2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
32 #include "alcontext.h"
35 #include "alListener.h"
36 #include "alAuxEffectSlot.h"
40 #include "mastering.h"
41 #include "uhjfilter.h"
42 #include "bformatdec.h"
43 #include "ringbuffer.h"
44 #include "filters/splitter.h"
46 #include "mixer/defs.h"
47 #include "fpu_modes.h"
49 #include "bsinc_inc.h"
53 ALfloat ConeScale
= 1.0f
;
55 /* Localized Z scalar for mono sources */
56 ALfloat ZScale
= 1.0f
;
58 /* Force default speed of sound for distance-related reverb decay. */
59 ALboolean OverrideReverbSpeedOfSound
= AL_FALSE
;
64 void ClearArray(ALfloat f
[MAX_OUTPUT_CHANNELS
])
67 for(i
= 0;i
< MAX_OUTPUT_CHANNELS
;i
++)
77 HrtfDirectMixerFunc MixDirectHrtf
= MixDirectHrtf_C
;
80 inline HrtfDirectMixerFunc
SelectHrtfMixer(void)
83 if((CPUCapFlags
&CPU_CAP_NEON
))
84 return MixDirectHrtf_Neon
;
87 if((CPUCapFlags
&CPU_CAP_SSE
))
88 return MixDirectHrtf_SSE
;
91 return MixDirectHrtf_C
;
98 MixDirectHrtf
= SelectHrtfMixer();
102 void DeinitVoice(ALvoice
*voice
)
104 al_free(voice
->Update
.exchange(nullptr));
110 void ProcessHrtf(ALCdevice
*device
, ALsizei SamplesToDo
)
112 DirectHrtfState
*state
;
117 ambiup_process(device
->AmbiUp
,
118 device
->Dry
.Buffer
, device
->Dry
.NumChannels
, device
->FOAOut
.Buffer
,
122 lidx
= GetChannelIdxByName(&device
->RealOut
, FrontLeft
);
123 ridx
= GetChannelIdxByName(&device
->RealOut
, FrontRight
);
124 assert(lidx
!= -1 && ridx
!= -1);
126 state
= device
->Hrtf
;
127 for(c
= 0;c
< device
->Dry
.NumChannels
;c
++)
129 MixDirectHrtf(device
->RealOut
.Buffer
[lidx
], device
->RealOut
.Buffer
[ridx
],
130 device
->Dry
.Buffer
[c
], state
->Offset
, state
->IrSize
,
131 state
->Chan
[c
].Coeffs
, state
->Chan
[c
].Values
, SamplesToDo
134 state
->Offset
+= SamplesToDo
;
137 void ProcessAmbiDec(ALCdevice
*device
, ALsizei SamplesToDo
)
139 if(device
->Dry
.Buffer
!= device
->FOAOut
.Buffer
)
140 bformatdec_upSample(device
->AmbiDecoder
,
141 device
->Dry
.Buffer
, device
->FOAOut
.Buffer
, device
->FOAOut
.NumChannels
,
144 bformatdec_process(device
->AmbiDecoder
,
145 device
->RealOut
.Buffer
, device
->RealOut
.NumChannels
, device
->Dry
.Buffer
,
150 void ProcessAmbiUp(ALCdevice
*device
, ALsizei SamplesToDo
)
152 ambiup_process(device
->AmbiUp
,
153 device
->RealOut
.Buffer
, device
->RealOut
.NumChannels
, device
->FOAOut
.Buffer
,
158 void ProcessUhj(ALCdevice
*device
, ALsizei SamplesToDo
)
160 int lidx
= GetChannelIdxByName(&device
->RealOut
, FrontLeft
);
161 int ridx
= GetChannelIdxByName(&device
->RealOut
, FrontRight
);
162 assert(lidx
!= -1 && ridx
!= -1);
164 /* Encode to stereo-compatible 2-channel UHJ output. */
165 EncodeUhj2(device
->Uhj_Encoder
.get(),
166 device
->RealOut
.Buffer
[lidx
], device
->RealOut
.Buffer
[ridx
],
167 device
->Dry
.Buffer
, SamplesToDo
171 void ProcessBs2b(ALCdevice
*device
, ALsizei SamplesToDo
)
173 int lidx
= GetChannelIdxByName(&device
->RealOut
, FrontLeft
);
174 int ridx
= GetChannelIdxByName(&device
->RealOut
, FrontRight
);
175 assert(lidx
!= -1 && ridx
!= -1);
177 /* Apply binaural/crossfeed filter */
178 bs2b_cross_feed(device
->Bs2b
, device
->RealOut
.Buffer
[lidx
],
179 device
->RealOut
.Buffer
[ridx
], SamplesToDo
);
184 void aluSelectPostProcess(ALCdevice
*device
)
186 if(device
->HrtfHandle
)
187 device
->PostProcess
= ProcessHrtf
;
188 else if(device
->AmbiDecoder
)
189 device
->PostProcess
= ProcessAmbiDec
;
190 else if(device
->AmbiUp
)
191 device
->PostProcess
= ProcessAmbiUp
;
192 else if(device
->Uhj_Encoder
)
193 device
->PostProcess
= ProcessUhj
;
194 else if(device
->Bs2b
)
195 device
->PostProcess
= ProcessBs2b
;
197 device
->PostProcess
= NULL
;
201 /* Prepares the interpolator for a given rate (determined by increment).
203 * With a bit of work, and a trade of memory for CPU cost, this could be
204 * modified for use with an interpolated increment for buttery-smooth pitch
207 void BsincPrepare(const ALuint increment
, BsincState
*state
, const BSincTable
*table
)
210 ALsizei si
= BSINC_SCALE_COUNT
-1;
212 if(increment
> FRACTIONONE
)
214 sf
= (ALfloat
)FRACTIONONE
/ increment
;
215 sf
= maxf(0.0f
, (BSINC_SCALE_COUNT
-1) * (sf
-table
->scaleBase
) * table
->scaleRange
);
217 /* The interpolation factor is fit to this diagonally-symmetric curve
218 * to reduce the transition ripple caused by interpolating different
219 * scales of the sinc function.
221 sf
= 1.0f
- cosf(asinf(sf
- si
));
225 state
->m
= table
->m
[si
];
226 state
->l
= (state
->m
/2) - 1;
227 state
->filter
= table
->Tab
+ table
->filterOffset
[si
];
233 /* This RNG method was created based on the math found in opusdec. It's quick,
234 * and starting with a seed value of 22222, is suitable for generating
237 inline ALuint
dither_rng(ALuint
*seed
)
239 *seed
= (*seed
* 96314165) + 907633515;
244 inline void aluCrossproduct(const ALfloat
*inVector1
, const ALfloat
*inVector2
, ALfloat
*outVector
)
246 outVector
[0] = inVector1
[1]*inVector2
[2] - inVector1
[2]*inVector2
[1];
247 outVector
[1] = inVector1
[2]*inVector2
[0] - inVector1
[0]*inVector2
[2];
248 outVector
[2] = inVector1
[0]*inVector2
[1] - inVector1
[1]*inVector2
[0];
251 inline ALfloat
aluDotproduct(const aluVector
*vec1
, const aluVector
*vec2
)
253 return vec1
->v
[0]*vec2
->v
[0] + vec1
->v
[1]*vec2
->v
[1] + vec1
->v
[2]*vec2
->v
[2];
256 ALfloat
aluNormalize(ALfloat
*vec
)
258 ALfloat length
= sqrtf(vec
[0]*vec
[0] + vec
[1]*vec
[1] + vec
[2]*vec
[2]);
259 if(length
> FLT_EPSILON
)
261 ALfloat inv_length
= 1.0f
/length
;
262 vec
[0] *= inv_length
;
263 vec
[1] *= inv_length
;
264 vec
[2] *= inv_length
;
267 vec
[0] = vec
[1] = vec
[2] = 0.0f
;
271 void aluMatrixfFloat3(ALfloat
*vec
, ALfloat w
, const aluMatrixf
*mtx
)
273 ALfloat v
[4] = { vec
[0], vec
[1], vec
[2], w
};
275 vec
[0] = v
[0]*mtx
->m
[0][0] + v
[1]*mtx
->m
[1][0] + v
[2]*mtx
->m
[2][0] + v
[3]*mtx
->m
[3][0];
276 vec
[1] = v
[0]*mtx
->m
[0][1] + v
[1]*mtx
->m
[1][1] + v
[2]*mtx
->m
[2][1] + v
[3]*mtx
->m
[3][1];
277 vec
[2] = v
[0]*mtx
->m
[0][2] + v
[1]*mtx
->m
[1][2] + v
[2]*mtx
->m
[2][2] + v
[3]*mtx
->m
[3][2];
280 aluVector
aluMatrixfVector(const aluMatrixf
*mtx
, const aluVector
*vec
)
283 v
.v
[0] = vec
->v
[0]*mtx
->m
[0][0] + vec
->v
[1]*mtx
->m
[1][0] + vec
->v
[2]*mtx
->m
[2][0] + vec
->v
[3]*mtx
->m
[3][0];
284 v
.v
[1] = vec
->v
[0]*mtx
->m
[0][1] + vec
->v
[1]*mtx
->m
[1][1] + vec
->v
[2]*mtx
->m
[2][1] + vec
->v
[3]*mtx
->m
[3][1];
285 v
.v
[2] = vec
->v
[0]*mtx
->m
[0][2] + vec
->v
[1]*mtx
->m
[1][2] + vec
->v
[2]*mtx
->m
[2][2] + vec
->v
[3]*mtx
->m
[3][2];
286 v
.v
[3] = vec
->v
[0]*mtx
->m
[0][3] + vec
->v
[1]*mtx
->m
[1][3] + vec
->v
[2]*mtx
->m
[2][3] + vec
->v
[3]*mtx
->m
[3][3];
291 void SendSourceStoppedEvent(ALCcontext
*context
, ALuint id
)
293 AsyncEvent evt
= ASYNC_EVENT(EventType_SourceStateChange
);
294 ALbitfieldSOFT enabledevt
;
298 enabledevt
= ATOMIC_LOAD(&context
->EnabledEvts
, almemory_order_acquire
);
299 if(!(enabledevt
&EventType_SourceStateChange
)) return;
301 evt
.u
.user
.type
= AL_EVENT_TYPE_SOURCE_STATE_CHANGED_SOFT
;
303 evt
.u
.user
.param
= AL_STOPPED
;
305 /* Normally snprintf would be used, but this is called from the mixer and
306 * that function's not real-time safe, so we have to construct it manually.
