0.0211f
, 0.0311f
, 0.0461f
, 0.0680f
184 // The late cyclical delay lines have a variable length dependent on the
185 // effect's density parameter (inverted for some reason) and this multiplier.
186 static const ALfloat LATE_LINE_MULTIPLIER
= 4.0f
;
188 // Calculate the length of a delay line and store its mask and offset.
189 static ALuint
CalcLineLength(ALfloat length
, ALintptrEXT offset
, ALuint frequency
, DelayLine
*Delay
)
193 // All line lengths are powers of 2, calculated from their lengths, with
194 // an additional sample in case of rounding errors.
195 samples
= NextPowerOf2((ALuint
)(length
* frequency
) + 1);
196 // All lines share a single sample buffer.
197 Delay
->Mask
= samples
- 1;
198 Delay
->Line
= (ALfloat
*)offset
;
199 // Return the sample count for accumulation.
203 // Given the allocated sample buffer, this function updates each delay line
205 static __inline ALvoid
RealizeLineOffset(ALfloat
* sampleBuffer
, DelayLine
*Delay
)
207 Delay
->Line
= &sampleBuffer
[(ALintptrEXT
)Delay
->Line
];
210 /* Calculates the delay line metrics and allocates the shared sample buffer
211 * for all lines given a flag indicating whether or not to allocate the EAX-
212 * related delays (eaxFlag) and the sample rate (frequency). If an
213 * allocation failure occurs, it returns AL_FALSE.
215 static ALboolean
AllocLines(ALboolean eaxFlag
, ALuint frequency
, ALverbState
*State
)
217 ALuint totalSamples
, index
;
219 ALfloat
*newBuffer
= NULL
;
221 // All delay line lengths are calculated to accomodate the full range of
222 // lengths given their respective paramters.
226 /* The modulator's line length is calculated from the maximum
227 * modulation time and depth coefficient, and halfed for the low-to-
228 * high frequency swing. An additional sample is added to keep it
229 * stable when there is no modulation.
231 length
= (AL_EAXREVERB_MAX_MODULATION_TIME
* MODULATION_DEPTH_COEFF
/
232 2.0f
) + (1.0f
/ frequency
);
233 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
,
237 // The initial delay is the sum of the reflections and late reverb
240 length
= AL_EAXREVERB_MAX_REFLECTIONS_DELAY
+
241 AL_EAXREVERB_MAX_LATE_REVERB_DELAY
;
243 length
= AL_REVERB_MAX_REFLECTIONS_DELAY
+
244 AL_REVERB_MAX_LATE_REVERB_DELAY
;
245 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
,
248 // The early reflection lines.
249 for(index
= 0;index
< 4;index
++)
250 totalSamples
+= CalcLineLength(EARLY_LINE_LENGTH
[index
], totalSamples
,
251 frequency
, &State
->Early
.Delay
[index
]);
253 // The decorrelator line is calculated from the lowest reverb density (a
254 // parameter value of 1).
255 length
= (DECO_FRACTION
* DECO_MULTIPLIER
* DECO_MULTIPLIER
) *
256 LATE_LINE_LENGTH
[0] * (1.0f
+ LATE_LINE_MULTIPLIER
);
257 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
,
258 &State
->Decorrelator
);
260 // The late all-pass lines.
261 for(index
= 0;index
< 4;index
++)
262 totalSamples
+= CalcLineLength(ALLPASS_LINE_LENGTH
[index
], totalSamples
,
263 frequency
, &State
->Late
.ApDelay
[index
]);
265 // The late delay lines are calculated from the lowest reverb density.
266 for(index
= 0;index
< 4;index
++)
268 length
= LATE_LINE_LENGTH
[index
] * (1.0f
+ LATE_LINE_MULTIPLIER
);
269 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
,
270 &State
->Late
.Delay
[index
]);
275 // The echo all-pass and delay lines.
276 totalSamples
+= CalcLineLength(ECHO_ALLPASS_LENGTH
, totalSamples
,
277 frequency
, &State
->Echo
.ApDelay
);
278 totalSamples
+= CalcLineLength(AL_EAXREVERB_MAX_ECHO_TIME
, totalSamples
,
279 frequency
, &State
->Echo
.Delay
);
282 if(totalSamples
!= State
->TotalSamples
)
284 newBuffer
= realloc(State
->SampleBuffer
, sizeof(ALfloat
) * totalSamples
);
285 if(newBuffer
== NULL
)
287 State
->SampleBuffer
= newBuffer
;
288 State
->TotalSamples
= totalSamples
;
291 // Update all delays to reflect the new sample buffer.
292 RealizeLineOffset(State
->SampleBuffer
, &State
->Delay
);
293 RealizeLineOffset(State
->SampleBuffer
, &State
->Decorrelator
);
294 for(index
= 0;index
< 4;index
++)
296 RealizeLineOffset(State
->SampleBuffer
, &State
->Early
.Delay
[index
]);
297 RealizeLineOffset(State
->SampleBuffer
, &State
->Late
.ApDelay
[index
]);
298 RealizeLineOffset(State
->SampleBuffer
, &State
->Late
.Delay
[index
]);
302 RealizeLineOffset(State
->SampleBuffer
, &State
->Mod
.Delay
);
303 RealizeLineOffset(State
->SampleBuffer
, &State
->Echo
.ApDelay
);
304 RealizeLineOffset(State
->SampleBuffer
, &State
->Echo
.Delay
);
307 // Clear the sample buffer.
308 for(index
= 0;index
< State
->TotalSamples
;index
++)
309 State
->SampleBuffer
[index
] = 0.0f
;
314 // Calculate a decay coefficient given the length of each cycle and the time
315 // until the decay reaches -60 dB.
316 static __inline ALfloat
CalcDecayCoeff(ALfloat length
, ALfloat decayTime
)
318 return aluPow(10.0f
, length
/ decayTime
* -60.0f
/ 20.0f
);
321 // Calculate a decay length from a coefficient and the time until the decay
323 static __inline ALfloat
CalcDecayLength(ALfloat coeff
, ALfloat decayTime
)
325 return log10(coeff
) / -60.0 * 20.0f
* decayTime
;
328 // Calculate the high frequency parameter for the I3DL2 coefficient
330 static __inline ALfloat
CalcI3DL2HFreq(ALfloat hfRef
, ALuint frequency
)
332 return cos(2.0f
* M_PI
* hfRef
/ frequency
);
335 // Calculate an attenuation to be applied to the input of any echo models to
336 // compensate for modal density and decay time.
337 static __inline ALfloat
CalcDensityGain(ALfloat a
)
339 /* The energy of a signal can be obtained by finding the area under the
340 * squared signal. This takes the form of Sum(x_n^2), where x is the
341 * amplitude for the sample n.
