2 * OpenAL Multi-Zone Reverb Example
4 * Copyright (c) 2018 by Chris Robinson <chris.kcat@gmail.com>
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 /* This file contains an example for controlling multiple reverb zones to
26 * smoothly transition between reverb environments. The general concept is to
27 * extend single-reverb by also tracking the closest adjacent environment, and
28 * utilize EAX Reverb's panning vectors to position them relative to the
36 #include <SDL_sound.h>
41 #include "AL/efx-presets.h"
43 #include "common/alhelpers.h"
47 #define M_PI 3.14159265358979323846
51 /* Filter object functions */
52 static LPALGENFILTERS alGenFilters
;
53 static LPALDELETEFILTERS alDeleteFilters
;
54 static LPALISFILTER alIsFilter
;
55 static LPALFILTERI alFilteri
;
56 static LPALFILTERIV alFilteriv
;
57 static LPALFILTERF alFilterf
;
58 static LPALFILTERFV alFilterfv
;
59 static LPALGETFILTERI alGetFilteri
;
60 static LPALGETFILTERIV alGetFilteriv
;
61 static LPALGETFILTERF alGetFilterf
;
62 static LPALGETFILTERFV alGetFilterfv
;
64 /* Effect object functions */
65 static LPALGENEFFECTS alGenEffects
;
66 static LPALDELETEEFFECTS alDeleteEffects
;
67 static LPALISEFFECT alIsEffect
;
68 static LPALEFFECTI alEffecti
;
69 static LPALEFFECTIV alEffectiv
;
70 static LPALEFFECTF alEffectf
;
71 static LPALEFFECTFV alEffectfv
;
72 static LPALGETEFFECTI alGetEffecti
;
73 static LPALGETEFFECTIV alGetEffectiv
;
74 static LPALGETEFFECTF alGetEffectf
;
75 static LPALGETEFFECTFV alGetEffectfv
;
77 /* Auxiliary Effect Slot object functions */
78 static LPALGENAUXILIARYEFFECTSLOTS alGenAuxiliaryEffectSlots
;
79 static LPALDELETEAUXILIARYEFFECTSLOTS alDeleteAuxiliaryEffectSlots
;
80 static LPALISAUXILIARYEFFECTSLOT alIsAuxiliaryEffectSlot
;
81 static LPALAUXILIARYEFFECTSLOTI alAuxiliaryEffectSloti
;
82 static LPALAUXILIARYEFFECTSLOTIV alAuxiliaryEffectSlotiv
;
83 static LPALAUXILIARYEFFECTSLOTF alAuxiliaryEffectSlotf
;
84 static LPALAUXILIARYEFFECTSLOTFV alAuxiliaryEffectSlotfv
;
85 static LPALGETAUXILIARYEFFECTSLOTI alGetAuxiliaryEffectSloti
;
86 static LPALGETAUXILIARYEFFECTSLOTIV alGetAuxiliaryEffectSlotiv
;
87 static LPALGETAUXILIARYEFFECTSLOTF alGetAuxiliaryEffectSlotf
;
88 static LPALGETAUXILIARYEFFECTSLOTFV alGetAuxiliaryEffectSlotfv
;
91 /* LoadEffect loads the given initial reverb properties into the given OpenAL
92 * effect object, and returns non-zero on success.
94 static int LoadEffect(ALuint effect
, const EFXEAXREVERBPROPERTIES
*reverb
)
100 /* Prepare the effect for EAX Reverb (standard reverb doesn't contain
101 * the needed panning vectors).