308 strcpy(evt
.u
.user
.msg
, "Source ID "); strpos
= 10;
310 while(scale
> 0 && scale
> id
)
314 evt
.u
.user
.msg
[strpos
++] = '0' + ((id
/scale
)%10);
317 strcpy(evt
.u
.user
.msg
+strpos
, " state changed to AL_STOPPED");
319 if(ll_ringbuffer_write(context
->AsyncEvents
, &evt
, 1) == 1)
320 alsem_post(&context
->EventSem
);
324 bool CalcContextParams(ALCcontext
*Context
)
326 ALlistener
&Listener
= Context
->Listener
;
327 struct ALcontextProps
*props
;
329 props
= Context
->Update
.exchange(nullptr, std::memory_order_acq_rel
);
330 if(!props
) return false;
332 Listener
.Params
.MetersPerUnit
= props
->MetersPerUnit
;
334 Listener
.Params
.DopplerFactor
= props
->DopplerFactor
;
335 Listener
.Params
.SpeedOfSound
= props
->SpeedOfSound
* props
->DopplerVelocity
;
336 if(!OverrideReverbSpeedOfSound
)
337 Listener
.Params
.ReverbSpeedOfSound
= Listener
.Params
.SpeedOfSound
*
338 Listener
.Params
.MetersPerUnit
;
340 Listener
.Params
.SourceDistanceModel
= props
->SourceDistanceModel
;
341 Listener
.Params
.mDistanceModel
= props
->mDistanceModel
;
343 AtomicReplaceHead(Context
->FreeContextProps
, props
);
347 bool CalcListenerParams(ALCcontext
*Context
)
349 ALlistener
&Listener
= Context
->Listener
;
350 ALfloat N
[3], V
[3], U
[3], P
[3];
351 struct ALlistenerProps
*props
;
354 props
= Listener
.Update
.exchange(nullptr, std::memory_order_acq_rel
);
355 if(!props
) return false;
358 N
[0] = props
->Forward
[0];
359 N
[1] = props
->Forward
[1];
360 N
[2] = props
->Forward
[2];
366 /* Build and normalize right-vector */
367 aluCrossproduct(N
, V
, U
);
370 aluMatrixfSet(&Listener
.Params
.Matrix
,
371 U
[0], V
[0], -N
[0], 0.0,
372 U
[1], V
[1], -N
[1], 0.0,
373 U
[2], V
[2], -N
[2], 0.0,
377 P
[0] = props
->Position
[0];
378 P
[1] = props
->Position
[1];
379 P
[2] = props
->Position
[2];
380 aluMatrixfFloat3(P
, 1.0, &Listener
.Params
.Matrix
);
381 aluMatrixfSetRow(&Listener
.Params
.Matrix
, 3, -P
[0], -P
[1], -P
[2], 1.0f
);
383 aluVectorSet(&vel
, props
->Velocity
[0], props
->Velocity
[1], props
->Velocity
[2], 0.0f
);
384 Listener
.Params
.Velocity
= aluMatrixfVector(&Listener
.Params
.Matrix
, &vel
);
386 Listener
.Params
.Gain
= props
->Gain
* Context
->GainBoost
;
388 AtomicReplaceHead(Context
->FreeListenerProps
, props
);
392 bool CalcEffectSlotParams(ALeffectslot
*slot
, ALCcontext
*context
, bool force
)
394 struct ALeffectslotProps
*props
;
397 props
= slot
->Update
.exchange(nullptr, std::memory_order_acq_rel
);
398 if(!props
&& !force
) return false;
402 slot
->Params
.Gain
= props
->Gain
;
403 slot
->Params
.AuxSendAuto
= props
->AuxSendAuto
;
404 slot
->Params
.EffectType
= props
->Type
;
405 slot
->Params
.EffectProps
= props
->Props
;
406 if(IsReverbEffect(props
->Type
))
408 slot
->Params
.RoomRolloff
= props
->Props
.Reverb
.RoomRolloffFactor
;
409 slot
->Params
.DecayTime
= props
->Props
.Reverb
.DecayTime
;
410 slot
->Params
.DecayLFRatio
= props
->Props
.Reverb
.DecayLFRatio
;
411 slot
->Params
.DecayHFRatio
= props
->Props
.Reverb
.DecayHFRatio
;
412 slot
->Params
.DecayHFLimit
= props
->Props
.Reverb
.DecayHFLimit
;
413 slot
->Params
.AirAbsorptionGainHF
= props
->Props
.Reverb
.AirAbsorptionGainHF
;
417 slot
->Params
.RoomRolloff
= 0.0f
;
418 slot
->Params
.DecayTime
= 0.0f
;
419 slot
->Params
.DecayLFRatio
= 0.0f
;
420 slot
->Params
.DecayHFRatio
= 0.0f
;
421 slot
->Params
.DecayHFLimit
= AL_FALSE
;
422 slot
->Params
.AirAbsorptionGainHF
= 1.0f
;
425 state
= props
->State
;
427 if(state
== slot
->Params
.mEffectState
)
429 /* If the effect state is the same as current, we can decrement its
430 * count safely to remove it from the update object (it can't reach
431 * 0 refs since the current params also hold a reference).
433 DecrementRef(&state
->mRef
);
434 props
->State
= nullptr;
438 /* Otherwise, replace it and send off the old one with a release
441 AsyncEvent evt
= ASYNC_EVENT(EventType_ReleaseEffectState
);
442 evt
.u
.mEffectState
= slot
->Params
.mEffectState
;
444 slot
->Params
.mEffectState
= state
;
447 if(LIKELY(ll_ringbuffer_write(context
->AsyncEvents
, &evt
, 1) != 0))
448 alsem_post(&context
->EventSem
);
451 /* If writing the event failed, the queue was probably full.
452 * Store the old state in the property object where it can
453 * eventually be cleaned up sometime later (not ideal, but
454 * better than blocking or leaking).
456 props
->State
= evt
.u
.mEffectState
;
460 AtomicReplaceHead(context
->FreeEffectslotProps
, props
);
463 state
= slot
->Params
.mEffectState
;
465 state
->update(context
, slot
, &slot
->Params
.EffectProps
);
470 constexpr struct ChanMap MonoMap
[1] = {
471 { FrontCenter
, 0.0f
, 0.0f
}
473 { BackLeft
, DEG2RAD(-150.0f
), DEG2RAD(0.0f
) },
474 { BackRight
, DEG2RAD( 150.0f
), DEG2RAD(0.0f
) }
476 { FrontLeft
, DEG2RAD( -45.0f
), DEG2RAD(0.0f
) },
477 { FrontRight
, DEG2RAD( 45.0f
), DEG2RAD(0.0f
) },
478 { BackLeft
, DEG2RAD(-135.0f
), DEG2RAD(0.0f
) },
479 { BackRight
, DEG2RAD( 135.0f
), DEG2RAD(0.0f
) }
481 { FrontLeft
, DEG2RAD( -30.0f
), DEG2RAD(0.0f
) },
482 { FrontRight
, DEG2RAD( 30.0f
), DEG2RAD(0.0f
) },
483 { FrontCenter
, DEG2RAD( 0.0f
), DEG2RAD(0.0f
) },
485 { SideLeft
, DEG2RAD(-110.0f
), DEG2RAD(0.0f
) },
486 { SideRight
, DEG2RAD( 110.0f
), DEG2RAD(0.0f
) }
488 { FrontLeft
, DEG2RAD(-30.0f
), DEG2RAD(0.0f
) },
489 { FrontRight
, DEG2RAD( 30.0f
), DEG2RAD(0.0f
) },
490 { FrontCenter
, DEG2RAD( 0.0f
), DEG2RAD(0.0f
) },
492 { BackCenter
, DEG2RAD(180.0f
), DEG2RAD(0.0f
) },
493 { SideLeft
, DEG2RAD(-90.0f
), DEG2RAD(0.0f
) },
494 { SideRight
, DEG2RAD( 90.0f
), DEG2RAD(0.0f
) }
496 { FrontLeft
, DEG2RAD( -30.0f
), DEG2RAD(0.0f
) },
497 { FrontRight
, DEG2RAD( 30.0f
), DEG2RAD(0.0f
) },
498 { FrontCenter
, DEG2RAD( 0.0f
), DEG2RAD(0.0f
) },
500 { BackLeft
, DEG2RAD(-150.0f
), DEG2RAD(0.0f
) },
501 { BackRight
, DEG2RAD( 150.0f
), DEG2RAD(0.0f
) },
502 { SideLeft
, DEG2RAD( -90.0f
), DEG2RAD(0.0f
) },
503 { SideRight
, DEG2RAD( 90.0f
), DEG2RAD(0.0f
) }
506 void CalcPanningAndFilters(ALvoice
*voice
, const ALfloat Azi
, const ALfloat Elev
,
507 const ALfloat Distance
, const ALfloat Spread
,
508 const ALfloat DryGain
, const ALfloat DryGainHF
,
509 const ALfloat DryGainLF
, const ALfloat
*WetGain
,
510 const ALfloat
*WetGainLF
, const ALfloat
*WetGainHF
,
511 ALeffectslot
**SendSlots
, const ALbuffer
*Buffer
,
512 const struct ALvoiceProps
*props
, const ALlistener
&Listener
,
513 const ALCdevice
*Device
)
515 struct ChanMap StereoMap
[2] = {
516 { FrontLeft
, DEG2RAD(-30.0f
), DEG2RAD(0.0f
) },
517 { FrontRight
, DEG2RAD( 30.0f
), DEG2RAD(0.0f
) }
519 bool DirectChannels
= props
->DirectChannels
;
520 const ALsizei NumSends
= Device
->NumAuxSends
;
521 const ALuint Frequency
= Device
->Frequency
;
522 const struct ChanMap
*chans
= NULL
;
523 ALsizei num_channels
= 0;