343 * Decaying feedback matches exponential decay of the form Sum(a^n),
344 * where a is the attenuation coefficient, and n is the sample. The area
345 * under this decay curve can be calculated as: 1 / (1 - a).
347 * Modifying the above equation to find the squared area under the curve
348 * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
349 * calculated by inverting the square root of this approximation,
350 * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
352 return aluSqrt(1.0f
- (a
* a
));
355 // Calculate the mixing matrix coefficients given a diffusion factor.
356 static __inline ALvoid
CalcMatrixCoeffs(ALfloat diffusion
, ALfloat
*x
, ALfloat
*y
)
360 // The matrix is of order 4, so n is sqrt (4 - 1).
362 t
= diffusion
* atan(n
);
364 // Calculate the first mixing matrix coefficient.
366 // Calculate the second mixing matrix coefficient.
370 // Calculate the limited HF ratio for use with the late reverb low-pass
372 static __inline ALfloat
CalcLimitedHfRatio(ALfloat hfRatio
, ALfloat airAbsorptionGainHF
, ALfloat decayTime
)
376 /* Find the attenuation due to air absorption in dB (converting delay
377 * time to meters using the speed of sound). Then reversing the decay
378 * equation, solve for HF ratio. The delay length is cancelled out of
379 * the equation, so it can be calculated once for all lines.
381 limitRatio
= 1.0f
/ (CalcDecayLength(airAbsorptionGainHF
, decayTime
) *
382 SPEEDOFSOUNDMETRESPERSEC
);
383 // Need to limit the result to a minimum of 0.1, just like the HF ratio
385 limitRatio
= __max(limitRatio
, 0.1f
);
387 // Using the limit calculated above, apply the upper bound to the HF
389 return __min(hfRatio
, limitRatio
);
392 // Calculate the coefficient for a HF (and eventually LF) decay damping
394 static __inline ALfloat
CalcDampingCoeff(ALfloat hfRatio
, ALfloat length
, ALfloat decayTime
, ALfloat decayCoeff
, ALfloat cw
)
398 // Eventually this should boost the high frequencies when the ratio
403 // Calculate the low-pass coefficient by dividing the HF decay
404 // coefficient by the full decay coefficient.
405 g
= CalcDecayCoeff(length
, decayTime
* hfRatio
) / decayCoeff
;
407 // Damping is done with a 1-pole filter, so g needs to be squared.
409 coeff
= lpCoeffCalc(g
, cw
);
411 // Very low decay times will produce minimal output, so apply an
412 // upper bound to the coefficient.
413 coeff
= __min(coeff
, 0.98f
);
418 // Update the EAX modulation index, range, and depth. Keep in mind that this
419 // kind of vibrato is additive and not multiplicative as one may expect. The
420 // downswing will sound stronger than the upswing.
421 static ALvoid
UpdateModulator(ALfloat modTime
, ALfloat modDepth
, ALuint frequency
, ALverbState
*State
)
425 /* Modulation is calculated in two parts.
427 * The modulation time effects the sinus applied to the change in
428 * frequency. An index out of the current time range (both in samples)
429 * is incremented each sample. The range is bound to a reasonable
430 * minimum (1 sample) and when the timing changes, the index is rescaled
431 * to the new range (to keep the sinus consistent).
433 length
= modTime
* frequency
;
434 if (length
>= 1.0f
) {
435 State
->Mod
.Index
= (ALuint
)(State
->Mod
.Index
* length
/
437 State
->Mod
.Range
= (ALuint
)length
;
439 State
->Mod
.Index
= 0;
440 State
->Mod
.Range
= 1;
443 /* The modulation depth effects the amount of frequency change over the
444 * range of the sinus. It needs to be scaled by the modulation time so
445 * that a given depth produces a consistent change in frequency over all
446 * ranges of time. Since the depth is applied to a sinus value, it needs
447 * to be halfed once for the sinus range and again for the sinus swing
448 * in time (half of it is spent decreasing the frequency, half is spent
451 State
->Mod
.Depth
= modDepth
* MODULATION_DEPTH_COEFF
* modTime
/ 2.0f
/
455 // Update the offsets for the initial effect delay line.
456 static ALvoid
UpdateDelayLine(ALfloat earlyDelay
, ALfloat lateDelay
, ALuint frequency
, ALverbState
*State
)
458 // Calculate the initial delay taps.
459 State
->DelayTap
[0] = (ALuint
)(earlyDelay
* frequency
);
460 State
->DelayTap
[1] = (ALuint
)((earlyDelay
+ lateDelay
) * frequency
);
463 // Update the early reflections gain and line coefficients.
464 static ALvoid
UpdateEarlyLines(ALfloat reverbGain
, ALfloat earlyGain
, ALfloat lateDelay
, ALverbState
*State
)
468 // Calculate the early reflections gain (from the master effect gain, and
469 // reflections gain parameters) with a constant attenuation of 0.5.
470 State
->Early
.Gain
= 0.5f
* reverbGain
* earlyGain
;
472 // Calculate the gain (coefficient) for each early delay line using the
473 // late delay time. This expands the early reflections to the start of
475 for(index
= 0;index
< 4;index
++)
476 State
->Early
.Coeff
[index
] = CalcDecayCoeff(EARLY_LINE_LENGTH
[index
],
480 // Update the offsets for the decorrelator line.
481 static ALvoid
UpdateDecorrelator(ALfloat density
, ALuint frequency
, ALverbState
*State
)
486 /* The late reverb inputs are decorrelated to smooth the reverb tail and
487 * reduce harsh echos. The first tap occurs immediately, while the
488 * remaining taps are delayed by multiples of a fraction of the smallest
489 * cyclical delay time.
491 * offset[index] = (FRACTION (MULTIPLIER^index)) smallest_delay
493 for(index
= 0;index
< 3;index
++)
495 length
= (DECO_FRACTION
* aluPow(DECO_MULTIPLIER
, (ALfloat
)index
)) *
496 LATE_LINE_LENGTH
[0] * (1.0f
+ (density
* LATE_LINE_MULTIPLIER
));
497 State
->DecoTap
[index
] = (ALuint
)(length
* frequency
);
501 // Update the late reverb gains, line lengths, and line coefficients.
502 static ALvoid
UpdateLateLines(ALfloat reverbGain
, ALfloat lateGain
, ALfloat xMix
, ALfloat density
, ALfloat decayTime
, ALfloat diffusion
, ALfloat hfRatio
, ALfloat cw
, ALuint frequency
, ALverbState
*State
)
507 /* Calculate the late reverb gain (from the master effect gain, and late
508 * reverb gain parameters). Since the output is tapped prior to the
509 * application of the next delay line coefficients, this gain needs to be
510 * attenuated by the 'x' mixing matrix coefficient as well.
