2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
32 #include "alListener.h"
33 #include "alAuxEffectSlot.h"
37 #include "uhjfilter.h"
38 #include "bformatdec.h"
39 #include "static_assert.h"
41 #include "mixer_defs.h"
43 #include "backends/base.h"
53 ALfloat ConeScale
= 1.0f
;
55 /* Localized Z scalar for mono sources */
56 ALfloat ZScale
= 1.0f
;
58 extern inline ALfloat
minf(ALfloat a
, ALfloat b
);
59 extern inline ALfloat
maxf(ALfloat a
, ALfloat b
);
60 extern inline ALfloat
clampf(ALfloat val
, ALfloat min
, ALfloat max
);
62 extern inline ALdouble
mind(ALdouble a
, ALdouble b
);
63 extern inline ALdouble
maxd(ALdouble a
, ALdouble b
);
64 extern inline ALdouble
clampd(ALdouble val
, ALdouble min
, ALdouble max
);
66 extern inline ALuint
minu(ALuint a
, ALuint b
);
67 extern inline ALuint
maxu(ALuint a
, ALuint b
);
68 extern inline ALuint
clampu(ALuint val
, ALuint min
, ALuint max
);
70 extern inline ALint
mini(ALint a
, ALint b
);
71 extern inline ALint
maxi(ALint a
, ALint b
);
72 extern inline ALint
clampi(ALint val
, ALint min
, ALint max
);
74 extern inline ALint64
mini64(ALint64 a
, ALint64 b
);
75 extern inline ALint64
maxi64(ALint64 a
, ALint64 b
);
76 extern inline ALint64
clampi64(ALint64 val
, ALint64 min
, ALint64 max
);
78 extern inline ALuint64
minu64(ALuint64 a
, ALuint64 b
);
79 extern inline ALuint64
maxu64(ALuint64 a
, ALuint64 b
);
80 extern inline ALuint64
clampu64(ALuint64 val
, ALuint64 min
, ALuint64 max
);
82 extern inline ALfloat
lerp(ALfloat val1
, ALfloat val2
, ALfloat mu
);
83 extern inline ALfloat
resample_fir4(ALfloat val0
, ALfloat val1
, ALfloat val2
, ALfloat val3
, ALuint frac
);
85 extern inline void aluVectorSet(aluVector
*restrict vector
, ALfloat x
, ALfloat y
, ALfloat z
, ALfloat w
);
87 extern inline void aluMatrixfSetRow(aluMatrixf
*matrix
, ALuint row
,
88 ALfloat m0
, ALfloat m1
, ALfloat m2
, ALfloat m3
);
89 extern inline void aluMatrixfSet(aluMatrixf
*matrix
,
90 ALfloat m00
, ALfloat m01
, ALfloat m02
, ALfloat m03
,
91 ALfloat m10
, ALfloat m11
, ALfloat m12
, ALfloat m13
,
92 ALfloat m20
, ALfloat m21
, ALfloat m22
, ALfloat m23
,
93 ALfloat m30
, ALfloat m31
, ALfloat m32
, ALfloat m33
);
95 const aluMatrixf IdentityMatrixf
= {{
96 { 1.0f
, 0.0f
, 0.0f
, 0.0f
},
97 { 0.0f
, 1.0f
, 0.0f
, 0.0f
},
98 { 0.0f
, 0.0f
, 1.0f
, 0.0f
},
99 { 0.0f
, 0.0f
, 0.0f
, 1.0f
},
103 static inline HrtfDirectMixerFunc
SelectHrtfMixer(void)
106 if((CPUCapFlags
&CPU_CAP_SSE
))
107 return MixDirectHrtf_SSE
;
110 if((CPUCapFlags
&CPU_CAP_NEON
))
111 return MixDirectHrtf_Neon
;
114 return MixDirectHrtf_C
;
118 static inline void aluCrossproduct(const ALfloat
*inVector1
, const ALfloat
*inVector2
, ALfloat
*outVector
)
120 outVector
[0] = inVector1
[1]*inVector2
[2] - inVector1
[2]*inVector2
[1];
121 outVector
[1] = inVector1
[2]*inVector2
[0] - inVector1
[0]*inVector2
[2];
122 outVector
[2] = inVector1
[0]*inVector2
[1] - inVector1
[1]*inVector2
[0];
125 static inline ALfloat
aluDotproduct(const aluVector
*vec1
, const aluVector
*vec2
)
127 return vec1
->v
[0]*vec2
->v
[0] + vec1
->v
[1]*vec2
->v
[1] + vec1
->v
[2]*vec2
->v
[2];
130 static ALfloat
aluNormalize(ALfloat
*vec
)
132 ALfloat length
= sqrtf(vec
[0]*vec
[0] + vec
[1]*vec
[1] + vec
[2]*vec
[2]);
135 ALfloat inv_length
= 1.0f
/length
;
136 vec
[0] *= inv_length
;
137 vec
[1] *= inv_length
;
138 vec
[2] *= inv_length
;
143 static void aluMatrixfFloat3(ALfloat
*vec
, ALfloat w
, const aluMatrixf
*mtx
)
145 ALfloat v
[4] = { vec
[0], vec
[1], vec
[2], w
};
147 vec
[0] = v
[0]*mtx
->m
[0][0] + v
[1]*mtx
->m
[1][0] + v
[2]*mtx
->m
[2][0] + v
[3]*mtx
->m
[3][0];
148 vec
[1] = v
[0]*mtx
->m
[0][1] + v
[1]*mtx
->m
[1][1] + v
[2]*mtx
->m
[2][1] + v
[3]*mtx
->m
[3][1];
149 vec
[2] = v
[0]*mtx
->m
[0][2] + v
[1]*mtx
->m
[1][2] + v
[2]*mtx
->m
[2][2] + v
[3]*mtx
->m
[3][2];
152 static aluVector
aluMatrixfVector(const aluMatrixf
*mtx
, const aluVector
*vec
)
155 v
.v
[0] = vec
->v
[0]*mtx
->m
[0][0] + vec
->v
[1]*mtx
->m
[1][0] + vec
->v
[2]*mtx
->m
[2][0] + vec
->v
[3]*mtx
->m
[3][0];
156 v
.v
[1] = vec
->v
[0]*mtx
->m
[0][1] + vec
->v
[1]*mtx
->m
[1][1] + vec
->v
[2]*mtx
->m
[2][1] + vec
->v
[3]*mtx
->m
[3][1];
157 v
.v
[2] = vec
->v
[0]*mtx
->m
[0][2] + vec
->v
[1]*mtx
->m
[1][2] + vec
->v
[2]*mtx
->m
[2][2] + vec
->v
[3]*mtx
->m
[3][2];
158 v
.v
[3] = vec
->v
[0]*mtx
->m
[0][3] + vec
->v
[1]*mtx
->m
[1][3] + vec
->v
[2]*mtx
->m
[2][3] + vec
->v
[3]*mtx
->m
[3][3];
163 /* Prepares the interpolator for a given rate (determined by increment). A
164 * result of AL_FALSE indicates that the filter output will completely cut
167 * With a bit of work, and a trade of memory for CPU cost, this could be
168 * modified for use with an interpolated increment for buttery-smooth pitch
171 static ALboolean
BsincPrepare(const ALuint increment
, BsincState
*state
)
173 static const ALfloat scaleBase
= 1.510578918e-01f
, scaleRange
= 1.177936623e+00f
;
174 static const ALuint m
[BSINC_SCALE_COUNT
] = { 24, 24, 24, 24, 24, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 12 };
175 static const ALuint to
[4][BSINC_SCALE_COUNT
] =
177 { 0, 24, 408, 792, 1176, 1560, 1944, 2328, 2648, 2968, 3288, 3544, 3800, 4056, 4248, 4440 },
178 { 4632, 5016, 5400, 5784, 6168, 6552, 6936, 7320, 7640, 7960, 8280, 8536, 8792, 9048, 9240, 0 },
179 { 0, 9432, 9816, 10200, 10584, 10968, 11352, 11736, 12056, 12376, 12696, 12952, 13208, 13464, 13656, 13848 },
180 { 14040, 14424, 14808, 15192, 15576, 15960, 16344, 16728, 17048, 17368, 17688, 17944, 18200, 18456, 18648, 0 }
182 static const ALuint tm
[2][BSINC_SCALE_COUNT
] =
184 { 0, 24, 24, 24, 24, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 12 },
185 { 24, 24, 24, 24, 24, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 0 }
189 ALboolean uncut
= AL_TRUE
;
191 if(increment
> FRACTIONONE
)
193 sf
= (ALfloat
)FRACTIONONE
/ increment
;
196 /* Signal has been completely cut. The return result can be used
197 * to skip the filter (and output zeros) as an optimization.
205 sf
= (BSINC_SCALE_COUNT
- 1) * (sf
- scaleBase
) * scaleRange
;
207 /* The interpolation factor is fit to this diagonally-symmetric
208 * curve to reduce the transition ripple caused by interpolating
209 * different scales of the sinc function.
211 sf
= 1.0f
- cosf(asinf(sf
- si
));
217 si
= BSINC_SCALE_COUNT
- 1;
222 state
->l
= -(ALint
)((m
[si
] / 2) - 1);
223 /* The CPU cost of this table re-mapping could be traded for the memory
224 * cost of a complete table map (1024 elements large).