103 alEffecti(effect
, AL_EFFECT_TYPE
, AL_EFFECT_EAXREVERB
);
104 if((err
=alGetError()) != AL_NO_ERROR
)
106 fprintf(stderr
, "Failed to set EAX Reverb: %s (0x%04x)\n", alGetString(err
), err
);
110 /* Load the reverb properties. */
111 alEffectf(effect
, AL_EAXREVERB_DENSITY
, reverb
->flDensity
);
112 alEffectf(effect
, AL_EAXREVERB_DIFFUSION
, reverb
->flDiffusion
);
113 alEffectf(effect
, AL_EAXREVERB_GAIN
, reverb
->flGain
);
114 alEffectf(effect
, AL_EAXREVERB_GAINHF
, reverb
->flGainHF
);
115 alEffectf(effect
, AL_EAXREVERB_GAINLF
, reverb
->flGainLF
);
116 alEffectf(effect
, AL_EAXREVERB_DECAY_TIME
, reverb
->flDecayTime
);
117 alEffectf(effect
, AL_EAXREVERB_DECAY_HFRATIO
, reverb
->flDecayHFRatio
);
118 alEffectf(effect
, AL_EAXREVERB_DECAY_LFRATIO
, reverb
->flDecayLFRatio
);
119 alEffectf(effect
, AL_EAXREVERB_REFLECTIONS_GAIN
, reverb
->flReflectionsGain
);
120 alEffectf(effect
, AL_EAXREVERB_REFLECTIONS_DELAY
, reverb
->flReflectionsDelay
);
121 alEffectfv(effect
, AL_EAXREVERB_REFLECTIONS_PAN
, reverb
->flReflectionsPan
);
122 alEffectf(effect
, AL_EAXREVERB_LATE_REVERB_GAIN
, reverb
->flLateReverbGain
);
123 alEffectf(effect
, AL_EAXREVERB_LATE_REVERB_DELAY
, reverb
->flLateReverbDelay
);
124 alEffectfv(effect
, AL_EAXREVERB_LATE_REVERB_PAN
, reverb
->flLateReverbPan
);
125 alEffectf(effect
, AL_EAXREVERB_ECHO_TIME
, reverb
->flEchoTime
);
126 alEffectf(effect
, AL_EAXREVERB_ECHO_DEPTH
, reverb
->flEchoDepth
);
127 alEffectf(effect
, AL_EAXREVERB_MODULATION_TIME
, reverb
->flModulationTime
);
128 alEffectf(effect
, AL_EAXREVERB_MODULATION_DEPTH
, reverb
->flModulationDepth
);
129 alEffectf(effect
, AL_EAXREVERB_AIR_ABSORPTION_GAINHF
, reverb
->flAirAbsorptionGainHF
);
130 alEffectf(effect
, AL_EAXREVERB_HFREFERENCE
, reverb
->flHFReference
);
131 alEffectf(effect
, AL_EAXREVERB_LFREFERENCE
, reverb
->flLFReference
);
132 alEffectf(effect
, AL_EAXREVERB_ROOM_ROLLOFF_FACTOR
, reverb
->flRoomRolloffFactor
);
133 alEffecti(effect
, AL_EAXREVERB_DECAY_HFLIMIT
, reverb
->iDecayHFLimit
);
135 /* Check if an error occured, and return failure if so. */
136 if((err
=alGetError()) != AL_NO_ERROR
)
138 fprintf(stderr
, "Error setting up reverb: %s\n", alGetString(err
));
146 /* LoadBuffer loads the named audio file into an OpenAL buffer object, and
147 * returns the new buffer ID.
149 static ALuint
LoadSound(const char *filename
)
151 Sound_Sample
*sample
;
156 /* Open the audio file */
157 sample
= Sound_NewSampleFromFile(filename
, NULL
, 65536);
160 fprintf(stderr
, "Could not open audio in %s\n", filename
);
164 /* Get the sound format, and figure out the OpenAL format */
165 if(sample
->actual
.channels
== 1)
167 if(sample
->actual
.format
== AUDIO_U8
)
168 format
= AL_FORMAT_MONO8
;
169 else if(sample
->actual
.format
== AUDIO_S16SYS
)
170 format
= AL_FORMAT_MONO16
;
173 fprintf(stderr
, "Unsupported sample format: 0x%04x\n", sample
->actual
.format
);
174 Sound_FreeSample(sample
);
178 else if(sample
->actual
.channels
== 2)
180 if(sample
->actual
.format
== AUDIO_U8
)
181 format
= AL_FORMAT_STEREO8
;
182 else if(sample
->actual
.format
== AUDIO_S16SYS
)
183 format
= AL_FORMAT_STEREO16
;
186 fprintf(stderr
, "Unsupported sample format: 0x%04x\n", sample
->actual
.format
);
187 Sound_FreeSample(sample
);
193 fprintf(stderr
, "Unsupported channel count: %d\n", sample
->actual
.channels
);
194 Sound_FreeSample(sample
);
198 /* Decode the whole audio stream to a buffer. */
199 slen
= Sound_DecodeAll(sample
);
200 if(!sample
->buffer