512 State
->Late
.Gain
= reverbGain
* lateGain
* xMix
;
514 /* To compensate for changes in modal density and decay time of the late
515 * reverb signal, the input is attenuated based on the maximal energy of
516 * the outgoing signal. This approximation is used to keep the apparent
517 * energy of the signal equal for all ranges of density and decay time.
519 * The average length of the cyclcical delay lines is used to calculate
520 * the attenuation coefficient.
522 length
= (LATE_LINE_LENGTH
[0] + LATE_LINE_LENGTH
[1] +
523 LATE_LINE_LENGTH
[2] + LATE_LINE_LENGTH
[3]) / 4.0f
;
524 length
*= 1.0f
+ (density
* LATE_LINE_MULTIPLIER
);
525 State
->Late
.DensityGain
= CalcDensityGain(CalcDecayCoeff(length
,
528 // Calculate the all-pass feed-back and feed-forward coefficient.
529 State
->Late
.ApFeedCoeff
= 0.5f
* aluPow(diffusion
, 2.0f
);
531 for(index
= 0;index
< 4;index
++)
533 // Calculate the gain (coefficient) for each all-pass line.
534 State
->Late
.ApCoeff
[index
] = CalcDecayCoeff(ALLPASS_LINE_LENGTH
[index
],
537 // Calculate the length (in seconds) of each cyclical delay line.
538 length
= LATE_LINE_LENGTH
[index
] * (1.0f
+ (density
*
539 LATE_LINE_MULTIPLIER
));
541 // Calculate the delay offset for each cyclical delay line.
542 State
->Late
.Offset
[index
] = (ALuint
)(length
* frequency
);
544 // Calculate the gain (coefficient) for each cyclical line.
545 State
->Late
.Coeff
[index
] = CalcDecayCoeff(length
, decayTime
);
547 // Calculate the damping coefficient for each low-pass filter.
548 State
->Late
.LpCoeff
[index
] =
549 CalcDampingCoeff(hfRatio
, length
, decayTime
,
550 State
->Late
.Coeff
[index
], cw
);
552 // Attenuate the cyclical line coefficients by the mixing coefficient
554 State
->Late
.Coeff
[index
] *= xMix
;
558 // Update the echo gain, line offset, line coefficients, and mixing
560 static ALvoid
UpdateEchoLine(ALfloat reverbGain
, ALfloat lateGain
, ALfloat echoTime
, ALfloat decayTime
, ALfloat diffusion
, ALfloat echoDepth
, ALfloat hfRatio
, ALfloat cw
, ALuint frequency
, ALverbState
*State
)
562 // Update the offset and coefficient for the echo delay line.
563 State
->Echo
.Offset
= (ALuint
)(echoTime
* frequency
);
565 // Calculate the decay coefficient for the echo line.
566 State
->Echo
.Coeff
= CalcDecayCoeff(echoTime
, decayTime
);
568 // Calculate the energy-based attenuation coefficient for the echo delay
570 State
->Echo
.DensityGain
= CalcDensityGain(State
->Echo
.Coeff
);
572 // Calculate the echo all-pass feed coefficient.
573 State
->Echo
.ApFeedCoeff
= 0.5f
* aluPow(diffusion
, 2.0f
);
575 // Calculate the echo all-pass attenuation coefficient.
576 State
->Echo
.ApCoeff
= CalcDecayCoeff(ECHO_ALLPASS_LENGTH
, decayTime
);
578 // Calculate the damping coefficient for each low-pass filter.
579 State
->Echo
.LpCoeff
= CalcDampingCoeff(hfRatio
, echoTime
, decayTime
,
580 State
->Echo
.Coeff
, cw
);
582 /* Calculate the echo mixing coefficients. The first is applied to the
583 * echo itself. The second is used to attenuate the late reverb when
584 * echo depth is high and diffusion is low, so the echo is slightly
585 * stronger than the decorrelated echos in the reverb tail.
587 State
->Echo
.MixCoeff
[0] = reverbGain
* lateGain
* echoDepth
;
588 State
->Echo
.MixCoeff
[1] = 1.0f
- (echoDepth
* 0.5f
* (1.0f
- diffusion
));
591 // Update the early and late 3D panning gains.
592 static ALvoid
Update3DPanning(const ALCdevice
*Device
, const ALfloat
*ReflectionsPan
, const ALfloat
*LateReverbPan
, ALverbState
*State
)
594 ALfloat earlyPan
[3] = { ReflectionsPan
[0], ReflectionsPan
[1],
596 ALfloat latePan
[3] = { LateReverbPan
[0], LateReverbPan
[1],
598 const ALfloat
*speakerGain
;
599 ALfloat dirGain
, ambientGain
;
604 // Calculate the 3D-panning gains for the early reflections and late
606 length
= earlyPan
[0]*earlyPan
[0] + earlyPan
[1]*earlyPan
[1] + earlyPan
[2]*earlyPan
[2];
609 length
= 1.0f
/ aluSqrt(length
);
610 earlyPan
[0] *= length
;
611 earlyPan
[1] *= length
;
612 earlyPan
[2] *= length
;
614 length
= latePan
[0]*latePan
[0] + latePan
[1]*latePan
[1] + latePan
[2]*latePan
[2];
617 length
= 1.0f
/ aluSqrt(length
);
618 latePan
[0] *= length
;
619 latePan
[1] *= length
;
620 latePan
[2] *= length
;
623 /* This code applies directional reverb just like the mixer applies
624 * directional sources. It diffuses the sound toward all speakers as the
625 * magnitude of the panning vector drops, which is only a rough
626 * approximation of the expansion of sound across the speakers from the
629 pos
= aluCart2LUTpos(earlyPan
[2], earlyPan
[0]);
630 speakerGain
= &Device
->PanningLUT
[OUTPUTCHANNELS
* pos
];
631 dirGain
= aluSqrt((earlyPan
[0] * earlyPan
[0]) + (earlyPan
[2] * earlyPan
[2]));
632 ambientGain
= (1.0 - dirGain
);
633 for(index
= 0;index
< OUTPUTCHANNELS
;index
++)
634 State
->Early
.PanGain
[index
] = 0.0f
;
635 for(index
= 0;index
< Device
->NumChan
;index
++)
637 Channel chan
= Device
->Speaker2Chan
[index
];
638 State
->Early
.PanGain
[chan
] = speakerGain
[chan
]*dirGain
+
642 pos
= aluCart2LUTpos(latePan
[2], latePan
[0]);
643 speakerGain
= &Device
->PanningLUT
[OUTPUTCHANNELS
* pos
];
644 dirGain
= aluSqrt((latePan
[0] * latePan
[0]) + (latePan
[2] * latePan
[2]));
645 ambientGain
= (1.0 - dirGain
);
646 for(index
= 0;index
< OUTPUTCHANNELS
;index
++)
647 State
->Late
.PanGain
[index
] = 0.0f
;
648 for(index
= 0;index
< Device
->NumChan
;index
++)
650 Channel chan
= Device
->Speaker2Chan
[index
];
651 State
->Late
.PanGain
[chan
] = speakerGain
[chan
]*dirGain
+
656 // Basic delay line input/output routines.