226 for(pi
= 0;pi
< BSINC_PHASE_COUNT
;pi
++)
228 state
->coeffs
[pi
].filter
= &bsincTab
[to
[0][si
] + tm
[0][si
]*pi
];
229 state
->coeffs
[pi
].scDelta
= &bsincTab
[to
[1][si
] + tm
[1][si
]*pi
];
230 state
->coeffs
[pi
].phDelta
= &bsincTab
[to
[2][si
] + tm
[0][si
]*pi
];
231 state
->coeffs
[pi
].spDelta
= &bsincTab
[to
[3][si
] + tm
[1][si
]*pi
];
237 static ALboolean
CalcListenerParams(ALCcontext
*Context
)
239 ALlistener
*Listener
= Context
->Listener
;
240 ALfloat N
[3], V
[3], U
[3], P
[3];
241 struct ALlistenerProps
*props
;
244 props
= ATOMIC_EXCHANGE(struct ALlistenerProps
*, &Listener
->Update
, NULL
, almemory_order_acq_rel
);
245 if(!props
) return AL_FALSE
;
248 N
[0] = ATOMIC_LOAD(&props
->Forward
[0], almemory_order_relaxed
);
249 N
[1] = ATOMIC_LOAD(&props
->Forward
[1], almemory_order_relaxed
);
250 N
[2] = ATOMIC_LOAD(&props
->Forward
[2], almemory_order_relaxed
);
252 V
[0] = ATOMIC_LOAD(&props
->Up
[0], almemory_order_relaxed
);
253 V
[1] = ATOMIC_LOAD(&props
->Up
[1], almemory_order_relaxed
);
254 V
[2] = ATOMIC_LOAD(&props
->Up
[2], almemory_order_relaxed
);
256 /* Build and normalize right-vector */
257 aluCrossproduct(N
, V
, U
);
260 aluMatrixfSet(&Listener
->Params
.Matrix
,
261 U
[0], V
[0], -N
[0], 0.0,
262 U
[1], V
[1], -N
[1], 0.0,
263 U
[2], V
[2], -N
[2], 0.0,
267 P
[0] = ATOMIC_LOAD(&props
->Position
[0], almemory_order_relaxed
);
268 P
[1] = ATOMIC_LOAD(&props
->Position
[1], almemory_order_relaxed
);
269 P
[2] = ATOMIC_LOAD(&props
->Position
[2], almemory_order_relaxed
);
270 aluMatrixfFloat3(P
, 1.0, &Listener
->Params
.Matrix
);
271 aluMatrixfSetRow(&Listener
->Params
.Matrix
, 3, -P
[0], -P
[1], -P
[2], 1.0f
);
273 aluVectorSet(&vel
, ATOMIC_LOAD(&props
->Velocity
[0], almemory_order_relaxed
),
274 ATOMIC_LOAD(&props
->Velocity
[1], almemory_order_relaxed
),
275 ATOMIC_LOAD(&props
->Velocity
[2], almemory_order_relaxed
),
277 Listener
->Params
.Velocity
= aluMatrixfVector(&Listener
->Params
.Matrix
, &vel
);
279 Listener
->Params
.Gain
= ATOMIC_LOAD(&props
->Gain
, almemory_order_relaxed
) * Context
->GainBoost
;
280 Listener
->Params
.MetersPerUnit
= ATOMIC_LOAD(&props
->MetersPerUnit
, almemory_order_relaxed
);
282 Listener
->Params
.DopplerFactor
= ATOMIC_LOAD(&props
->DopplerFactor
, almemory_order_relaxed
);
283 Listener
->Params
.SpeedOfSound
= ATOMIC_LOAD(&props
->SpeedOfSound
, almemory_order_relaxed
) *
284 ATOMIC_LOAD(&props
->DopplerVelocity
, almemory_order_relaxed
);
286 Listener
->Params
.SourceDistanceModel
= ATOMIC_LOAD(&props
->SourceDistanceModel
, almemory_order_relaxed
);
287 Listener
->Params
.DistanceModel
= ATOMIC_LOAD(&props
->DistanceModel
, almemory_order_relaxed
);
289 ATOMIC_REPLACE_HEAD(struct ALlistenerProps
*, &Listener
->FreeList
, props
);
293 static ALboolean
CalcEffectSlotParams(ALeffectslot
*slot
, ALCdevice
*device
)
295 struct ALeffectslotProps
*props
;
296 ALeffectState
*state
;
298 props
= ATOMIC_EXCHANGE(struct ALeffectslotProps
*, &slot
->Update
, NULL
, almemory_order_acq_rel
);
299 if(!props
) return AL_FALSE
;
301 slot
->Params
.Gain
= ATOMIC_LOAD(&props
->Gain
, almemory_order_relaxed
);
302 slot
->Params
.AuxSendAuto
= ATOMIC_LOAD(&props
->AuxSendAuto
, almemory_order_relaxed
);
303 slot
->Params
.EffectType
= ATOMIC_LOAD(&props
->Type
, almemory_order_relaxed
);
304 if(IsReverbEffect(slot
->Params
.EffectType
))
306 slot
->Params
.RoomRolloff
= props
->Props
.Reverb
.RoomRolloffFactor
;
307 slot
->Params
.DecayTime
= props
->Props
.Reverb
.DecayTime
;
308 slot
->Params
.AirAbsorptionGainHF
= props
->Props
.Reverb
.AirAbsorptionGainHF
;
312 slot
->Params
.RoomRolloff
= 0.0f
;
313 slot
->Params
.DecayTime
= 0.0f
;
314 slot
->Params
.AirAbsorptionGainHF
= 1.0f
;
317 /* Swap effect states. No need to play with the ref counts since they keep
318 * the same number of refs.
320 state
= ATOMIC_EXCHANGE(ALeffectState
*, &props
->State
, slot
->Params
.EffectState
,
321 almemory_order_relaxed
);
322 slot
->Params
.EffectState
= state
;
324 V(state
,update
)(device
, slot
, &props
->Props
);
326 ATOMIC_REPLACE_HEAD(struct ALeffectslotProps
*, &slot
->FreeList
, props
);
331 static void CalcNonAttnSourceParams(ALvoice
*voice
, const struct ALsourceProps
*props
, const ALbuffer
*ALBuffer
, const ALCcontext
*ALContext
)
333 static const struct ChanMap MonoMap
[1] = {
334 { FrontCenter
, 0.0f
, 0.0f
}
336 { BackLeft
, DEG2RAD(-150.0f
), DEG2RAD(0.0f
) },
337 { BackRight
, DEG2RAD( 150.0f
), DEG2RAD(0.0f
) }
339 { FrontLeft
, DEG2RAD( -45.0f
), DEG2RAD(0.0f
) },
340 { FrontRight
, DEG2RAD( 45.0f
), DEG2RAD(0.0f
) },
341 { BackLeft
, DEG2RAD(-135.0f
), DEG2RAD(0.0f
) },
342 { BackRight
, DEG2RAD( 135.0f
), DEG2RAD(0.0f
) }
344 { FrontLeft
, DEG2RAD( -30.0f
), DEG2RAD(0.0f
) },
345 { FrontRight
, DEG2RAD( 30.0f
), DEG2RAD(0.0f
) },
346 { FrontCenter
, DEG2RAD( 0.0f
), DEG2RAD(0.0f
) },
348 { SideLeft
, DEG2RAD(-110.0f
), DEG2RAD(0.0f
) },
349 { SideRight
, DEG2RAD( 110.0f
), DEG2RAD(0.0f
) }
351 { FrontLeft
, DEG2RAD(-30.0f
), DEG2RAD(0.0f
) },
352 { FrontRight
, DEG2RAD( 30.0f
), DEG2RAD(0.0f
) },
353 { FrontCenter
, DEG2RAD( 0.0f
), DEG2RAD(0.0f
) },
355 { BackCenter
, DEG2RAD(180.0f
), DEG2RAD(0.0f
) },
356 { SideLeft
, DEG2RAD(-90.0f
), DEG2RAD(0.0f
) },
357 { SideRight
, DEG2RAD( 90.0f
), DEG2RAD(0.0f
) }
359 { FrontLeft
, DEG2RAD( -30.0f
), DEG2RAD(0.0f
) },
360 { FrontRight
, DEG2RAD( 30.0f
), DEG2RAD(0.0f
) },
361 { FrontCenter
, DEG2RAD( 0.0f
), DEG2RAD(0.0f
) },
363 { BackLeft
, DEG2RAD(-150.0f
), DEG2RAD(0.0f
) },
364 { BackRight
, DEG2RAD( 150.0f
), DEG2RAD(0.0f
) },
365 { SideLeft
, DEG2RAD( -90.0f
), DEG2RAD(0.0f
) },
366 { SideRight
, DEG2RAD( 90.0f
), DEG2RAD(0.0f
) }
369 const ALCdevice
*Device
= ALContext
->Device
;
370 const ALlistener
*Listener
= ALContext
->Listener
;
371 ALfloat SourceVolume
,ListenerGain
,MinVolume
,MaxVolume
;
372 ALfloat DryGain
, DryGainHF
, DryGainLF
;
373 ALfloat WetGain
[MAX_SENDS
];
374 ALfloat WetGainHF
[MAX_SENDS
];
375 ALfloat WetGainLF
[MAX_SENDS
];
376 ALeffectslot
*SendSlots
[MAX_SENDS
];
377 ALuint NumSends
