Avoid using ATOMIC_INIT
[openal-soft.git] / utils / makehrtf.c
blobeb174c8a0a30d0d86a20b23f1540ff5747f23a55
1 /*
2 * HRTF utility for producing and demonstrating the process of creating an
3 * OpenAL Soft compatible HRIR data set.
5 * Copyright (C) 2011-2017 Christopher Fitzgerald
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21 * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
23 * --------------------------------------------------------------------------
25 * A big thanks goes out to all those whose work done in the field of
26 * binaural sound synthesis using measured HRTFs makes this utility and the
27 * OpenAL Soft implementation possible.
29 * The algorithm for diffuse-field equalization was adapted from the work
30 * done by Rio Emmanuel and Larcher Veronique of IRCAM and Bill Gardner of
31 * MIT Media Laboratory. It operates as follows:
33 * 1. Take the FFT of each HRIR and only keep the magnitude responses.
34 * 2. Calculate the diffuse-field power-average of all HRIRs weighted by
35 * their contribution to the total surface area covered by their
36 * measurement.
37 * 3. Take the diffuse-field average and limit its magnitude range.
38 * 4. Equalize the responses by using the inverse of the diffuse-field
39 * average.
40 * 5. Reconstruct the minimum-phase responses.
41 * 5. Zero the DC component.
42 * 6. IFFT the result and truncate to the desired-length minimum-phase FIR.
44 * The spherical head algorithm for calculating propagation delay was adapted
45 * from the paper:
47 * Modeling Interaural Time Difference Assuming a Spherical Head
48 * Joel David Miller
49 * Music 150, Musical Acoustics, Stanford University
50 * December 2, 2001
52 * The formulae for calculating the Kaiser window metrics are from the
53 * the textbook:
55 * Discrete-Time Signal Processing
56 * Alan V. Oppenheim and Ronald W. Schafer
57 * Prentice-Hall Signal Processing Series
58 * 1999
61 #include "config.h"
63 #define _UNICODE
64 #include <stdio.h>
65 #include <stdlib.h>
66 #include <stdarg.h>
67 #include <stddef.h>
68 #include <string.h>
69 #include <limits.h>
70 #include <ctype.h>
71 #include <math.h>
72 #ifdef HAVE_STRINGS_H
73 #include <strings.h>
74 #endif
75 #ifdef HAVE_GETOPT
76 #include <unistd.h>
77 #else
78 #include "getopt.h"
79 #endif
81 #include "win_main_utf8.h"
83 /* Define int64_t and uint64_t types */
84 #if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
85 #include <inttypes.h>
86 #elif defined(_WIN32) && defined(__GNUC__)
87 #include <stdint.h>
88 #elif defined(_WIN32)
89 typedef __int64 int64_t;
90 typedef unsigned __int64 uint64_t;
91 #else
92 /* Fallback if nothing above works */
93 #include <inttypes.h>
94 #endif
96 #ifndef M_PI
97 #define M_PI (3.14159265358979323846)
98 #endif
100 #ifndef HUGE_VAL
101 #define HUGE_VAL (1.0 / 0.0)
102 #endif
105 // The epsilon used to maintain signal stability.
106 #define EPSILON (1e-9)
108 // Constants for accessing the token reader's ring buffer.
109 #define TR_RING_BITS (16)
110 #define TR_RING_SIZE (1 << TR_RING_BITS)
111 #define TR_RING_MASK (TR_RING_SIZE - 1)
113 // The token reader's load interval in bytes.
114 #define TR_LOAD_SIZE (TR_RING_SIZE >> 2)
116 // The maximum identifier length used when processing the data set
117 // definition.
118 #define MAX_IDENT_LEN (16)
120 // The maximum path length used when processing filenames.
121 #define MAX_PATH_LEN (256)
123 // The limits for the sample 'rate' metric in the data set definition and for
124 // resampling.
125 #define MIN_RATE (32000)
126 #define MAX_RATE (96000)
128 // The limits for the HRIR 'points' metric in the data set definition.
129 #define MIN_POINTS (16)
130 #define MAX_POINTS (8192)
132 // The limit to the number of 'distances' listed in the data set definition.
133 #define MAX_FD_COUNT (16)
135 // The limits to the number of 'azimuths' listed in the data set definition.
136 #define MIN_EV_COUNT (5)
137 #define MAX_EV_COUNT (128)
139 // The limits for each of the 'azimuths' listed in the data set definition.
140 #define MIN_AZ_COUNT (1)
141 #define MAX_AZ_COUNT (128)
143 // The limits for the listener's head 'radius' in the data set definition.
144 #define MIN_RADIUS (0.05)
145 #define MAX_RADIUS (0.15)
147 // The limits for the 'distance' from source to listener for each field in
148 // the definition file.
149 #define MIN_DISTANCE (0.05)
150 #define MAX_DISTANCE (2.50)
152 // The maximum number of channels that can be addressed for a WAVE file
153 // source listed in the data set definition.
154 #define MAX_WAVE_CHANNELS (65535)
156 // The limits to the byte size for a binary source listed in the definition
157 // file.
158 #define MIN_BIN_SIZE (2)
159 #define MAX_BIN_SIZE (4)
161 // The minimum number of significant bits for binary sources listed in the
162 // data set definition. The maximum is calculated from the byte size.
163 #define MIN_BIN_BITS (16)
165 // The limits to the number of significant bits for an ASCII source listed in
166 // the data set definition.
167 #define MIN_ASCII_BITS (16)
168 #define MAX_ASCII_BITS (32)
170 // The limits to the FFT window size override on the command line.
171 #define MIN_FFTSIZE (65536)
172 #define MAX_FFTSIZE (131072)
174 // The limits to the equalization range limit on the command line.
175 #define MIN_LIMIT (2.0)
176 #define MAX_LIMIT (120.0)
178 // The limits to the truncation window size on the command line.
179 #define MIN_TRUNCSIZE (16)
180 #define MAX_TRUNCSIZE (512)
182 // The limits to the custom head radius on the command line.
183 #define MIN_CUSTOM_RADIUS (0.05)
184 #define MAX_CUSTOM_RADIUS (0.15)
186 // The truncation window size must be a multiple of the below value to allow
187 // for vectorized convolution.
188 #define MOD_TRUNCSIZE (8)
190 // The defaults for the command line options.
191 #define DEFAULT_FFTSIZE (65536)
192 #define DEFAULT_EQUALIZE (1)
193 #define DEFAULT_SURFACE (1)
194 #define DEFAULT_LIMIT (24.0)
195 #define DEFAULT_TRUNCSIZE (32)
196 #define DEFAULT_HEAD_MODEL (HM_DATASET)
197 #define DEFAULT_CUSTOM_RADIUS (0.0)
199 // The four-character-codes for RIFF/RIFX WAVE file chunks.
200 #define FOURCC_RIFF (0x46464952) // 'RIFF'
201 #define FOURCC_RIFX (0x58464952) // 'RIFX'
202 #define FOURCC_WAVE (0x45564157) // 'WAVE'
203 #define FOURCC_FMT (0x20746D66) // 'fmt '
204 #define FOURCC_DATA (0x61746164) // 'data'
205 #define FOURCC_LIST (0x5453494C) // 'LIST'
206 #define FOURCC_WAVL (0x6C766177) // 'wavl'
207 #define FOURCC_SLNT (0x746E6C73) // 'slnt'
209 // The supported wave formats.
210 #define WAVE_FORMAT_PCM (0x0001)
211 #define WAVE_FORMAT_IEEE_FLOAT (0x0003)
212 #define WAVE_FORMAT_EXTENSIBLE (0xFFFE)
214 // The maximum propagation delay value supported by OpenAL Soft.
215 #define MAX_HRTD (63.0)
217 // The OpenAL Soft HRTF format marker. It stands for minimum-phase head
218 // response protocol 02.
219 #define MHR_FORMAT ("MinPHR02")
221 // Sample and channel type enum values.
222 typedef enum SampleTypeT {
223 ST_S16 = 0,
224 ST_S24 = 1
225 } SampleTypeT;
227 // Certain iterations rely on these integer enum values.
228 typedef enum ChannelTypeT {
229 CT_NONE = -1,
230 CT_MONO = 0,
231 CT_STEREO = 1
232 } ChannelTypeT;
234 // Byte order for the serialization routines.
235 typedef enum ByteOrderT {
236 BO_NONE,
237 BO_LITTLE,
238 BO_BIG
239 } ByteOrderT;
241 // Source format for the references listed in the data set definition.
242 typedef enum SourceFormatT {
243 SF_NONE,
244 SF_WAVE, // RIFF/RIFX WAVE file.
245 SF_BIN_LE, // Little-endian binary file.
246 SF_BIN_BE, // Big-endian binary file.
247 SF_ASCII // ASCII text file.
248 } SourceFormatT;
250 // Element types for the references listed in the data set definition.
251 typedef enum ElementTypeT {
252 ET_NONE,
253 ET_INT, // Integer elements.
254 ET_FP // Floating-point elements.
255 } ElementTypeT;
257 // Head model used for calculating the impulse delays.
258 typedef enum HeadModelT {
259 HM_NONE,
260 HM_DATASET, // Measure the onset from the dataset.
261 HM_SPHERE // Calculate the onset using a spherical head model.
262 } HeadModelT;
264 // Unsigned integer type.
265 typedef unsigned int uint;
267 // Serialization types. The trailing digit indicates the number of bits.
268 typedef unsigned char uint8;
269 typedef int int32;
270 typedef unsigned int uint32;
271 typedef uint64_t uint64;
273 // Token reader state for parsing the data set definition.
274 typedef struct TokenReaderT {
275 FILE *mFile;
276 const char *mName;
277 uint mLine;
278 uint mColumn;
279 char mRing[TR_RING_SIZE];
280 size_t mIn;
281 size_t mOut;
282 } TokenReaderT;
284 // Source reference state used when loading sources.
285 typedef struct SourceRefT {
286 SourceFormatT mFormat;
287 ElementTypeT mType;
288 uint mSize;
289 int mBits;
290 uint mChannel;
291 uint mSkip;
292 uint mOffset;
293 char mPath[MAX_PATH_LEN+1];
294 } SourceRefT;
296 // Structured HRIR storage for stereo azimuth pairs, elevations, and fields.
297 typedef struct HrirAzT {
298 double mAzimuth;
299 uint mIndex;
300 double mDelays[2];
301 double *mIrs[2];
302 } HrirAzT;
304 typedef struct HrirEvT {
305 double mElevation;
306 uint mIrCount;
307 uint mAzCount;
308 HrirAzT *mAzs;
309 } HrirEvT;
311 typedef struct HrirFdT {
312 double mDistance;
313 uint mIrCount;
314 uint mEvCount;
315 uint mEvStart;
316 HrirEvT *mEvs;
317 } HrirFdT;
319 // The HRIR metrics and data set used when loading, processing, and storing
320 // the resulting HRTF.
321 typedef struct HrirDataT {
322 uint mIrRate;
323 SampleTypeT mSampleType;
324 ChannelTypeT mChannelType;
325 uint mIrPoints;
326 uint mFftSize;
327 uint mIrSize;
328 double mRadius;
329 uint mIrCount;
330 uint mFdCount;
331 HrirFdT *mFds;
332 } HrirDataT;
334 // The resampler metrics and FIR filter.
335 typedef struct ResamplerT {
336 uint mP, mQ, mM, mL;
337 double *mF;
338 } ResamplerT;
341 /****************************************
342 *** Complex number type and routines ***
343 ****************************************/
345 typedef struct {
346 double Real, Imag;
347 } Complex;
349 static Complex MakeComplex(double r, double i)
351 Complex c = { r, i };
352 return c;
355 static Complex c_add(Complex a, Complex b)
357 Complex r;
358 r.Real = a.Real + b.Real;
359 r.Imag = a.Imag + b.Imag;
360 return r;
363 static Complex c_sub(Complex a, Complex b)
365 Complex r;
366 r.Real = a.Real - b.Real;
367 r.Imag = a.Imag - b.Imag;
368 return r;
371 static Complex c_mul(Complex a, Complex b)
373 Complex r;
374 r.Real = a.Real*b.Real - a.Imag*b.Imag;
375 r.Imag = a.Imag*b.Real + a.Real*b.Imag;
376 return r;
379 static Complex c_muls(Complex a, double s)
381 Complex r;
382 r.Real = a.Real * s;
383 r.Imag = a.Imag * s;
384 return r;
387 static double c_abs(Complex a)
389 return sqrt(a.Real*a.Real + a.Imag*a.Imag);
392 static Complex c_exp(Complex a)
394 Complex r;
395 double e = exp(a.Real);
396 r.Real = e * cos(a.Imag);
397 r.Imag = e * sin(a.Imag);
398 return r;
401 /*****************************
402 *** Token reader routines ***
403 *****************************/
405 /* Whitespace is not significant. It can process tokens as identifiers, numbers
406 * (integer and floating-point), strings, and operators. Strings must be
407 * encapsulated by double-quotes and cannot span multiple lines.
410 // Setup the reader on the given file. The filename can be NULL if no error
411 // output is desired.
412 static void TrSetup(FILE *fp, const char *filename, TokenReaderT *tr)
414 const char *name = NULL;
416 if(filename)
418 const char *slash = strrchr(filename, '/');
419 if(slash)
421 const char *bslash = strrchr(slash+1, '\\');
422 if(bslash) name = bslash+1;
423 else name = slash+1;
425 else
427 const char *bslash = strrchr(filename, '\\');
428 if(bslash) name = bslash+1;
429 else name = filename;
433 tr->mFile = fp;
434 tr->mName = name;
435 tr->mLine = 1;
436 tr->mColumn = 1;
437 tr->mIn = 0;
438 tr->mOut = 0;
441 // Prime the reader's ring buffer, and return a result indicating that there
442 // is text to process.
