2 * Reverb for the OpenAL cross platform audio library
3 * Copyright (C) 2008-2009 by Christopher Fitzgerald.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
29 #include "alAuxEffectSlot.h"
35 /* This is the maximum number of samples processed for each inner loop
37 #define MAX_UPDATE_SAMPLES 256
39 typedef struct DelayLine
41 // The delay lines use sample lengths that are powers of 2 to allow the
42 // use of bit-masking instead of a modulus for wrapping.
47 typedef struct ALreverbState
{
48 DERIVE_FROM_TYPE(ALeffectState
);
51 ALuint ExtraChannels
; // For HRTF
53 // All delay lines are allocated as a single buffer to reduce memory
54 // fragmentation and management code.
55 ALfloat
*SampleBuffer
;
58 // Master effect filters
59 ALfilterState LpFilter
;
60 ALfilterState HpFilter
; // EAX only
63 // Modulator delay line.
66 // The vibrato time is tracked with an index over a modulus-wrapped
67 // range (in samples).
71 // The depth of frequency change (also in samples) and its filter.
77 // Initial effect delay.
79 // The tap points for the initial delay. First tap goes to early
80 // reflections, the last to late reverb.
84 // Early reflections are done with 4 delay lines.
89 // The gain for each output channel based on 3D panning.
90 // NOTE: With certain output modes, we may be rendering to the dry
91 // buffer and the "real" buffer. The two combined may be using more
92 // than the max output channels, so we need some extra for the real
94 ALfloat PanGain
[4][MAX_OUTPUT_CHANNELS
*2];
97 // Decorrelator delay line.
98 DelayLine Decorrelator
;
99 // There are actually 4 decorrelator taps, but the first occurs at the
104 // Output gain for late reverb.
107 // Attenuation to compensate for the modal density and decay rate of
111 // The feed-back and feed-forward all-pass coefficient.
114 // Mixing matrix coefficient.
117 // Late reverb has 4 parallel all-pass filters.
119 DelayLine ApDelay
[4];
122 // In addition to 4 cyclical delay lines.
127 // The cyclical delay lines are 1-pole low-pass filtered.
131 // The gain for each output channel based on 3D panning.
132 // NOTE: Add some extra in case (see note about early pan).
133 ALfloat PanGain
[4][MAX_OUTPUT_CHANNELS
*2];
137 // Attenuation to compensate for the modal density and decay rate of
141 // Echo delay and all-pass lines.
152 // The echo line is 1-pole low-pass filtered.
156 // Echo mixing coefficient.
160 // The current read offset for all delay lines.
163 /* Temporary storage used when processing. */
164 ALfloat ReverbSamples
[MAX_UPDATE_SAMPLES
][4];
165 ALfloat EarlySamples
[MAX_UPDATE_SAMPLES
][4];
168 static ALvoid
ALreverbState_Destruct(ALreverbState
*State
)
170 free(State
->SampleBuffer
);
171 State
->SampleBuffer
= NULL
;
172 ALeffectState_Destruct(STATIC_CAST(ALeffectState
,State
));
175 static ALboolean
ALreverbState_deviceUpdate(ALreverbState
*State
, ALCdevice
*Device
);
176 static ALvoid
ALreverbState_update(ALreverbState
*State
, const ALCdevice
*Device
, const ALeffectslot
*Slot
);
177 static ALvoid
ALreverbState_processStandard(ALreverbState
*State
, ALuint SamplesToDo
, const ALfloat
*restrict SamplesIn
, ALfloat (*restrict SamplesOut
)[BUFFERSIZE
], ALuint NumChannels
);
178 static ALvoid
ALreverbState_processEax(ALreverbState
*State
, ALuint SamplesToDo
, const ALfloat
*restrict SamplesIn
, ALfloat (*restrict SamplesOut
)[BUFFERSIZE
], ALuint NumChannels
);
179 static ALvoid
ALreverbState_process(ALreverbState
*State
, ALuint SamplesToDo
, const ALfloat (*restrict SamplesIn
)[BUFFERSIZE
], ALfloat (*restrict SamplesOut
)[BUFFERSIZE
], ALuint NumChannels
);
180 DECLARE_DEFAULT_ALLOCATORS(ALreverbState
)
182 DEFINE_ALEFFECTSTATE_VTABLE(ALreverbState
);
184 /* This is a user config option for modifying the overall output of the reverb
187 ALfloat ReverbBoost
= 1.0f
;
189 /* Specifies whether to use a standard reverb effect in place of EAX reverb (no
190 * high-pass, modulation, or echo).