, Frequency
;
379 const struct ChanMap
*chans
= NULL
;
380 struct ChanMap StereoMap
[2] = {
381 { FrontLeft
, DEG2RAD(-30.0f
), DEG2RAD(0.0f
) },
382 { FrontRight
, DEG2RAD( 30.0f
), DEG2RAD(0.0f
) }
384 ALuint num_channels
= 0;
385 ALboolean DirectChannels
;
386 ALboolean isbformat
= AL_FALSE
;
390 /* Get device properties */
391 NumSends
= Device
->NumAuxSends
;
392 Frequency
= Device
->Frequency
;
394 /* Get listener properties */
395 ListenerGain
= Listener
->Params
.Gain
;
397 /* Get source properties */
398 SourceVolume
= ATOMIC_LOAD(&props
->Gain
, almemory_order_relaxed
);
399 MinVolume
= ATOMIC_LOAD(&props
->MinGain
, almemory_order_relaxed
);
400 MaxVolume
= ATOMIC_LOAD(&props
->MaxGain
, almemory_order_relaxed
);
401 Pitch
= ATOMIC_LOAD(&props
->Pitch
, almemory_order_relaxed
);
402 Relative
= ATOMIC_LOAD(&props
->HeadRelative
, almemory_order_relaxed
);
403 DirectChannels
= ATOMIC_LOAD(&props
->DirectChannels
, almemory_order_relaxed
);
405 /* Convert counter-clockwise to clockwise. */
406 StereoMap
[0].angle
= -ATOMIC_LOAD(&props
->StereoPan
[0], almemory_order_relaxed
);
407 StereoMap
[1].angle
= -ATOMIC_LOAD(&props
->StereoPan
[1], almemory_order_relaxed
);
409 voice
->Direct
.Buffer
= Device
->Dry
.Buffer
;
410 voice
->Direct
.Channels
= Device
->Dry
.NumChannels
;
411 for(i
= 0;i
< NumSends
;i
++)
413 SendSlots
[i
] = ATOMIC_LOAD(&props
->Send
[i
].Slot
, almemory_order_relaxed
);
414 if(!SendSlots
[i
] && i
== 0)
415 SendSlots
[i
] = Device
->DefaultSlot
;
416 if(!SendSlots
[i
] || SendSlots
[i
]->Params
.EffectType
== AL_EFFECT_NULL
)
419 voice
->Send
[i
].Buffer
= NULL
;
420 voice
->Send
[i
].Channels
= 0;
424 voice
->Send
[i
].Buffer
= SendSlots
[i
]->WetBuffer
;
425 voice
->Send
[i
].Channels
= SendSlots
[i
]->NumChannels
;
429 /* Calculate the stepping value */
430 Pitch
*= (ALfloat
)ALBuffer
->Frequency
/ Frequency
;
431 if(Pitch
> (ALfloat
)MAX_PITCH
)
432 voice
->Step
= MAX_PITCH
<<FRACTIONBITS
;
434 voice
->Step
= maxi(fastf2i(Pitch
*FRACTIONONE
+ 0.5f
), 1);
435 BsincPrepare(voice
->Step
, &voice
->ResampleState
.bsinc
);
437 /* Calculate gains */
438 DryGain
= clampf(SourceVolume
, MinVolume
, MaxVolume
);
439 DryGain
*= ATOMIC_LOAD(&props
->Direct
.Gain
, almemory_order_relaxed
) * ListenerGain
;
440 DryGain
= minf(DryGain
, GAIN_MIX_MAX
);
441 DryGainHF
= ATOMIC_LOAD(&props
->Direct
.GainHF
, almemory_order_relaxed
);
442 DryGainLF
= ATOMIC_LOAD(&props
->Direct
.GainLF
, almemory_order_relaxed
);
443 for(i
= 0;i
< NumSends
;i
++)
445 WetGain
[i
] = clampf(SourceVolume
, MinVolume
, MaxVolume
);
446 WetGain
[i
] *= ATOMIC_LOAD(&props
->Send
[i
].Gain
, almemory_order_relaxed
) * ListenerGain
;
447 WetGain
[i
] = minf(WetGain
[i
], GAIN_MIX_MAX
);
448 WetGainHF
[i
] = ATOMIC_LOAD(&props
->Send
[i
].GainHF
, almemory_order_relaxed
);
449 WetGainLF
[i
] = ATOMIC_LOAD(&props
->Send
[i
].GainLF
, almemory_order_relaxed
);
452 switch(ALBuffer
->FmtChannels
)
492 DirectChannels
= AL_FALSE
;
498 DirectChannels
= AL_FALSE
;
504 ALfloat N
[3], V
[3], U
[3];
509 N
[0] = ATOMIC_LOAD(&props
->Orientation
[0][0], almemory_order_relaxed
);
510 N
[1] = ATOMIC_LOAD(&props
->Orientation
[0][1], almemory_order_relaxed
);
511 N
[2] = ATOMIC_LOAD(&props
->Orientation
[0][2], almemory_order_relaxed
);
513 V
[0] = ATOMIC_LOAD(&props
->Orientation
[1][0], almemory_order_relaxed
);
514 V
[1] = ATOMIC_LOAD(&props
->Orientation
[1][1], almemory_order_relaxed
);
515 V
[2] = ATOMIC_LOAD(&props
->Orientation
[1][2], almemory_order_relaxed
);
519 const aluMatrixf
*lmatrix
= &Listener
->Params
.Matrix
;
520 aluMatrixfFloat3(N
, 0.0f
, lmatrix
);
521 aluMatrixfFloat3(V
, 0.0f
, lmatrix
);
523 /* Build and normalize right-vector */
524 aluCrossproduct(N
, V
, U
);
527 /* Build a rotate + conversion matrix (FuMa -> ACN+N3D). */
528 scale
= 1.732050808f
;
529 aluMatrixfSet(&matrix
,
530 1.414213562f
, 0.0f
, 0.0f
, 0.0f
,
531 0.0f
, -N
[0]*scale
, N
[1]*scale
, -N
[2]*scale
,
532 0.0f
, U
[0]*scale
, -U
[1]*scale
, U
[2]*scale
,
533 0.0f
, -V
[0]*scale
, V
[1]*scale
, -V
[2]*scale
536 voice
->Direct
.Buffer
= Device
->FOAOut
.Buffer
;
537 voice
->Direct
.Channels
= Device
->FOAOut
.NumChannels
;
538 for(c
= 0;c
< num_channels
;c
++)
539 ComputeFirstOrderGains(Device
->FOAOut
, matrix
.m
[c
], DryGain
,
540 voice
->Direct
.Params
[c
].Gains
.Target
);
542 for(i
= 0;i
< NumSends
;i
++)
546 for(c
= 0;c
< num_channels
;c
++)
548 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
549 voice
->Send
[i
].Params
[c
].Gains
.Target
[j
] = 0.0f
;
554 for(c
= 0;c
< num_channels
;c
++)
556 const ALeffectslot
*Slot
= SendSlots
[i
];
557 ComputeFirstOrderGainsBF(Slot
->ChanMap
, Slot
->NumChannels
,
558 matrix
.m
[c
], WetGain
[i
], voice
->Send
[i
].Params
[c
].Gains
.Target
564 voice
->IsHrtf
= AL_FALSE
;
568 ALfloat coeffs
[MAX_AMBI_COEFFS
];
572 /* Skip the virtual channels and write inputs to the real output. */
573 voice
->Direct
.Buffer
= Device
->RealOut
.Buffer
;
574 voice
->Direct
.Channels
= Device
->RealOut
.NumChannels
;
575 for(c
= 0;c
< num_channels
;c
++)
578 for(j
= 0;j
< MAX_OUTPUT_CHANNELS
;j
++)
579 voice
->Direct
.Params
[c
].Gains
.Target
[j
] = 0.0f
;
580 if((idx
=GetChannelIdxByName(Device
->RealOut
, chans
[c
].channel
)) != -1)
581 voice
->Direct
.Params
[c
].Gains
.Target
[idx
] = DryGain
;
584 /* Auxiliary sends still use normal panning since they mix to B-Format, which can't
586 for(c
= 0;c
< num_channels
;c
++)
588 CalcAngleCoeffs(chans
[c
].angle
, chans
[c
].elevation
, 0.0f
, coeffs
);
590 for(i
= 0;i
< NumSends
;i
++)
594 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
595 voice
->Send
[i
].Params
[c
].Gains
.Target
[j
] = 0.0f
;
599 const ALeffectslot
*Slot
= SendSlots
[i
];
600 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
,
601 coeffs
, WetGain
[i
], voice
->Send
[i
].Params
[c
].Gains
.Target
607 voice
->IsHrtf
= AL_FALSE
;
609 else if(Device
->Render_Mode
== HrtfRender
)
611 /* Full HRTF rendering. Skip the virtual channels and render each
612 * input channel to the real outputs.