657 static __inline ALfloat
DelayLineOut(DelayLine
*Delay
, ALuint offset
)
659 return Delay
->Line
[offset
&Delay
->Mask
];
662 static __inline ALvoid
DelayLineIn(DelayLine
*Delay
, ALuint offset
, ALfloat in
)
664 Delay
->Line
[offset
&Delay
->Mask
] = in
;
667 // Attenuated delay line output routine.
668 static __inline ALfloat
AttenuatedDelayLineOut(DelayLine
*Delay
, ALuint offset
, ALfloat coeff
)
670 return coeff
* Delay
->Line
[offset
&Delay
->Mask
];
673 // Basic attenuated all-pass input/output routine.
674 static __inline ALfloat
AllpassInOut(DelayLine
*Delay
, ALuint outOffset
, ALuint inOffset
, ALfloat in
, ALfloat feedCoeff
, ALfloat coeff
)
678 out
= DelayLineOut(Delay
, outOffset
);
679 feed
= feedCoeff
* in
;
680 DelayLineIn(Delay
, inOffset
, (feedCoeff
* (out
- feed
)) + in
);
682 // The time-based attenuation is only applied to the delay output to
683 // keep it from affecting the feed-back path (which is already controlled
684 // by the all-pass feed coefficient).
685 return (coeff
* out
) - feed
;
688 // Given an input sample, this function produces modulation for the late
690 static __inline ALfloat
EAXModulation(ALverbState
*State
, ALfloat in
)
696 // Calculate the sinus rythm (dependent on modulation time and the
697 // sampling rate). The center of the sinus is moved to reduce the delay
698 // of the effect when the time or depth are low.
699 sinus
= 1.0f
- cos(2.0f
* M_PI
* State
->Mod
.Index
/ State
->Mod
.Range
);
701 // The depth determines the range over which to read the input samples
702 // from, so it must be filtered to reduce the distortion caused by even
703 // small parameter changes.
704 State
->Mod
.Filter
+= (State
->Mod
.Depth
- State
->Mod
.Filter
) *
707 // Calculate the read offset and fraction between it and the next sample.
708 frac
= (1.0f
+ (State
->Mod
.Filter
* sinus
));
709 offset
= (ALuint
)frac
;
712 // Get the two samples crossed by the offset, and feed the delay line
713 // with the next input sample.
714 out0
= DelayLineOut(&State
->Mod
.Delay
, State
->Offset
- offset
);
715 out1
= DelayLineOut(&State
->Mod
.Delay
, State
->Offset
- offset
- 1);
716 DelayLineIn(&State
->Mod
.Delay
, State
->Offset
, in
);
718 // Step the modulation index forward, keeping it bound to its range.
719 State
->Mod
.Index
= (State
->Mod
.Index
+ 1) % State
->Mod
.Range
;
721 // The output is obtained by linearly interpolating the two samples that
722 // were acquired above.
723 return out0
+ ((out1
- out0
) * frac
);
726 // Delay line output routine for early reflections.
727 static __inline ALfloat
EarlyDelayLineOut(ALverbState
*State
, ALuint index
)
729 return AttenuatedDelayLineOut(&State
->Early
.Delay
[index
],
730 State
->Offset
- State
->Early
.Offset
[index
],
731 State
->Early
.Coeff
[index
]);
734 // Given an input sample, this function produces four-channel output for the
735 // early reflections.
736 static __inline ALvoid
EarlyReflection(ALverbState
*State
, ALfloat in
, ALfloat
*out
)
738 ALfloat d
[4], v
, f
[4];
740 // Obtain the decayed results of each early delay line.
741 d
[0] = EarlyDelayLineOut(State
, 0);
742 d
[1] = EarlyDelayLineOut(State
, 1);
743 d
[2] = EarlyDelayLineOut(State
, 2);
744 d
[3] = EarlyDelayLineOut(State
, 3);
746 /* The following uses a lossless scattering junction from waveguide
747 * theory. It actually amounts to a householder mixing matrix, which
748 * will produce a maximally diffuse response, and means this can probably
749 * be considered a simple feed-back delay network (FDN).
757 v
= (d
[0] + d
[1] + d
[2] + d
[3]) * 0.5f
;
758 // The junction is loaded with the input here.
761 // Calculate the feed values for the delay lines.
767 // Re-feed the delay lines.
768 DelayLineIn(&State
->Early
.Delay
[0], State
->Offset
, f
[0]);
769 DelayLineIn(&State
->Early
.Delay
[1], State
->Offset
, f
[1]);
770 DelayLineIn(&State
->Early
.Delay
[2], State
->Offset
, f
[2]);
771 DelayLineIn(&State
->Early
.Delay
[3], State
->Offset
, f
[3]);
773 // Output the results of the junction for all four channels.
774 out
[0] = State
->Early
.Gain
* f
[0];
775 out
[1] = State
->Early
.Gain
* f
[1];
776 out
[2] = State
->Early
.Gain
* f
[2];
777 out
[3] = State
->Early
.Gain
* f
[3];
780 // All-pass input/output routine for late reverb.
781 static __inline ALfloat
LateAllPassInOut(ALverbState
*State
, ALuint index
, ALfloat in
)
783 return AllpassInOut(&State
->Late
.ApDelay
[index
],
784 State
->Offset
- State
->Late
.ApOffset
[index
],
785 State
->Offset
, in
, State
->Late
.ApFeedCoeff
,
786 State
->Late
.ApCoeff
[index
]);
789 // Delay line output routine for late reverb.
790 static __inline ALfloat
LateDelayLineOut(ALverbState
*State
, ALuint index
)
792 return AttenuatedDelayLineOut(&State
->Late
.Delay
[index
],
793 State
->Offset
- State
->Late
.Offset
[index
],
794 State
->Late
.Coeff
[index
]);
797 // Low-pass filter input/output routine for late reverb.
798 static __inline ALfloat
LateLowPassInOut(ALverbState
*State
, ALuint index
, ALfloat in
)
800 State
->Late
.LpSample
[index
] = in
+
801 ((State
->Late
.LpSample
[index
] - in
) * State
->Late
.LpCoeff
[index
]);
802 return State
->Late
.LpSample
[index
];
805 // Given four decorrelated input samples, this function produces four-channel
806 // output for the late reverb.