524 bool isbformat
= false;
525 ALfloat downmix_gain
= 1.0f
;
528 switch(Buffer
->FmtChannels
)
533 /* Mono buffers are never played direct. */
534 DirectChannels
= false;
538 /* Convert counter-clockwise to clockwise. */
539 StereoMap
[0].angle
= -props
->StereoPan
[0];
540 StereoMap
[1].angle
= -props
->StereoPan
[1];
544 downmix_gain
= 1.0f
/ 2.0f
;
550 downmix_gain
= 1.0f
/ 2.0f
;
556 downmix_gain
= 1.0f
/ 4.0f
;
562 /* NOTE: Excludes LFE. */
563 downmix_gain
= 1.0f
/ 5.0f
;
569 /* NOTE: Excludes LFE. */
570 downmix_gain
= 1.0f
/ 6.0f
;
576 /* NOTE: Excludes LFE. */
577 downmix_gain
= 1.0f
/ 7.0f
;
583 DirectChannels
= false;
589 DirectChannels
= false;
593 for(c
= 0;c
< num_channels
;c
++)
595 memset(&voice
->Direct
.Params
[c
].Hrtf
.Target
, 0,
596 sizeof(voice
->Direct
.Params
[c
].Hrtf
.Target
));
597 ClearArray(voice
->Direct
.Params
[c
].Gains
.Target
);
599 for(i
= 0;i
< NumSends
;i
++)
601 for(c
= 0;c
< num_channels
;c
++)
602 ClearArray(voice
->Send
[i
].Params
[c
].Gains
.Target
);
605 voice
->Flags
&= ~(VOICE_HAS_HRTF
| VOICE_HAS_NFC
);
608 /* Special handling for B-Format sources. */
610 if(Distance
> FLT_EPSILON
)
612 /* Panning a B-Format sound toward some direction is easy. Just pan
613 * the first (W) channel as a normal mono sound and silence the
616 ALfloat coeffs
[MAX_AMBI_COEFFS
];
618 if(Device
->AvgSpeakerDist
> 0.0f
)
620 ALfloat mdist
= Distance
* Listener
.Params
.MetersPerUnit
;
621 ALfloat w0
= SPEEDOFSOUNDMETRESPERSEC
/
622 (mdist
* (ALfloat
)Device
->Frequency
);
623 ALfloat w1
= SPEEDOFSOUNDMETRESPERSEC
/
624 (Device
->AvgSpeakerDist
* (ALfloat
)Device
->Frequency
);
625 /* Clamp w0 for really close distances, to prevent excessive
628 w0
= minf(w0
, w1
*4.0f
);
630 /* Only need to adjust the first channel of a B-Format source. */
631 NfcFilterAdjust(&voice
->Direct
.Params
[0].NFCtrlFilter
, w0
);
633 for(i
= 0;i
< MAX_AMBI_ORDER
+1;i
++)
634 voice
->Direct
.ChannelsPerOrder
[i
] = Device
->NumChannelsPerOrder
[i
];
635 voice
->Flags
|= VOICE_HAS_NFC
;
638 /* A scalar of 1.5 for plain stereo results in +/-60 degrees being
639 * moved to +/-90 degrees for direct right and left speaker
642 CalcAngleCoeffs((Device
->Render_Mode
==StereoPair
) ? ScaleAzimuthFront(Azi
, 1.5f
) : Azi
,
643 Elev
, Spread
, coeffs
);
645 /* NOTE: W needs to be scaled by sqrt(2) due to FuMa normalization. */
646 ComputePanGains(&Device
->Dry
, coeffs
, DryGain
*SQRTF_2
,
647 voice
->Direct
.Params
[0].Gains
.Target
);
648 for(i
= 0;i
< NumSends
;i
++)
650 const ALeffectslot
*Slot
= SendSlots
[i
];
652 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
, coeffs
,
653 WetGain
[i
]*SQRTF_2
, voice
->Send
[i
].Params
[0].Gains
.Target
659 /* Local B-Format sources have their XYZ channels rotated according
660 * to the orientation.
662 ALfloat N
[3], V
[3], U
[3];
665 if(Device
->AvgSpeakerDist
> 0.0f
)
667 /* NOTE: The NFCtrlFilters were created with a w0 of 0, which
668 * is what we want for FOA input. The first channel may have
669 * been previously re-adjusted if panned, so reset it.
671 NfcFilterAdjust(&voice
->Direct
.Params
[0].NFCtrlFilter
, 0.0f
);
673 voice
->Direct
.ChannelsPerOrder
[0] = 1;
674 voice
->Direct
.ChannelsPerOrder
[1] = mini(voice
->Direct
.Channels
-1, 3);
675 for(i
= 2;i
< MAX_AMBI_ORDER
+1;i
++)
676 voice
->Direct
.ChannelsPerOrder
[i
] = 0;
677 voice
->Flags
|= VOICE_HAS_NFC
;
681 N
[0] = props
->Orientation
[0][0];
682 N
[1] = props
->Orientation
[0][1];
683 N
[2] = props
->Orientation
[0][2];
685 V
[0] = props
->Orientation
[1][0];
686 V
[1] = props
->Orientation
[1][1];
687 V
[2] = props
->Orientation
[1][2];
689 if(!props
->HeadRelative
)
691 const aluMatrixf
*lmatrix
= &Listener
.Params
.Matrix
;
692 aluMatrixfFloat3(N
, 0.0f
, lmatrix
);
693 aluMatrixfFloat3(V
, 0.0f
, lmatrix
);
695 /* Build and normalize right-vector */
696 aluCrossproduct(N
, V
, U
);
699 /* Build a rotate + conversion matrix (FuMa -> ACN+N3D). NOTE: This
700 * matrix is transposed, for the inputs to align on the rows and
701 * outputs on the columns.
703 aluMatrixfSet(&matrix
,
704 // ACN0 ACN1 ACN2 ACN3
705 SQRTF_2
, 0.0f
, 0.0f
, 0.0f
, // Ambi W
706 0.0f
, -N
[0]*SQRTF_3
, N
[1]*SQRTF_3
, -N
[2]*SQRTF_3
, // Ambi X
707 0.0f
, U
[0]*SQRTF_3
, -U
[1]*SQRTF_3
, U
[2]*SQRTF_3
, // Ambi Y
708 0.0f
, -V
[0]*SQRTF_3
, V
[1]*SQRTF_3
, -V
[2]*SQRTF_3
// Ambi Z
711 voice
->Direct
.Buffer
= Device
->FOAOut
.Buffer
;
712 voice
->Direct
.Channels
= Device
->FOAOut
.NumChannels
;
713 for(c
= 0;c
< num_channels
;c
++)
714 ComputePanGains(&Device
->FOAOut
, matrix
.m
[c
], DryGain
,
715 voice
->Direct
.Params
[c
].Gains
.Target
);
716 for(i
= 0;i
< NumSends
;i
++)
718 const ALeffectslot
*Slot
= SendSlots
[i
];
721 for(c
= 0;c
< num_channels
;c
++)
722 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
,
723 matrix
.m
[c
], WetGain
[i
], voice
->Send
[i
].Params
[c
].Gains
.Target
729 else if(DirectChannels
)
731 /* Direct source channels always play local. Skip the virtual channels
732 * and write inputs to the matching real outputs.
734 voice
->Direct
.Buffer
= Device
->RealOut
.Buffer
;
735 voice
->Direct
.Channels
= Device
->RealOut
.NumChannels
;
737 for(c
= 0;c
< num_channels
;c
++)
739 int idx
= GetChannelIdxByName(&Device
->RealOut
, chans
[c
].channel
);
740 if(idx
!= -1) voice
->Direct
.Params
[c
].Gains
.Target
[idx
] = DryGain
;
743 /* Auxiliary sends still use normal channel panning since they mix to
744 * B-Format, which can't channel-match.
746 for(c
= 0;c
< num_channels
;c
++)
748 ALfloat coeffs
[MAX_AMBI_COEFFS
];
749 CalcAngleCoeffs(chans
[c
].angle
, chans
[c
].elevation
, 0.0f
, coeffs
);
751 for(i
= 0;i
< NumSends
;i
++)
753 const ALeffectslot
*Slot
= SendSlots
[i
];
755 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
,
756 coeffs
, WetGain
[i
], voice
->Send
[i
].Params
[c
].Gains
.Target
761 else if(Device
->Render_Mode
== HrtfRender
)
763 /* Full HRTF rendering. Skip the virtual channels and render to the
766 voice
->Direct
.Buffer
= Device
->RealOut
.Buffer
;
767 voice
->Direct
.Channels
= Device
->RealOut
.NumChannels
;
769 if(Distance
> FLT_EPSILON
)
771 ALfloat coeffs
[MAX_AMBI_COEFFS
];
773 /* Get the HRIR coefficients and delays just once, for the given
776 GetHrtfCoeffs(Device
->HrtfHandle
, Elev
, Azi
, Spread
,
777 voice
->Direct
.Params
[0].Hrtf
.Target
.Coeffs
,
778 voice
->Direct
.Params
[0].Hrtf
.Target
.Delay
);
779 voice
->Direct
.Params
[0].Hrtf
.Target
.Gain
= DryGain
* downmix_gain
;
781 /* Remaining channels use the same results as the first. */
782 for(c
= 1;c
< num_channels
;c
++)
785 if(chans
[c
].channel
!= LFE
)
786 voice
->Direct
.Params
[c
].Hrtf
.Target
= voice
->Direct
.Params
[0].Hrtf
.Target
;
789 /* Calculate the directional coefficients once, which apply to all
790 * input channels of the source sends.