|| slen
== 0)
202 fprintf(stderr
, "Failed to read audio from %s\n", filename
);
203 Sound_FreeSample(sample
);
207 /* Buffer the audio data into a new buffer object, then free the data and
210 alGenBuffers(1, &buffer
);
211 alBufferData(buffer
, format
, sample
->buffer
, slen
, sample
->actual
.rate
);
212 Sound_FreeSample(sample
);
214 /* Check if an error occured, and clean up if so. */
216 if(err
!= AL_NO_ERROR
)
218 fprintf(stderr
, "OpenAL Error: %s\n", alGetString(err
));
219 if(buffer
&& alIsBuffer(buffer
))
220 alDeleteBuffers(1, &buffer
);
228 /* Helper to calculate the dot-product of the two given vectors. */
229 static ALfloat
dot_product(const ALfloat vec0
[3], const ALfloat vec1
[3])
231 return vec0
[0]*vec1
[0] + vec0
[1]*vec1
[1] + vec0
[2]*vec1
[2];
234 /* Helper to normalize a given vector. */
235 static void normalize(ALfloat vec
[3])
237 ALfloat mag
= sqrtf(dot_product(vec
, vec
));
253 /* The main update function to update the listener and environment effects. */
254 static void UpdateListenerAndEffects(float timediff
, const ALuint slots
[2], const ALuint effects
[2], const EFXEAXREVERBPROPERTIES reverbs
[2])
256 static const ALfloat listener_move_scale
= 10.0f
;
257 /* Individual reverb zones are connected via "portals". Each portal has a
258 * position (center point of the connecting area), a normal (facing
259 * direction), and a radius (approximate size of the connecting area).
261 const ALfloat portal_pos
[3] = { 0.0f
, 0.0f
, 0.0f
};
262 const ALfloat portal_norm
[3] = { sqrtf(0.5f
), 0.0f
, -sqrtf(0.5f
) };
263 const ALfloat portal_radius
= 2.5f
;
264 ALfloat other_dir
[3], this_dir
[3];
265 ALfloat listener_pos
[3];
266 ALfloat local_norm
[3];
267 ALfloat local_dir
[3];
268 ALfloat near_edge
[3];
272 /* Update the listener position for the amount of time passed. This uses a
273 * simple triangular LFO to offset the position (moves along the X axis
274 * between -listener_move_scale and +listener_move_scale for each
277 listener_pos
[0] = (fabsf(2.0f
- timediff
/2.0f
) - 1.0f
) * listener_move_scale
;
278 listener_pos
[1] = 0.0f
;
279 listener_pos
[2] = 0.0f
;
280 alListenerfv(AL_POSITION
, listener_pos
);
282 /* Calculate local_dir, which represents the listener-relative point to the
283 * adjacent zone (should also include orientation). Because EAX Reverb uses
284 * left-handed coordinates instead of right-handed like the rest of OpenAL,
285 * negate Z for the local values.
287 local_dir
[0] = portal_pos
[0] - listener_pos
[0];
288 local_dir
[1] = portal_pos
[1] - listener_pos
[1];
289 local_dir
[2] = -(portal_pos
[2] - listener_pos
[2]);
290 /* A normal application would also rotate the portal's normal given the
291 * listener orientation, to get the listener-relative normal.
293 local_norm
[0] = portal_norm
[0];
294 local_norm
[1] = portal_norm
[1];
295 local_norm
[2] = -portal_norm
[2];
297 /* Calculate the distance from the listener to the portal, and ensure it's
298 * far enough away to not suffer severe floating-point precision issues.
300 dist
= sqrtf(dot_product(local_dir
, local_dir
));
303 const EFXEAXREVERBPROPERTIES
*other_reverb
, *this_reverb
;
304 ALuint other_effect
, this_effect
;
305 ALfloat magnitude
, dir_dot_norm
;
307 /* Normalize the direction to the portal. */
308 local_dir
[0] /= dist
;
309 local_dir
[1] /= dist
;
310 local_dir
[2] /= dist
;
312 /* Calculate the dot product of the portal's local direction and local
313 * normal, which is used for angular and side checks later on.