807 static __inline ALvoid
LateReverb(ALverbState
*State
, ALfloat
*in
, ALfloat
*out
)
811 // Obtain the decayed results of the cyclical delay lines, and add the
812 // corresponding input channels. Then pass the results through the
815 // This is where the feed-back cycles from line 0 to 1 to 3 to 2 and back
817 d
[0] = LateLowPassInOut(State
, 2, in
[2] + LateDelayLineOut(State
, 2));
818 d
[1] = LateLowPassInOut(State
, 0, in
[0] + LateDelayLineOut(State
, 0));
819 d
[2] = LateLowPassInOut(State
, 3, in
[3] + LateDelayLineOut(State
, 3));
820 d
[3] = LateLowPassInOut(State
, 1, in
[1] + LateDelayLineOut(State
, 1));
822 // To help increase diffusion, run each line through an all-pass filter.
823 // When there is no diffusion, the shortest all-pass filter will feed the
824 // shortest delay line.
825 d
[0] = LateAllPassInOut(State
, 0, d
[0]);
826 d
[1] = LateAllPassInOut(State
, 1, d
[1]);
827 d
[2] = LateAllPassInOut(State
, 2, d
[2]);
828 d
[3] = LateAllPassInOut(State
, 3, d
[3]);
830 /* Late reverb is done with a modified feed-back delay network (FDN)
831 * topology. Four input lines are each fed through their own all-pass
832 * filter and then into the mixing matrix. The four outputs of the
833 * mixing matrix are then cycled back to the inputs. Each output feeds
834 * a different input to form a circlular feed cycle.
836 * The mixing matrix used is a 4D skew-symmetric rotation matrix derived
837 * using a single unitary rotational parameter:
839 * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
844 * The rotation is constructed from the effect's diffusion parameter,
845 * yielding: 1 = x^2 + 3 y^2; where a, b, and c are the coefficient y
846 * with differing signs, and d is the coefficient x. The matrix is thus:
848 * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
849 * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
850 * [ y, -y, x, y ] x = cos(t)
851 * [ -y, -y, -y, x ] y = sin(t) / n
853 * To reduce the number of multiplies, the x coefficient is applied with
854 * the cyclical delay line coefficients. Thus only the y coefficient is
855 * applied when mixing, and is modified to be: y / x.
857 f
[0] = d
[0] + (State
->Late
.MixCoeff
* ( d
[1] - d
[2] + d
[3]));
858 f
[1] = d
[1] + (State
->Late
.MixCoeff
* (-d
[0] + d
[2] + d
[3]));
859 f
[2] = d
[2] + (State
->Late
.MixCoeff
* ( d
[0] - d
[1] + d
[3]));
860 f
[3] = d
[3] + (State
->Late
.MixCoeff
* (-d
[0] - d
[1] - d
[2]));
862 // Output the results of the matrix for all four channels, attenuated by
863 // the late reverb gain (which is attenuated by the 'x' mix coefficient).
864 out
[0] = State
->Late
.Gain
* f
[0];
865 out
[1] = State
->Late
.Gain
* f
[1];
866 out
[2] = State
->Late
.Gain
* f
[2];
867 out
[3] = State
->Late
.Gain
* f
[3];
869 // Re-feed the cyclical delay lines.
870 DelayLineIn(&State
->Late
.Delay
[0], State
->Offset
, f
[0]);
871 DelayLineIn(&State
->Late
.Delay
[1], State
->Offset
, f
[1]);
872 DelayLineIn(&State
->Late
.Delay
[2], State
->Offset
, f
[2]);
873 DelayLineIn(&State
->Late
.Delay
[3], State
->Offset
, f
[3]);
876 // Given an input sample, this function mixes echo into the four-channel late
878 static __inline ALvoid
EAXEcho(ALverbState
*State
, ALfloat in
, ALfloat
*late
)
882 // Get the latest attenuated echo sample for output.
883 feed
= AttenuatedDelayLineOut(&State
->Echo
.Delay
,
884 State
->Offset
- State
->Echo
.Offset
,
887 // Mix the output into the late reverb channels.
888 out
= State
->Echo
.MixCoeff
[0] * feed
;
889 late
[0] = (State
->Echo
.MixCoeff
[1] * late
[0]) + out
;
890 late
[1] = (State
->Echo
.MixCoeff
[1] * late
[1]) + out
;
891 late
[2] = (State
->Echo
.MixCoeff
[1] * late
[2]) + out
;
892 late
[3] = (State
->Echo
.MixCoeff
[1] * late
[3]) + out
;
894 // Mix the energy-attenuated input with the output and pass it through
895 // the echo low-pass filter.
896 feed
+= State
->Echo
.DensityGain
* in
;
897 feed
+= ((State
->Echo
.LpSample
- feed
) * State
->Echo
.LpCoeff
);
898 State
->Echo
.LpSample
= feed
;
900 // Then the echo all-pass filter.
901 feed
= AllpassInOut(&State
->Echo
.ApDelay
,
902 State
->Offset
- State
->Echo
.ApOffset
,
903 State
->Offset
, feed
, State
->Echo
.ApFeedCoeff
,
904 State
->Echo
.ApCoeff
);
906 // Feed the delay with the mixed and filtered sample.
907 DelayLineIn(&State
->Echo
.Delay
, State
->Offset
, feed
);
910 // Perform the non-EAX reverb pass on a given input sample, resulting in
911 // four-channel output.
912 static __inline ALvoid
VerbPass(ALverbState
*State
, ALfloat in
, ALfloat
*early
, ALfloat
*late
)
914 ALfloat feed
, taps
[4];
916 // Low-pass filter the incoming sample.
917 in
= lpFilter2P(&State
->LpFilter
, 0, in
);
919 // Feed the initial delay line.
920 DelayLineIn(&State
->Delay
, State
->Offset
, in
);
922 // Calculate the early reflection from the first delay tap.
923 in
= DelayLineOut(&State
->Delay
, State
->Offset
- State
->DelayTap
[0]);
924 EarlyReflection(State
, in
, early
);
926 // Feed the decorrelator from the energy-attenuated output of the second
928 in
= DelayLineOut(&State
->Delay
, State
->Offset
- State
->DelayTap
[1]);
929 feed
= in
* State
->Late
.DensityGain
;
930 DelayLineIn(&State
->Decorrelator
, State
->Offset
, feed
);
932 // Calculate the late reverb from the decorrelator taps.
934 taps
[1] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[0]);
935 taps
[2] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[1]);
936 taps
[3] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[2]);
937 LateReverb(State
, taps
, late
);
939 // Step all delays forward one sample.