792 CalcAngleCoeffs(Azi
, Elev
, Spread
, coeffs
);
794 for(i
= 0;i
< NumSends
;i
++)
796 const ALeffectslot
*Slot
= SendSlots
[i
];
798 for(c
= 0;c
< num_channels
;c
++)
801 if(chans
[c
].channel
!= LFE
)
802 ComputePanningGainsBF(Slot
->ChanMap
,
803 Slot
->NumChannels
, coeffs
, WetGain
[i
] * downmix_gain
,
804 voice
->Send
[i
].Params
[c
].Gains
.Target
811 /* Local sources on HRTF play with each channel panned to its
812 * relative location around the listener, providing "virtual
813 * speaker" responses.
815 for(c
= 0;c
< num_channels
;c
++)
817 ALfloat coeffs
[MAX_AMBI_COEFFS
];
819 if(chans
[c
].channel
== LFE
)
825 /* Get the HRIR coefficients and delays for this channel
828 GetHrtfCoeffs(Device
->HrtfHandle
,
829 chans
[c
].elevation
, chans
[c
].angle
, Spread
,
830 voice
->Direct
.Params
[c
].Hrtf
.Target
.Coeffs
,
831 voice
->Direct
.Params
[c
].Hrtf
.Target
.Delay
833 voice
->Direct
.Params
[c
].Hrtf
.Target
.Gain
= DryGain
;
835 /* Normal panning for auxiliary sends. */
836 CalcAngleCoeffs(chans
[c
].angle
, chans
[c
].elevation
, Spread
, coeffs
);
838 for(i
= 0;i
< NumSends
;i
++)
840 const ALeffectslot
*Slot
= SendSlots
[i
];
842 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
,
843 coeffs
, WetGain
[i
], voice
->Send
[i
].Params
[c
].Gains
.Target
849 voice
->Flags
|= VOICE_HAS_HRTF
;
853 /* Non-HRTF rendering. Use normal panning to the output. */
855 if(Distance
> FLT_EPSILON
)
857 ALfloat coeffs
[MAX_AMBI_COEFFS
];
860 /* Calculate NFC filter coefficient if needed. */
861 if(Device
->AvgSpeakerDist
> 0.0f
)
863 ALfloat mdist
= Distance
* Listener
.Params
.MetersPerUnit
;
864 ALfloat w1
= SPEEDOFSOUNDMETRESPERSEC
/
865 (Device
->AvgSpeakerDist
* (ALfloat
)Device
->Frequency
);
866 w0
= SPEEDOFSOUNDMETRESPERSEC
/
867 (mdist
* (ALfloat
)Device
->Frequency
);
868 /* Clamp w0 for really close distances, to prevent excessive
871 w0
= minf(w0
, w1
*4.0f
);
873 /* Adjust NFC filters. */
874 for(c
= 0;c
< num_channels
;c
++)
875 NfcFilterAdjust(&voice
->Direct
.Params
[c
].NFCtrlFilter
, w0
);
877 for(i
= 0;i
< MAX_AMBI_ORDER
+1;i
++)
878 voice
->Direct
.ChannelsPerOrder
[i
] = Device
->NumChannelsPerOrder
[i
];
879 voice
->Flags
|= VOICE_HAS_NFC
;
882 /* Calculate the directional coefficients once, which apply to all
885 CalcAngleCoeffs((Device
->Render_Mode
==StereoPair
) ? ScaleAzimuthFront(Azi
, 1.5f
) : Azi
,
886 Elev
, Spread
, coeffs
);
888 for(c
= 0;c
< num_channels
;c
++)
890 /* Special-case LFE */
891 if(chans
[c
].channel
== LFE
)
893 if(Device
->Dry
.Buffer
== Device
->RealOut
.Buffer
)
895 int idx
= GetChannelIdxByName(&Device
->RealOut
, chans
[c
].channel
);
896 if(idx
!= -1) voice
->Direct
.Params
[c
].Gains
.Target
[idx
] = DryGain
;
901 ComputePanGains(&Device
->Dry
, coeffs
, DryGain
* downmix_gain
,
902 voice
->Direct
.Params
[c
].Gains
.Target
);
905 for(i
= 0;i
< NumSends
;i
++)
907 const ALeffectslot
*Slot
= SendSlots
[i
];
909 for(c
= 0;c
< num_channels
;c
++)
912 if(chans
[c
].channel
!= LFE
)
913 ComputePanningGainsBF(Slot
->ChanMap
,
914 Slot
->NumChannels
, coeffs
, WetGain
[i
] * downmix_gain
,
915 voice
->Send
[i
].Params
[c
].Gains
.Target
924 if(Device
->AvgSpeakerDist
> 0.0f
)
926 /* If the source distance is 0, set w0 to w1 to act as a pass-
927 * through. We still want to pass the signal through the
928 * filters so they keep an appropriate history, in case the
929 * source moves away from the listener.
931 w0
= SPEEDOFSOUNDMETRESPERSEC
/
932 (Device
->AvgSpeakerDist
* (ALfloat
)Device
->Frequency
);
934 for(c
= 0;c
< num_channels
;c
++)
935 NfcFilterAdjust(&voice
->Direct
.Params
[c
].NFCtrlFilter
, w0
);
937 for(i
= 0;i
< MAX_AMBI_ORDER
+1;i
++)
938 voice
->Direct
.ChannelsPerOrder
[i
] = Device
->NumChannelsPerOrder
[i
];
939 voice
->Flags
|= VOICE_HAS_NFC
;
942 for(c
= 0;c
< num_channels
;c
++)
944 ALfloat coeffs
[MAX_AMBI_COEFFS
];
946 /* Special-case LFE */
947 if(chans
[c
].channel
== LFE
)
949 if(Device
->Dry
.Buffer
== Device
->RealOut
.Buffer
)
951 int idx
= GetChannelIdxByName(&Device
->RealOut
, chans
[c
].channel
);
952 if(idx
!= -1) voice
->Direct
.Params
[c
].Gains
.Target
[idx
] = DryGain
;
958 (Device
->Render_Mode
==StereoPair
) ? ScaleAzimuthFront(chans
[c
].angle
, 3.0f
)
960 chans
[c
].elevation
, Spread
, coeffs
963 ComputePanGains(&Device
->Dry
, coeffs
, DryGain
,
964 voice
->Direct
.Params
[c
].Gains
.Target
);
965 for(i
= 0;i
< NumSends
;i
++)
967 const ALeffectslot
*Slot
= SendSlots
[i
];
969 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
,
970 coeffs
, WetGain
[i
], voice
->Send
[i
].Params
[c
].Gains
.Target
978 ALfloat hfScale
= props
->Direct
.HFReference
/ Frequency
;
979 ALfloat lfScale
= props
->Direct
.LFReference
/ Frequency
;
980 ALfloat gainHF
= maxf(DryGainHF
, 0.001f
); /* Limit -60dB */
981 ALfloat gainLF
= maxf(DryGainLF
, 0.001f
);
983 voice
->Direct
.FilterType
= AF_None
;
984 if(gainHF
!= 1.0f
) voice
->Direct
.FilterType
|= AF_LowPass
;
985 if(gainLF
!= 1.0f
) voice
->Direct
.FilterType
|= AF_HighPass
;
986 BiquadFilter_setParams(
987 &voice
->Direct
.Params
[0].LowPass
, BiquadType::HighShelf
,
988 gainHF
, hfScale
, calc_rcpQ_from_slope(gainHF
, 1.0f
)
990 BiquadFilter_setParams(
991 &voice
->Direct
.Params
[0].HighPass
, BiquadType::LowShelf
,
992 gainLF
, lfScale
, calc_rcpQ_from_slope(gainLF
, 1.0f
)
994 for(c
= 1;c
< num_channels
;c
++)
996 BiquadFilter_copyParams(&voice
->Direct
.Params
[c
].LowPass
,
997 &voice
->Direct
.Params
[0].LowPass
);
998 BiquadFilter_copyParams(&voice
->Direct
.Params
[c
].HighPass
,
999 &voice
->Direct
.Params
[0].HighPass
);
1002 for(i
= 0;i
< NumSends
;i
++)
1004 ALfloat hfScale
= props
->Send
[i
].HFReference
/ Frequency
;
1005 ALfloat lfScale
= props
->Send
[i
].LFReference
/ Frequency
;
1006 ALfloat gainHF
= maxf(WetGainHF
[i
], 0.001f
);
1007 ALfloat gainLF
= maxf(WetGainLF
[i
], 0.001f
);
1009 voice
->Send
[i
].FilterType
= AF_None
;
1010 if(gainHF
!= 1.0f
) voice
->Send
[i
].FilterType
|= AF_LowPass
;
1011 if(gainLF
!= 1.0f
) voice
->Send
[i
].FilterType
|= AF_HighPass
;
1012 BiquadFilter_setParams(
1013 &voice
->Send
[i
].Params
[0].LowPass
, BiquadType::HighShelf
,
1014 gainHF
, hfScale
, calc_rcpQ_from_slope(gainHF
, 1.0f
)
1016 BiquadFilter_setParams(
1017 &voice
->Send
[i
].Params
[0].HighPass
, BiquadType::LowShelf
,
1018 gainLF
, lfScale
, calc_rcpQ_from_slope(gainLF
, 1.0f
)
1020 for(c
= 1;c
< num_channels
;c
++)
1022 BiquadFilter_copyParams(&voice
->Send
[i
].Params
[c
].LowPass
,
1023 &voice
->Send
[i
].Params
[0].LowPass
);
1024 BiquadFilter_copyParams(&voice
->Send
[i
].Params
[c
].HighPass
,
1025 &voice
->Send
[i
].Params
[0].HighPass
);
1030 void CalcNonAttnSourceParams(ALvoice
*voice
, const struct ALvoiceProps
*props
, const ALbuffer
*ALBuffer
, const ALCcontext
*ALContext
)
1032 const ALCdevice