614 voice
->Direct
.Buffer
= Device
->RealOut
.Buffer
;
615 voice
->Direct
.Channels
= Device
->RealOut
.NumChannels
;
616 for(c
= 0;c
< num_channels
;c
++)
618 if(chans
[c
].channel
== LFE
)
621 voice
->Direct
.Params
[c
].Hrtf
.Target
.Delay
[0] = 0;
622 voice
->Direct
.Params
[c
].Hrtf
.Target
.Delay
[1] = 0;
623 for(i
= 0;i
< HRIR_LENGTH
;i
++)
625 voice
->Direct
.Params
[c
].Hrtf
.Target
.Coeffs
[i
][0] = 0.0f
;
626 voice
->Direct
.Params
[c
].Hrtf
.Target
.Coeffs
[i
][1] = 0.0f
;
629 for(i
= 0;i
< NumSends
;i
++)
631 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
632 voice
->Send
[i
].Params
[c
].Gains
.Target
[j
] = 0.0f
;
638 /* Get the static HRIR coefficients and delays for this channel. */
639 GetHrtfCoeffs(Device
->Hrtf
.Handle
,
640 chans
[c
].elevation
, chans
[c
].angle
, 0.0f
, DryGain
,
641 voice
->Direct
.Params
[c
].Hrtf
.Target
.Coeffs
,
642 voice
->Direct
.Params
[c
].Hrtf
.Target
.Delay
645 /* Normal panning for auxiliary sends. */
646 CalcAngleCoeffs(chans
[c
].angle
, chans
[c
].elevation
, 0.0f
, coeffs
);
648 for(i
= 0;i
< NumSends
;i
++)
652 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
653 voice
->Send
[i
].Params
[c
].Gains
.Target
[j
] = 0.0f
;
657 const ALeffectslot
*Slot
= SendSlots
[i
];
658 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
,
659 coeffs
, WetGain
[i
], voice
->Send
[i
].Params
[c
].Gains
.Target
665 voice
->IsHrtf
= AL_TRUE
;
669 /* Non-HRTF rendering. Use normal panning to the output. */
670 for(c
= 0;c
< num_channels
;c
++)
672 /* Special-case LFE */
673 if(chans
[c
].channel
== LFE
)
675 for(j
= 0;j
< MAX_OUTPUT_CHANNELS
;j
++)
676 voice
->Direct
.Params
[c
].Gains
.Target
[j
] = 0.0f
;
677 if(Device
->Dry
.Buffer
== Device
->RealOut
.Buffer
)
680 if((idx
=GetChannelIdxByName(Device
->RealOut
, chans
[c
].channel
)) != -1)
681 voice
->Direct
.Params
[c
].Gains
.Target
[idx
] = DryGain
;
684 for(i
= 0;i
< NumSends
;i
++)
687 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
688 voice
->Direct
.Params
[c
].Gains
.Target
[j
] = 0.0f
;
693 if(Device
->Render_Mode
== StereoPair
)
695 /* Clamp X so it remains within 30 degrees of 0 or 180 degree azimuth. */
696 ALfloat x
= sinf(chans
[c
].angle
) * cosf(chans
[c
].elevation
);
697 coeffs
[0] = clampf(-x
, -0.5f
, 0.5f
) + 0.5f
;
698 voice
->Direct
.Params
[c
].Gains
.Target
[0] = coeffs
[0] * DryGain
;
699 voice
->Direct
.Params
[c
].Gains
.Target
[1] = (1.0f
-coeffs
[0]) * DryGain
;
700 for(j
= 2;j
< MAX_OUTPUT_CHANNELS
;j
++)
701 voice
->Direct
.Params
[c
].Gains
.Target
[j
] = 0.0f
;
703 CalcAngleCoeffs(chans
[c
].angle
, chans
[c
].elevation
, 0.0f
, coeffs
);
707 CalcAngleCoeffs(chans
[c
].angle
, chans
[c
].elevation
, 0.0f
, coeffs
);
708 ComputePanningGains(Device
->Dry
, coeffs
, DryGain
,
709 voice
->Direct
.Params
[c
].Gains
.Target
);
712 for(i
= 0;i
< NumSends
;i
++)
717 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
718 voice
->Send
[i
].Params
[c
].Gains
.Target
[j
] = 0.0f
;
722 const ALeffectslot
*Slot
= SendSlots
[i
];
723 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
,
724 coeffs
, WetGain
[i
], voice
->Send
[i
].Params
[c
].Gains
.Target
730 voice
->IsHrtf
= AL_FALSE
;
735 ALfloat hfscale
= ATOMIC_LOAD(&props
->Direct
.HFReference
, almemory_order_relaxed
) /
737 ALfloat lfscale
= ATOMIC_LOAD(&props
->Direct
.LFReference
, almemory_order_relaxed
) /
739 DryGainHF
= maxf(DryGainHF
, 0.0001f
);
740 DryGainLF
= maxf(DryGainLF
, 0.0001f
);
741 for(c
= 0;c
< num_channels
;c
++)
743 voice
->Direct
.Params
[c
].FilterType
= AF_None
;
744 if(DryGainHF
!= 1.0f
) voice
->Direct
.Params
[c
].FilterType
|= AF_LowPass
;
745 if(DryGainLF
!= 1.0f
) voice
->Direct
.Params
[c
].FilterType
|= AF_HighPass
;
746 ALfilterState_setParams(
747 &voice
->Direct
.Params
[c
].LowPass
, ALfilterType_HighShelf
,
748 DryGainHF
, hfscale
, calc_rcpQ_from_slope(DryGainHF
, 0.75f
)
750 ALfilterState_setParams(
751 &voice
->Direct
.Params
[c
].HighPass
, ALfilterType_LowShelf
,
752 DryGainLF
, lfscale
, calc_rcpQ_from_slope(DryGainLF
, 0.75f
)
756 for(i
= 0;i
< NumSends
;i
++)
758 ALfloat hfscale
= ATOMIC_LOAD(&props
->Send
[i
].HFReference
, almemory_order_relaxed
) /
760 ALfloat lfscale
= ATOMIC_LOAD(&props
->Send
[i
].LFReference
, almemory_order_relaxed
) /
762 WetGainHF
[i
] = maxf(WetGainHF
[i
], 0.0001f
);
763 WetGainLF
[i
] = maxf(WetGainLF
[i
], 0.0001f
);
764 for(c
= 0;c
< num_channels
;c
++)
766 voice
->Send
[i
].Params
[c
].FilterType
= AF_None
;
767 if(WetGainHF
[i
] != 1.0f
) voice
->Send
[i
].Params
[c
].FilterType
|= AF_LowPass
;
768 if(WetGainLF
[i
] != 1.0f
) voice
->Send
[i
].Params
[c
].FilterType
|= AF_HighPass
;
769 ALfilterState_setParams(
770 &voice
->Send
[i
].Params
[c
].LowPass
, ALfilterType_HighShelf
,
771 WetGainHF
[i
], hfscale
, calc_rcpQ_from_slope(WetGainHF
[i
], 0.75f
)
773 ALfilterState_setParams(
774 &voice
->Send
[i
].Params
[c
].HighPass
, ALfilterType_LowShelf
,
775 WetGainLF
[i
], lfscale
, calc_rcpQ_from_slope(WetGainLF
[i
], 0.75f
)
781 static void CalcAttnSourceParams(ALvoice
*voice
, const struct ALsourceProps
*props
, const ALbuffer
*ALBuffer
, const ALCcontext
*ALContext
)
783 const ALCdevice
*Device
= ALContext
->Device
;
784 const ALlistener
*Listener
= ALContext
->Listener
;
785 aluVector Position
, Velocity
, Direction
, SourceToListener
;
786 ALfloat InnerAngle
,OuterAngle
,Distance
,ClampedDist
;
787 ALfloat MinVolume
,MaxVolume
,MinDist
,MaxDist
,Rolloff
;
788 ALfloat SourceVolume
,ListenerGain
;
789 ALfloat DopplerFactor
, SpeedOfSound
;
790 ALfloat AirAbsorptionFactor
;
791 ALfloat RoomAirAbsorption
[MAX_SENDS
];
792 ALeffectslot
*SendSlots
[MAX_SENDS
];
794 ALfloat RoomAttenuation
[MAX_SENDS
];
795 ALfloat MetersPerUnit
;
796 ALfloat RoomRolloffBase
;
797 ALfloat RoomRolloff
[MAX_SENDS
];
798 ALfloat DecayDistance
[MAX_SENDS
];
802 ALboolean DryGainHFAuto
;
803 ALfloat WetGain
[MAX_SENDS
];
804 ALfloat WetGainHF
[MAX_SENDS
];
805 ALfloat WetGainLF
[MAX_SENDS
];
806 ALboolean WetGainAuto
;
807 ALboolean WetGainHFAuto
;
813 /* Get context/device properties */
814 DopplerFactor
= Listener
->Params
.DopplerFactor
;
815 SpeedOfSound
= Listener
->Params
.SpeedOfSound
;
816 NumSends
= Device
->NumAuxSends
;
817 Frequency
= Device
->Frequency
;
819 /* Get listener properties */
820 ListenerGain
= Listener
->Params
.Gain
;
821 MetersPerUnit
= Listener
->Params
.MetersPerUnit