943 // Perform the EAX reverb pass on a given input sample, resulting in four-
945 static __inline ALvoid
EAXVerbPass(ALverbState
*State
, ALfloat in
, ALfloat
*early
, ALfloat
*late
)
947 ALfloat feed
, taps
[4];
949 // Low-pass filter the incoming sample.
950 in
= lpFilter2P(&State
->LpFilter
, 0, in
);
952 // Perform any modulation on the input.
953 in
= EAXModulation(State
, in
);
955 // Feed the initial delay line.
956 DelayLineIn(&State
->Delay
, State
->Offset
, in
);
958 // Calculate the early reflection from the first delay tap.
959 in
= DelayLineOut(&State
->Delay
, State
->Offset
- State
->DelayTap
[0]);
960 EarlyReflection(State
, in
, early
);
962 // Feed the decorrelator from the energy-attenuated output of the second
964 in
= DelayLineOut(&State
->Delay
, State
->Offset
- State
->DelayTap
[1]);
965 feed
= in
* State
->Late
.DensityGain
;
966 DelayLineIn(&State
->Decorrelator
, State
->Offset
, feed
);
968 // Calculate the late reverb from the decorrelator taps.
970 taps
[1] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[0]);
971 taps
[2] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[1]);
972 taps
[3] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[2]);
973 LateReverb(State
, taps
, late
);
975 // Calculate and mix in any echo.
976 EAXEcho(State
, in
, late
);
978 // Step all delays forward one sample.
982 // This destroys the reverb state. It should be called only when the effect
983 // slot has a different (or no) effect loaded over the reverb effect.
984 static ALvoid
VerbDestroy(ALeffectState
*effect
)
986 ALverbState
*State
= (ALverbState
*)effect
;
989 free(State
->SampleBuffer
);
990 State
->SampleBuffer
= NULL
;
995 // This updates the device-dependant reverb state. This is called on
996 // initialization and any time the device parameters (eg. playback frequency,
997 // or format) have been changed.
998 static ALboolean
VerbDeviceUpdate(ALeffectState
*effect
, ALCdevice
*Device
)
1000 ALverbState
*State
= (ALverbState
*)effect
;
1001 ALuint frequency
= Device
->Frequency
;
1004 // Allocate the delay lines.
1005 if(!AllocLines(AL_FALSE
, frequency
, State
))
1008 // The early reflection and late all-pass filter line lengths are static,
1009 // so their offsets only need to be calculated once.
1010 for(index
= 0;index
< 4;index
++)
1012 State
->Early
.Offset
[index
] = (ALuint
)(EARLY_LINE_LENGTH
[index
] *
1014 State
->Late
.ApOffset
[index
] = (ALuint
)(ALLPASS_LINE_LENGTH
[index
] *
1018 for(index
= 0;index
< OUTPUTCHANNELS
;index
++)
1019 State
->Gain
[index
] = 0.0f
;
1020 for(index
= 0;index
< Device
->NumChan
;index
++)
1022 Channel chan
= Device
->Speaker2Chan
[index
];
1023 State
->Gain
[chan
] = 1.0f
;
1029 // This updates the device-dependant EAX reverb state. This is called on
1030 // initialization and any time the device parameters (eg. playback frequency,
1031 // format) have been changed.
1032 static ALboolean
EAXVerbDeviceUpdate(ALeffectState
*effect
, ALCdevice
*Device
)
1034 ALverbState
*State
= (ALverbState
*)effect
;
1035 ALuint frequency
= Device
->Frequency
, index
;
1037 // Allocate the delay lines.
1038 if(!AllocLines(AL_TRUE
, frequency
, State
))
1041 // Calculate the modulation filter coefficient. Notice that the exponent
1042 // is calculated given the current sample rate. This ensures that the
1043 // resulting filter response over time is consistent across all sample
1045 State
->Mod
.Coeff
= aluPow(MODULATION_FILTER_COEFF
,
1046 MODULATION_FILTER_CONST
/ frequency
);
1048 // The early reflection and late all-pass filter line lengths are static,
1049 // so their offsets only need to be calculated once.
1050 for(index
= 0;index
< 4;index
++)
1052 State
->Early
.Offset
[index
] = (ALuint
)(EARLY_LINE_LENGTH
[index
] *
1054 State
->Late
.ApOffset
[index
] = (ALuint
)(ALLPASS_LINE_LENGTH
[index
] *
1058 // The echo all-pass filter line length is static, so its offset only
1059 // needs to be calculated once.
1060 State
->Echo
.ApOffset
= (ALuint
)(ECHO_ALLPASS_LENGTH
* frequency
);
1065 // This updates the reverb state. This is called any time the reverb effect
1066 // is loaded into a slot.
1067 static ALvoid
VerbUpdate(ALeffectState
*effect
, ALCcontext
*Context
, const ALeffect
*Effect
)
1069 ALverbState
*State
= (ALverbState
*)effect
;
1070 ALuint frequency
= Context
->Device
->Frequency
;
1071 ALfloat cw
, x
, y
, hfRatio
;
1073 // Calculate the master low-pass filter (from the master effect HF gain).
1074 cw
= CalcI3DL2HFreq(Effect
->Reverb
.HFReference
, frequency
);
1075 // This is done with 2 chained 1-pole filters, so no need to square g.
1076 State
->LpFilter
.coeff
= lpCoeffCalc(Effect
->Reverb
.GainHF
, cw
);
1078 // Update the initial effect delay.
1079 UpdateDelayLine(Effect
->Reverb
.ReflectionsDelay
,
1080 Effect
->Reverb
.LateReverbDelay
, frequency
, State
);
1082 // Update the early lines.
1083 UpdateEarlyLines(Effect
->Reverb
.Gain
, Effect
->Reverb
.ReflectionsGain
,
1084 Effect
->Reverb
.LateReverbDelay
, State
);
1086 // Update the decorrelator.
1087 UpdateDecorrelator(Effect
->Reverb
.Density
, frequency
, State
);
1089 // Get the mixing matrix coefficients (x and y).
1090 CalcMatrixCoeffs(Effect
->Reverb
.Diffusion
, &x
, &y
);
1091 // Then divide x into y to simplify the matrix calculation.
1092 State
->Late
.MixCoeff
= y
/ x
;
1094 // If the HF limit parameter is flagged, calculate an appropriate limit
1095 // based on the air absorption parameter.
1096 hfRatio
= Effect
->Reverb
.DecayHFRatio
;
1097 if(Effect
->Reverb
.DecayHFLimit
&& Effect
->Reverb
.AirAbsorptionGainHF
< 1.0f
)
1098 hfRatio
= CalcLimitedHfRatio(hfRatio
, Effect
->Reverb
.AirAbsorptionGainHF
,
1099 Effect
->Reverb
.DecayTime
);
1101 // Update the late lines.