*Device
= ALContext
->Device
;
1033 const ALlistener
&Listener
= ALContext
->Listener
;
1034 ALfloat DryGain
, DryGainHF
, DryGainLF
;
1035 ALfloat WetGain
[MAX_SENDS
];
1036 ALfloat WetGainHF
[MAX_SENDS
];
1037 ALfloat WetGainLF
[MAX_SENDS
];
1038 ALeffectslot
*SendSlots
[MAX_SENDS
];
1042 voice
->Direct
.Buffer
= Device
->Dry
.Buffer
;
1043 voice
->Direct
.Channels
= Device
->Dry
.NumChannels
;
1044 for(i
= 0;i
< Device
->NumAuxSends
;i
++)
1046 SendSlots
[i
] = props
->Send
[i
].Slot
;
1047 if(!SendSlots
[i
] && i
== 0)
1048 SendSlots
[i
] = ALContext
->DefaultSlot
.get();
1049 if(!SendSlots
[i
] || SendSlots
[i
]->Params
.EffectType
== AL_EFFECT_NULL
)
1051 SendSlots
[i
] = NULL
;
1052 voice
->Send
[i
].Buffer
= NULL
;
1053 voice
->Send
[i
].Channels
= 0;
1057 voice
->Send
[i
].Buffer
= SendSlots
[i
]->WetBuffer
;
1058 voice
->Send
[i
].Channels
= SendSlots
[i
]->NumChannels
;
1062 /* Calculate the stepping value */
1063 Pitch
= (ALfloat
)ALBuffer
->Frequency
/(ALfloat
)Device
->Frequency
* props
->Pitch
;
1064 if(Pitch
> (ALfloat
)MAX_PITCH
)
1065 voice
->Step
= MAX_PITCH
<<FRACTIONBITS
;
1067 voice
->Step
= maxi(fastf2i(Pitch
* FRACTIONONE
), 1);
1068 if(props
->Resampler
== BSinc24Resampler
)
1069 BsincPrepare(voice
->Step
, &voice
->ResampleState
.bsinc
, &bsinc24
);
1070 else if(props
->Resampler
== BSinc12Resampler
)
1071 BsincPrepare(voice
->Step
, &voice
->ResampleState
.bsinc
, &bsinc12
);
1072 voice
->Resampler
= SelectResampler(props
->Resampler
);
1074 /* Calculate gains */
1075 DryGain
= clampf(props
->Gain
, props
->MinGain
, props
->MaxGain
);
1076 DryGain
*= props
->Direct
.Gain
* Listener
.Params
.Gain
;
1077 DryGain
= minf(DryGain
, GAIN_MIX_MAX
);
1078 DryGainHF
= props
->Direct
.GainHF
;
1079 DryGainLF
= props
->Direct
.GainLF
;
1080 for(i
= 0;i
< Device
->NumAuxSends
;i
++)
1082 WetGain
[i
] = clampf(props
->Gain
, props
->MinGain
, props
->MaxGain
);
1083 WetGain
[i
] *= props
->Send
[i
].Gain
* Listener
.Params
.Gain
;
1084 WetGain
[i
] = minf(WetGain
[i
], GAIN_MIX_MAX
);
1085 WetGainHF
[i
] = props
->Send
[i
].GainHF
;
1086 WetGainLF
[i
] = props
->Send
[i
].GainLF
;
1089 CalcPanningAndFilters(voice
, 0.0f
, 0.0f
, 0.0f
, 0.0f
, DryGain
, DryGainHF
, DryGainLF
, WetGain
,
1090 WetGainLF
, WetGainHF
, SendSlots
, ALBuffer
, props
, Listener
, Device
);
1093 void CalcAttnSourceParams(ALvoice
*voice
, const struct ALvoiceProps
*props
, const ALbuffer
*ALBuffer
, const ALCcontext
*ALContext
)
1095 const ALCdevice
*Device
= ALContext
->Device
;
1096 const ALlistener
&Listener
= ALContext
->Listener
;
1097 const ALsizei NumSends
= Device
->NumAuxSends
;
1098 aluVector Position
, Velocity
, Direction
, SourceToListener
;
1099 ALfloat Distance
, ClampedDist
, DopplerFactor
;
1100 ALeffectslot
*SendSlots
[MAX_SENDS
];
1101 ALfloat RoomRolloff
[MAX_SENDS
];
1102 ALfloat DecayDistance
[MAX_SENDS
];
1103 ALfloat DecayLFDistance
[MAX_SENDS
];
1104 ALfloat DecayHFDistance
[MAX_SENDS
];
1105 ALfloat DryGain
, DryGainHF
, DryGainLF
;
1106 ALfloat WetGain
[MAX_SENDS
];
1107 ALfloat WetGainHF
[MAX_SENDS
];
1108 ALfloat WetGainLF
[MAX_SENDS
];
1115 /* Set mixing buffers and get send parameters. */
1116 voice
->Direct
.Buffer
= Device
->Dry
.Buffer
;
1117 voice
->Direct
.Channels
= Device
->Dry
.NumChannels
;
1118 for(i
= 0;i
< NumSends
;i
++)
1120 SendSlots
[i
] = props
->Send
[i
].Slot
;
1121 if(!SendSlots
[i
] && i
== 0)
1122 SendSlots
[i
] = ALContext
->DefaultSlot
.get();
1123 if(!SendSlots
[i
] || SendSlots
[i
]->Params
.EffectType
== AL_EFFECT_NULL
)
1125 SendSlots
[i
] = NULL
;
1126 RoomRolloff
[i
] = 0.0f
;
1127 DecayDistance
[i
] = 0.0f
;
1128 DecayLFDistance
[i
] = 0.0f
;
1129 DecayHFDistance
[i
] = 0.0f
;
1131 else if(SendSlots
[i
]->Params
.AuxSendAuto
)
1133 RoomRolloff
[i
] = SendSlots
[i
]->Params
.RoomRolloff
+ props
->RoomRolloffFactor
;
1134 /* Calculate the distances to where this effect's decay reaches
1137 DecayDistance
[i
] = SendSlots
[i
]->Params
.DecayTime
*
1138 Listener
.Params
.ReverbSpeedOfSound
;
1139 DecayLFDistance
[i
] = DecayDistance
[i
] * SendSlots
[i
]->Params
.DecayLFRatio
;
1140 DecayHFDistance
[i
] = DecayDistance
[i
] * SendSlots
[i
]->Params
.DecayHFRatio
;
1141 if(SendSlots
[i
]->Params
.DecayHFLimit
)
1143 ALfloat airAbsorption
= SendSlots
[i
]->Params
.AirAbsorptionGainHF
;
1144 if(airAbsorption
< 1.0f
)
1146 /* Calculate the distance to where this effect's air
1147 * absorption reaches -60dB, and limit the effect's HF
1148 * decay distance (so it doesn't take any longer to decay
1149 * than the air would allow).
1151 ALfloat absorb_dist
= log10f(REVERB_DECAY_GAIN
) / log10f(airAbsorption
);
1152 DecayHFDistance
[i
] = minf(absorb_dist
, DecayHFDistance
[i
]);
1158 /* If the slot's auxiliary send auto is off, the data sent to the
1159 * effect slot is the same as the dry path, sans filter effects */
1160 RoomRolloff
[i
] = props
->RolloffFactor
;
1161 DecayDistance
[i
] = 0.0f
;
1162 DecayLFDistance
[i
] = 0.0f
;
1163 DecayHFDistance
[i
] = 0.0f
;
1168 voice
->Send
[i
].Buffer
= NULL
;
1169 voice
->Send
[i
].Channels
= 0;
1173 voice
->Send
[i
].Buffer
= SendSlots
[i
]->WetBuffer
;
1174 voice
->Send
[i
].Channels
= SendSlots
[i
]->NumChannels
;
1178 /* Transform source to listener space (convert to head relative) */
1179 aluVectorSet(&Position
, props
->Position
[0], props
->Position
[1], props
->Position
[2], 1.0f
);
1180 aluVectorSet(&Direction
, props
->Direction
[0], props
->Direction
[1], props
->Direction
[2], 0.0f
);
1181 aluVectorSet(&Velocity
, props
->Velocity
[0], props
->Velocity
[1], props
->Velocity
[2], 0.0f
);
1182 if(props
->HeadRelative
== AL_FALSE
)
1184 const aluMatrixf
*Matrix
= &Listener
.Params
.Matrix
;
1185 /* Transform source vectors */
1186 Position
= aluMatrixfVector(Matrix
, &Position
);
1187 Velocity
= aluMatrixfVector(Matrix
, &Velocity
);
1188 Direction
= aluMatrixfVector(Matrix
, &Direction
);
1192 const aluVector
*lvelocity
= &Listener
.Params
.Velocity
;
1193 /* Offset the source velocity to be relative of the listener velocity */
1194 Velocity
.v
[0] += lvelocity
->v
[0];
1195 Velocity
.v
[1] += lvelocity
->v
[1];
1196 Velocity
.v
[2] += lvelocity
->v
[2];
1199 directional
= aluNormalize(Direction
.v
) > 0.0f
;
1200 SourceToListener
.v
[0] = -Position
.v
[0];
1201 SourceToListener
.v
[1] = -Position
.v
[1];
1202 SourceToListener
.v
[2] = -Position
.v
[2];
1203 SourceToListener
.v
[3] = 0.0f
;
1204 Distance
= aluNormalize(SourceToListener
.v
);
1206 /* Initial source gain */
1207 DryGain
= props
->Gain
;
1210 for(i
= 0;i
< NumSends
;i
++)
1212 WetGain
[i
] = props
->Gain
;
1213 WetGainHF
[i
] = 1.0f
;
1214 WetGainLF
[i
] = 1.0f
;
1217 /* Calculate distance attenuation */
1218 ClampedDist
= Distance
;
1220 switch(Listener
.Params
.SourceDistanceModel
?