443 static int TrLoad(TokenReaderT *tr)
445 size_t toLoad, in, count;
447 toLoad = TR_RING_SIZE - (tr->mIn - tr->mOut);
448 if(toLoad >= TR_LOAD_SIZE && !feof(tr->mFile))
450 // Load TR_LOAD_SIZE (or less if at the end of the file) per read.
451 toLoad = TR_LOAD_SIZE;
452 in = tr->mIn&TR_RING_MASK;
453 count = TR_RING_SIZE - in;
454 if(count < toLoad)
456 tr->mIn += fread(&tr->mRing[in], 1, count, tr->mFile);
457 tr->mIn += fread(&tr->mRing[0], 1, toLoad-count, tr->mFile);
459 else
460 tr->mIn += fread(&tr->mRing[in], 1, toLoad, tr->mFile);
462 if(tr->mOut >= TR_RING_SIZE)
464 tr->mOut -= TR_RING_SIZE;
465 tr->mIn -= TR_RING_SIZE;
468 if(tr->mIn > tr->mOut)
469 return 1;
470 return 0;
473 // Error display routine. Only displays when the base name is not NULL.
474 static void TrErrorVA(const TokenReaderT *tr, uint line, uint column, const char *format, va_list argPtr)
476 if(!tr->mName)
477 return;
478 fprintf(stderr, "Error (%s:%u:%u): ", tr->mName, line, column);
479 vfprintf(stderr, format, argPtr);
482 // Used to display an error at a saved line/column.
483 static void TrErrorAt(const TokenReaderT *tr, uint line, uint column, const char *format, ...)
485 va_list argPtr;
487 va_start(argPtr, format);
488 TrErrorVA(tr, line, column, format, argPtr);
489 va_end(argPtr);
492 // Used to display an error at the current line/column.
493 static void TrError(const TokenReaderT *tr, const char *format, ...)
495 va_list argPtr;
497 va_start(argPtr, format);
498 TrErrorVA(tr, tr->mLine, tr->mColumn, format, argPtr);
499 va_end(argPtr);
502 // Skips to the next line.
503 static void TrSkipLine(TokenReaderT *tr)
505 char ch;
507 while(TrLoad(tr))
509 ch = tr->mRing[tr->mOut&TR_RING_MASK];
510 tr->mOut++;
511 if(ch == '\n')
513 tr->mLine++;
514 tr->mColumn = 1;
515 break;
517 tr->mColumn ++;
521 // Skips to the next token.
522 static int TrSkipWhitespace(TokenReaderT *tr)
524 char ch;
526 while(TrLoad(tr))
528 ch = tr->mRing[tr->mOut&TR_RING_MASK];
529 if(isspace(ch))
531 tr->mOut++;
532 if(ch == '\n')
534 tr->mLine++;
535 tr->mColumn = 1;
537 else
538 tr->mColumn++;
540 else if(ch == '#')
541 TrSkipLine(tr);
542 else
543 return 1;
545 return 0;
548 // Get the line and/or column of the next token (or the end of input).
549 static void TrIndication(TokenReaderT *tr, uint *line, uint *column)
551 TrSkipWhitespace(tr);
552 if(line) *line = tr->mLine;
553 if(column) *column = tr->mColumn;
556 // Checks to see if a token is (likely to be) an identifier. It does not
557 // display any errors and will not proceed to the next token.
558 static int TrIsIdent(TokenReaderT *tr)
560 char ch;
562 if(!TrSkipWhitespace(tr))
563 return 0;
564 ch = tr->mRing[tr->mOut&TR_RING_MASK];
565 return ch == '_' || isalpha(ch);
569 // Checks to see if a token is the given operator. It does not display any
570 // errors and will not proceed to the next token.
571 static int TrIsOperator(TokenReaderT *tr, const char *op)
573 size_t out, len;
574 char ch;
576 if(!TrSkipWhitespace(tr))
577 return 0;
578 out = tr->mOut;
579 len = 0;
580 while(op[len] != '\0' && out < tr->mIn)
582 ch = tr->mRing[out&TR_RING_MASK];
583 if(ch != op[len]) break;
584 len++;
585 out++;
587 if(op[len] == '\0')
588 return 1;
589 return 0;
592 /* The TrRead*() routines obtain the value of a matching token type. They
593 * display type, form, and boundary errors and will proceed to the next
594 * token.
597 // Reads and validates an identifier token.
598 static int TrReadIdent(TokenReaderT *tr, const uint maxLen, char *ident)
600 uint col, len;
601 char ch;
603 col = tr->mColumn;
604 if(TrSkipWhitespace(tr))
606 col = tr->mColumn;
607 ch = tr->mRing[tr->mOut&TR_RING_MASK];
608 if(ch == '_' || isalpha(ch))
610 len = 0;
611 do {
612 if(len < maxLen)
613 ident[len] = ch;
614 len++;
615 tr->mOut++;
616 if(!TrLoad(tr))
617 break;
618 ch = tr->mRing[tr->mOut&TR_RING_MASK];
619 } while(ch == '_' || isdigit(ch) || isalpha(ch));
621 tr->mColumn += len;
622 if(len < maxLen)
624 ident[len] = '\0';
625 return 1;
627 TrErrorAt(tr, tr->mLine, col, "Identifier is too long.\n");
628 return 0;
631 TrErrorAt(tr, tr->mLine, col, "Expected an identifier.\n");
632 return 0;
635 // Reads and validates (including bounds) an integer token.
636 static int TrReadInt(TokenReaderT *tr, const int loBound, const int hiBound, int *value)
638 uint col, digis, len;
639 char ch, temp[64+1];
641 col = tr->mColumn;
642 if(TrSkipWhitespace(tr))
644 col = tr->mColumn;
645 len = 0;
646 ch = tr->mRing[tr->mOut&TR_RING_MASK];
647 if(ch == '+' || ch == '-')
649 temp[len] = ch;
650 len++;
651 tr->mOut++;
653 digis = 0;
654 while(TrLoad(tr))
656 ch = tr->mRing[tr->mOut&TR_RING_MASK];
657 if(!isdigit(ch)) break;
658 if(len < 64)
659 temp[len] = ch;
660 len++;
661 digis++;
662 tr->mOut++;
664 tr->mColumn += len;
665 if(digis > 0 && ch != '.' && !isalpha(ch))
667 if(len > 64)
669 TrErrorAt(tr, tr->mLine, col, "Integer is too long.");
670 return 0;
672 temp[len] = '\0';
673 *value = strtol(temp, NULL, 10);
674 if(*value < loBound || *value > hiBound)
676 TrErrorAt(tr, tr->mLine, col, "Expected a value from %d to %d.\n", loBound, hiBound);
677 return 0;
679 return 1;
682 TrErrorAt(tr, tr->mLine, col, "Expected an integer.\n");
683 return 0;
686 // Reads and validates (including bounds) a float token.
687 static int TrReadFloat(TokenReaderT *tr, const double loBound, const double hiBound, double *value)
689 uint col, digis, len;
690 char ch, temp[64+1];
692 col = tr->mColumn;
693 if(TrSkipWhitespace(tr))
695 col = tr->mColumn;
696 len = 0;
697 ch = tr->mRing[tr->mOut&TR_RING_MASK];
698 if(ch == '+' || ch == '-')
700 temp[len] = ch;
701 len++;
702 tr->mOut++;
705 digis = 0;
706 while(TrLoad(tr))
708 ch = tr->mRing[tr->mOut&TR_RING_MASK];
709 if(!isdigit(ch)) break;
710 if(len < 64)
711 temp[len] = ch;
712 len++;
713 digis++;
714 tr->mOut++;
716 if(ch == '.')
718 if(len < 64)
719 temp[len] = ch;
720 len++;
721 tr->mOut++;
723 while(TrLoad(tr))
725 ch = tr->mRing[tr->mOut&TR_RING_MASK];
726 if(!isdigit(ch)) break;
727 if(len < 64)
728 temp[len] = ch;
729 len++;
730 digis++;
731 tr->mOut++;
733 if(digis > 0)
735 if(ch == 'E' || ch == 'e')
737 if(len < 64)
738 temp[len] = ch;
739 len++;
740 digis = 0;
741 tr->mOut++;
742 if(ch == '+' || ch == '-')
744 if(len < 64)
745 temp[len] = ch;
746 len++;
747 tr->mOut++;
749 while(TrLoad(tr))
751 ch = tr->mRing[tr->mOut&TR_RING_MASK];
752 if(!isdigit(ch)) break;
753 if(len < 64)
754 temp[len] = ch;
755 len++;
756 digis++;
757 tr->mOut++;
760 tr->mColumn += len;
761 if(digis > 0 && ch != '.' && !isalpha(ch))
763 if(len > 64)
765 TrErrorAt(tr, tr->mLine, col, "Float is too long.");
766 return 0;
768 temp[len] = '\0';
769 *value = strtod(temp, NULL);
770 if(*value < loBound || *value > hiBound)
772 TrErrorAt(tr, tr->mLine, col, "Expected a value from %f to %f.\n", loBound, hiBound);
773 return 0;
775 return 1;
778 else
779 tr->mColumn += len;
781 TrErrorAt(tr, tr->mLine, col, "Expected a float.\n");
782 return 0;
785 // Reads and validates a string token.
786 static int TrReadString(TokenReaderT *tr, const uint maxLen, char *text)
788 uint col, len;
789 char ch;
791 col = tr->mColumn;
792 if(TrSkipWhitespace(tr))
794 col = tr->mColumn;
795 ch = tr->mRing[tr->mOut&TR_RING_MASK];
796 if(ch == '\"')
798 tr->mOut++;
799 len = 0;
800 while(TrLoad(tr))
802 ch = tr->mRing[tr->mOut&TR_RING_MASK];
803 tr->mOut++;
804 if(ch == '\"')
805 break;
806 if(ch == '\n')
808 TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of line.\n");
809 return 0;
811 if(len < maxLen)
812 text[len] = ch;
813 len++;
815 if(ch != '\"')
817 tr->mColumn += 1 + len;
818 TrErrorAt(tr, tr->mLine, col, "Unterminated string at end of input.\n");
819 return 0;
821 tr->mColumn += 2 + len;
822 if(len > maxLen)
824 TrErrorAt(tr, tr->mLine, col, "String is too long.\n");
825 return 0;
827 text[len] = '\0';
828 return 1;
831 TrErrorAt(tr, tr->mLine, col, "Expected a string.\n");
832 return 0;
835 // Reads and validates the given operator.
836 static int TrReadOperator(TokenReaderT *tr, const char *op)
838 uint col, len;
839 char ch;
841 col = tr->mColumn;
842 if(TrSkipWhitespace(tr))
844 col = tr->mColumn;
845 len = 0;
846 while(op[len] != '\0' && TrLoad(tr))
848 ch = tr->mRing[tr->mOut&TR_RING_MASK];
849 if(ch != op[len]) break;
850 len++;
851 tr->mOut++;
853 tr->mColumn += len;
854 if(op[len] == '\0')
855 return 1;
857 TrErrorAt(tr, tr->mLine, col, "Expected '%s' operator.\n", op);
858 return 0;
861 /* Performs a string substitution. Any case-insensitive occurrences of the
862 * pattern string are replaced with the replacement string. The result is
863 * truncated if necessary.
865 static int StrSubst(const char *in, const char *pat, const char *rep, const size_t maxLen, char *out)
867 size_t inLen, patLen, repLen;
868 size_t si, di;
869 int truncated;
871 inLen = strlen(in);
872 patLen = strlen(pat);
873 repLen = strlen(rep);
874 si = 0;
875 di = 0;
876 truncated = 0;
877 while(si < inLen && di < maxLen)
879 if(patLen <= inLen-si)
881 if(strncasecmp(&in[si], pat, patLen) == 0)
883 if(repLen > maxLen-di)
885 repLen = maxLen - di;
886 truncated = 1;
888 strncpy(&out[di], rep, repLen);
889 si += patLen;
890 di += repLen;
893 out[di] = in[si];
894 si++;
895 di++;
897 if(si < inLen)
898 truncated = 1;
899 out[di] = '\0';
900 return !truncated;
904 /*********************
905 *** Math routines ***
906 *********************/
908 // Provide missing math routines for MSVC versions < 1800 (Visual Studio 2013).
909 #if defined(_MSC_VER) && _MSC_VER < 1800
910 static double round(double val)
912 if(val < 0.0)
913 return ceil(val-0.5);
914 return floor(val+0.5);
917 static double fmin(double a, double b)
919 return (a<b) ? a : b;
922 static double fmax(double a, double b)
924 return (a>b) ? a : b;
926 #endif
928 // Simple clamp routine.
929 static double Clamp(const double val, const double lower, const double upper)
931 return fmin(fmax(val, lower), upper);
934 // Performs linear interpolation.
935 static double Lerp(const double a, const double b, const double f)
937 return a + f * (b - a);
940 static inline uint dither_rng(uint *seed)
942 *seed = *seed * 96314165 + 907633515;
943 return *seed;
946 // Performs a triangular probability density function dither. The input samples
947 // should be normalized (-1 to +1).
948 static void TpdfDither(double *RESTRICT out, const double *RESTRICT in, const double scale,
949 const int count, const int step, uint *seed)
951 static const double PRNG_SCALE = 1.0 / UINT_MAX;
952 uint prn0, prn1;
953 int i;
955 for(i = 0;i < count;i++)
957 prn0 = dither_rng(seed);
958 prn1 = dither_rng(seed);
959 out[i*step] = round(in[i]*scale + (prn0*PRNG_SCALE - prn1*PRNG_SCALE));
963 // Allocates an array of doubles.
964 static double *CreateDoubles(size_t n)
966 double *a;
968 a = calloc(n?n:1, sizeof(*a));
969 if(a == NULL)
971 fprintf(stderr, "Error: Out of memory.\n");
972 exit(-1);
974 return a;
977 // Allocates an array of complex numbers.