1102 UpdateLateLines(Effect
->Reverb
.Gain
, Effect
->Reverb
.LateReverbGain
,
1103 x
, Effect
->Reverb
.Density
, Effect
->Reverb
.DecayTime
,
1104 Effect
->Reverb
.Diffusion
, hfRatio
, cw
, frequency
, State
);
1107 // This updates the EAX reverb state. This is called any time the EAX reverb
1108 // effect is loaded into a slot.
1109 static ALvoid
EAXVerbUpdate(ALeffectState
*effect
, ALCcontext
*Context
, const ALeffect
*Effect
)
1111 ALverbState
*State
= (ALverbState
*)effect
;
1112 ALuint frequency
= Context
->Device
->Frequency
;
1113 ALfloat cw
, x
, y
, hfRatio
;
1115 // Calculate the master low-pass filter (from the master effect HF gain).
1116 cw
= CalcI3DL2HFreq(Effect
->Reverb
.HFReference
, frequency
);
1117 // This is done with 2 chained 1-pole filters, so no need to square g.
1118 State
->LpFilter
.coeff
= lpCoeffCalc(Effect
->Reverb
.GainHF
, cw
);
1120 // Update the modulator line.
1121 UpdateModulator(Effect
->Reverb
.ModulationTime
,
1122 Effect
->Reverb
.ModulationDepth
, frequency
, State
);
1124 // Update the initial effect delay.
1125 UpdateDelayLine(Effect
->Reverb
.ReflectionsDelay
,
1126 Effect
->Reverb
.LateReverbDelay
, frequency
, State
);
1128 // Update the early lines.
1129 UpdateEarlyLines(Effect
->Reverb
.Gain
, Effect
->Reverb
.ReflectionsGain
,
1130 Effect
->Reverb
.LateReverbDelay
, State
);
1132 // Update the decorrelator.
1133 UpdateDecorrelator(Effect
->Reverb
.Density
, frequency
, State
);
1135 // Get the mixing matrix coefficients (x and y).
1136 CalcMatrixCoeffs(Effect
->Reverb
.Diffusion
, &x
, &y
);
1137 // Then divide x into y to simplify the matrix calculation.
1138 State
->Late
.MixCoeff
= y
/ x
;
1140 // If the HF limit parameter is flagged, calculate an appropriate limit
1141 // based on the air absorption parameter.
1142 hfRatio
= Effect
->Reverb
.DecayHFRatio
;
1143 if(Effect
->Reverb
.DecayHFLimit
&& Effect
->Reverb
.AirAbsorptionGainHF
< 1.0f
)
1144 hfRatio
= CalcLimitedHfRatio(hfRatio
, Effect
->Reverb
.AirAbsorptionGainHF
,
1145 Effect
->Reverb
.DecayTime
);
1147 // Update the late lines.
1148 UpdateLateLines(Effect
->Reverb
.Gain
, Effect
->Reverb
.LateReverbGain
,
1149 x
, Effect
->Reverb
.Density
, Effect
->Reverb
.DecayTime
,
1150 Effect
->Reverb
.Diffusion
, hfRatio
, cw
, frequency
, State
);
1152 // Update the echo line.
1153 UpdateEchoLine(Effect
->Reverb
.Gain
, Effect
->Reverb
.LateReverbGain
,
1154 Effect
->Reverb
.EchoTime
, Effect
->Reverb
.DecayTime
,
1155 Effect
->Reverb
.Diffusion
, Effect
->Reverb
.EchoDepth
,
1156 hfRatio
, cw
, frequency
, State
);
1158 // Update early and late 3D panning.
1159 Update3DPanning(Context
->Device
, Effect
->Reverb
.ReflectionsPan
,
1160 Effect
->Reverb
.LateReverbPan
, State
);
1163 // This processes the reverb state, given the input samples and an output
1165 static ALvoid
VerbProcess(ALeffectState
*effect
, const ALeffectslot
*Slot
, ALuint SamplesToDo
, const ALfloat
*SamplesIn
, ALfloat (*SamplesOut
)[OUTPUTCHANNELS
])
1167 ALverbState
*State
= (ALverbState
*)effect
;
1169 ALfloat early
[4], late
[4], out
[4];
1170 ALfloat gain
= Slot
->Gain
;
1171 const ALfloat
*panGain
= State
->Gain
;
1173 for(index
= 0;index
< SamplesToDo
;index
++)
1175 // Process reverb for this sample.
1176 VerbPass(State
, SamplesIn
[index
], early
, late
);
1178 // Mix early reflections and late reverb.
1179 out
[0] = (early
[0] + late
[0]) * gain
;
1180 out
[1] = (early
[1] + late
[1]) * gain
;
1181 out
[2] = (early
[2] + late
[2]) * gain
;
1182 out
[3] = (early
[3] + late
[3]) * gain
;
1184 // Output the results.
1185 SamplesOut
[index
][FRONT_LEFT
] += panGain
[FRONT_LEFT
] * out
[0];
1186 SamplesOut
[index
][FRONT_RIGHT
] += panGain
[FRONT_RIGHT
] * out
[1];
1187 SamplesOut
[index
][FRONT_CENTER
] += panGain
[FRONT_CENTER
] * out
[3];
1188 SamplesOut
[index
][SIDE_LEFT
] += panGain
[SIDE_LEFT
] * out
[0];
1189 SamplesOut
[index
][SIDE_RIGHT
] += panGain
[SIDE_RIGHT
] * out
[1];
1190 SamplesOut
[index
][BACK_LEFT
] += panGain
[BACK_LEFT
] * out
[0];
1191 SamplesOut
[index
][BACK_RIGHT
] += panGain
[BACK_RIGHT
] * out
[1];
1192 SamplesOut
[index
][BACK_CENTER
] += panGain
[BACK_CENTER
] * out
[2];
1196 // This processes the EAX reverb state, given the input samples and an output
1198 static ALvoid
EAXVerbProcess(ALeffectState
*effect
, const ALeffectslot
*Slot
, ALuint SamplesToDo
, const ALfloat
*SamplesIn
, ALfloat (*SamplesOut
)[OUTPUTCHANNELS
])
1200 ALverbState
*State
= (ALverbState
*)effect
;
1202 ALfloat early
[4], late
[4];
1203 ALfloat gain
= Slot
->Gain
;
1205 for(index
= 0;index
< SamplesToDo
;index
++)
1207 // Process reverb for this sample.
1208 EAXVerbPass(State
, SamplesIn
[index
], early
, late
);
1210 // Unfortunately, while the number and configuration of gains for
1211 // panning adjust according to OUTPUTCHANNELS, the output from the
1212 // reverb engine is not so scalable.