1221 props
->mDistanceModel
: Listener
.Params
.mDistanceModel
)
1223 case DistanceModel::InverseClamped
:
1224 ClampedDist
= clampf(ClampedDist
, props
->RefDistance
, props
->MaxDistance
);
1225 if(props
->MaxDistance
< props
->RefDistance
)
1228 case DistanceModel::Inverse
:
1229 if(!(props
->RefDistance
> 0.0f
))
1230 ClampedDist
= props
->RefDistance
;
1233 ALfloat dist
= lerp(props
->RefDistance
, ClampedDist
, props
->RolloffFactor
);
1234 if(dist
> 0.0f
) DryGain
*= props
->RefDistance
/ dist
;
1235 for(i
= 0;i
< NumSends
;i
++)
1237 dist
= lerp(props
->RefDistance
, ClampedDist
, RoomRolloff
[i
]);
1238 if(dist
> 0.0f
) WetGain
[i
] *= props
->RefDistance
/ dist
;
1243 case DistanceModel::LinearClamped
:
1244 ClampedDist
= clampf(ClampedDist
, props
->RefDistance
, props
->MaxDistance
);
1245 if(props
->MaxDistance
< props
->RefDistance
)
1248 case DistanceModel::Linear
:
1249 if(!(props
->MaxDistance
!= props
->RefDistance
))
1250 ClampedDist
= props
->RefDistance
;
1253 ALfloat attn
= props
->RolloffFactor
* (ClampedDist
-props
->RefDistance
) /
1254 (props
->MaxDistance
-props
->RefDistance
);
1255 DryGain
*= maxf(1.0f
- attn
, 0.0f
);
1256 for(i
= 0;i
< NumSends
;i
++)
1258 attn
= RoomRolloff
[i
] * (ClampedDist
-props
->RefDistance
) /
1259 (props
->MaxDistance
-props
->RefDistance
);
1260 WetGain
[i
] *= maxf(1.0f
- attn
, 0.0f
);
1265 case DistanceModel::ExponentClamped
:
1266 ClampedDist
= clampf(ClampedDist
, props
->RefDistance
, props
->MaxDistance
);
1267 if(props
->MaxDistance
< props
->RefDistance
)
1270 case DistanceModel::Exponent
:
1271 if(!(ClampedDist
> 0.0f
&& props
->RefDistance
> 0.0f
))
1272 ClampedDist
= props
->RefDistance
;
1275 DryGain
*= powf(ClampedDist
/props
->RefDistance
, -props
->RolloffFactor
);
1276 for(i
= 0;i
< NumSends
;i
++)
1277 WetGain
[i
] *= powf(ClampedDist
/props
->RefDistance
, -RoomRolloff
[i
]);
1281 case DistanceModel::Disable
:
1282 ClampedDist
= props
->RefDistance
;
1286 /* Calculate directional soundcones */
1287 if(directional
&& props
->InnerAngle
< 360.0f
)
1293 Angle
= acosf(aluDotproduct(&Direction
, &SourceToListener
));
1294 Angle
= RAD2DEG(Angle
* ConeScale
* 2.0f
);
1295 if(!(Angle
> props
->InnerAngle
))
1300 else if(Angle
< props
->OuterAngle
)
1302 ALfloat scale
= ( Angle
-props
->InnerAngle
) /
1303 (props
->OuterAngle
-props
->InnerAngle
);
1304 ConeVolume
= lerp(1.0f
, props
->OuterGain
, scale
);
1305 ConeHF
= lerp(1.0f
, props
->OuterGainHF
, scale
);
1309 ConeVolume
= props
->OuterGain
;
1310 ConeHF
= props
->OuterGainHF
;
1313 DryGain
*= ConeVolume
;
1314 if(props
->DryGainHFAuto
)
1315 DryGainHF
*= ConeHF
;
1316 if(props
->WetGainAuto
)
1318 for(i
= 0;i
< NumSends
;i
++)
1319 WetGain
[i
] *= ConeVolume
;
1321 if(props
->WetGainHFAuto
)
1323 for(i
= 0;i
< NumSends
;i
++)
1324 WetGainHF
[i
] *= ConeHF
;
1328 /* Apply gain and frequency filters */
1329 DryGain
= clampf(DryGain
, props
->MinGain
, props
->MaxGain
);
1330 DryGain
= minf(DryGain
*props
->Direct
.Gain
*Listener
.Params
.Gain
, GAIN_MIX_MAX
);
1331 DryGainHF
*= props
->Direct
.GainHF
;
1332 DryGainLF
*= props
->Direct
.GainLF
;
1333 for(i
= 0;i
< NumSends
;i
++)
1335 WetGain
[i
] = clampf(WetGain
[i
], props
->MinGain
, props
->MaxGain
);
1336 WetGain
[i
] = minf(WetGain
[i
]*props
->Send
[i
].Gain
*Listener
.Params
.Gain
, GAIN_MIX_MAX
);
1337 WetGainHF
[i
] *= props
->Send
[i
].GainHF
;
1338 WetGainLF
[i
] *= props
->Send
[i
].GainLF
;
1341 /* Distance-based air absorption and initial send decay. */
1342 if(ClampedDist
> props
->RefDistance
&& props
->RolloffFactor
> 0.0f
)
1344 ALfloat meters_base
= (ClampedDist
-props
->RefDistance
) * props
->RolloffFactor
*
1345 Listener
.Params
.MetersPerUnit
;
1346 if(props
->AirAbsorptionFactor
> 0.0f
)
1348 ALfloat hfattn
= powf(AIRABSORBGAINHF
, meters_base
* props
->AirAbsorptionFactor
);
1349 DryGainHF
*= hfattn
;
1350 for(i
= 0;i
< NumSends
;i
++)
1351 WetGainHF
[i
] *= hfattn
;
1354 if(props
->WetGainAuto
)
1356 /* Apply a decay-time transformation to the wet path, based on the
1357 * source distance in meters. The initial decay of the reverb
1358 * effect is calculated and applied to the wet path.
1360 for(i
= 0;i
< NumSends
;i
++)
1362 ALfloat gain
, gainhf
, gainlf
;
1364 if(!(DecayDistance
[i
] > 0.0f
))
1367 gain
= powf(REVERB_DECAY_GAIN
, meters_base
/DecayDistance
[i
]);
1369 /* Yes, the wet path's air absorption is applied with
1370 * WetGainAuto on, rather than WetGainHFAuto.
1374 gainhf
= powf(REVERB_DECAY_GAIN
, meters_base
/DecayHFDistance
[i
]);
1375 WetGainHF
[i
] *= minf(gainhf
/ gain
, 1.0f
);
1376 gainlf
= powf(REVERB_DECAY_GAIN
, meters_base
/DecayLFDistance
[i
]);
1377 WetGainLF
[i
] *= minf(gainlf
/ gain
, 1.0f
);
1384 /* Initial source pitch */
1385 Pitch
= props
->Pitch
;
1387 /* Calculate velocity-based doppler effect */
1388 DopplerFactor
= props
->DopplerFactor
* Listener
.Params
.DopplerFactor
;
1389 if(DopplerFactor
> 0.0f
)
1391 const aluVector
*lvelocity
= &Listener
.Params
.Velocity
;
1392 const ALfloat SpeedOfSound
= Listener
.Params
.SpeedOfSound
;
1395 vss
= aluDotproduct(&Velocity
, &SourceToListener
) * DopplerFactor
;
1396 vls
= aluDotproduct(lvelocity
, &SourceToListener
) * DopplerFactor
;
1398 if(!(vls
< SpeedOfSound
))
1400 /* Listener moving away from the source at the speed of sound.
1401 * Sound waves can't catch it.
1405 else if(!(vss
< SpeedOfSound
))
1407 /* Source moving toward the listener at the speed of sound. Sound
1408 * waves bunch up to extreme frequencies.
1414 /* Source and listener movement is nominal. Calculate the proper
1417 Pitch
*= (SpeedOfSound
-vls
) / (SpeedOfSound
-vss
);
1421 /* Adjust pitch based on the buffer and output frequencies, and calculate
1422 * fixed-point stepping value.