315 dir_dot_norm
= dot_product(local_dir
, local_norm
);
317 /* Figure out which zone we're in. */
318 if(dir_dot_norm
<= 0.0f
)
320 /* We're in front of the portal, so we're in Zone 0. */
321 this_effect
= effects
[0];
322 other_effect
= effects
[1];
323 this_reverb
= &reverbs
[0];
324 other_reverb
= &reverbs
[1];
328 /* We're behind the portal, so we're in Zone 1. */
329 this_effect
= effects
[1];
330 other_effect
= effects
[0];
331 this_reverb
= &reverbs
[1];
332 other_reverb
= &reverbs
[0];
335 /* Calculate the listener-relative extents of the portal. */
336 /* First, project the listener-to-portal vector onto the portal's plane
337 * to get the portal-relative direction along the plane that goes away
338 * from the listener (toward the farthest edge of the portal).
340 far_edge
[0] = local_dir
[0] - local_norm
[0]*dir_dot_norm
;
341 far_edge
[1] = local_dir
[1] - local_norm
[1]*dir_dot_norm
;
342 far_edge
[2] = local_dir
[2] - local_norm
[2]*dir_dot_norm
;
344 edist
= sqrtf(dot_product(far_edge
, far_edge
));
347 /* Rescale the portal-relative vector to be at the radius edge. */
348 ALfloat mag
= portal_radius
/ edist
;
353 /* Calculate the closest edge of the portal by negating the
354 * farthest, and add an offset to make them both relative to the
357 near_edge
[0] = local_dir
[0]*dist
- far_edge
[0];
358 near_edge
[1] = local_dir
[1]*dist
- far_edge
[1];
359 near_edge
[2] = local_dir
[2]*dist
- far_edge
[2];
360 far_edge
[0] += local_dir
[0]*dist
;
361 far_edge
[1] += local_dir
[1]*dist
;
362 far_edge
[2] += local_dir
[2]*dist
;
364 /* Normalize the listener-relative extents of the portal, then
365 * calculate the panning magnitude for the other zone given the
366 * apparent size of the opening. The panning magnitude affects the
367 * envelopment of the environment, with 1 being a point, 0.5 being
368 * half coverage around the listener, and 0 being full coverage.
371 normalize(near_edge
);
372 magnitude
= 1.0f
- acosf(dot_product(far_edge
, near_edge
))/(float)(M_PI
*2.0);
374 /* Recalculate the panning direction, to be directly between the
375 * direction of the two extents.
377 local_dir
[0] = far_edge
[0] + near_edge
[0];
378 local_dir
[1] = far_edge
[1] + near_edge
[1];
379 local_dir
[2] = far_edge
[2] + near_edge
[2];
380 normalize(local_dir
);
384 /* If we get here, the listener is directly in front of or behind
385 * the center of the portal, making all aperture edges effectively
386 * equidistant. Calculating the panning magnitude is simplified,
387 * using the arctangent of the radius and distance.
389 magnitude
= 1.0f
- (atan2f(portal_radius
, dist
) / (float)M_PI
);
392 /* Scale the other zone's panning vector. */
393 other_dir
[0] = local_dir
[0] * magnitude
;
394 other_dir
[1] = local_dir
[1] * magnitude
;
395 other_dir
[2] = local_dir
[2] * magnitude
;
396 /* Pan the current zone to the opposite direction of the portal, and
397 * take the remaining percentage of the portal's magnitude.
399 this_dir
[0] = local_dir
[0] * (magnitude
-1.0f
);
400 this_dir
[1] = local_dir
[1] * (magnitude
-1.0f
);
401 this_dir
[2] = local_dir
[2] * (magnitude
-1.0f
);
403 /* Now set the effects' panning vectors and gain. Energy is shared
404 * between environments, so attenuate according to each zone's
405 * contribution (note: gain^2 = energy).