978 static Complex *CreateComplexes(size_t n)
980 Complex *a;
982 a = calloc(n?n:1, sizeof(*a));
983 if(a == NULL)
985 fprintf(stderr, "Error: Out of memory.\n");
986 exit(-1);
988 return a;
991 /* Fast Fourier transform routines. The number of points must be a power of
992 * two.
995 // Performs bit-reversal ordering.
996 static void FftArrange(const uint n, Complex *inout)
998 uint rk, k, m;
1000 // Handle in-place arrangement.
1001 rk = 0;
1002 for(k = 0;k < n;k++)
1004 if(rk > k)
1006 Complex temp = inout[rk];
1007 inout[rk] = inout[k];
1008 inout[k] = temp;
1011 m = n;
1012 while(rk&(m >>= 1))
1013 rk &= ~m;
1014 rk |= m;
1018 // Performs the summation.
1019 static void FftSummation(const int n, const double s, Complex *cplx)
1021 double pi;
1022 int m, m2;
1023 int i, k, mk;
1025 pi = s * M_PI;
1026 for(m = 1, m2 = 2;m < n; m <<= 1, m2 <<= 1)
1028 // v = Complex (-2.0 * sin (0.5 * pi / m) * sin (0.5 * pi / m), -sin (pi / m))
1029 double sm = sin(0.5 * pi / m);
1030 Complex v = MakeComplex(-2.0*sm*sm, -sin(pi / m));
1031 Complex w = MakeComplex(1.0, 0.0);
1032 for(i = 0;i < m;i++)
1034 for(k = i;k < n;k += m2)
1036 Complex t;
1037 mk = k + m;
1038 t = c_mul(w, cplx[mk]);
1039 cplx[mk] = c_sub(cplx[k], t);
1040 cplx[k] = c_add(cplx[k], t);
1042 w = c_add(w, c_mul(v, w));
1047 // Performs a forward FFT.
1048 static void FftForward(const uint n, Complex *inout)
1050 FftArrange(n, inout);
1051 FftSummation(n, 1.0, inout);
1054 // Performs an inverse FFT.
1055 static void FftInverse(const uint n, Complex *inout)
1057 double f;
1058 uint i;
1060 FftArrange(n, inout);
1061 FftSummation(n, -1.0, inout);
1062 f = 1.0 / n;
1063 for(i = 0;i < n;i++)
1064 inout[i] = c_muls(inout[i], f);
1067 /* Calculate the complex helical sequence (or discrete-time analytical signal)
1068 * of the given input using the Hilbert transform. Given the natural logarithm
1069 * of a signal's magnitude response, the imaginary components can be used as
1070 * the angles for minimum-phase reconstruction.
1072 static void Hilbert(const uint n, Complex *inout)
1074 uint i;
1076 // Handle in-place operation.
1077 for(i = 0;i < n;i++)
1078 inout[i].Imag = 0.0;
1080 FftInverse(n, inout);
1081 for(i = 1;i < (n+1)/2;i++)
1082 inout[i] = c_muls(inout[i], 2.0);
1083 /* Increment i if n is even. */
1084 i += (n&1)^1;
1085 for(;i < n;i++)
1086 inout[i] = MakeComplex(0.0, 0.0);
1087 FftForward(n, inout);
1090 /* Calculate the magnitude response of the given input. This is used in
1091 * place of phase decomposition, since the phase residuals are discarded for
1092 * minimum phase reconstruction. The mirrored half of the response is also
1093 * discarded.
1095 static void MagnitudeResponse(const uint n, const Complex *in, double *out)
1097 const uint m = 1 + (n / 2);
1098 uint i;
1099 for(i = 0;i < m;i++)
1100 out[i] = fmax(c_abs(in[i]), EPSILON);
1103 /* Apply a range limit (in dB) to the given magnitude response. This is used
1104 * to adjust the effects of the diffuse-field average on the equalization
1105 * process.
1107 static void LimitMagnitudeResponse(const uint n, const uint m, const double limit, const double *in, double *out)
1109 double halfLim;
1110 uint i, lower, upper;
1111 double ave;
1113 halfLim = limit / 2.0;
1114 // Convert the response to dB.
1115 for(i = 0;i < m;i++)
1116 out[i] = 20.0 * log10(in[i]);
1117 // Use six octaves to calculate the average magnitude of the signal.
1118 lower = ((uint)ceil(n / pow(2.0, 8.0))) - 1;
1119 upper = ((uint)floor(n / pow(2.0, 2.0))) - 1;
1120 ave = 0.0;
1121 for(i = lower;i <= upper;i++)
1122 ave += out[i];
1123 ave /= upper - lower + 1;
1124 // Keep the response within range of the average magnitude.
1125 for(i = 0;i < m;i++)
1126 out[i] = Clamp(out[i], ave - halfLim, ave + halfLim);
1127 // Convert the response back to linear magnitude.
1128 for(i = 0;i < m;i++)
1129 out[i] = pow(10.0, out[i] / 20.0);
1132 /* Reconstructs the minimum-phase component for the given magnitude response
1133 * of a signal. This is equivalent to phase recomposition, sans the missing
1134 * residuals (which were discarded). The mirrored half of the response is
1135 * reconstructed.
1137 static void MinimumPhase(const uint n, const double *in, Complex *out)
1139 const uint m = 1 + (n / 2);
1140 double *mags;
1141 uint i;
1143 mags = CreateDoubles(n);
1144 for(i = 0;i < m;i++)
1146 mags[i] = fmax(EPSILON, in[i]);
1147 out[i] = MakeComplex(log(mags[i]), 0.0);
1149 for(;i < n;i++)
1151 mags[i] = mags[n - i];
1152 out[i] = out[n - i];
1154 Hilbert(n, out);
1155 // Remove any DC offset the filter has.
1156 mags[0] = EPSILON;
1157 for(i = 0;i < n;i++)
1159 Complex a = c_exp(MakeComplex(0.0, out[i].Imag));
1160 out[i] = c_mul(MakeComplex(mags[i], 0.0), a);
1162 free(mags);
1166 /***************************
1167 *** Resampler functions ***
1168 ***************************/
1170 /* This is the normalized cardinal sine (sinc) function.
1172 * sinc(x) = { 1, x = 0
1173 * { sin(pi x) / (pi x), otherwise.
1175 static double Sinc(const double x)
1177 if(fabs(x) < EPSILON)
1178 return 1.0;
1179 return sin(M_PI * x) / (M_PI * x);
1182 /* The zero-order modified Bessel function of the first kind, used for the
1183 * Kaiser window.
1185 * I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k)
1186 * = sum_{k=0}^inf ((x / 2)^k / k!)^2
1188 static double BesselI_0(const double x)
1190 double term, sum, x2, y, last_sum;
1191 int k;
1193 // Start at k=1 since k=0 is trivial.
1194 term = 1.0;
1195 sum = 1.0;
1196 x2 = x/2.0;
1197 k = 1;
1199 // Let the integration converge until the term of the sum is no longer
1200 // significant.
1201 do {
1202 y = x2 / k;
1203 k++;
1204 last_sum = sum;
1205 term *= y * y;
1206 sum += term;
1207 } while(sum != last_sum);
1208 return sum;
1211 /* Calculate a Kaiser window from the given beta value and a normalized k
1212 * [-1, 1].
1214 * w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B), -1 <= k <= 1
1215 * { 0, elsewhere.
1217 * Where k can be calculated as:
1219 * k = i / l, where -l <= i <= l.
1221 * or:
1223 * k = 2 i / M - 1, where 0 <= i <= M.
1225 static double Kaiser(const double b, const double k)
1227 if(!(k >= -1.0 && k <= 1.0))
1228 return 0.0;
1229 return BesselI_0(b * sqrt(1.0 - k*k)) / BesselI_0(b);
1232 // Calculates the greatest common divisor of a and b.
1233 static uint Gcd(uint x, uint y)
1235 while(y > 0)
1237 uint z = y;
1238 y = x % y;
1239 x = z;
1241 return x;
1244 /* Calculates the size (order) of the Kaiser window. Rejection is in dB and
1245 * the transition width is normalized frequency (0.5 is nyquist).
1247 * M = { ceil((r - 7.95) / (2.285 2 pi f_t)), r > 21
1248 * { ceil(5.79 / 2 pi f_t), r <= 21.
1251 static uint CalcKaiserOrder(const double rejection, const double transition)
1253 double w_t = 2.0 * M_PI * transition;
1254 if(rejection > 21.0)
1255 return (uint)ceil((rejection - 7.95) / (2.285 * w_t));
1256 return (uint)ceil(5.79 / w_t);
1259 // Calculates the beta value of the Kaiser window. Rejection is in dB.
1260 static double CalcKaiserBeta(const double rejection)
1262 if(rejection > 50.0)
1263 return 0.1102 * (rejection - 8.7);
1264 if(rejection >= 21.0)
1265 return (0.5842 * pow(rejection - 21.0, 0.4)) +
1266 (0.07886 * (rejection - 21.0));
1267 return 0.0;
1270 /* Calculates a point on the Kaiser-windowed sinc filter for the given half-
1271 * width, beta, gain, and cutoff. The point is specified in non-normalized
1272 * samples, from 0 to M, where M = (2 l + 1).
1274 * w(k) 2 p f_t sinc(2 f_t x)
1276 * x -- centered sample index (i - l)
1277 * k -- normalized and centered window index (x / l)
1278 * w(k) -- window function (Kaiser)
1279 * p -- gain compensation factor when sampling
1280 * f_t -- normalized center frequency (or cutoff; 0.5 is nyquist)
1282 static double SincFilter(const int l, const double b, const double gain, const double cutoff, const int i)
1284 return Kaiser(b, (double)(i - l) / l) * 2.0 * gain * cutoff * Sinc(2.0 * cutoff * (i - l));
1287 /* This is a polyphase sinc-filtered resampler.
1289 * Upsample Downsample
1291 * p/q = 3/2 p/q = 3/5
1293 * M-+-+-+-> M-+-+-+->
1294 * -------------------+ ---------------------+
1295 * p s * f f f f|f| | p s * f f f f f |
1296 * | 0 * 0 0 0|0|0 | | 0 * 0 0 0 0|0| |
1297 * v 0 * 0 0|0|0 0 | v 0 * 0 0 0|0|0 |
1298 * s * f|f|f f f | s * f f|f|f f |
1299 * 0 * |0|0 0 0 0 | 0 * 0|0|0 0 0 |
1300 * --------+=+--------+ 0 * |0|0 0 0 0 |
1301 * d . d .|d|. d . d ----------+=+--------+
1302 * d . . . .|d|. . . .
1303 * q->
1304 * q-+-+-+->
1306 * P_f(i,j) = q i mod p + pj
1307 * P_s(i,j) = floor(q i / p) - j
1308 * d[i=0..N-1] = sum_{j=0}^{floor((M - 1) / p)} {
1309 * { f[P_f(i,j)] s[P_s(i,j)], P_f(i,j) < M
1310 * { 0, P_f(i,j) >= M. }
1313 // Calculate the resampling metrics and build the Kaiser-windowed sinc filter
1314 // that's used to cut frequencies above the destination nyquist.
1315 static void ResamplerSetup(ResamplerT *rs, const uint srcRate, const uint dstRate)
1317 double cutoff, width, beta;
1318 uint gcd, l;
1319 int i;
1321 gcd = Gcd(srcRate, dstRate);
1322 rs->mP = dstRate / gcd;
1323 rs->mQ = srcRate / gcd;
1324 /* The cutoff is adjusted by half the transition width, so the transition
1325 * ends before the nyquist (0.5). Both are scaled by the downsampling
1326 * factor.
1328 if(rs->mP > rs->mQ)
1330 cutoff = 0.475 / rs->mP;
1331 width = 0.05 / rs->mP;
1333 else
1335 cutoff = 0.475 / rs->mQ;
1336 width = 0.05 / rs->mQ;
1338 // A rejection of -180 dB is used for the stop band. Round up when
1339 // calculating the left offset to avoid increasing the transition width.
1340 l = (CalcKaiserOrder(180.0, width)+1) / 2;
1341 beta = CalcKaiserBeta(180.0);
1342 rs->mM = l*2 + 1;
1343 rs->mL = l;
1344 rs->mF = CreateDoubles(rs->mM);
1345 for(i = 0;i < ((int)rs->mM);i++)
1346 rs->mF[i] = SincFilter((int)l, beta, rs->mP, cutoff, i);
1349 // Clean up after the resampler.
1350 static void ResamplerClear(ResamplerT *rs)
1352 free(rs->mF);
1353 rs->mF = NULL;
1356 // Perform the upsample-filter-downsample resampling operation using a
1357 // polyphase filter implementation.
1358 static void ResamplerRun(ResamplerT *rs, const uint inN, const double *in, const uint outN, double *out)
1360 const uint p = rs->mP, q = rs->mQ, m = rs->mM, l = rs->mL;
1361 const double *f = rs->mF;
1362 uint j_f, j_s;
1363 double *work;
1364 uint i;
1366 if(outN == 0)
1367 return;
1369 // Handle in-place operation.
1370 if(in == out)
1371 work = CreateDoubles(outN);
1372 else
1373 work = out;
1374 // Resample the input.
1375 for(i = 0;i < outN;i++)
1377 double r = 0.0;
1378 // Input starts at l to compensate for the filter delay. This will
1379 // drop any build-up from the first half of the filter.
1380 j_f = (l + (q * i)) % p;
1381 j_s = (l + (q * i)) / p;
1382 while(j_f < m)
1384 // Only take input when 0 <= j_s < inN. This single unsigned
1385 // comparison catches both cases.
1386 if(j_s < inN)
1387 r += f[j_f] * in[j_s];
1388 j_f += p;
1389 j_s--;
1391 work[i] = r;
1393 // Clean up after in-place operation.
1394 if(work != out)
1396 for(i = 0;i < outN;i++)
1397 out[i] = work[i];
1398 free(work);
1402 /*************************
1403 *** File source input ***
1404 *************************/
1406 // Read a binary value of the specified byte order and byte size from a file,
1407 // storing it as a 32-bit unsigned integer.