;
823 /* Get source properties */
824 SourceVolume
= ATOMIC_LOAD(&props
->Gain
, almemory_order_relaxed
);
825 MinVolume
= ATOMIC_LOAD(&props
->MinGain
, almemory_order_relaxed
);
826 MaxVolume
= ATOMIC_LOAD(&props
->MaxGain
, almemory_order_relaxed
);
827 Pitch
= ATOMIC_LOAD(&props
->Pitch
, almemory_order_relaxed
);
828 aluVectorSet(&Position
, ATOMIC_LOAD(&props
->Position
[0], almemory_order_relaxed
),
829 ATOMIC_LOAD(&props
->Position
[1], almemory_order_relaxed
),
830 ATOMIC_LOAD(&props
->Position
[2], almemory_order_relaxed
),
832 aluVectorSet(&Direction
, ATOMIC_LOAD(&props
->Direction
[0], almemory_order_relaxed
),
833 ATOMIC_LOAD(&props
->Direction
[1], almemory_order_relaxed
),
834 ATOMIC_LOAD(&props
->Direction
[2], almemory_order_relaxed
),
836 aluVectorSet(&Velocity
, ATOMIC_LOAD(&props
->Velocity
[0], almemory_order_relaxed
),
837 ATOMIC_LOAD(&props
->Velocity
[1], almemory_order_relaxed
),
838 ATOMIC_LOAD(&props
->Velocity
[2], almemory_order_relaxed
),
840 MinDist
= ATOMIC_LOAD(&props
->RefDistance
, almemory_order_relaxed
);
841 MaxDist
= ATOMIC_LOAD(&props
->MaxDistance
, almemory_order_relaxed
);
842 Rolloff
= ATOMIC_LOAD(&props
->RollOffFactor
, almemory_order_relaxed
);
843 DopplerFactor
*= ATOMIC_LOAD(&props
->DopplerFactor
, almemory_order_relaxed
);
844 InnerAngle
= ATOMIC_LOAD(&props
->InnerAngle
, almemory_order_relaxed
);
845 OuterAngle
= ATOMIC_LOAD(&props
->OuterAngle
, almemory_order_relaxed
);
846 AirAbsorptionFactor
= ATOMIC_LOAD(&props
->AirAbsorptionFactor
, almemory_order_relaxed
);
847 DryGainHFAuto
= ATOMIC_LOAD(&props
->DryGainHFAuto
, almemory_order_relaxed
);
848 WetGainAuto
= ATOMIC_LOAD(&props
->WetGainAuto
, almemory_order_relaxed
);
849 WetGainHFAuto
= ATOMIC_LOAD(&props
->WetGainHFAuto
, almemory_order_relaxed
);
850 RoomRolloffBase
= ATOMIC_LOAD(&props
->RoomRolloffFactor
, almemory_order_relaxed
);
852 voice
->Direct
.Buffer
= Device
->Dry
.Buffer
;
853 voice
->Direct
.Channels
= Device
->Dry
.NumChannels
;
854 for(i
= 0;i
< NumSends
;i
++)
856 SendSlots
[i
] = ATOMIC_LOAD(&props
->Send
[i
].Slot
, almemory_order_relaxed
);
858 if(!SendSlots
[i
] && i
== 0)
859 SendSlots
[i
] = Device
->DefaultSlot
;
860 if(!SendSlots
[i
] || SendSlots
[i
]->Params
.EffectType
== AL_EFFECT_NULL
)
863 RoomRolloff
[i
] = 0.0f
;
864 DecayDistance
[i
] = 0.0f
;
865 RoomAirAbsorption
[i
] = 1.0f
;
867 else if(SendSlots
[i
]->Params
.AuxSendAuto
)
869 RoomRolloff
[i
] = SendSlots
[i
]->Params
.RoomRolloff
+ RoomRolloffBase
;
870 DecayDistance
[i
] = SendSlots
[i
]->Params
.DecayTime
*
871 SPEEDOFSOUNDMETRESPERSEC
;
872 RoomAirAbsorption
[i
] = SendSlots
[i
]->Params
.AirAbsorptionGainHF
;
876 /* If the slot's auxiliary send auto is off, the data sent to the
877 * effect slot is the same as the dry path, sans filter effects */
878 RoomRolloff
[i
] = Rolloff
;
879 DecayDistance
[i
] = 0.0f
;
880 RoomAirAbsorption
[i
] = AIRABSORBGAINHF
;
885 voice
->Send
[i
].Buffer
= NULL
;
886 voice
->Send
[i
].Channels
= 0;
890 voice
->Send
[i
].Buffer
= SendSlots
[i
]->WetBuffer
;
891 voice
->Send
[i
].Channels
= SendSlots
[i
]->NumChannels
;
895 /* Transform source to listener space (convert to head relative) */
896 if(ATOMIC_LOAD(&props
->HeadRelative
, almemory_order_relaxed
) == AL_FALSE
)
898 const aluMatrixf
*Matrix
= &Listener
->Params
.Matrix
;
899 /* Transform source vectors */
900 Position
= aluMatrixfVector(Matrix
, &Position
);
901 Velocity
= aluMatrixfVector(Matrix
, &Velocity
);
902 Direction
= aluMatrixfVector(Matrix
, &Direction
);
906 const aluVector
*lvelocity
= &Listener
->Params
.Velocity
;
907 /* Offset the source velocity to be relative of the listener velocity */
908 Velocity
.v
[0] += lvelocity
->v
[0];
909 Velocity
.v
[1] += lvelocity
->v
[1];
910 Velocity
.v
[2] += lvelocity
->v
[2];
913 aluNormalize(Direction
.v
);
914 SourceToListener
.v
[0] = -Position
.v
[0];
915 SourceToListener
.v
[1] = -Position
.v
[1];
916 SourceToListener
.v
[2] = -Position
.v
[2];
917 SourceToListener
.v
[3] = 0.0f
;
918 Distance
= aluNormalize(SourceToListener
.v
);
920 /* Calculate distance attenuation */
921 ClampedDist
= Distance
;
924 for(i
= 0;i
< NumSends
;i
++)
925 RoomAttenuation
[i
] = 1.0f
;
926 switch(Listener
->Params
.SourceDistanceModel
?
927 ATOMIC_LOAD(&props
->DistanceModel
, almemory_order_relaxed
) :
928 Listener
->Params
.DistanceModel
)
930 case InverseDistanceClamped
:
931 ClampedDist
= clampf(ClampedDist
, MinDist
, MaxDist
);
932 if(MaxDist
< MinDist
)
935 case InverseDistance
:
938 ALfloat dist
= lerp(MinDist
, ClampedDist
, Rolloff
);
939 if(dist
> 0.0f
) Attenuation
= MinDist
/ dist
;
940 for(i
= 0;i
< NumSends
;i
++)
942 dist
= lerp(MinDist
, ClampedDist
, RoomRolloff
[i
]);
943 if(dist
> 0.0f
) RoomAttenuation
[i
] = MinDist
/ dist
;
948 case LinearDistanceClamped
:
949 ClampedDist
= clampf(ClampedDist
, MinDist
, MaxDist
);
950 if(MaxDist
< MinDist
)
954 if(MaxDist
!= MinDist
)
956 Attenuation
= 1.0f
- (Rolloff
*(ClampedDist
-MinDist
)/(MaxDist
- MinDist
));
957 Attenuation
= maxf(Attenuation
, 0.0f
);
958 for(i
= 0;i
< NumSends
;i
++)
960 RoomAttenuation
[i
] = 1.0f
- (RoomRolloff
[i
]*(ClampedDist
-MinDist
)/(MaxDist
- MinDist
));
961 RoomAttenuation
[i
] = maxf(RoomAttenuation
[i
], 0.0f
);
966 case ExponentDistanceClamped
:
967 ClampedDist
= clampf(ClampedDist
, MinDist
, MaxDist
);
968 if(MaxDist
< MinDist
)
971 case ExponentDistance
:
972 if(ClampedDist
> 0.0f
&& MinDist
> 0.0f
)
974 Attenuation
= powf(ClampedDist
/MinDist
, -Rolloff
);
975 for(i
= 0;i
< NumSends
;i
++)
976 RoomAttenuation
[i
] = powf(ClampedDist
/MinDist
, -RoomRolloff
[i
]);
980 case DisableDistance
:
981 ClampedDist
= MinDist
;
985 /* Source Gain + Attenuation */
986 DryGain
= SourceVolume
* Attenuation
;
989 for(i
= 0;i
< NumSends
;i
++)
991 WetGain
[i
] = SourceVolume
* RoomAttenuation
[i
];
996 /* Distance-based air absorption */
997 if(AirAbsorptionFactor
> 0.0f
&& ClampedDist
> MinDist
)
999 ALfloat meters
= (ClampedDist
-MinDist
) * MetersPerUnit
;
1000 DryGainHF
*= powf(AIRABSORBGAINHF
, AirAbsorptionFactor
*meters
);
1001 for(i
= 0;i
< NumSends
;i
++)
1002 WetGainHF
[i
] *= powf(RoomAirAbsorption
[i
], AirAbsorptionFactor
*meters
);
1007 ALfloat ApparentDist
= 1.0f
/maxf(Attenuation
, 0.00001f
) - 1.0f
;
1009 /* Apply a decay-time transformation to the wet path, based on the
1010 * attenuation of the dry path.