407 alEffectf(this_effect
, AL_EAXREVERB_REFLECTIONS_GAIN
, this_reverb
->flReflectionsGain
* sqrtf(magnitude
));
408 alEffectf(this_effect
, AL_EAXREVERB_LATE_REVERB_GAIN
, this_reverb
->flLateReverbGain
* sqrtf(magnitude
));
409 alEffectfv(this_effect
, AL_EAXREVERB_REFLECTIONS_PAN
, this_dir
);
410 alEffectfv(this_effect
, AL_EAXREVERB_LATE_REVERB_PAN
, this_dir
);
412 alEffectf(other_effect
, AL_EAXREVERB_REFLECTIONS_GAIN
, other_reverb
->flReflectionsGain
* sqrtf(1.0f
-magnitude
));
413 alEffectf(other_effect
, AL_EAXREVERB_LATE_REVERB_GAIN
, other_reverb
->flLateReverbGain
* sqrtf(1.0f
-magnitude
));
414 alEffectfv(other_effect
, AL_EAXREVERB_REFLECTIONS_PAN
, other_dir
);
415 alEffectfv(other_effect
, AL_EAXREVERB_LATE_REVERB_PAN
, other_dir
);
419 /* We're practically in the center of the portal. Give the panning
420 * vectors a 50/50 split, with Zone 0 covering the half in front of
421 * the normal, and Zone 1 covering the half behind.
423 this_dir
[0] = local_norm
[0] / 2.0f
;
424 this_dir
[1] = local_norm
[1] / 2.0f
;
425 this_dir
[2] = local_norm
[2] / 2.0f
;
427 other_dir
[0] = local_norm
[0] / -2.0f
;
428 other_dir
[1] = local_norm
[1] / -2.0f
;
429 other_dir
[2] = local_norm
[2] / -2.0f
;
431 alEffectf(effects
[0], AL_EAXREVERB_REFLECTIONS_GAIN
, reverbs
[0].flReflectionsGain
* sqrtf(0.5f
));
432 alEffectf(effects
[0], AL_EAXREVERB_LATE_REVERB_GAIN
, reverbs
[0].flLateReverbGain
* sqrtf(0.5f
));
433 alEffectfv(effects
[0], AL_EAXREVERB_REFLECTIONS_PAN
, this_dir
);
434 alEffectfv(effects
[0], AL_EAXREVERB_LATE_REVERB_PAN
, this_dir
);
436 alEffectf(effects
[1], AL_EAXREVERB_REFLECTIONS_GAIN
, reverbs
[1].flReflectionsGain
* sqrtf(0.5f
));
437 alEffectf(effects
[1], AL_EAXREVERB_LATE_REVERB_GAIN
, reverbs
[1].flLateReverbGain
* sqrtf(0.5f
));
438 alEffectfv(effects
[1], AL_EAXREVERB_REFLECTIONS_PAN
, other_dir
);
439 alEffectfv(effects
[1], AL_EAXREVERB_LATE_REVERB_PAN
, other_dir
);
442 /* Finally, update the effect slots with the updated effect parameters. */
443 alAuxiliaryEffectSloti(slots
[0], AL_EFFECTSLOT_EFFECT
, effects
[0]);
444 alAuxiliaryEffectSloti(slots
[1], AL_EFFECTSLOT_EFFECT
, effects
[1]);
448 int main(int argc
, char **argv
)
450 static const int MaxTransitions
= 8;
451 EFXEAXREVERBPROPERTIES reverbs
[2] = {
452 EFX_REVERB_PRESET_CARPETEDHALLWAY
,
453 EFX_REVERB_PRESET_BATHROOM
455 struct timespec basetime
;
456 ALCdevice
*device
= NULL
;
457 ALCcontext
*context
= NULL
;
458 ALuint effects
[2] = { 0, 0 };
459 ALuint slots
[2] = { 0, 0 };
460 ALuint direct_filter
= 0;
463 ALCint num_sends
= 0;
464 ALenum state
= AL_INITIAL
;
465 ALfloat direct_gain
= 1.0f
;
468 /* Print out usage if no arguments were specified */
471 fprintf(stderr
, "Usage: %s [-device <name>] [options] <filename>\n\n"
473 "\t-nodirect\tSilence direct path output (easier to hear reverb)\n\n",
478 /* Initialize OpenAL, and check for EFX support with at least 2 auxiliary
479 * sends (if multiple sends are supported, 2 are provided by default; if
480 * you want more, you have to request it through alcCreateContext).