1408 static int ReadBin4(FILE *fp, const char *filename, const ByteOrderT order, const uint bytes, uint32 *out)
1410 uint8 in[4];
1411 uint32 accum;
1412 uint i;
1414 if(fread(in, 1, bytes, fp) != bytes)
1416 fprintf(stderr, "Error: Bad read from file '%s'.\n", filename);
1417 return 0;
1419 accum = 0;
1420 switch(order)
1422 case BO_LITTLE:
1423 for(i = 0;i < bytes;i++)
1424 accum = (accum<<8) | in[bytes - i - 1];
1425 break;
1426 case BO_BIG:
1427 for(i = 0;i < bytes;i++)
1428 accum = (accum<<8) | in[i];
1429 break;
1430 default:
1431 break;
1433 *out = accum;
1434 return 1;
1437 // Read a binary value of the specified byte order from a file, storing it as
1438 // a 64-bit unsigned integer.
1439 static int ReadBin8(FILE *fp, const char *filename, const ByteOrderT order, uint64 *out)
1441 uint8 in [8];
1442 uint64 accum;
1443 uint i;
1445 if(fread(in, 1, 8, fp) != 8)
1447 fprintf(stderr, "Error: Bad read from file '%s'.\n", filename);
1448 return 0;
1450 accum = 0ULL;
1451 switch(order)
1453 case BO_LITTLE:
1454 for(i = 0;i < 8;i++)
1455 accum = (accum<<8) | in[8 - i - 1];
1456 break;
1457 case BO_BIG:
1458 for(i = 0;i < 8;i++)
1459 accum = (accum<<8) | in[i];
1460 break;
1461 default:
1462 break;
1464 *out = accum;
1465 return 1;
1468 /* Read a binary value of the specified type, byte order, and byte size from
1469 * a file, converting it to a double. For integer types, the significant
1470 * bits are used to normalize the result. The sign of bits determines
1471 * whether they are padded toward the MSB (negative) or LSB (positive).
1472 * Floating-point types are not normalized.
1474 static int ReadBinAsDouble(FILE *fp, const char *filename, const ByteOrderT order, const ElementTypeT type, const uint bytes, const int bits, double *out)
1476 union {
1477 uint32 ui;
1478 int32 i;
1479 float f;
1480 } v4;
1481 union {
1482 uint64 ui;
1483 double f;
1484 } v8;
1486 *out = 0.0;
1487 if(bytes > 4)
1489 if(!ReadBin8(fp, filename, order, &v8.ui))
1490 return 0;
1491 if(type == ET_FP)
1492 *out = v8.f;
1494 else
1496 if(!ReadBin4(fp, filename, order, bytes, &v4.ui))
1497 return 0;
1498 if(type == ET_FP)
1499 *out = v4.f;
1500 else
1502 if(bits > 0)
1503 v4.ui >>= (8*bytes) - ((uint)bits);
1504 else
1505 v4.ui &= (0xFFFFFFFF >> (32+bits));
1507 if(v4.ui&(uint)(1<<(abs(bits)-1)))
1508 v4.ui |= (0xFFFFFFFF << abs (bits));
1509 *out = v4.i / (double)(1<<(abs(bits)-1));
1512 return 1;
1515 /* Read an ascii value of the specified type from a file, converting it to a
1516 * double. For integer types, the significant bits are used to normalize the
1517 * result. The sign of the bits should always be positive. This also skips
1518 * up to one separator character before the element itself.
1520 static int ReadAsciiAsDouble(TokenReaderT *tr, const char *filename, const ElementTypeT type, const uint bits, double *out)
1522 if(TrIsOperator(tr, ","))
1523 TrReadOperator(tr, ",");
1524 else if(TrIsOperator(tr, ":"))
1525 TrReadOperator(tr, ":");
1526 else if(TrIsOperator(tr, ";"))
1527 TrReadOperator(tr, ";");
1528 else if(TrIsOperator(tr, "|"))
1529 TrReadOperator(tr, "|");
1531 if(type == ET_FP)
1533 if(!TrReadFloat(tr, -HUGE_VAL, HUGE_VAL, out))
1535 fprintf(stderr, "Error: Bad read from file '%s'.\n", filename);
1536 return 0;
1539 else
1541 int v;
1542 if(!TrReadInt(tr, -(1<<(bits-1)), (1<<(bits-1))-1, &v))
1544 fprintf(stderr, "Error: Bad read from file '%s'.\n", filename);
1545 return 0;
1547 *out = v / (double)((1<<(bits-1))-1);
1549 return 1;
1552 // Read the RIFF/RIFX WAVE format chunk from a file, validating it against
1553 // the source parameters and data set metrics.
1554 static int ReadWaveFormat(FILE *fp, const ByteOrderT order, const uint hrirRate, SourceRefT *src)
1556 uint32 fourCC, chunkSize;
1557 uint32 format, channels, rate, dummy, block, size, bits;
1559 chunkSize = 0;
1560 do {
1561 if(chunkSize > 0)
1562 fseek (fp, (long) chunkSize, SEEK_CUR);
1563 if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
1564 !ReadBin4(fp, src->mPath, order, 4, &chunkSize))
1565 return 0;
1566 } while(fourCC != FOURCC_FMT);
1567 if(!ReadBin4(fp, src->mPath, order, 2, &format) ||
1568 !ReadBin4(fp, src->mPath, order, 2, &channels) ||
1569 !ReadBin4(fp, src->mPath, order, 4, &rate) ||
1570 !ReadBin4(fp, src->mPath, order, 4, &dummy) ||
1571 !ReadBin4(fp, src->mPath, order, 2, &block))
1572 return 0;
1573 block /= channels;
1574 if(chunkSize > 14)
1576 if(!ReadBin4(fp, src->mPath, order, 2, &size))
1577 return 0;
1578 size /= 8;
1579 if(block > size)
1580 size = block;
1582 else
1583 size = block;
1584 if(format == WAVE_FORMAT_EXTENSIBLE)
1586 fseek(fp, 2, SEEK_CUR);
1587 if(!ReadBin4(fp, src->mPath, order, 2, &bits))
1588 return 0;
1589 if(bits == 0)
1590 bits = 8 * size;
1591 fseek(fp, 4, SEEK_CUR);
1592 if(!ReadBin4(fp, src->mPath, order, 2, &format))
1593 return 0;
1594 fseek(fp, (long)(chunkSize - 26), SEEK_CUR);
1596 else
1598 bits = 8 * size;
1599 if(chunkSize > 14)
1600 fseek(fp, (long)(chunkSize - 16), SEEK_CUR);
1601 else
1602 fseek(fp, (long)(chunkSize - 14), SEEK_CUR);
1604 if(format != WAVE_FORMAT_PCM && format != WAVE_FORMAT_IEEE_FLOAT)
1606 fprintf(stderr, "Error: Unsupported WAVE format in file '%s'.\n", src->mPath);
1607 return 0;
1609 if(src->mChannel >= channels)
1611 fprintf(stderr, "Error: Missing source channel in WAVE file '%s'.\n", src->mPath);
1612 return 0;
1614 if(rate != hrirRate)
1616 fprintf(stderr, "Error: Mismatched source sample rate in WAVE file '%s'.\n", src->mPath);
1617 return 0;
1619 if(format == WAVE_FORMAT_PCM)
1621 if(size < 2 || size > 4)
1623 fprintf(stderr, "Error: Unsupported sample size in WAVE file '%s'.\n", src->mPath);
1624 return 0;
1626 if(bits < 16 || bits > (8*size))
1628 fprintf (stderr, "Error: Bad significant bits in WAVE file '%s'.\n", src->mPath);
1629 return 0;
1631 src->mType = ET_INT;
1633 else
1635 if(size != 4 && size != 8)
1637 fprintf(stderr, "Error: Unsupported sample size in WAVE file '%s'.\n", src->mPath);
1638 return 0;
1640 src->mType = ET_FP;
1642 src->mSize = size;
1643 src->mBits = (int)bits;
1644 src->mSkip = channels;
1645 return 1;
1648 // Read a RIFF/RIFX WAVE data chunk, converting all elements to doubles.
1649 static int ReadWaveData(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir)
1651 int pre, post, skip;
1652 uint i;
1654 pre = (int)(src->mSize * src->mChannel);
1655 post = (int)(src->mSize * (src->mSkip - src->mChannel - 1));
1656 skip = 0;
1657 for(i = 0;i < n;i++)
1659 skip += pre;
1660 if(skip > 0)
1661 fseek(fp, skip, SEEK_CUR);
1662 if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i]))
1663 return 0;
1664 skip = post;
1666 if(skip > 0)
1667 fseek(fp, skip, SEEK_CUR);
1668 return 1;
1671 // Read the RIFF/RIFX WAVE list or data chunk, converting all elements to
1672 // doubles.
1673 static int ReadWaveList(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir)
1675 uint32 fourCC, chunkSize, listSize, count;
1676 uint block, skip, offset, i;
1677 double lastSample;
1679 for(;;)
1681 if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
1682 !ReadBin4(fp, src->mPath, order, 4, &chunkSize))
1683 return 0;
1685 if(fourCC == FOURCC_DATA)
1687 block = src->mSize * src->mSkip;
1688 count = chunkSize / block;
1689 if(count < (src->mOffset + n))
1691 fprintf(stderr, "Error: Bad read from file '%s'.\n", src->mPath);
1692 return 0;
1694 fseek(fp, (long)(src->mOffset * block), SEEK_CUR);
1695 if(!ReadWaveData(fp, src, order, n, &hrir[0]))
1696 return 0;
1697 return 1;
1699 else if(fourCC == FOURCC_LIST)
1701 if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC))
1702 return 0;
1703 chunkSize -= 4;
1704 if(fourCC == FOURCC_WAVL)
1705 break;
1707 if(chunkSize > 0)
1708 fseek(fp, (long)chunkSize, SEEK_CUR);
1710 listSize = chunkSize;
1711 block = src->mSize * src->mSkip;
1712 skip = src->mOffset;
1713 offset = 0;
1714 lastSample = 0.0;
1715 while(offset < n && listSize > 8)
1717 if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
1718 !ReadBin4(fp, src->mPath, order, 4, &chunkSize))
1719 return 0;
1720 listSize -= 8 + chunkSize;
1721 if(fourCC == FOURCC_DATA)
1723 count = chunkSize / block;
1724 if(count > skip)
1726 fseek(fp, (long)(skip * block), SEEK_CUR);
1727 chunkSize -= skip * block;
1728 count -= skip;
1729 skip = 0;
1730 if(count > (n - offset))
1731 count = n - offset;
1732 if(!ReadWaveData(fp, src, order, count, &hrir[offset]))
1733 return 0;
1734 chunkSize -= count * block;
1735 offset += count;
1736 lastSample = hrir [offset - 1];
1738 else
1740 skip -= count;
1741 count = 0;
1744 else if(fourCC == FOURCC_SLNT)
1746 if(!ReadBin4(fp, src->mPath, order, 4, &count))
1747 return 0;
1748 chunkSize -= 4;
1749 if(count > skip)
1751 count -= skip;
1752 skip = 0;
1753 if(count > (n - offset))
1754 count = n - offset;
1755 for(i = 0; i < count; i ++)
1756 hrir[offset + i] = lastSample;
1757 offset += count;
1759 else
1761 skip -= count;
1762 count = 0;
1765 if(chunkSize > 0)
1766 fseek(fp, (long)chunkSize, SEEK_CUR);
1768 if(offset < n)
1770 fprintf(stderr, "Error: Bad read from file '%s'.\n", src->mPath);
1771 return 0;
1773 return 1;
1776 // Load a source HRIR from a RIFF/RIFX WAVE file.
1777 static int LoadWaveSource(FILE *fp, SourceRefT *src, const uint hrirRate, const uint n, double *hrir)
1779 uint32 fourCC, dummy;
1780 ByteOrderT order;
1782 if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC) ||
1783 !ReadBin4(fp, src->mPath, BO_LITTLE, 4, &dummy))
1784 return 0;
1785 if(fourCC == FOURCC_RIFF)
1786 order = BO_LITTLE;
1787 else if(fourCC == FOURCC_RIFX)
1788 order = BO_BIG;
1789 else
1791 fprintf(stderr, "Error: No RIFF/RIFX chunk in file '%s'.\n", src->mPath);
1792 return 0;
1795 if(!ReadBin4(fp, src->mPath, BO_LITTLE, 4, &fourCC))
1796 return 0;
1797 if(fourCC != FOURCC_WAVE)
1799 fprintf(stderr, "Error: Not a RIFF/RIFX WAVE file '%s'.\n", src->mPath);
1800 return 0;
1802 if(!ReadWaveFormat(fp, order, hrirRate, src))
1803 return 0;
1804 if(!ReadWaveList(fp, src, order, n, hrir))
1805 return 0;
1806 return 1;
1809 // Load a source HRIR from a binary file.
1810 static int LoadBinarySource(FILE *fp, const SourceRefT *src, const ByteOrderT order, const uint n, double *hrir)
1812 uint i;
1814 fseek(fp, (long)src->mOffset, SEEK_SET);
1815 for(i = 0;i < n;i++)
1817 if(!ReadBinAsDouble(fp, src->mPath, order, src->mType, src->mSize, src->mBits, &hrir[i]))
1818 return 0;
1819 if(src->mSkip > 0)
1820 fseek(fp, (long)src->mSkip, SEEK_CUR);
1822 return 1;
1825 // Load a source HRIR from an ASCII text file containing a list of elements
1826 // separated by whitespace or common list operators (',', ';', ':', '|').