1012 * Using the apparent distance, based on the distance attenuation, the
1013 * initial decay of the reverb effect is calculated and applied to the
1016 for(i
= 0;i
< NumSends
;i
++)
1018 if(DecayDistance
[i
] > 0.0f
)
1019 WetGain
[i
] *= powf(0.001f
/*-60dB*/, ApparentDist
/DecayDistance
[i
]);
1023 /* Calculate directional soundcones */
1024 if(InnerAngle
< 360.0f
)
1031 Angle
= RAD2DEG(acosf(aluDotproduct(&Direction
, &SourceToListener
)) * ConeScale
) * 2.0f
;
1032 if(Angle
> InnerAngle
)
1034 if(Angle
< OuterAngle
)
1036 scale
= (Angle
-InnerAngle
) / (OuterAngle
-InnerAngle
);
1038 1.0f
, ATOMIC_LOAD(&props
->OuterGain
, almemory_order_relaxed
), scale
1041 1.0f
, ATOMIC_LOAD(&props
->OuterGainHF
, almemory_order_relaxed
), scale
1046 ConeVolume
= ATOMIC_LOAD(&props
->OuterGain
, almemory_order_relaxed
);
1047 ConeHF
= ATOMIC_LOAD(&props
->OuterGainHF
, almemory_order_relaxed
);
1049 DryGain
*= ConeVolume
;
1051 DryGainHF
*= ConeHF
;
1054 /* Wet path uses the total area of the cone emitter (the room will
1055 * receive the same amount of sound regardless of its direction).
1057 scale
= (asinf(maxf((OuterAngle
-InnerAngle
)/360.0f
, 0.0f
)) / F_PI
) +
1058 (InnerAngle
/360.0f
);
1062 1.0f
, ATOMIC_LOAD(&props
->OuterGain
, almemory_order_relaxed
), scale
1064 for(i
= 0;i
< NumSends
;i
++)
1065 WetGain
[i
] *= ConeVolume
;
1070 1.0f
, ATOMIC_LOAD(&props
->OuterGainHF
, almemory_order_relaxed
), scale
1072 for(i
= 0;i
< NumSends
;i
++)
1073 WetGainHF
[i
] *= ConeHF
;
1077 /* Apply gain and frequency filters */
1078 DryGain
= clampf(DryGain
, MinVolume
, MaxVolume
);
1079 DryGain
*= ATOMIC_LOAD(&props
->Direct
.Gain
, almemory_order_relaxed
) * ListenerGain
;
1080 DryGain
= minf(DryGain
, GAIN_MIX_MAX
);
1081 DryGainHF
*= ATOMIC_LOAD(&props
->Direct
.GainHF
, almemory_order_relaxed
);
1082 DryGainLF
*= ATOMIC_LOAD(&props
->Direct
.GainLF
, almemory_order_relaxed
);
1083 for(i
= 0;i
< NumSends
;i
++)
1085 WetGain
[i
] = clampf(WetGain
[i
], MinVolume
, MaxVolume
);
1086 WetGain
[i
] *= ATOMIC_LOAD(&props
->Send
[i
].Gain
, almemory_order_relaxed
) * ListenerGain
;
1087 WetGain
[i
] = minf(WetGain
[i
], GAIN_MIX_MAX
);
1088 WetGainHF
[i
] *= ATOMIC_LOAD(&props
->Send
[i
].GainHF
, almemory_order_relaxed
);
1089 WetGainLF
[i
] *= ATOMIC_LOAD(&props
->Send
[i
].GainLF
, almemory_order_relaxed
);
1092 /* Calculate velocity-based doppler effect */
1093 if(DopplerFactor
> 0.0f
)
1095 const aluVector
*lvelocity
= &Listener
->Params
.Velocity
;
1098 if(SpeedOfSound
< 1.0f
)
1100 DopplerFactor
*= 1.0f
/SpeedOfSound
;
1101 SpeedOfSound
= 1.0f
;
1104 VSS
= aluDotproduct(&Velocity
, &SourceToListener
) * DopplerFactor
;
1105 VLS
= aluDotproduct(lvelocity
, &SourceToListener
) * DopplerFactor
;
1107 Pitch
*= clampf(SpeedOfSound
-VLS
, 1.0f
, SpeedOfSound
*2.0f
- 1.0f
) /
1108 clampf(SpeedOfSound
-VSS
, 1.0f
, SpeedOfSound
*2.0f
- 1.0f
);
1111 /* Calculate fixed-point stepping value, based on the pitch, buffer
1112 * frequency, and output frequency.
1114 Pitch
*= (ALfloat
)ALBuffer
->Frequency
/ Frequency
;
1115 if(Pitch
> (ALfloat
)MAX_PITCH
)
1116 voice
->Step
= MAX_PITCH
<<FRACTIONBITS
;
1118 voice
->Step
= maxi(fastf2i(Pitch
*FRACTIONONE
+ 0.5f
), 1);
1119 BsincPrepare(voice
->Step
, &voice
->ResampleState
.bsinc
);
1121 if(Device
->Render_Mode
== HrtfRender
)
1123 /* Full HRTF rendering. Skip the virtual channels and render to the
1126 ALfloat dir
[3] = { 0.0f
, 0.0f
, -1.0f
};
1127 ALfloat ev
= 0.0f
, az
= 0.0f
;
1128 ALfloat radius
= ATOMIC_LOAD(&props
->Radius
, almemory_order_relaxed
);
1129 ALfloat coeffs
[MAX_AMBI_COEFFS
];
1130 ALfloat spread
= 0.0f
;
1132 voice
->Direct
.Buffer
= Device
->RealOut
.Buffer
;
1133 voice
->Direct
.Channels
= Device
->RealOut
.NumChannels
;
1135 if(Distance
> FLT_EPSILON
)
1137 dir
[0] = -SourceToListener
.v
[0];
1138 dir
[1] = -SourceToListener
.v
[1];
1139 dir
[2] = -SourceToListener
.v
[2] * ZScale
;
1141 /* Calculate elevation and azimuth only when the source is not at
1142 * the listener. This prevents +0 and -0 Z from producing
1143 * inconsistent panning. Also, clamp Y in case FP precision errors
1144 * cause it to land outside of -1..+1. */
1145 ev
= asinf(clampf(dir
[1], -1.0f
, 1.0f
));
1146 az
= atan2f(dir
[0], -dir
[2]);
1148 if(radius
> Distance
)
1149 spread
= F_TAU
- Distance
/radius
*F_PI
;
1150 else if(Distance
> FLT_EPSILON
)
1151 spread
= asinf(radius
/ Distance
) * 2.0f
;
1153 /* Get the HRIR coefficients and delays. */
1154 GetHrtfCoeffs(Device
->Hrtf
.Handle
, ev
, az
, spread
, DryGain
,
1155 voice
->Direct
.Params
[0].Hrtf
.Target
.Coeffs
,
1156 voice
->Direct
.Params
[0].Hrtf
.Target
.Delay
);
1158 CalcDirectionCoeffs(dir
, spread
, coeffs
);
1160 for(i
= 0;i
< NumSends
;i
++)
1165 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
1166 voice
->Send
[i
].Params
[0].Gains
.Target
[j
] = 0.0f
;
1170 const ALeffectslot
*Slot
= SendSlots
[i
];
1171 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
,
1172 coeffs
, WetGain
[i
], voice
->Send
[i
].Params
[0].Gains
.Target
1177 voice
->IsHrtf
= AL_TRUE
;
1181 /* Non-HRTF rendering. */
1182 ALfloat dir
[3] = { 0.0f
, 0.0f
, -1.0f
};
1183 ALfloat radius
= ATOMIC_LOAD(&props
->Radius
, almemory_order_relaxed
);
1184 ALfloat coeffs
[MAX_AMBI_COEFFS
];
1185 ALfloat spread
= 0.0f
;
1187 /* Get the localized direction, and compute panned gains. */
1188 if(Distance
> FLT_EPSILON
)
1190 dir
[0] = -SourceToListener
.v
[0];
1191 dir
[1] = -SourceToListener
.v
[1];
1192 dir
[2] = -SourceToListener
.v
[2] * ZScale
;
1194 if(radius
> Distance
)
1195 spread
= F_TAU
- Distance
/radius
*F_PI
;
1196 else if(Distance
> FLT_EPSILON
)
1197 spread
= asinf(radius
/ Distance
) * 2.0f
;
1199 if(Device
->Render_Mode
== StereoPair
)
1201 /* Clamp X so it remains within 30 degrees of 0 or 180 degree azimuth. */
1202 ALfloat x
= -dir
[0] * (0.5f
* (cosf(spread
*0.5f
) + 1.0f
));
1203 x
= clampf(x
, -0.5f
, 0.5f
) + 0.5f
;
1204 voice
->Direct
.Params
[0].Gains
.Target
[0] = x
* DryGain
;
1205 voice
->Direct
.Params
[0].Gains
.Target
[1] = (1.0f
-x
) * DryGain
;
1206 for(i
= 2;i
< MAX_OUTPUT_CHANNELS
;i
++)
1207 voice
->Direct
.Params
[0].Gains
.Target
[i
] = 0.0f
;
1209 CalcDirectionCoeffs(dir
, spread
, coeffs
);
1213 CalcDirectionCoeffs(dir
, spread
, coeffs
);
1214 ComputePanningGains(Device
->Dry
, coeffs
, DryGain
,
1215 voice
->Direct
.Params
[0].Gains
.Target
);
1218 for(i
= 0;i
< NumSends
;i
++)
1223 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