483 if(InitAL(&argv
, &argc
) != 0)
488 if(strcmp(argv
[0], "-nodirect") == 0)
497 fprintf(stderr
, "No filename spacified.\n");
502 context
= alcGetCurrentContext();
503 device
= alcGetContextsDevice(context
);
505 if(!alcIsExtensionPresent(device
, "ALC_EXT_EFX"))
507 fprintf(stderr
, "Error: EFX not supported\n");
513 alcGetIntegerv(device
, ALC_MAX_AUXILIARY_SENDS
, 1, &num_sends
);
514 if(alcGetError(device
) != ALC_NO_ERROR
|| num_sends
< 2)
516 fprintf(stderr
, "Error: Device does not support multiple sends (got %d, need 2)\n",
522 /* Define a macro to help load the function pointers. */
523 #define LOAD_PROC(x) ((x) = alGetProcAddress(#x))
524 LOAD_PROC(alGenFilters
);
525 LOAD_PROC(alDeleteFilters
);
526 LOAD_PROC(alIsFilter
);
527 LOAD_PROC(alFilteri
);
528 LOAD_PROC(alFilteriv
);
529 LOAD_PROC(alFilterf
);
530 LOAD_PROC(alFilterfv
);
531 LOAD_PROC(alGetFilteri
);
532 LOAD_PROC(alGetFilteriv
);
533 LOAD_PROC(alGetFilterf
);
534 LOAD_PROC(alGetFilterfv
);
536 LOAD_PROC(alGenEffects
);
537 LOAD_PROC(alDeleteEffects
);
538 LOAD_PROC(alIsEffect
);
539 LOAD_PROC(alEffecti
);
540 LOAD_PROC(alEffectiv
);
541 LOAD_PROC(alEffectf
);
542 LOAD_PROC(alEffectfv
);
543 LOAD_PROC(alGetEffecti
);
544 LOAD_PROC(alGetEffectiv
);
545 LOAD_PROC(alGetEffectf
);
546 LOAD_PROC(alGetEffectfv
);
548 LOAD_PROC(alGenAuxiliaryEffectSlots
);
549 LOAD_PROC(alDeleteAuxiliaryEffectSlots
);
550 LOAD_PROC(alIsAuxiliaryEffectSlot
);
551 LOAD_PROC(alAuxiliaryEffectSloti
);
552 LOAD_PROC(alAuxiliaryEffectSlotiv
);
553 LOAD_PROC(alAuxiliaryEffectSlotf
);
554 LOAD_PROC(alAuxiliaryEffectSlotfv
);
555 LOAD_PROC(alGetAuxiliaryEffectSloti
);
556 LOAD_PROC(alGetAuxiliaryEffectSlotiv
);
557 LOAD_PROC(alGetAuxiliaryEffectSlotf
);
558 LOAD_PROC(alGetAuxiliaryEffectSlotfv
);
561 /* Initialize SDL_sound. */
564 /* Load the sound into a buffer. */
565 buffer
= LoadSound(argv
[0]);
573 /* Generate two effects for two "zones", and load a reverb into each one.
574 * Note that unlike single-zone reverb, where you can store one effect per
575 * preset, for multi-zone reverb you should have one effect per environment
576 * instance, or one per audible zone. This is because we'll be changing the
577 * effects' properties in real-time based on the environment instance
578 * relative to the listener.
580 alGenEffects(2, effects
);
581 if(!LoadEffect(effects
[0], &reverbs
[0]) || !LoadEffect(effects
[1], &reverbs
[1]))
583 alDeleteEffects(2, effects
);
584 alDeleteBuffers(1, &buffer
);
590 /* Create the effect slot objects, one for each "active" effect. */
591 alGenAuxiliaryEffectSlots(2, slots
);
593 /* Tell the effect slots to use the loaded effect objects, with slot 0 for
594 * Zone 0 and slot 1 for Zone 1. Note that this effectively copies the
595 * effect properties. Modifying or deleting the effect object afterward
596 * won't directly affect the effect slot until they're reapplied like this.