1424 Pitch
*= (ALfloat
)ALBuffer
->Frequency
/(ALfloat
)Device
->Frequency
;
1425 if(Pitch
> (ALfloat
)MAX_PITCH
)
1426 voice
->Step
= MAX_PITCH
<<FRACTIONBITS
;
1428 voice
->Step
= maxi(fastf2i(Pitch
* FRACTIONONE
), 1);
1429 if(props
->Resampler
== BSinc24Resampler
)
1430 BsincPrepare(voice
->Step
, &voice
->ResampleState
.bsinc
, &bsinc24
);
1431 else if(props
->Resampler
== BSinc12Resampler
)
1432 BsincPrepare(voice
->Step
, &voice
->ResampleState
.bsinc
, &bsinc12
);
1433 voice
->Resampler
= SelectResampler(props
->Resampler
);
1437 /* Clamp Y, in case rounding errors caused it to end up outside of
1440 ev
= asinf(clampf(-SourceToListener
.v
[1], -1.0f
, 1.0f
));
1441 /* Double negation on Z cancels out; negate once for changing source-
1442 * to-listener to listener-to-source, and again for right-handed coords
1445 az
= atan2f(-SourceToListener
.v
[0], SourceToListener
.v
[2]*ZScale
);
1450 if(props
->Radius
> Distance
)
1451 spread
= F_TAU
- Distance
/props
->Radius
*F_PI
;
1452 else if(Distance
> 0.0f
)
1453 spread
= asinf(props
->Radius
/ Distance
) * 2.0f
;
1457 CalcPanningAndFilters(voice
, az
, ev
, Distance
, spread
, DryGain
, DryGainHF
, DryGainLF
, WetGain
,
1458 WetGainLF
, WetGainHF
, SendSlots
, ALBuffer
, props
, Listener
, Device
);
1461 void CalcSourceParams(ALvoice
*voice
, ALCcontext
*context
, bool force
)
1463 ALbufferlistitem
*BufferListItem
;
1464 struct ALvoiceProps
*props
;
1466 props
= voice
->Update
.exchange(nullptr, std::memory_order_acq_rel
);
1467 if(!props
&& !force
) return;
1471 memcpy(voice
->Props
, props
,
1472 FAM_SIZE(struct ALvoiceProps
, Send
, context
->Device
->NumAuxSends
)
1475 AtomicReplaceHead(context
->FreeVoiceProps
, props
);
1477 props
= voice
->Props
;
1479 BufferListItem
= ATOMIC_LOAD(&voice
->current_buffer
, almemory_order_relaxed
);
1480 while(BufferListItem
!= NULL
)
1482 const ALbuffer
*buffer
= NULL
;
1484 while(!buffer
&& i
< BufferListItem
->num_buffers
)
1485 buffer
= BufferListItem
->buffers
[i
];
1488 if(props
->SpatializeMode
== SpatializeOn
||
1489 (props
->SpatializeMode
== SpatializeAuto
&& buffer
->FmtChannels
== FmtMono
))
1490 CalcAttnSourceParams(voice
, props
, buffer
, context
);
1492 CalcNonAttnSourceParams(voice
, props
, buffer
, context
);
1495 BufferListItem
= ATOMIC_LOAD(&BufferListItem
->next
, almemory_order_acquire
);
1500 void ProcessParamUpdates(ALCcontext
*ctx
, const struct ALeffectslotArray
*slots
)
1502 ALvoice
**voice
, **voice_end
;
1506 IncrementRef(&ctx
->UpdateCount
);
1507 if(!ATOMIC_LOAD(&ctx
->HoldUpdates
, almemory_order_acquire
))
1509 bool cforce
= CalcContextParams(ctx
);
1510 bool force
= CalcListenerParams(ctx
) | cforce
;
1511 for(i
= 0;i
< slots
->count
;i
++)
1512 force
|= CalcEffectSlotParams(slots
->slot
[i
], ctx
, cforce
);
1514 voice
= ctx
->Voices
;
1515 voice_end
= voice
+ ctx
->VoiceCount
;
1516 for(;voice
!= voice_end
;++voice
)
1518 source
= ATOMIC_LOAD(&(*voice
)->Source
, almemory_order_acquire
);
1519 if(source
) CalcSourceParams(*voice
, ctx
, force
);
1522 IncrementRef(&ctx
->UpdateCount
);
1526 void ApplyStablizer(FrontStablizer
*Stablizer
, ALfloat (*RESTRICT Buffer
)[BUFFERSIZE
],
1527 int lidx
, int ridx
, int cidx
, ALsizei SamplesToDo
, ALsizei NumChannels
)
1529 ALfloat (*RESTRICT lsplit
)[BUFFERSIZE
] = Stablizer
->LSplit
;
1530 ALfloat (*RESTRICT rsplit
)[BUFFERSIZE
] = Stablizer
->RSplit
;
1533 /* Apply an all-pass to all channels, except the front-left and front-
1534 * right, so they maintain the same relative phase.
1536 for(i
= 0;i
< NumChannels
;i
++)
1538 if(i
== lidx
|| i
== ridx
)
1540 splitterap_process(&Stablizer
->APFilter
[i
], Buffer
[i
], SamplesToDo
);
1543 bandsplit_process(&Stablizer
->LFilter
, lsplit
[1], lsplit
[0], Buffer
[lidx
], SamplesToDo
);
1544 bandsplit_process(&Stablizer
->RFilter
, rsplit
[1], rsplit
[0], Buffer
[ridx
], SamplesToDo
);
1546 for(i
= 0;i
< SamplesToDo
;i
++)
1548 ALfloat lfsum
, hfsum
;
1551 lfsum
= lsplit
[0][i
] + rsplit
[0][i
];
1552 hfsum
= lsplit
[1][i
] + rsplit
[1][i
];
1553 s
= lsplit
[0][i
] + lsplit
[1][i
] - rsplit
[0][i
] - rsplit
[1][i
];
1555 /* This pans the separate low- and high-frequency sums between being on
1556 * the center channel and the left/right channels. The low-frequency
1557 * sum is 1/3rd toward center (2/3rds on left/right) and the high-
1558 * frequency sum is 1/4th toward center (3/4ths on left/right). These
1559 * values can be tweaked.
1561 m
= lfsum
*cosf(1.0f
/3.0f
* F_PI_2
) + hfsum
*cosf(1.0f
/4.0f
* F_PI_2
);
1562 c
= lfsum
*sinf(1.0f
/3.0f
* F_PI_2
) + hfsum
*sinf(1.0f
/4.0f
* F_PI_2
);
1564 /* The generated center channel signal adds to the existing signal,
1565 * while the modified left and right channels replace.
1567 Buffer
[lidx
][i
] = (m
+ s
) * 0.5f
;
1568 Buffer
[ridx
][i
] = (m
- s
) * 0.5f
;
1569 Buffer
[cidx
][i
] += c
* 0.5f
;
1573 void ApplyDistanceComp(ALfloat (*RESTRICT Samples
)[BUFFERSIZE
], const DistanceComp
&distcomp
,
1574 ALfloat
*RESTRICT Values
, ALsizei SamplesToDo
, ALsizei numchans
)
1576 for(ALsizei c
{0};c
< numchans
;c
++)
1578 ALfloat
*RESTRICT inout
= Samples
[c
];
1579 const ALfloat gain
= distcomp
[c
].Gain
;
1580 const ALsizei base
= distcomp
[c
].Length
;
1581 ALfloat
*RESTRICT distbuf
= distcomp
[c
].Buffer
;
1586 std::for_each(inout
, inout
+SamplesToDo
,
1587 [gain
](ALfloat
&in
) noexcept
-> void
1593 if(LIKELY(SamplesToDo
>= base
))
1595 auto out
= std::copy_n(distbuf
, base
, Values
);
1596 std::copy_n(inout
, SamplesToDo
-base
, out
);
1597 std::copy_n(inout
+SamplesToDo
-base
, base
, distbuf
);
1601 std::copy_n(distbuf
, SamplesToDo
, Values
);
1602 auto out
= std::copy(distbuf
+SamplesToDo
, distbuf
+base
, distbuf
);
1603 std::copy_n(inout
, SamplesToDo
, out
);
1605 std::transform(Values
, Values
+SamplesToDo
, inout
,
1606 [gain
](ALfloat in
) noexcept
-> ALfloat
1607 { return in
* gain
; }
1612 void ApplyDither(ALfloat (*RESTRICT Samples
)[BUFFERSIZE
], ALuint
*dither_seed
,
1613 const ALfloat quant_scale
, const ALsizei SamplesToDo
, const ALsizei numchans
)
1615 const ALfloat invscale
= 1.0f
/ quant_scale
;
1616 ALuint seed
= *dither_seed
;
1619 ASSUME(numchans
> 0);
1620 ASSUME(SamplesToDo
> 0);
1622 /* Dithering. Step 1, generate whitenoise (uniform distribution of random
1623 * values between -1 and +1). Step 2 is to add the noise to the samples,
1624 * before rounding and after scaling up to the desired quantization depth.
1626 for(c
= 0;c
< numchans
;c
++)
1628 ALfloat
*RESTRICT samples
= Samples
[c
];
1629 for(i
= 0;i
< SamplesToDo
;i
++)
1631 ALfloat val
= samples
[i
] * quant_scale
;
1632 ALuint rng0
= dither_rng(&seed
);
1633 ALuint rng1
= dither_rng(&seed
);
1634 val
+= (ALfloat
)(rng0
*(1.0/UINT_MAX
) - rng1
*(1.0/UINT_MAX
));
1635 samples
[i
] = fast_roundf(val
) * invscale
;
1638 *dither_seed
= seed
;
1642 /* Base template left undefined. Should be marked =delete, but Clang 3.8.1
1643 * chokes on that given the inline specializations.