1224 voice
->Send
[i
].Params
[0].Gains
.Target
[j
] = 0.0f
;
1228 const ALeffectslot
*Slot
= SendSlots
[i
];
1229 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
,
1230 coeffs
, WetGain
[i
], voice
->Send
[i
].Params
[0].Gains
.Target
1235 voice
->IsHrtf
= AL_FALSE
;
1239 ALfloat hfscale
= ATOMIC_LOAD(&props
->Direct
.HFReference
, almemory_order_relaxed
) /
1241 ALfloat lfscale
= ATOMIC_LOAD(&props
->Direct
.LFReference
, almemory_order_relaxed
) /
1243 DryGainHF
= maxf(DryGainHF
, 0.0001f
);
1244 DryGainLF
= maxf(DryGainLF
, 0.0001f
);
1245 voice
->Direct
.Params
[0].FilterType
= AF_None
;
1246 if(DryGainHF
!= 1.0f
) voice
->Direct
.Params
[0].FilterType
|= AF_LowPass
;
1247 if(DryGainLF
!= 1.0f
) voice
->Direct
.Params
[0].FilterType
|= AF_HighPass
;
1248 ALfilterState_setParams(
1249 &voice
->Direct
.Params
[0].LowPass
, ALfilterType_HighShelf
,
1250 DryGainHF
, hfscale
, calc_rcpQ_from_slope(DryGainHF
, 0.75f
)
1252 ALfilterState_setParams(
1253 &voice
->Direct
.Params
[0].HighPass
, ALfilterType_LowShelf
,
1254 DryGainLF
, lfscale
, calc_rcpQ_from_slope(DryGainLF
, 0.75f
)
1257 for(i
= 0;i
< NumSends
;i
++)
1259 ALfloat hfscale
= ATOMIC_LOAD(&props
->Send
[i
].HFReference
, almemory_order_relaxed
) /
1261 ALfloat lfscale
= ATOMIC_LOAD(&props
->Send
[i
].LFReference
, almemory_order_relaxed
) /
1263 WetGainHF
[i
] = maxf(WetGainHF
[i
], 0.0001f
);
1264 WetGainLF
[i
] = maxf(WetGainLF
[i
], 0.0001f
);
1265 voice
->Send
[i
].Params
[0].FilterType
= AF_None
;
1266 if(WetGainHF
[i
] != 1.0f
) voice
->Send
[i
].Params
[0].FilterType
|= AF_LowPass
;
1267 if(WetGainLF
[i
] != 1.0f
) voice
->Send
[i
].Params
[0].FilterType
|= AF_HighPass
;
1268 ALfilterState_setParams(
1269 &voice
->Send
[i
].Params
[0].LowPass
, ALfilterType_HighShelf
,
1270 WetGainHF
[i
], hfscale
, calc_rcpQ_from_slope(WetGainHF
[i
], 0.75f
)
1272 ALfilterState_setParams(
1273 &voice
->Send
[i
].Params
[0].HighPass
, ALfilterType_LowShelf
,
1274 WetGainLF
[i
], lfscale
, calc_rcpQ_from_slope(WetGainLF
[i
], 0.75f
)
1279 static void CalcSourceParams(ALvoice
*voice
, ALCcontext
*context
, ALboolean force
)
1281 ALsource
*source
= voice
->Source
;
1282 const ALbufferlistitem
*BufferListItem
;
1283 struct ALsourceProps
*props
;
1285 props
= ATOMIC_EXCHANGE(struct ALsourceProps
*, &source
->Update
, NULL
, almemory_order_acq_rel
);
1286 if(!props
&& !force
) return;
1290 memcpy(voice
->Props
, props
,
1291 offsetof(struct ALsourceProps
, Send
[context
->Device
->NumAuxSends
])
1294 ATOMIC_REPLACE_HEAD(struct ALsourceProps
*, &source
->FreeList
, props
);
1297 BufferListItem
= ATOMIC_LOAD(&source
->queue
, almemory_order_relaxed
);
1298 while(BufferListItem
!= NULL
)
1300 const ALbuffer
*buffer
;
1301 if((buffer
=BufferListItem
->buffer
) != NULL
)
1303 if(buffer
->FmtChannels
== FmtMono
)
1304 CalcAttnSourceParams(voice
, voice
->Props
, buffer
, context
);
1306 CalcNonAttnSourceParams(voice
, voice
->Props
, buffer
, context
);
1309 BufferListItem
= BufferListItem
->next
;
1314 static void UpdateContextSources(ALCcontext
*ctx
, ALeffectslot
*slot
)
1316 ALvoice
**voice
, **voice_end
;
1319 IncrementRef(&ctx
->UpdateCount
);
1320 if(!ATOMIC_LOAD(&ctx
->HoldUpdates
, almemory_order_acquire
))
1322 ALboolean force
= CalcListenerParams(ctx
);
1325 force
|= CalcEffectSlotParams(slot
, ctx
->Device
);
1326 slot
= ATOMIC_LOAD(&slot
->next
, almemory_order_relaxed
);
1329 voice
= ctx
->Voices
;
1330 voice_end
= voice
+ ctx
->VoiceCount
;
1331 for(;voice
!= voice_end
;++voice
)
1333 if(!(source
=(*voice
)->Source
)) continue;
1334 if(!IsPlayingOrPaused(source
))
1335 (*voice
)->Source
= NULL
;
1337 CalcSourceParams(*voice
, ctx
, force
);
1340 IncrementRef(&ctx
->UpdateCount
);
1344 /* Specialized function to clamp to [-1, +1] with only one branch. This also
1345 * converts NaN to 0. */
1346 static inline ALfloat
aluClampf(ALfloat val
)
1348 if(fabsf(val
) <= 1.0f
) return val
;
1349 return (ALfloat
)((0.0f
< val
) - (val
< 0.0f
));
1352 static inline ALfloat
aluF2F(ALfloat val
)
1355 static inline ALint
aluF2I(ALfloat val
)
1357 /* Floats only have a 24-bit mantissa, so [-16777215, +16777215] is the max
1358 * integer range normalized floats can be safely converted to.
1360 return fastf2i(aluClampf(val
)*16777215.0f
)<<7;
1362 static inline ALuint
aluF2UI(ALfloat val
)
1363 { return aluF2I(val
)+2147483648u; }
1365 static inline ALshort
aluF2S(ALfloat val
)
1366 { return fastf2i(aluClampf(val
)*32767.0f
); }
1367 static inline ALushort
aluF2US(ALfloat val
)
1368 { return aluF2S(val
)+32768; }
1370 static inline ALbyte
aluF2B(ALfloat val
)
1371 { return fastf2i(aluClampf(val
)*127.0f
); }
1372 static inline ALubyte
aluF2UB(ALfloat val
)
1373 { return aluF2B(val
)+128; }
1375 #define DECL_TEMPLATE(T, func) \
1376 static void Write_##T(const ALfloatBUFFERSIZE *InBuffer, ALvoid *OutBuffer, \
1377 DistanceComp *distcomp, ALsizei SamplesToDo, \
1381 for(j = 0;j < numchans;j++) \
1383 const ALfloat *in = InBuffer[j]; \
1384 T *restrict out = (T*)OutBuffer + j; \
1385 const ALfloat gain = distcomp[j].Gain; \
1386 const ALsizei base = distcomp[j].Length; \
1387 if(base > 0 || gain != 1.0f) \
1389 if(SamplesToDo >= base) \
1391 for(i = 0;i < base;i++) \
1392 out[i*numchans] = func(distcomp[j].Buffer[i]*gain); \
1393 for(;i < SamplesToDo;i++) \
1394 out[i*numchans] = func(in[i-base]*gain); \
1395 memcpy(distcomp[j].Buffer, &in[SamplesToDo-base], \
1396 base*sizeof(ALfloat)); \
1400 for(i = 0;i < SamplesToDo;i++) \
1401 out[i*numchans] = func(distcomp[j].Buffer[i]*gain); \
1402 memmove(distcomp[j].Buffer, distcomp[j].Buffer+SamplesToDo, \
1403 (base-SamplesToDo)*sizeof(ALfloat)); \
1404 memcpy(distcomp[j].Buffer+base-SamplesToDo, in, \
1405 SamplesToDo*sizeof(ALfloat)); \
1408 else for(i = 0;i < SamplesToDo;i++) \
1409 out[i*numchans] = func(in[i]); \
1413 DECL_TEMPLATE(ALfloat
, aluF2F
)
1414 DECL_TEMPLATE(ALuint
, aluF2UI
)
1415 DECL_TEMPLATE(ALint
, aluF2I
)
1416 DECL_TEMPLATE(ALushort
, aluF2US
)
1417 DECL_TEMPLATE(ALshort
, aluF2S
)
1418 DECL_TEMPLATE(ALubyte
, aluF2UB
)
1419 DECL_TEMPLATE(ALbyte
, aluF2B
)
1421 #undef DECL_TEMPLATE
1424 void aluMixData(ALCdevice
*device
, ALvoid
*buffer
, ALsizei size
)
1426 ALsizei SamplesToDo
;
1427 ALvoice
**voice
, **voice_end
;
1434 SetMixerFPUMode(&oldMode
);
1438 SamplesToDo
= mini(size
, BUFFERSIZE
);
1439 for(c
= 0;c
< device
->Dry
.NumChannels
;c
++)
1440 memset(device
->Dry
.Buffer
[c
], 0, SamplesToDo
*sizeof(ALfloat
));
1441 if(device