598 alAuxiliaryEffectSloti(slots
[0], AL_EFFECTSLOT_EFFECT
, effects
[0]);
599 alAuxiliaryEffectSloti(slots
[1], AL_EFFECTSLOT_EFFECT
, effects
[1]);
600 assert(alGetError()==AL_NO_ERROR
&& "Failed to set effect slot");
602 /* For the purposes of this example, prepare a filter that optionally
603 * silences the direct path which allows us to hear just the reverberation.
604 * A filter like this is normally used for obstruction, where the path
605 * directly between the listener and source is blocked (the exact
606 * properties depending on the type and thickness of the obstructing
609 alGenFilters(1, &direct_filter
);
610 alFilteri(direct_filter
, AL_FILTER_TYPE
, AL_FILTER_LOWPASS
);
611 alFilterf(direct_filter
, AL_LOWPASS_GAIN
, direct_gain
);
612 assert(alGetError()==AL_NO_ERROR
&& "Failed to set direct filter");
614 /* Create the source to play the sound with, place it in front of the
615 * listener's path in the left zone.
618 alGenSources(1, &source
);
619 alSourcei(source
, AL_LOOPING
, AL_TRUE
);
620 alSource3f(source
, AL_POSITION
, -5.0f
, 0.0f
, -2.0f
);
621 alSourcei(source
, AL_DIRECT_FILTER
, direct_filter
);
622 alSourcei(source
, AL_BUFFER
, buffer
);
624 /* Connect the source to the effect slots. Here, we connect source send 0
625 * to Zone 0's slot, and send 1 to Zone 1's slot. Filters can be specified
626 * to occlude the source from each zone by varying amounts; for example, a
627 * source within a particular zone would be unfiltered, while a source that
628 * can only see a zone through a window or thin wall may be attenuated for
631 alSource3i(source
, AL_AUXILIARY_SEND_FILTER
, slots
[0], 0, AL_FILTER_NULL
);
632 alSource3i(source
, AL_AUXILIARY_SEND_FILTER
, slots
[1], 1, AL_FILTER_NULL
);
633 assert(alGetError()==AL_NO_ERROR
&& "Failed to setup sound source");
635 /* Get the current time as the base for timing in the main loop. */
636 altimespec_get(&basetime
, AL_TIME_UTC
);
638 printf("Transition %d of %d...\n", loops
+1, MaxTransitions
);
640 /* Play the sound for a while. */
641 alSourcePlay(source
);
643 struct timespec curtime
;
646 /* Start a batch update, to ensure all changes apply simultaneously. */
647 alcSuspendContext(context
);
649 /* Get the current time to track the amount of time that passed.
650 * Convert the difference to seconds.
652 altimespec_get(&curtime
, AL_TIME_UTC
);
653 timediff
= (ALfloat
)(curtime
.tv_sec
- basetime
.tv_sec
);
654 timediff
+= (ALfloat
)(curtime
.tv_nsec
- basetime
.tv_nsec
) / 1000000000.0f
;
656 /* Avoid negative time deltas, in case of non-monotonic clocks. */
659 else while(timediff
>= 4.0f
*((loops
&1)+1))
661 /* For this example, each transition occurs over 4 seconds, and
662 * there's 2 transitions per cycle.
664 if(++loops
< MaxTransitions
)
665 printf("Transition %d of %d...\n", loops
+1, MaxTransitions
);
668 /* Cycle completed. Decrease the delta and increase the base
669 * time to start a new cycle.
672 basetime
.tv_sec
+= 8;
676 /* Update the listener and effects, and finish the batch. */
677 UpdateListenerAndEffects(timediff
, slots
, effects
, reverbs
);
678 alcProcessContext(context
);
680 al_nssleep(10000000);
682 alGetSourcei(source
, AL_SOURCE_STATE
, &state
);
683 } while(alGetError() == AL_NO_ERROR
&& state
== AL_PLAYING
&& loops
< MaxTransitions
);
685 /* All done. Delete resources, and close down SDL_sound and OpenAL. */
686 alDeleteSources(1, &source
);
687 alDeleteAuxiliaryEffectSlots(2, slots
);
688 alDeleteEffects(2, effects
);
689 alDeleteFilters(1, &direct_filter
);
690 alDeleteBuffers(1, &buffer
);