1827 static int LoadAsciiSource(FILE *fp, const SourceRefT *src, const uint n, double *hrir)
1829 TokenReaderT tr;
1830 uint i, j;
1831 double dummy;
1833 TrSetup(fp, NULL, &tr);
1834 for(i = 0;i < src->mOffset;i++)
1836 if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, (uint)src->mBits, &dummy))
1837 return 0;
1839 for(i = 0;i < n;i++)
1841 if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, (uint)src->mBits, &hrir[i]))
1842 return 0;
1843 for(j = 0;j < src->mSkip;j++)
1845 if(!ReadAsciiAsDouble(&tr, src->mPath, src->mType, (uint)src->mBits, &dummy))
1846 return 0;
1849 return 1;
1852 // Load a source HRIR from a supported file type.
1853 static int LoadSource(SourceRefT *src, const uint hrirRate, const uint n, double *hrir)
1855 int result;
1856 FILE *fp;
1858 if(src->mFormat == SF_ASCII)
1859 fp = fopen(src->mPath, "r");
1860 else
1861 fp = fopen(src->mPath, "rb");
1862 if(fp == NULL)
1864 fprintf(stderr, "Error: Could not open source file '%s'.\n", src->mPath);
1865 return 0;
1867 if(src->mFormat == SF_WAVE)
1868 result = LoadWaveSource(fp, src, hrirRate, n, hrir);
1869 else if(src->mFormat == SF_BIN_LE)
1870 result = LoadBinarySource(fp, src, BO_LITTLE, n, hrir);
1871 else if(src->mFormat == SF_BIN_BE)
1872 result = LoadBinarySource(fp, src, BO_BIG, n, hrir);
1873 else
1874 result = LoadAsciiSource(fp, src, n, hrir);
1875 fclose(fp);
1876 return result;
1880 /***************************
1881 *** File storage output ***
1882 ***************************/
1884 // Write an ASCII string to a file.
1885 static int WriteAscii(const char *out, FILE *fp, const char *filename)
1887 size_t len;
1889 len = strlen(out);
1890 if(fwrite(out, 1, len, fp) != len)
1892 fclose(fp);
1893 fprintf(stderr, "Error: Bad write to file '%s'.\n", filename);
1894 return 0;
1896 return 1;
1899 // Write a binary value of the given byte order and byte size to a file,
1900 // loading it from a 32-bit unsigned integer.
1901 static int WriteBin4(const ByteOrderT order, const uint bytes, const uint32 in, FILE *fp, const char *filename)
1903 uint8 out[4];
1904 uint i;
1906 switch(order)
1908 case BO_LITTLE:
1909 for(i = 0;i < bytes;i++)
1910 out[i] = (in>>(i*8)) & 0x000000FF;
1911 break;
1912 case BO_BIG:
1913 for(i = 0;i < bytes;i++)
1914 out[bytes - i - 1] = (in>>(i*8)) & 0x000000FF;
1915 break;
1916 default:
1917 break;
1919 if(fwrite(out, 1, bytes, fp) != bytes)
1921 fprintf(stderr, "Error: Bad write to file '%s'.\n", filename);
1922 return 0;
1924 return 1;
1927 // Store the OpenAL Soft HRTF data set.
1928 static int StoreMhr(const HrirDataT *hData, const char *filename)
1930 uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
1931 uint n = hData->mIrPoints;
1932 FILE *fp;
1933 uint fi, ei, ai, i;
1934 uint dither_seed = 22222;
1936 if((fp=fopen(filename, "wb")) == NULL)
1938 fprintf(stderr, "Error: Could not open MHR file '%s'.\n", filename);
1939 return 0;
1941 if(!WriteAscii(MHR_FORMAT, fp, filename))
1942 return 0;
1943 if(!WriteBin4(BO_LITTLE, 4, (uint32)hData->mIrRate, fp, filename))
1944 return 0;
1945 if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mSampleType, fp, filename))
1946 return 0;
1947 if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mChannelType, fp, filename))
1948 return 0;
1949 if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mIrPoints, fp, filename))
1950 return 0;
1951 if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mFdCount, fp, filename))
1952 return 0;
1953 for(fi = 0;fi < hData->mFdCount;fi++)
1955 if(!WriteBin4(BO_LITTLE, 2, (uint32)(1000.0 * hData->mFds[fi].mDistance), fp, filename))
1956 return 0;
1957 if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mFds[fi].mEvCount, fp, filename))
1958 return 0;
1959 for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
1961 if(!WriteBin4(BO_LITTLE, 1, (uint32)hData->mFds[fi].mEvs[ei].mAzCount, fp, filename))
1962 return 0;
1966 for(fi = 0;fi < hData->mFdCount;fi++)
1968 const double scale = (hData->mSampleType == ST_S16) ? 32767.0 :
1969 ((hData->mSampleType == ST_S24) ? 8388607.0 : 0.0);
1970 const int bps = (hData->mSampleType == ST_S16) ? 2 :
1971 ((hData->mSampleType == ST_S24) ? 3 : 0);
1973 for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
1975 for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
1977 HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
1978 double out[2 * MAX_TRUNCSIZE];
1980 TpdfDither(out, azd->mIrs[0], scale, n, channels, &dither_seed);
1981 if(hData->mChannelType == CT_STEREO)
1982 TpdfDither(out+1, azd->mIrs[1], scale, n, channels, &dither_seed);
1983 for(i = 0;i < (channels * n);i++)
1985 int v = (int)Clamp(out[i], -scale-1.0, scale);
1986 if(!WriteBin4(BO_LITTLE, bps, (uint32)v, fp, filename))
1987 return 0;
1992 for(fi = 0;fi < hData->mFdCount;fi++)
1994 for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
1996 for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
1998 HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
1999 int v = (int)fmin(round(hData->mIrRate * azd->mDelays[0]), MAX_HRTD);
2001 if(!WriteBin4(BO_LITTLE, 1, (uint32)v, fp, filename))
2002 return 0;
2003 if(hData->mChannelType == CT_STEREO)
2005 v = (int)fmin(round(hData->mIrRate * azd->mDelays[1]), MAX_HRTD);
2007 if(!WriteBin4(BO_LITTLE, 1, (uint32)v, fp, filename))
2008 return 0;
2013 fclose(fp);
2014 return 1;
2018 /***********************
2019 *** HRTF processing ***
2020 ***********************/
2022 // Calculate the onset time of an HRIR and average it with any existing
2023 // timing for its field, elevation, azimuth, and ear.
2024 static double AverageHrirOnset(const uint rate, const uint n, const double *hrir, const double f, const double onset)
2026 double mag = 0.0;
2027 uint i;
2029 for(i = 0;i < n;i++)
2030 mag = fmax(fabs(hrir[i]), mag);
2031 mag *= 0.15;
2032 for(i = 0;i < n;i++)
2034 if(fabs(hrir[i]) >= mag)
2035 break;
2037 return Lerp(onset, (double)i / rate, f);
2040 // Calculate the magnitude response of an HRIR and average it with any
2041 // existing responses for its field, elevation, azimuth, and ear.
2042 static void AverageHrirMagnitude(const uint points, const uint n, const double *hrir, const double f, double *mag)
2044 uint m = 1 + (n / 2), i;
2045 Complex *h = CreateComplexes(n);
2046 double *r = CreateDoubles(n);
2048 for(i = 0;i < points;i++)
2049 h[i] = MakeComplex(hrir[i], 0.0);
2050 for(;i < n;i++)
2051 h[i] = MakeComplex(0.0, 0.0);
2052 FftForward(n, h);
2053 MagnitudeResponse(n, h, r);
2054 for(i = 0;i < m;i++)
2055 mag[i] = Lerp(mag[i], r[i], f);
2056 free(r);
2057 free(h);
2060 /* Calculate the contribution of each HRIR to the diffuse-field average based
2061 * on the area of its surface patch. All patches are centered at the HRIR
2062 * coordinates on the unit sphere and are measured by solid angle.
2064 static void CalculateDfWeights(const HrirDataT *hData, double *weights)
2066 double sum, evs, ev, upperEv, lowerEv, solidAngle;
2067 uint fi, ei;
2069 sum = 0.0;
2070 for(fi = 0;fi < hData->mFdCount;fi++)
2072 evs = M_PI / 2.0 / (hData->mFds[fi].mEvCount - 1);
2073 for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
2075 // For each elevation, calculate the upper and lower limits of
2076 // the patch band.
2077 ev = hData->mFds[fi].mEvs[ei].mElevation;
2078 lowerEv = fmax(-M_PI / 2.0, ev - evs);
2079 upperEv = fmin(M_PI / 2.0, ev + evs);
2080 // Calculate the area of the patch band.
2081 solidAngle = 2.0 * M_PI * (sin(upperEv) - sin(lowerEv));
2082 // Each weight is the area of one patch.
2083 weights[(fi * MAX_EV_COUNT) + ei] = solidAngle / hData->mFds[fi].mEvs[ei].mAzCount;
2084 // Sum the total surface area covered by the HRIRs of all fields.
2085 sum += solidAngle;
2088 /* TODO: It may be interesting to experiment with how a volume-based
2089 weighting performs compared to the existing distance-indepenent
2090 surface patches.
2092 for(fi = 0;fi < hData->mFdCount;fi++)
2094 // Normalize the weights given the total surface coverage for all
2095 // fields.
2096 for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
2097 weights[(fi * MAX_EV_COUNT) + ei] /= sum;
2101 /* Calculate the diffuse-field average from the given magnitude responses of
2102 * the HRIR set. Weighting can be applied to compensate for the varying
2103 * surface area covered by each HRIR. The final average can then be limited
2104 * by the specified magnitude range (in positive dB; 0.0 to skip).
2106 static void CalculateDiffuseFieldAverage(const HrirDataT *hData, const uint channels, const uint m, const int weighted, const double limit, double *dfa)
2108 double *weights = CreateDoubles(hData->mFdCount * MAX_EV_COUNT);
2109 uint count, ti, fi, ei, i, ai;
2111 if(weighted)
2113 // Use coverage weighting to calculate the average.
2114 CalculateDfWeights(hData, weights);
2116 else
2118 double weight;
2120 // If coverage weighting is not used, the weights still need to be
2121 // averaged by the number of existing HRIRs.
2122 count = hData->mIrCount;
2123 for(fi = 0;fi < hData->mFdCount;fi++)
2125 for(ei = 0;ei < hData->mFds[fi].mEvStart;ei++)
2126 count -= hData->mFds[fi].mEvs[ei].mAzCount;
2128 weight = 1.0 / count;
2130 for(fi = 0;fi < hData->mFdCount;fi++)
2132 for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
2133 weights[(fi * MAX_EV_COUNT) + ei] = weight;
2136 for(ti = 0;ti < channels;ti++)
2138 for(i = 0;i < m;i++)
2139 dfa[(ti * m) + i] = 0.0;
2140 for(fi = 0;fi < hData->mFdCount;fi++)
2142 for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
2144 for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
2146 HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
2147 // Get the weight for this HRIR's contribution.
2148 double weight = weights[(fi * MAX_EV_COUNT) + ei];
2150 // Add this HRIR's weighted power average to the total.
2151 for(i = 0;i < m;i++)
2152 dfa[(ti * m) + i] += weight * azd->mIrs[ti][i] * azd->mIrs[ti][i];
2156 // Finish the average calculation and keep it from being too small.
2157 for(i = 0;i < m;i++)
2158 dfa[(ti * m) + i] = fmax(sqrt(dfa[(ti * m) + i]), EPSILON);
2159 // Apply a limit to the magnitude range of the diffuse-field average
2160 // if desired.
2161 if(limit > 0.0)
2162 LimitMagnitudeResponse(hData->mFftSize, m, limit, &dfa[ti * m], &dfa[ti * m]);
2164 free(weights);
2167 // Perform diffuse-field equalization on the magnitude responses of the HRIR
2168 // set using the given average response.
2169 static void DiffuseFieldEqualize(const uint channels, const uint m, const double *dfa, const HrirDataT *hData)
2171 uint ti, fi, ei, ai, i;
2173 for(fi = 0;fi < hData->mFdCount;fi++)
2175 for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
2177 for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
2179 HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
2181 for(ti = 0;ti < channels;ti++)
2183 for(i = 0;i < m;i++)
2184 azd->mIrs[ti][i] /= dfa[(ti * m) + i];
2191 // Perform minimum-phase reconstruction using the magnitude responses of the
2192 // HRIR set.
2193 static void ReconstructHrirs(const HrirDataT *hData)
2195 uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
2196 uint n = hData->mFftSize;
2197 uint ti, fi, ei, ai, i;
2198 Complex *h = CreateComplexes(n);
2199 uint total, count, pcdone, lastpc;
2201 total = hData->mIrCount;
2202 for(fi = 0;fi < hData->mFdCount;fi++)
2204 for(ei = 0;ei < hData->mFds[fi].mEvStart;ei++)
2205 total -= hData->mFds[fi].mEvs[ei].mAzCount;
2207 total *= channels;
2208 count = pcdone = lastpc = 0;
2209 printf("%3d%% done.", pcdone);
2210 fflush(stdout);
2211 for(fi = 0;fi < hData->mFdCount;fi++)
2213 for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
2215 for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
2217 HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
2219 for(ti = 0;ti < channels;ti++)
2221 MinimumPhase(n, azd->mIrs[ti], h);
2222 FftInverse(n, h);
2223 for(i = 0;i < hData->mIrPoints;i++)
2224 azd->mIrs[ti][i] = h[i].Real;
2225 pcdone = ++count * 100 / total;
2226 if(pcdone != lastpc)
2228 lastpc = pcdone;
2229 printf("\r%3d%% done.", pcdone);
2230 fflush(stdout);
2236 printf("\n");
2237 free(h);
2240 // Resamples the HRIRs for use at the given sampling rate.
2241 static void ResampleHrirs(const uint rate, HrirDataT *hData)
2243 uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
2244 uint n = hData->mIrPoints;
2245 uint ti, fi, ei, ai;
2246 ResamplerT rs;
2248 ResamplerSetup(&rs, hData->mIrRate, rate);
2249 for(fi = 0;fi < hData->mFdCount;fi++)
2251 for(ei = hData->mFds[fi].mEvStart;ei < hData->mFds[fi].mEvCount;ei++)
2253 for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
2255 HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
2257 for(ti = 0;ti < channels;ti++)
2258 ResamplerRun(&rs, n, azd->mIrs[ti], n, azd->mIrs[ti]);
2262 hData->mIrRate = rate;
2263 ResamplerClear(&rs);
2266 /* Given field and elevation indices and an azimuth, calculate the indices of
2267 * the two HRIRs that bound the coordinate along with a factor for
2268 * calculating the continuous HRIR using interpolation.