->Dry
.Buffer
!= device
->FOAOut
.Buffer
)
1442 for(c
= 0;c
< device
->FOAOut
.NumChannels
;c
++)
1443 memset(device
->FOAOut
.Buffer
[c
], 0, SamplesToDo
*sizeof(ALfloat
));
1444 if(device
->Dry
.Buffer
!= device
->RealOut
.Buffer
)
1445 for(c
= 0;c
< device
->RealOut
.NumChannels
;c
++)
1446 memset(device
->RealOut
.Buffer
[c
], 0, SamplesToDo
*sizeof(ALfloat
));
1448 IncrementRef(&device
->MixCount
);
1450 if((slot
=device
->DefaultSlot
) != NULL
)
1452 CalcEffectSlotParams(device
->DefaultSlot
, device
);
1453 for(i
= 0;i
< slot
->NumChannels
;i
++)
1454 memset(slot
->WetBuffer
[i
], 0, SamplesToDo
*sizeof(ALfloat
));
1457 ctx
= ATOMIC_LOAD(&device
->ContextList
, almemory_order_acquire
);
1460 ALeffectslot
*slotroot
;
1462 slotroot
= ATOMIC_LOAD(&ctx
->ActiveAuxSlotList
, almemory_order_acquire
);
1463 UpdateContextSources(ctx
, slotroot
);
1468 for(i
= 0;i
< slot
->NumChannels
;i
++)
1469 memset(slot
->WetBuffer
[i
], 0, SamplesToDo
*sizeof(ALfloat
));
1470 slot
= ATOMIC_LOAD(&slot
->next
, almemory_order_relaxed
);
1473 /* source processing */
1474 voice
= ctx
->Voices
;
1475 voice_end
= voice
+ ctx
->VoiceCount
;
1476 for(;voice
!= voice_end
;++voice
)
1478 ALboolean IsVoiceInit
= ((*voice
)->Step
> 0);
1479 source
= (*voice
)->Source
;
1480 if(IsVoiceInit
&& source
&&
1481 ATOMIC_LOAD(&source
->state
, almemory_order_relaxed
) == AL_PLAYING
)
1482 MixSource(*voice
, source
, device
, SamplesToDo
);
1485 /* effect slot processing */
1489 ALeffectState
*state
= slot
->Params
.EffectState
;
1490 V(state
,process
)(SamplesToDo
, SAFE_CONST(ALfloatBUFFERSIZE
*,slot
->WetBuffer
),
1491 state
->OutBuffer
, state
->OutChannels
);
1492 slot
= ATOMIC_LOAD(&slot
->next
, almemory_order_relaxed
);
1498 if(device
->DefaultSlot
!= NULL
)
1500 const ALeffectslot
*slot
= device
->DefaultSlot
;
1501 ALeffectState
*state
= slot
->Params
.EffectState
;
1502 V(state
,process
)(SamplesToDo
, slot
->WetBuffer
, state
->OutBuffer
,
1503 state
->OutChannels
);
1506 /* Increment the clock time. Every second's worth of samples is
1507 * converted and added to clock base so that large sample counts don't
1508 * overflow during conversion. This also guarantees an exact, stable
1510 device
->SamplesDone
+= SamplesToDo
;
1511 device
->ClockBase
+= (device
->SamplesDone
/device
->Frequency
) * DEVICE_CLOCK_RES
;
1512 device
->SamplesDone
%= device
->Frequency
;
1513 IncrementRef(&device
->MixCount
);
1515 if(device
->Hrtf
.Handle
)
1517 HrtfDirectMixerFunc HrtfMix
;
1522 ambiup_process(device
->AmbiUp
,
1523 device
->Dry
.Buffer
, device
->Dry
.NumChannels
,
1524 SAFE_CONST(ALfloatBUFFERSIZE
*,device
->FOAOut
.Buffer
), SamplesToDo
1527 lidx
= GetChannelIdxByName(device
->RealOut
, FrontLeft
);
1528 ridx
= GetChannelIdxByName(device
->RealOut
, FrontRight
);
1529 assert(lidx
!= -1 && ridx
!= -1);
1531 HrtfMix
= SelectHrtfMixer();
1532 irsize
= device
->Hrtf
.IrSize
;
1533 for(c
= 0;c
< device
->Dry
.NumChannels
;c
++)
1535 HrtfMix(device
->RealOut
.Buffer
[lidx
], device
->RealOut
.Buffer
[ridx
],
1536 device
->Dry
.Buffer
[c
], device
->Hrtf
.Offset
, irsize
,
1537 device
->Hrtf
.Coeffs
[c
], device
->Hrtf
.Values
[c
],
1541 device
->Hrtf
.Offset
+= SamplesToDo
;
1543 else if(device
->AmbiDecoder
)
1545 if(device
->Dry
.Buffer
!= device
->FOAOut
.Buffer
)
1546 bformatdec_upSample(device
->AmbiDecoder
,
1547 device
->Dry
.Buffer
, SAFE_CONST(ALfloatBUFFERSIZE
*,device
->FOAOut
.Buffer
),
1548 device
->FOAOut
.NumChannels
, SamplesToDo
1550 bformatdec_process(device
->AmbiDecoder
,
1551 device
->RealOut
.Buffer
, device
->RealOut
.NumChannels
,
1552 SAFE_CONST(ALfloatBUFFERSIZE
*,device
->Dry
.Buffer
), SamplesToDo
1555 else if(device
->AmbiUp
)
1557 ambiup_process(device
->AmbiUp
,
1558 device
->RealOut
.Buffer
, device
->RealOut
.NumChannels
,
1559 SAFE_CONST(ALfloatBUFFERSIZE
*,device
->FOAOut
.Buffer
), SamplesToDo
1562 else if(device
->Uhj_Encoder
)
1564 int lidx
= GetChannelIdxByName(device
->RealOut
, FrontLeft
);
1565 int ridx
= GetChannelIdxByName(device
->RealOut
, FrontRight
);
1566 if(lidx
!= -1 && ridx
!= -1)
1568 /* Encode to stereo-compatible 2-channel UHJ output. */
1569 EncodeUhj2(device
->Uhj_Encoder
,
1570 device
->RealOut
.Buffer
[lidx
], device
->RealOut
.Buffer
[ridx
],
1571 device
->Dry
.Buffer
, SamplesToDo
1575 else if(device
->Bs2b
)
1577 int lidx
= GetChannelIdxByName(device
->RealOut
, FrontLeft
);
1578 int ridx
= GetChannelIdxByName(device
->RealOut
, FrontRight
);
1579 if(lidx
!= -1 && ridx
!= -1)
1581 /* Apply binaural/crossfeed filter */
1582 bs2b_cross_feed(device
->Bs2b
, device
->RealOut
.Buffer
[lidx
],
1583 device
->RealOut
.Buffer
[ridx
], SamplesToDo
);
1589 ALfloat (*OutBuffer
)[BUFFERSIZE
] = device
->RealOut
.Buffer
;
1590 ALsizei OutChannels
= device
->RealOut
.NumChannels
;
1591 DistanceComp
*DistComp
= device
->ChannelDelay
;
1593 #define WRITE(T, a, b, c, d, e) do { \
1594 Write_##T(SAFE_CONST(ALfloatBUFFERSIZE*,(a)), (b), (c), (d), (e)); \
1595 buffer = (T*)buffer + (d)*(e); \
1597 switch(device
->FmtType
)
1600 WRITE(ALbyte
, OutBuffer
, buffer
, DistComp
, SamplesToDo
, OutChannels
);
1603 WRITE(ALubyte
, OutBuffer
, buffer
, DistComp
, SamplesToDo
, OutChannels
);
1606 WRITE(ALshort
, OutBuffer
, buffer
, DistComp
, SamplesToDo
, OutChannels
);
1609 WRITE(ALushort
, OutBuffer
, buffer
, DistComp
, SamplesToDo
, OutChannels
);
1612 WRITE(ALint
, OutBuffer
, buffer
, DistComp
, SamplesToDo
, OutChannels
);
1615 WRITE(ALuint
, OutBuffer
, buffer
, DistComp
, SamplesToDo
, OutChannels
);
1618 WRITE(ALfloat
, OutBuffer
, buffer
, DistComp
, SamplesToDo
, OutChannels
);
1624 size
-= SamplesToDo
;
1627 RestoreFPUMode(&oldMode
);
1631 void aluHandleDisconnect(ALCdevice
*device
)
1633 ALCcontext
*Context
;
1635 device
->Connected
= ALC_FALSE
;
1637 Context
= ATOMIC_LOAD_SEQ(&device
->ContextList
);
1640 ALvoice
**voice
, **voice_end
;
1642 voice
= Context
->Voices
;
1643 voice_end
= voice
+ Context
->VoiceCount
;
1644 while(voice
!= voice_end
)
1646 ALenum playing
= AL_PLAYING
;
1647 ALsource
*source
= (*voice
)->Source
;
1648 (*voice
)->Source
= NULL
;
1651 ATOMIC_COMPARE_EXCHANGE_STRONG_SEQ(ALenum
, &source
->state
, &playing
, AL_STOPPED
))
1653 ATOMIC_STORE(&source
->current_buffer
, NULL
, almemory_order_relaxed
);
1654 ATOMIC_STORE(&source
->position
, 0, almemory_order_relaxed
);
1655 ATOMIC_STORE(&source
->position_fraction
, 0, almemory_order_release
);
1660 Context
->VoiceCount
= 0;
1662 Context
= Context
->next
;