1645 template<typename T
>
1646 inline T
SampleConv(ALfloat
);
1648 template<> inline ALfloat
SampleConv(ALfloat val
)
1650 template<> inline ALint
SampleConv(ALfloat val
)
1652 /* Floats have a 23-bit mantissa. There is an implied 1 bit in the mantissa
1653 * along with the sign bit, giving 25 bits total, so [-16777216, +16777216]
1654 * is the max value a normalized float can be scaled to before losing
1657 return fastf2i(clampf(val
*16777216.0f
, -16777216.0f
, 16777215.0f
))<<7;
1659 template<> inline ALshort
SampleConv(ALfloat val
)
1660 { return fastf2i(clampf(val
*32768.0f
, -32768.0f
, 32767.0f
)); }
1661 template<> inline ALbyte
SampleConv(ALfloat val
)
1662 { return fastf2i(clampf(val
*128.0f
, -128.0f
, 127.0f
)); }
1664 /* Define unsigned output variations. */
1665 template<> inline ALuint
SampleConv(ALfloat val
)
1666 { return SampleConv
<ALint
>(val
) + 2147483648u; }
1667 template<> inline ALushort
SampleConv(ALfloat val
)
1668 { return SampleConv
<ALshort
>(val
) + 32768; }
1669 template<> inline ALubyte
SampleConv(ALfloat val
)
1670 { return SampleConv
<ALbyte
>(val
) + 128; }
1672 template<DevFmtType T
>
1673 void Write(const ALfloat (*RESTRICT InBuffer
)[BUFFERSIZE
], ALvoid
*OutBuffer
,
1674 ALsizei Offset
, ALsizei SamplesToDo
, ALsizei numchans
)
1676 using SampleType
= typename DevFmtTypeTraits
<T
>::Type
;
1678 ASSUME(numchans
> 0);
1679 ASSUME(SamplesToDo
> 0);
1681 for(ALsizei j
{0};j
< numchans
;j
++)
1683 const ALfloat
*RESTRICT in
= InBuffer
[j
];
1684 SampleType
*RESTRICT out
= static_cast<SampleType
*>(OutBuffer
) + Offset
*numchans
+ j
;
1686 for(ALsizei i
{0};i
< SamplesToDo
;i
++)
1687 out
[i
*numchans
] = SampleConv
<SampleType
>(in
[i
]);
1693 void aluMixData(ALCdevice
*device
, ALvoid
*OutBuffer
, ALsizei NumSamples
)
1695 ALsizei SamplesToDo
;
1696 ALsizei SamplesDone
;
1700 FPUCtl mixer_mode
{};
1701 for(SamplesDone
= 0;SamplesDone
< NumSamples
;)
1703 SamplesToDo
= mini(NumSamples
-SamplesDone
, BUFFERSIZE
);
1704 for(c
= 0;c
< device
->Dry
.NumChannels
;c
++)
1705 memset(device
->Dry
.Buffer
[c
], 0, SamplesToDo
*sizeof(ALfloat
));
1706 if(device
->Dry
.Buffer
!= device
->FOAOut
.Buffer
)
1707 for(c
= 0;c
< device
->FOAOut
.NumChannels
;c
++)
1708 memset(device
->FOAOut
.Buffer
[c
], 0, SamplesToDo
*sizeof(ALfloat
));
1709 if(device
->Dry
.Buffer
!= device
->RealOut
.Buffer
)
1710 for(c
= 0;c
< device
->RealOut
.NumChannels
;c
++)
1711 memset(device
->RealOut
.Buffer
[c
], 0, SamplesToDo
*sizeof(ALfloat
));
1713 IncrementRef(&device
->MixCount
);
1715 ctx
= ATOMIC_LOAD(&device
->ContextList
, almemory_order_acquire
);
1718 const struct ALeffectslotArray
*auxslots
;
1720 auxslots
= ATOMIC_LOAD(&ctx
->ActiveAuxSlots
, almemory_order_acquire
);
1721 ProcessParamUpdates(ctx
, auxslots
);
1723 for(i
= 0;i
< auxslots
->count
;i
++)
1725 ALeffectslot
*slot
= auxslots
->slot
[i
];
1726 for(c
= 0;c
< slot
->NumChannels
;c
++)
1727 memset(slot
->WetBuffer
[c
], 0, SamplesToDo
*sizeof(ALfloat
));
1730 /* source processing */
1731 for(i
= 0;i
< ctx
->VoiceCount
;i
++)
1733 ALvoice
*voice
= ctx
->Voices
[i
];
1734 ALsource
*source
= ATOMIC_LOAD(&voice
->Source
, almemory_order_acquire
);
1735 if(source
&& ATOMIC_LOAD(&voice
->Playing
, almemory_order_relaxed
) &&
1738 if(!MixSource(voice
, source
->id
, ctx
, SamplesToDo
))
1740 ATOMIC_STORE(&voice
->Source
, static_cast<ALsource
*>(nullptr),
1741 almemory_order_relaxed
);
1742 ATOMIC_STORE(&voice
->Playing
, false, almemory_order_release
);
1743 SendSourceStoppedEvent(ctx
, source
->id
);
1748 /* effect slot processing */
1749 for(i
= 0;i
< auxslots
->count
;i
++)
1751 const ALeffectslot
*slot
= auxslots
->slot
[i
];
1752 EffectState
*state
= slot
->Params
.mEffectState
;
1753 state
->process(SamplesToDo
, slot
->WetBuffer
, state
->mOutBuffer
,
1754 state
->mOutChannels
);
1757 ctx
= ATOMIC_LOAD(&ctx
->next
, almemory_order_relaxed
);
1760 /* Increment the clock time. Every second's worth of samples is
1761 * converted and added to clock base so that large sample counts don't
1762 * overflow during conversion. This also guarantees an exact, stable
1764 device
->SamplesDone
+= SamplesToDo
;
1765 device
->ClockBase
+= (device
->SamplesDone
/device
->Frequency
) * DEVICE_CLOCK_RES
;
1766 device
->SamplesDone
%= device
->Frequency
;
1767 IncrementRef(&device
->MixCount
);
1769 /* Apply post-process for finalizing the Dry mix to the RealOut
1770 * (Ambisonic decode, UHJ encode, etc).
1772 if(LIKELY(device
->PostProcess
))
1773 device
->PostProcess(device
, SamplesToDo
);
1775 if(device
->Stablizer
)
1777 int lidx
= GetChannelIdxByName(&device
->RealOut
, FrontLeft
);
1778 int ridx
= GetChannelIdxByName(&device
->RealOut
, FrontRight
);
1779 int cidx
= GetChannelIdxByName(&device
->RealOut
, FrontCenter
);
1780 assert(lidx
>= 0 && ridx
>= 0 && cidx
>= 0);
1782 ApplyStablizer(device
->Stablizer
, device
->RealOut
.Buffer
, lidx
, ridx
, cidx
,
1783 SamplesToDo
, device
->RealOut
.NumChannels
);
1786 ApplyDistanceComp(device
->RealOut
.Buffer
, device
->ChannelDelay
, device
->TempBuffer
[0],
1787 SamplesToDo
, device
->RealOut
.NumChannels
);
1790 ApplyCompression(device
->Limiter
.get(), SamplesToDo
, device
->RealOut
.Buffer
);
1792 if(device
->DitherDepth
> 0.0f
)
1793 ApplyDither(device
->RealOut
.Buffer
, &device
->DitherSeed
, device
->DitherDepth
,
1794 SamplesToDo
, device
->RealOut
.NumChannels
);
1796 if(LIKELY(OutBuffer
))
1798 ALfloat (*Buffer
)[BUFFERSIZE
] = device
->RealOut
.Buffer
;
1799 ALsizei Channels
= device
->RealOut
.NumChannels
;
1801 switch(device
->FmtType
)
1803 #define HANDLE_WRITE(T) case T: \
1804 Write<T>(Buffer, OutBuffer, SamplesDone, SamplesToDo, Channels); break;
1805 HANDLE_WRITE(DevFmtByte
)
1806 HANDLE_WRITE(DevFmtUByte
)
1807 HANDLE_WRITE(DevFmtShort
)
1808 HANDLE_WRITE(DevFmtUShort
)
1809 HANDLE_WRITE(DevFmtInt
)
1810 HANDLE_WRITE(DevFmtUInt
)
1811 HANDLE_WRITE(DevFmtFloat
)
1816 SamplesDone
+= SamplesToDo
;
1821 void aluHandleDisconnect(ALCdevice
*device
, const char *msg
, ...)
1823 AsyncEvent evt
= ASYNC_EVENT(EventType_Disconnected
);
1828 if(!device
->Connected
.exchange(AL_FALSE
, std::memory_order_acq_rel
))
1831 evt
.u
.user
.type
= AL_EVENT_TYPE_DISCONNECTED_SOFT
;
1833 evt
.u
.user
.param
= 0;
1835 va_start(args
, msg
);
1836 msglen
= vsnprintf(evt
.u
.user
.msg
, sizeof(evt
.u
.user
.msg
), msg
, args
);
1839 if(msglen
< 0 || (size_t)msglen
>= sizeof(evt
.u
.user
.msg
))
1840 evt
.u
.user
.msg
[sizeof(evt
.u
.user
.msg
)-1] = 0;
1842 ctx
= ATOMIC_LOAD_SEQ(&device
->ContextList
);
1845 ALbitfieldSOFT enabledevt
= ATOMIC_LOAD(&ctx
->EnabledEvts
, almemory_order_acquire
);
1848 if((enabledevt
&EventType_Disconnected
) &&
1849 ll_ringbuffer_write(ctx
->AsyncEvents
, &evt
, 1) == 1)
1850 alsem_post(&ctx
->EventSem
);
1852 for(i
= 0;i
< ctx
->VoiceCount
;i
++)
1854 ALvoice
*voice
= ctx
->Voices
[i
];
1855 ALsource
*source
= voice
->Source
.exchange(nullptr, std::memory_order_relaxed
);
1856 if(source
&& voice
->Playing
.load(std::memory_order_relaxed
))
1858 /* If the source's voice was playing, it's now effectively
1859 * stopped (the source state will be updated the next time it's
1862 SendSourceStoppedEvent(ctx
, source
->id
);
1864 voice
->Playing
.store(false, std::memory_order_release
);
1867 ctx
= ATOMIC_LOAD(&ctx
->next
, almemory_order_relaxed
);