2270 static void CalcAzIndices(const HrirDataT *hData, const uint fi, const uint ei, const double az, uint *a0, uint *a1, double *af)
2272 double f = (2.0*M_PI + az) * hData->mFds[fi].mEvs[ei].mAzCount / (2.0*M_PI);
2273 uint i = (uint)f % hData->mFds[fi].mEvs[ei].mAzCount;
2275 f -= floor(f);
2276 *a0 = i;
2277 *a1 = (i + 1) % hData->mFds[fi].mEvs[ei].mAzCount;
2278 *af = f;
2281 // Synthesize any missing onset timings at the bottom elevations of each
2282 // field. This just blends between slightly exaggerated known onsets (not
2283 // an accurate model).
2284 static void SynthesizeOnsets(HrirDataT *hData)
2286 uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
2287 uint ti, fi, oi, ai, ei, a0, a1;
2288 double t, of, af;
2290 for(fi = 0;fi < hData->mFdCount;fi++)
2292 if(hData->mFds[fi].mEvStart <= 0)
2293 continue;
2294 oi = hData->mFds[fi].mEvStart;
2296 for(ti = 0;ti < channels;ti++)
2298 t = 0.0;
2299 for(ai = 0;ai < hData->mFds[fi].mEvs[oi].mAzCount;ai++)
2300 t += hData->mFds[fi].mEvs[oi].mAzs[ai].mDelays[ti];
2301 hData->mFds[fi].mEvs[0].mAzs[0].mDelays[ti] = 1.32e-4 + (t / hData->mFds[fi].mEvs[oi].mAzCount);
2302 for(ei = 1;ei < hData->mFds[fi].mEvStart;ei++)
2304 of = (double)ei / hData->mFds[fi].mEvStart;
2305 for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
2307 CalcAzIndices(hData, fi, oi, hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth, &a0, &a1, &af);
2308 hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[ti] = Lerp(
2309 hData->mFds[fi].mEvs[0].mAzs[0].mDelays[ti],
2310 Lerp(hData->mFds[fi].mEvs[oi].mAzs[a0].mDelays[ti],
2311 hData->mFds[fi].mEvs[oi].mAzs[a1].mDelays[ti], af),
2320 /* Attempt to synthesize any missing HRIRs at the bottom elevations of each
2321 * field. Right now this just blends the lowest elevation HRIRs together and
2322 * applies some attenuation and high frequency damping. It is a simple, if
2323 * inaccurate model.
2325 static void SynthesizeHrirs(HrirDataT *hData)
2327 uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
2328 uint n = hData->mIrPoints;
2329 uint ti, fi, ai, ei, i;
2330 double lp[4], s0, s1;
2331 double of, b;
2332 uint a0, a1;
2333 double af;
2335 for(fi = 0;fi < hData->mFdCount;fi++)
2337 const uint oi = hData->mFds[fi].mEvStart;
2338 if(oi <= 0) continue;
2340 for(ti = 0;ti < channels;ti++)
2342 for(i = 0;i < n;i++)
2343 hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i] = 0.0;
2344 for(ai = 0;ai < hData->mFds[fi].mEvs[oi].mAzCount;ai++)
2346 for(i = 0;i < n;i++)
2347 hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i] += hData->mFds[fi].mEvs[oi].mAzs[ai].mIrs[ti][i] /
2348 hData->mFds[fi].mEvs[oi].mAzCount;
2350 for(ei = 1;ei < hData->mFds[fi].mEvStart;ei++)
2352 of = (double)ei / hData->mFds[fi].mEvStart;
2353 b = (1.0 - of) * (3.5e-6 * hData->mIrRate);
2354 for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
2356 CalcAzIndices(hData, fi, oi, hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth, &a0, &a1, &af);
2357 lp[0] = 0.0;
2358 lp[1] = 0.0;
2359 lp[2] = 0.0;
2360 lp[3] = 0.0;
2361 for(i = 0;i < n;i++)
2363 s0 = hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i];
2364 s1 = Lerp(hData->mFds[fi].mEvs[oi].mAzs[a0].mIrs[ti][i],
2365 hData->mFds[fi].mEvs[oi].mAzs[a1].mIrs[ti][i], af);
2366 s0 = Lerp(s0, s1, of);
2367 lp[0] = Lerp(s0, lp[0], b);
2368 lp[1] = Lerp(lp[0], lp[1], b);
2369 lp[2] = Lerp(lp[1], lp[2], b);
2370 lp[3] = Lerp(lp[2], lp[3], b);
2371 hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[ti][i] = lp[3];
2375 b = 3.5e-6 * hData->mIrRate;
2376 lp[0] = 0.0;
2377 lp[1] = 0.0;
2378 lp[2] = 0.0;
2379 lp[3] = 0.0;
2380 for(i = 0;i < n;i++)
2382 s0 = hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i];
2383 lp[0] = Lerp(s0, lp[0], b);
2384 lp[1] = Lerp(lp[0], lp[1], b);
2385 lp[2] = Lerp(lp[1], lp[2], b);
2386 lp[3] = Lerp(lp[2], lp[3], b);
2387 hData->mFds[fi].mEvs[0].mAzs[0].mIrs[ti][i] = lp[3];
2390 hData->mFds[fi].mEvStart = 0;
2394 // The following routines assume a full set of HRIRs for all elevations.
2396 // Normalize the HRIR set and slightly attenuate the result.
2397 static void NormalizeHrirs(const HrirDataT *hData)
2399 uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
2400 uint n = hData->mIrPoints;
2401 uint ti, fi, ei, ai, i;
2402 double maxLevel = 0.0;
2404 for(fi = 0;fi < hData->mFdCount;fi++)
2406 for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
2408 for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
2410 HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
2412 for(ti = 0;ti < channels;ti++)
2414 for(i = 0;i < n;i++)
2415 maxLevel = fmax(fabs(azd->mIrs[ti][i]), maxLevel);
2420 maxLevel = 1.01 * maxLevel;
2421 for(fi = 0;fi < hData->mFdCount;fi++)
2423 for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
2425 for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
2427 HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
2429 for(ti = 0;ti < channels;ti++)
2431 for(i = 0;i < n;i++)
2432 azd->mIrs[ti][i] /= maxLevel;
2439 // Calculate the left-ear time delay using a spherical head model.
2440 static double CalcLTD(const double ev, const double az, const double rad, const double dist)
2442 double azp, dlp, l, al;
2444 azp = asin(cos(ev) * sin(az));
2445 dlp = sqrt((dist*dist) + (rad*rad) + (2.0*dist*rad*sin(azp)));
2446 l = sqrt((dist*dist) - (rad*rad));
2447 al = (0.5 * M_PI) + azp;
2448 if(dlp > l)
2449 dlp = l + (rad * (al - acos(rad / dist)));
2450 return dlp / 343.3;
2453 // Calculate the effective head-related time delays for each minimum-phase
2454 // HRIR.
2455 static void CalculateHrtds(const HeadModelT model, const double radius, HrirDataT *hData)
2457 uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
2458 double minHrtd = INFINITY, maxHrtd = -INFINITY;
2459 uint ti, fi, ei, ai;
2460 double t;
2462 if(model == HM_DATASET)
2464 for(fi = 0;fi < hData->mFdCount;fi++)
2466 for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
2468 for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
2470 HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
2472 for(ti = 0;ti < channels;ti++)
2474 t = azd->mDelays[ti] * radius / hData->mRadius;
2475 azd->mDelays[ti] = t;
2476 maxHrtd = fmax(t, maxHrtd);
2477 minHrtd = fmin(t, minHrtd);
2483 else
2485 for(fi = 0;fi < hData->mFdCount;fi++)
2487 for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
2489 HrirEvT *evd = &hData->mFds[fi].mEvs[ei];
2491 for(ai = 0;ai < evd->mAzCount;ai++)
2493 HrirAzT *azd = &evd->mAzs[ai];
2495 for(ti = 0;ti < channels;ti++)
2497 t = CalcLTD(evd->mElevation, azd->mAzimuth, radius, hData->mFds[fi].mDistance);
2498 azd->mDelays[ti] = t;
2499 maxHrtd = fmax(t, maxHrtd);
2500 minHrtd = fmin(t, minHrtd);
2506 for(fi = 0;fi < hData->mFdCount;fi++)
2508 for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
2510 for(ti = 0;ti < channels;ti++)
2512 for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
2513 hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[ti] -= minHrtd;
2519 // Clear the initial HRIR data state.
2520 static void ResetHrirData(HrirDataT *hData)
2522 hData->mIrRate = 0;
2523 hData->mSampleType = ST_S24;
2524 hData->mChannelType = CT_NONE;
2525 hData->mIrPoints = 0;
2526 hData->mFftSize = 0;
2527 hData->mIrSize = 0;
2528 hData->mRadius = 0.0;
2529 hData->mIrCount = 0;
2530 hData->mFdCount = 0;
2531 hData->mFds = NULL;
2534 // Allocate and configure dynamic HRIR structures.
2535 static int PrepareHrirData(const uint fdCount, const double distances[MAX_FD_COUNT], const uint evCounts[MAX_FD_COUNT], const uint azCounts[MAX_FD_COUNT * MAX_EV_COUNT], HrirDataT *hData)
2537 uint evTotal = 0, azTotal = 0, fi, ei, ai;
2539 for(fi = 0;fi < fdCount;fi++)
2541 evTotal += evCounts[fi];
2542 for(ei = 0;ei < evCounts[fi];ei++)
2543 azTotal += azCounts[(fi * MAX_EV_COUNT) + ei];
2545 if(!fdCount || !evTotal || !azTotal)
2546 return 0;
2548 hData->mFds = calloc(fdCount, sizeof(*hData->mFds));
2549 if(hData->mFds == NULL)
2550 return 0;
2551 hData->mFds[0].mEvs = calloc(evTotal, sizeof(*hData->mFds[0].mEvs));
2552 if(hData->mFds[0].mEvs == NULL)
2553 return 0;
2554 hData->mFds[0].mEvs[0].mAzs = calloc(azTotal, sizeof(*hData->mFds[0].mEvs[0].mAzs));
2555 if(hData->mFds[0].mEvs[0].mAzs == NULL)
2556 return 0;
2557 hData->mIrCount = azTotal;
2558 hData->mFdCount = fdCount;
2559 evTotal = 0;
2560 azTotal = 0;
2561 for(fi = 0;fi < fdCount;fi++)
2563 hData->mFds[fi].mDistance = distances[fi];
2564 hData->mFds[fi].mEvCount = evCounts[fi];
2565 hData->mFds[fi].mEvStart = 0;
2566 hData->mFds[fi].mEvs = &hData->mFds[0].mEvs[evTotal];
2567 evTotal += evCounts[fi];
2568 for(ei = 0;ei < evCounts[fi];ei++)
2570 uint azCount = azCounts[(fi * MAX_EV_COUNT) + ei];
2572 hData->mFds[fi].mIrCount += azCount;
2573 hData->mFds[fi].mEvs[ei].mElevation = -M_PI / 2.0 + M_PI * ei / (evCounts[fi] - 1);
2574 hData->mFds[fi].mEvs[ei].mIrCount += azCount;
2575 hData->mFds[fi].mEvs[ei].mAzCount = azCount;
2576 hData->mFds[fi].mEvs[ei].mAzs = &hData->mFds[0].mEvs[0].mAzs[azTotal];
2577 for(ai = 0;ai < azCount;ai++)
2579 hData->mFds[fi].mEvs[ei].mAzs[ai].mAzimuth = 2.0 * M_PI * ai / azCount;
2580 hData->mFds[fi].mEvs[ei].mAzs[ai].mIndex = azTotal + ai;
2581 hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[0] = 0.0;
2582 hData->mFds[fi].mEvs[ei].mAzs[ai].mDelays[1] = 0.0;
2583 hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[0] = NULL;
2584 hData->mFds[fi].mEvs[ei].mAzs[ai].mIrs[1] = NULL;
2586 azTotal += azCount;
2589 return 1;
2592 // Clean up HRIR data.
2593 static void FreeHrirData(HrirDataT *hData)
2595 if(hData->mFds != NULL)
2597 if(hData->mFds[0].mEvs != NULL)
2599 if(hData->mFds[0].mEvs[0].mAzs)
2601 free(hData->mFds[0].mEvs[0].mAzs[0].mIrs[0]);
2602 free(hData->mFds[0].mEvs[0].mAzs);
2604 free(hData->mFds[0].mEvs);
2606 free(hData->mFds);
2607 hData->mFds = NULL;
2611 // Match the channel type from a given identifier.
2612 static ChannelTypeT MatchChannelType(const char *ident)
2614 if(strcasecmp(ident, "mono") == 0)
2615 return CT_MONO;
2616 if(strcasecmp(ident, "stereo") == 0)
2617 return CT_STEREO;
2618 return CT_NONE;
2621 // Process the data set definition to read and validate the data set metrics.