1213 SamplesOut
[index
][FRONT_LEFT
] +=
1214 (State
->Early
.PanGain
[FRONT_LEFT
]*early
[0] +
1215 State
->Late
.PanGain
[FRONT_LEFT
]*late
[0]) * gain
;
1216 SamplesOut
[index
][FRONT_RIGHT
] +=
1217 (State
->Early
.PanGain
[FRONT_RIGHT
]*early
[1] +
1218 State
->Late
.PanGain
[FRONT_RIGHT
]*late
[1]) * gain
;
1219 SamplesOut
[index
][FRONT_CENTER
] +=
1220 (State
->Early
.PanGain
[FRONT_CENTER
]*early
[3] +
1221 State
->Late
.PanGain
[FRONT_CENTER
]*late
[3]) * gain
;
1222 SamplesOut
[index
][SIDE_LEFT
] +=
1223 (State
->Early
.PanGain
[SIDE_LEFT
]*early
[0] +
1224 State
->Late
.PanGain
[SIDE_LEFT
]*late
[0]) * gain
;
1225 SamplesOut
[index
][SIDE_RIGHT
] +=
1226 (State
->Early
.PanGain
[SIDE_RIGHT
]*early
[1] +
1227 State
->Late
.PanGain
[SIDE_RIGHT
]*late
[1]) * gain
;
1228 SamplesOut
[index
][BACK_LEFT
] +=
1229 (State
->Early
.PanGain
[BACK_LEFT
]*early
[0] +
1230 State
->Late
.PanGain
[BACK_LEFT
]*late
[0]) * gain
;
1231 SamplesOut
[index
][BACK_RIGHT
] +=
1232 (State
->Early
.PanGain
[BACK_RIGHT
]*early
[1] +
1233 State
->Late
.PanGain
[BACK_RIGHT
]*late
[1]) * gain
;
1234 SamplesOut
[index
][BACK_CENTER
] +=
1235 (State
->Early
.PanGain
[BACK_CENTER
]*early
[2] +
1236 State
->Late
.PanGain
[BACK_CENTER
]*late
[2]) * gain
;
1240 // This creates the reverb state. It should be called only when the reverb
1241 // effect is loaded into a slot that doesn't already have a reverb effect.
1242 ALeffectState
*VerbCreate(void)
1244 ALverbState
*State
= NULL
;
1247 State
= malloc(sizeof(ALverbState
));
1251 State
->state
.Destroy
= VerbDestroy
;
1252 State
->state
.DeviceUpdate
= VerbDeviceUpdate
;
1253 State
->state
.Update
= VerbUpdate
;
1254 State
->state
.Process
= VerbProcess
;
1256 State
->TotalSamples
= 0;
1257 State
->SampleBuffer
= NULL
;
1259 State
->LpFilter
.coeff
= 0.0f
;
1260 State
->LpFilter
.history
[0] = 0.0f
;
1261 State
->LpFilter
.history
[1] = 0.0f
;
1263 State
->Mod
.Delay
.Mask
= 0;
1264 State
->Mod
.Delay
.Line
= NULL
;
1265 State
->Mod
.Index
= 0;
1266 State
->Mod
.Range
= 1;
1267 State
->Mod
.Depth
= 0.0f
;
1268 State
->Mod
.Coeff
= 0.0f
;
1269 State
->Mod
.Filter
= 0.0f
;
1271 State
->Delay
.Mask
= 0;
1272 State
->Delay
.Line
= NULL
;
1273 State
->DelayTap
[0] = 0;
1274 State
->DelayTap
[1] = 0;
1276 State
->Early
.Gain
= 0.0f
;
1277 for(index
= 0;index
< 4;index
++)
1279 State
->Early
.Coeff
[index
] = 0.0f
;
1280 State
->Early
.Delay
[index
].Mask
= 0;
1281 State
->Early
.Delay
[index
].Line
= NULL
;
1282 State
->Early
.Offset
[index
] = 0;
1285 State
->Decorrelator
.Mask
= 0;
1286 State
->Decorrelator
.Line
= NULL
;
1287 State
->DecoTap
[0] = 0;
1288 State
->DecoTap
[1] = 0;
1289 State
->DecoTap
[2] = 0;
1291 State
->Late
.Gain
= 0.0f
;
1292 State
->Late
.DensityGain
= 0.0f
;
1293 State
->Late
.ApFeedCoeff
= 0.0f
;
1294 State
->Late
.MixCoeff
= 0.0f
;
1295 for(index
= 0;index
< 4;index
++)
1297 State
->Late
.ApCoeff
[index
] = 0.0f
;
1298 State
->Late
.ApDelay
[index
].Mask
= 0;
1299 State
->Late
.ApDelay
[index
].Line
= NULL
;
1300 State
->Late
.ApOffset
[index
] = 0;
1302 State
->Late
.Coeff
[index
] = 0.0f
;
1303 State
->Late
.Delay
[index
].Mask
= 0;
1304 State
->Late
.Delay
[index
].Line
= NULL
;
1305 State
->Late
.Offset
[index
] = 0;
1307 State
->Late
.LpCoeff
[index
] = 0.0f
;
1308 State
->Late
.LpSample
[index
] = 0.0f
;
1311 for(index
= 0;index
< OUTPUTCHANNELS
;index
++)
1313 State
->Early
.PanGain
[index
] = 0.0f
;
1314 State
->Late
.PanGain
[index
] = 0.0f
;
1317 State
->Echo
.DensityGain
= 0.0f
;
1318 State
->Echo
.Delay
.Mask
= 0;
1319 State
->Echo
.Delay
.Line
= NULL
;
1320 State
->Echo
.ApDelay
.Mask
= 0;
1321 State
->Echo
.ApDelay
.Line
= NULL
;
1322 State
->Echo
.Coeff
= 0.0f
;
1323 State
->Echo
.ApFeedCoeff
= 0.0f
;
1324 State
->Echo
.ApCoeff
= 0.0f
;
1325 State
->Echo
.Offset
= 0;
1326 State
->Echo
.ApOffset
= 0;
1327 State
->Echo
.LpCoeff
= 0.0f
;
1328 State
->Echo
.LpSample
= 0.0f
;
1329 State
->Echo
.MixCoeff
[0] = 0.0f
;
1330 State
->Echo
.MixCoeff
[1] = 0.0f
;
1334 State
->Gain
= State
->Late
.PanGain
;
1336 return &State
->state
;
1339 ALeffectState
*EAXVerbCreate(void)
1341 ALeffectState
*State
= VerbCreate();
1344 State
->DeviceUpdate
= EAXVerbDeviceUpdate
;
1345 State
->Update
= EAXVerbUpdate
;
1346 State
->Process
= EAXVerbProcess
;