2622 static int ProcessMetrics(TokenReaderT *tr, const uint fftSize, const uint truncSize, HrirDataT *hData)
2624 int hasRate = 0, hasType = 0, hasPoints = 0, hasRadius = 0;
2625 int hasDistance = 0, hasAzimuths = 0;
2626 char ident[MAX_IDENT_LEN+1];
2627 uint line, col;
2628 double fpVal;
2629 uint points;
2630 int intVal;
2631 double distances[MAX_FD_COUNT];
2632 uint fdCount = 0;
2633 uint evCounts[MAX_FD_COUNT];
2634 uint *azCounts = calloc(MAX_FD_COUNT * MAX_EV_COUNT, sizeof(*azCounts));
2636 if(azCounts == NULL)
2638 fprintf(stderr, "Error: Out of memory.\n");
2639 exit(-1);
2641 TrIndication(tr, &line, &col);
2642 while(TrIsIdent(tr))
2644 TrIndication(tr, &line, &col);
2645 if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
2646 goto error;
2647 if(strcasecmp(ident, "rate") == 0)
2649 if(hasRate)
2651 TrErrorAt(tr, line, col, "Redefinition of 'rate'.\n");
2652 goto error;
2654 if(!TrReadOperator(tr, "="))
2655 goto error;
2656 if(!TrReadInt(tr, MIN_RATE, MAX_RATE, &intVal))
2657 goto error;
2658 hData->mIrRate = (uint)intVal;
2659 hasRate = 1;
2661 else if(strcasecmp(ident, "type") == 0)
2663 char type[MAX_IDENT_LEN+1];
2665 if(hasType)
2667 TrErrorAt(tr, line, col, "Redefinition of 'type'.\n");
2668 goto error;
2670 if(!TrReadOperator(tr, "="))
2671 goto error;
2673 if(!TrReadIdent(tr, MAX_IDENT_LEN, type))
2674 goto error;
2675 hData->mChannelType = MatchChannelType(type);
2676 if(hData->mChannelType == CT_NONE)
2678 TrErrorAt(tr, line, col, "Expected a channel type.\n");
2679 goto error;
2681 hasType = 1;
2683 else if(strcasecmp(ident, "points") == 0)
2685 if(hasPoints)
2687 TrErrorAt(tr, line, col, "Redefinition of 'points'.\n");
2688 goto error;
2690 if(!TrReadOperator(tr, "="))
2691 goto error;
2692 TrIndication(tr, &line, &col);
2693 if(!TrReadInt(tr, MIN_POINTS, MAX_POINTS, &intVal))
2694 goto error;
2695 points = (uint)intVal;
2696 if(fftSize > 0 && points > fftSize)
2698 TrErrorAt(tr, line, col, "Value exceeds the overridden FFT size.\n");
2699 goto error;
2701 if(points < truncSize)
2703 TrErrorAt(tr, line, col, "Value is below the truncation size.\n");
2704 goto error;
2706 hData->mIrPoints = points;
2707 if(fftSize <= 0)
2709 hData->mFftSize = DEFAULT_FFTSIZE;
2710 hData->mIrSize = 1 + (DEFAULT_FFTSIZE / 2);
2712 else
2714 hData->mFftSize = fftSize;
2715 hData->mIrSize = 1 + (fftSize / 2);
2716 if(points > hData->mIrSize)
2717 hData->mIrSize = points;
2719 hasPoints = 1;
2721 else if(strcasecmp(ident, "radius") == 0)
2723 if(hasRadius)
2725 TrErrorAt(tr, line, col, "Redefinition of 'radius'.\n");
2726 goto error;
2728 if(!TrReadOperator(tr, "="))
2729 goto error;
2730 if(!TrReadFloat(tr, MIN_RADIUS, MAX_RADIUS, &fpVal))
2731 goto error;
2732 hData->mRadius = fpVal;
2733 hasRadius = 1;
2735 else if(strcasecmp(ident, "distance") == 0)
2737 uint count = 0;
2739 if(hasDistance)
2741 TrErrorAt(tr, line, col, "Redefinition of 'distance'.\n");
2742 goto error;
2744 if(!TrReadOperator(tr, "="))
2745 goto error;
2747 for(;;)
2749 if(!TrReadFloat(tr, MIN_DISTANCE, MAX_DISTANCE, &fpVal))
2750 goto error;
2751 if(count > 0 && fpVal <= distances[count - 1])
2753 TrError(tr, "Distances are not ascending.\n");
2754 goto error;
2756 distances[count++] = fpVal;
2757 if(!TrIsOperator(tr, ","))
2758 break;
2759 if(count >= MAX_FD_COUNT)
2761 TrError(tr, "Exceeded the maximum of %d fields.\n", MAX_FD_COUNT);
2762 goto error;
2764 TrReadOperator(tr, ",");
2766 if(fdCount != 0 && count != fdCount)
2768 TrError(tr, "Did not match the specified number of %d fields.\n", fdCount);
2769 goto error;
2771 fdCount = count;
2772 hasDistance = 1;
2774 else if(strcasecmp(ident, "azimuths") == 0)
2776 uint count = 0;
2778 if(hasAzimuths)
2780 TrErrorAt(tr, line, col, "Redefinition of 'azimuths'.\n");
2781 goto error;
2783 if(!TrReadOperator(tr, "="))
2784 goto error;
2786 evCounts[0] = 0;
2787 for(;;)
2789 if(!TrReadInt(tr, MIN_AZ_COUNT, MAX_AZ_COUNT, &intVal))
2790 goto error;
2791 azCounts[(count * MAX_EV_COUNT) + evCounts[count]++] = (uint)intVal;
2792 if(TrIsOperator(tr, ","))
2794 if(evCounts[count] >= MAX_EV_COUNT)
2796 TrError(tr, "Exceeded the maximum of %d elevations.\n", MAX_EV_COUNT);
2797 goto error;
2799 TrReadOperator(tr, ",");
2801 else
2803 if(evCounts[count] < MIN_EV_COUNT)
2805 TrErrorAt(tr, line, col, "Did not reach the minimum of %d azimuth counts.\n", MIN_EV_COUNT);
2806 goto error;
2808 if(azCounts[count * MAX_EV_COUNT] != 1 || azCounts[(count * MAX_EV_COUNT) + evCounts[count] - 1] != 1)
2810 TrError(tr, "Poles are not singular for field %d.\n", count - 1);
2811 goto error;
2813 count++;
2814 if(TrIsOperator(tr, ";"))
2816 if(count >= MAX_FD_COUNT)
2818 TrError(tr, "Exceeded the maximum number of %d fields.\n", MAX_FD_COUNT);
2819 goto error;
2821 evCounts[count] = 0;
2822 TrReadOperator(tr, ";");
2824 else
2826 break;
2830 if(fdCount != 0 && count != fdCount)
2832 TrError(tr, "Did not match the specified number of %d fields.\n", fdCount);
2833 goto error;
2835 fdCount = count;
2836 hasAzimuths = 1;
2838 else
2840 TrErrorAt(tr, line, col, "Expected a metric name.\n");
2841 goto error;
2843 TrSkipWhitespace(tr);
2845 if(!(hasRate && hasPoints && hasRadius && hasDistance && hasAzimuths))
2847 TrErrorAt(tr, line, col, "Expected a metric name.\n");
2848 goto error;
2850 if(distances[0] < hData->mRadius)
2852 TrError(tr, "Distance cannot start below head radius.\n");
2853 goto error;
2855 if(hData->mChannelType == CT_NONE)
2856 hData->mChannelType = CT_MONO;
2857 if(!PrepareHrirData(fdCount, distances, evCounts, azCounts, hData))
2859 fprintf(stderr, "Error: Out of memory.\n");
2860 exit(-1);
2862 free(azCounts);
2863 return 1;
2865 error:
2866 free(azCounts);
2867 return 0;
2870 // Parse an index triplet from the data set definition.
2871 static int ReadIndexTriplet(TokenReaderT *tr, const HrirDataT *hData, uint *fi, uint *ei, uint *ai)
2873 int intVal;
2875 if(hData->mFdCount > 1)
2877 if(!TrReadInt(tr, 0, (int)hData->mFdCount - 1, &intVal))
2878 return 0;
2879 *fi = (uint)intVal;
2880 if(!TrReadOperator(tr, ","))
2881 return 0;
2883 else
2885 *fi = 0;
2887 if(!TrReadInt(tr, 0, (int)hData->mFds[*fi].mEvCount - 1, &intVal))
2888 return 0;
2889 *ei = (uint)intVal;
2890 if(!TrReadOperator(tr, ","))
2891 return 0;
2892 if(!TrReadInt(tr, 0, (int)hData->mFds[*fi].mEvs[*ei].mAzCount - 1, &intVal))
2893 return 0;
2894 *ai = (uint)intVal;
2895 return 1;
2898 // Match the source format from a given identifier.
2899 static SourceFormatT MatchSourceFormat(const char *ident)
2901 if(strcasecmp(ident, "wave") == 0)
2902 return SF_WAVE;
2903 if(strcasecmp(ident, "bin_le") == 0)
2904 return SF_BIN_LE;
2905 if(strcasecmp(ident, "bin_be") == 0)
2906 return SF_BIN_BE;
2907 if(strcasecmp(ident, "ascii") == 0)
2908 return SF_ASCII;
2909 return SF_NONE;
2912 // Match the source element type from a given identifier.
2913 static ElementTypeT MatchElementType(const char *ident)
2915 if(strcasecmp(ident, "int") == 0)
2916 return ET_INT;
2917 if(strcasecmp(ident, "fp") == 0)
2918 return ET_FP;
2919 return ET_NONE;
2922 // Parse and validate a source reference from the data set definition.
2923 static int ReadSourceRef(TokenReaderT *tr, SourceRefT *src)
2925 char ident[MAX_IDENT_LEN+1];
2926 uint line, col;
2927 int intVal;
2929 TrIndication(tr, &line, &col);
2930 if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
2931 return 0;
2932 src->mFormat = MatchSourceFormat(ident);
2933 if(src->mFormat == SF_NONE)
2935 TrErrorAt(tr, line, col, "Expected a source format.\n");
2936 return 0;
2938 if(!TrReadOperator(tr, "("))
2939 return 0;
2940 if(src->mFormat == SF_WAVE)
2942 if(!TrReadInt(tr, 0, MAX_WAVE_CHANNELS, &intVal))
2943 return 0;
2944 src->mType = ET_NONE;
2945 src->mSize = 0;
2946 src->mBits = 0;
2947 src->mChannel = (uint)intVal;
2948 src->mSkip = 0;
2950 else
2952 TrIndication(tr, &line, &col);
2953 if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
2954 return 0;
2955 src->mType = MatchElementType(ident);
2956 if(src->mType == ET_NONE)
2958 TrErrorAt(tr, line, col, "Expected a source element type.\n");
2959 return 0;
2961 if(src->mFormat == SF_BIN_LE || src->mFormat == SF_BIN_BE)
2963 if(!TrReadOperator(tr, ","))
2964 return 0;
2965 if(src->mType == ET_INT)
2967 if(!TrReadInt(tr, MIN_BIN_SIZE, MAX_BIN_SIZE, &intVal))
2968 return 0;
2969 src->mSize = (uint)intVal;
2970 if(!TrIsOperator(tr, ","))
2971 src->mBits = (int)(8*src->mSize);
2972 else
2974 TrReadOperator(tr, ",");
2975 TrIndication(tr, &line, &col);
2976 if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal))
2977 return 0;
2978 if(abs(intVal) < MIN_BIN_BITS || (uint)abs(intVal) > (8*src->mSize))
2980 TrErrorAt(tr, line, col, "Expected a value of (+/-) %d to %d.\n", MIN_BIN_BITS, 8*src->mSize);
2981 return 0;
2983 src->mBits = intVal;
2986 else
2988 TrIndication(tr, &line, &col);
2989 if(!TrReadInt(tr, -2147483647-1, 2147483647, &intVal))
2990 return 0;
2991 if(intVal != 4 && intVal != 8)
2993 TrErrorAt(tr, line, col, "Expected a value of 4 or 8.\n");
2994 return 0;
2996 src->mSize = (uint)intVal;
2997 src->mBits = 0;
3000 else if(src->mFormat == SF_ASCII && src->mType == ET_INT)
3002 if(!TrReadOperator(tr, ","))
3003 return 0;
3004 if(!TrReadInt(tr, MIN_ASCII_BITS, MAX_ASCII_BITS, &intVal))
3005 return 0;
3006 src->mSize = 0;
3007 src->mBits = intVal;
3009 else
3011 src->mSize = 0;
3012 src->mBits = 0;
3015 if(!TrIsOperator(tr, ";"))
3016 src->mSkip = 0;
3017 else
3019 TrReadOperator(tr, ";");
3020 if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal))
3021 return 0;
3022 src->mSkip = (uint)intVal;
3025 if(!TrReadOperator(tr, ")"))
3026 return 0;
3027 if(TrIsOperator(tr, "@"))
3029 TrReadOperator(tr, "@");
3030 if(!TrReadInt(tr, 0, 0x7FFFFFFF, &intVal))
3031 return 0;
3032 src->mOffset = (uint)intVal;
3034 else
3035 src->mOffset = 0;
3036 if(!TrReadOperator(tr, ":"))
3037 return 0;
3038 if(!TrReadString(tr, MAX_PATH_LEN, src->mPath))
3039 return 0;
3040 return 1;
3043 // Match the target ear (index) from a given identifier.
3044 static int MatchTargetEar(const char *ident)
3046 if(strcasecmp(ident, "left") == 0)
3047 return 0;
3048 if(strcasecmp(ident, "right") == 0)
3049 return 1;
3050 return -1;
3053 // Process the list of sources in the data set definition.
3054 static int ProcessSources(const HeadModelT model, TokenReaderT *tr, HrirDataT *hData)
3056 uint channels = (hData->mChannelType == CT_STEREO) ? 2 : 1;
3057 double *hrirs = CreateDoubles(channels * hData->mIrCount * hData->mIrSize);
3058 double *hrir = CreateDoubles(hData->mIrPoints);
3059 uint line, col, fi, ei, ai, ti;
3060 int count;
3062 printf("Loading sources...");
3063 fflush(stdout);
3064 count = 0;
3065 while(TrIsOperator(tr, "["))
3067 double factor[2] = { 1.0, 1.0 };
3069 TrIndication(tr, &line, &col);
3070 TrReadOperator(tr, "[");
3071 if(!ReadIndexTriplet(tr, hData, &fi, &ei, &ai))
3072 goto error;
3073 if(!TrReadOperator(tr, "]"))
3074 goto error;
3075 HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
3077 if(azd->mIrs[0] != NULL)
3079 TrErrorAt(tr, line, col, "Redefinition of source.\n");
3080 goto error;
3082 if(!TrReadOperator(tr, "="))
3083 goto error;
3085 for(;;)
3087 SourceRefT src;
3088 uint ti = 0;
3090 if(!ReadSourceRef(tr, &src))
3091 goto error;
3093 // TODO: Would be nice to display 'x of y files', but that would
3094 // require preparing the source refs first to get a total count
3095 // before loading them.
3096 ++count;
3097 printf("\rLoading sources... %d file%s", count, (count==1)?"":"s");
3098 fflush(stdout);
3100 if(!LoadSource(&src, hData->mIrRate, hData->mIrPoints, hrir))
3101 goto error;
3103 if(hData->mChannelType == CT_STEREO)
3105 char ident[MAX_IDENT_LEN+1];
3107 if(!TrReadIdent(tr, MAX_IDENT_LEN, ident))
3108 goto error;
3109 ti = MatchTargetEar(ident);
3110 if((int)ti < 0)
3112 TrErrorAt(tr, line, col, "Expected a target ear.\n");
3113 goto error;
3116 azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)];
3117 if(model == HM_DATASET)
3118 azd->mDelays[ti] = AverageHrirOnset(hData->mIrRate, hData->mIrPoints, hrir, 1.0 / factor[ti], azd->mDelays[ti]);
3119 AverageHrirMagnitude(hData->mIrPoints, hData->mFftSize, hrir, 1.0 / factor[ti], azd->mIrs[ti]);
3120 factor[ti] += 1.0;
3121 if(!TrIsOperator(tr, "+"))
3122 break;
3123 TrReadOperator(tr, "+");
3125 if(hData->mChannelType == CT_STEREO)
3127 if(azd->mIrs[0] == NULL)
3129 TrErrorAt(tr, line, col, "Missing left ear source reference(s).\n");
3130 goto error;
3132 else if(azd->mIrs[1] == NULL)
3134 TrErrorAt(tr, line, col, "Missing right ear source reference(s).\n");
3135 goto error;
3139 printf("\n");
3140 for(fi = 0;fi < hData->mFdCount;fi++)
3142 for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
3144 for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
3146 HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
3148 if(azd->mIrs[0] != NULL)
3149 break;
3151 if(ai < hData->mFds[fi].mEvs[ei].mAzCount)
3152 break;
3154 if(ei >= hData->mFds[fi].mEvCount)
3156 TrError(tr, "Missing source references [ %d, *, * ].\n", fi);
3157 goto error;
3159 hData->mFds[fi].mEvStart = ei;
3160 for(;ei < hData->mFds[fi].mEvCount;ei++)
3162 for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
3164 HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
3166 if(azd->mIrs[0] == NULL)
3168 TrError(tr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai);
3169 goto error;
3174 for(ti = 0;ti < channels;ti++)
3176 for(fi = 0;fi < hData->mFdCount;fi++)
3178 for(ei = 0;ei < hData->mFds[fi].mEvCount;ei++)
3180 for(ai = 0;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
3182 HrirAzT *azd = &hData->mFds[fi].mEvs[ei].mAzs[ai];
3184 azd->mIrs[ti] = &hrirs[hData->mIrSize * (ti * hData->mIrCount + azd->mIndex)];
3189 if(!TrLoad(tr))
3191 free(hrir);
3192 return 1;
3194 TrError(tr, "Errant data at end of source list.\n");
3196 error:
3197 free(hrir);
3198 return 0;
3201 /* Parse the data set definition and process the source data, storing the
3202 * resulting data set as desired. If the input name is NULL it will read
3203 * from standard input.
3205 static int ProcessDefinition(const char *inName, const uint outRate, const uint fftSize, const int equalize, const int surface, const double limit, const uint truncSize, const HeadModelT model, const double radius, const char *outName)
3207 char rateStr[8+1], expName[MAX_PATH_LEN];
3208 TokenReaderT tr;
3209 HrirDataT hData;
3210 FILE *fp;
3211 int ret;
3213 ResetHrirData(&hData);
3214 fprintf(stdout, "Reading HRIR definition from %s...\n", inName?inName:"stdin");
3215 if(inName != NULL)
3217 fp = fopen(inName, "r");
3218 if(fp == NULL)
3220 fprintf(stderr, "Error: Could not open definition file '%s'\n", inName);
3221 return 0;
3223 TrSetup(fp, inName, &tr);
3225 else
3227 fp = stdin;
3228 TrSetup(fp, "<stdin>", &tr);
3230 if(!ProcessMetrics(&tr, fftSize, truncSize, &hData))
3232 if(inName != NULL)
3233 fclose(fp);
3234 return 0;
3236 if(!ProcessSources(model, &tr, &hData))
3238 FreeHrirData(&hData);
3239 if(inName != NULL)
3240 fclose(fp);
3241 return 0;
3243 if(fp != stdin)
3244 fclose(fp);
3245 if(equalize)
3247 uint c = (hData.mChannelType == CT_STEREO) ? 2 : 1;
3248 uint m = 1 + hData.mFftSize / 2;
3249 double *dfa = CreateDoubles(c * m);
3251 fprintf(stdout, "Calculating diffuse-field average...\n");
3252 CalculateDiffuseFieldAverage(&hData, c, m, surface, limit, dfa);
3253 fprintf(stdout, "Performing diffuse-field equalization...\n");
3254 DiffuseFieldEqualize(c, m, dfa, &hData);
3255 free(dfa);
3257 fprintf(stdout, "Performing minimum phase reconstruction...\n");
3258 ReconstructHrirs(&hData);
3259 if(outRate != 0 && outRate != hData.mIrRate)
3261 fprintf(stdout, "Resampling HRIRs...\n");
3262 ResampleHrirs(outRate, &hData);
3264 fprintf(stdout, "Truncating minimum-phase HRIRs...\n");
3265 hData.mIrPoints = truncSize;
3266 fprintf(stdout, "Synthesizing missing elevations...\n");
3267 if(model == HM_DATASET)
3268 SynthesizeOnsets(&hData);
3269 SynthesizeHrirs(&hData);
3270 fprintf(stdout, "Normalizing final HRIRs...\n");
3271 NormalizeHrirs(&hData);
3272 fprintf(stdout, "Calculating impulse delays...\n");
3273 CalculateHrtds(model, (radius > DEFAULT_CUSTOM_RADIUS) ? radius : hData.mRadius, &hData);
3274 snprintf(rateStr, 8, "%u", hData.mIrRate);
3275 StrSubst(outName, "%r", rateStr, MAX_PATH_LEN, expName);
3276 fprintf(stdout, "Creating MHR data set %s...\n", expName);
3277 ret = StoreMhr(&hData, expName);
3279 FreeHrirData(&hData);
3280 return ret;
3283 static void PrintHelp(const char *argv0, FILE *ofile)
3285 fprintf(ofile, "Usage: %s [<option>...]\n\n", argv0);
3286 fprintf(ofile, "Options:\n");
3287 fprintf(ofile, " -m Ignored for compatibility.\n");
3288 fprintf(ofile, " -r <rate> Change the data set sample rate to the specified value and\n");
3289 fprintf(ofile, " resample the HRIRs accordingly.\n");
3290 fprintf(ofile, " -f <points> Override the FFT window size (default: %u).\n", DEFAULT_FFTSIZE);
3291 fprintf(ofile, " -e {on|off} Toggle diffuse-field equalization (default: %s).\n", (DEFAULT_EQUALIZE ? "on" : "off"));
3292 fprintf(ofile, " -s {on|off} Toggle surface-weighted diffuse-field average (default: %s).\n", (DEFAULT_SURFACE ? "on" : "off"));
3293 fprintf(ofile, " -l {<dB>|none} Specify a limit to the magnitude range of the diffuse-field\n");
3294 fprintf(ofile, " average (default: %.2f).\n", DEFAULT_LIMIT);
3295 fprintf(ofile, " -w <points> Specify the size of the truncation window that's applied\n");
3296 fprintf(ofile, " after minimum-phase reconstruction (default: %u).\n", DEFAULT_TRUNCSIZE);
3297 fprintf(ofile, " -d {dataset| Specify the model used for calculating the head-delay timing\n");
3298 fprintf(ofile, " sphere} values (default: %s).\n", ((DEFAULT_HEAD_MODEL == HM_DATASET) ? "dataset" : "sphere"));
3299 fprintf(ofile, " -c <size> Use a customized head radius measured ear-to-ear in meters.\n");
3300 fprintf(ofile, " -i <filename> Specify an HRIR definition file to use (defaults to stdin).\n");
3301 fprintf(ofile, " -o <filename> Specify an output file. Use of '%%r' will be substituted with\n");
3302 fprintf(ofile, " the data set sample rate.\n");
3305 // Standard command line dispatch.
3306 int main(int argc, char *argv[])
3308 const char *inName = NULL, *outName = NULL;
3309 uint outRate, fftSize;
3310 int equalize, surface;
3311 char *end = NULL;
3312 HeadModelT model;
3313 uint truncSize;
3314 double radius;
3315 double limit;
3316 int opt;
3318 GET_UNICODE_ARGS(&argc, &argv);
3320 if(argc < 2)
3322 fprintf(stdout, "HRTF Processing and Composition Utility\n\n");
3323 PrintHelp(argv[0], stdout);
3324 exit(EXIT_SUCCESS);
3327 outName = "./oalsoft_hrtf_%r.mhr";
3328 outRate = 0;
3329 fftSize = 0;
3330 equalize = DEFAULT_EQUALIZE;
3331 surface = DEFAULT_SURFACE;
3332 limit = DEFAULT_LIMIT;
3333 truncSize = DEFAULT_TRUNCSIZE;
3334 model = DEFAULT_HEAD_MODEL;
3335 radius = DEFAULT_CUSTOM_RADIUS;
3337 while((opt=getopt(argc, argv, "mr:f:e:s:l:w:d:c:e:i:o:h")) != -1)
3339 switch(opt)
3341 case 'm':
3342 fprintf(stderr, "Ignoring unused command '-m'.\n");
3343 break;
3345 case 'r':
3346 outRate = strtoul(optarg, &end, 10);
3347 if(end[0] != '\0' || outRate < MIN_RATE || outRate > MAX_RATE)
3349 fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected between %u to %u.\n", optarg, opt, MIN_RATE, MAX_RATE);
3350 exit(EXIT_FAILURE);
3352 break;
3354 case 'f':
3355 fftSize = strtoul(optarg, &end, 10);
3356 if(end[0] != '\0' || (fftSize&(fftSize-1)) || fftSize < MIN_FFTSIZE || fftSize > MAX_FFTSIZE)
3358 fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected a power-of-two between %u to %u.\n", optarg, opt, MIN_FFTSIZE, MAX_FFTSIZE);
3359 exit(EXIT_FAILURE);
3361 break;
3363 case 'e':
3364 if(strcmp(optarg, "on") == 0)
3365 equalize = 1;
3366 else if(strcmp(optarg, "off") == 0)
3367 equalize = 0;
3368 else
3370 fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt);
3371 exit(EXIT_FAILURE);
3373 break;
3375 case 's':
3376 if(strcmp(optarg, "on") == 0)
3377 surface = 1;
3378 else if(strcmp(optarg, "off") == 0)
3379 surface = 0;
3380 else
3382 fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg, opt);
3383 exit(EXIT_FAILURE);
3385 break;
3387 case 'l':
3388 if(strcmp(optarg, "none") == 0)
3389 limit = 0.0;
3390 else
3392 limit = strtod(optarg, &end);
3393 if(end[0] != '\0' || limit < MIN_LIMIT || limit > MAX_LIMIT)
3395 fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected between %.0f to %.0f.\n", optarg, opt, MIN_LIMIT, MAX_LIMIT);
3396 exit(EXIT_FAILURE);
3399 break;
3401 case 'w':
3402 truncSize = strtoul(optarg, &end, 10);
3403 if(end[0] != '\0' || truncSize < MIN_TRUNCSIZE || truncSize > MAX_TRUNCSIZE || (truncSize%MOD_TRUNCSIZE))
3405 fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected multiple of %u between %u to %u.\n", optarg, opt, MOD_TRUNCSIZE, MIN_TRUNCSIZE, MAX_TRUNCSIZE);
3406 exit(EXIT_FAILURE);
3408 break;
3410 case 'd':
3411 if(strcmp(optarg, "dataset") == 0)
3412 model = HM_DATASET;
3413 else if(strcmp(optarg, "sphere") == 0)
3414 model = HM_SPHERE;
3415 else
3417 fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected dataset or sphere.\n", optarg, opt);
3418 exit(EXIT_FAILURE);
3420 break;
3422 case 'c':
3423 radius = strtod(optarg, &end);
3424 if(end[0] != '\0' || radius < MIN_CUSTOM_RADIUS || radius > MAX_CUSTOM_RADIUS)
3426 fprintf(stderr, "Error: Got unexpected value \"%s\" for option -%c, expected between %.2f to %.2f.\n", optarg, opt, MIN_CUSTOM_RADIUS, MAX_CUSTOM_RADIUS);
3427 exit(EXIT_FAILURE);
3429 break;
3431 case 'i':
3432 inName = optarg;
3433 break;
3435 case 'o':
3436 outName = optarg;
3437 break;
3439 case 'h':
3440 PrintHelp(argv[0], stdout);
3441 exit(EXIT_SUCCESS);
3443 default: /* '?' */
3444 PrintHelp(argv[0], stderr);
3445 exit(EXIT_FAILURE);
3449 if(!ProcessDefinition(inName, outRate, fftSize, equalize, surface, limit,
3450 truncSize, model, radius, outName))
3451 return -1;
3452 fprintf(stdout, "Operation completed.\n");
3454 return EXIT_SUCCESS;