192 ALboolean EmulateEAXReverb
= AL_FALSE
;
194 /* This coefficient is used to define the maximum frequency range controlled
195 * by the modulation depth. The current value of 0.1 will allow it to swing
196 * from 0.9x to 1.1x. This value must be below 1. At 1 it will cause the
197 * sampler to stall on the downswing, and above 1 it will cause it to sample
200 static const ALfloat MODULATION_DEPTH_COEFF
= 0.1f
;
202 /* A filter is used to avoid the terrible distortion caused by changing
203 * modulation time and/or depth. To be consistent across different sample
204 * rates, the coefficient must be raised to a constant divided by the sample
205 * rate: coeff^(constant / rate).
207 static const ALfloat MODULATION_FILTER_COEFF
= 0.048f
;
208 static const ALfloat MODULATION_FILTER_CONST
= 100000.0f
;
210 // When diffusion is above 0, an all-pass filter is used to take the edge off
211 // the echo effect. It uses the following line length (in seconds).
212 static const ALfloat ECHO_ALLPASS_LENGTH
= 0.0133f
;
214 // Input into the late reverb is decorrelated between four channels. Their
215 // timings are dependent on a fraction and multiplier. See the
216 // UpdateDecorrelator() routine for the calculations involved.
217 static const ALfloat DECO_FRACTION
= 0.15f
;
218 static const ALfloat DECO_MULTIPLIER
= 2.0f
;
220 // All delay line lengths are specified in seconds.
222 // The lengths of the early delay lines.
223 static const ALfloat EARLY_LINE_LENGTH
[4] =
225 0.0015f
, 0.0045f
, 0.0135f
, 0.0405f
228 // The lengths of the late all-pass delay lines.
229 static const ALfloat ALLPASS_LINE_LENGTH
[4] =
231 0.0151f
, 0.0167f
, 0.0183f
, 0.0200f
,
234 // The lengths of the late cyclical delay lines.
235 static const ALfloat LATE_LINE_LENGTH
[4] =
237 0.0211f
, 0.0311f
, 0.0461f
, 0.0680f
240 // The late cyclical delay lines have a variable length dependent on the
241 // effect's density parameter (inverted for some reason) and this multiplier.
242 static const ALfloat LATE_LINE_MULTIPLIER
= 4.0f
;
245 #if defined(_WIN32) && !defined (_M_X64) && !defined(_M_ARM)
246 /* HACK: Workaround for a modff bug in 32-bit Windows, which attempts to write
247 * a 64-bit double to the 32-bit float parameter.
249 static inline float hack_modff(float x
, float *y
)
252 double df
= modf((double)x
, &di
);
256 #define modff hack_modff
260 /**************************************
262 **************************************/
264 // Given the allocated sample buffer, this function updates each delay line
266 static inline ALvoid
RealizeLineOffset(ALfloat
*sampleBuffer
, DelayLine
*Delay
)
268 Delay
->Line
= &sampleBuffer
[(ptrdiff_t)Delay
->Line
];
271 // Calculate the length of a delay line and store its mask and offset.
272 static ALuint
CalcLineLength(ALfloat length
, ptrdiff_t offset
, ALuint frequency
, ALuint extra
, DelayLine
*Delay
)
276 // All line lengths are powers of 2, calculated from their lengths, with
277 // an additional sample in case of rounding errors.
278 samples
= fastf2u(length
*frequency
) + extra
;
279 samples
= NextPowerOf2(samples
+ 1);
280 // All lines share a single sample buffer.
281 Delay
->Mask
= samples
- 1;
282 Delay
->Line
= (ALfloat
*)offset
;
283 // Return the sample count for accumulation.
287 /* Calculates the delay line metrics and allocates the shared sample buffer
288 * for all lines given the sample rate (frequency). If an allocation failure
289 * occurs, it returns AL_FALSE.
291 static ALboolean
AllocLines(ALuint frequency
, ALreverbState
*State
)
293 ALuint totalSamples
, index
;
295 ALfloat
*newBuffer
= NULL
;
297 // All delay line lengths are calculated to accomodate the full range of
298 // lengths given their respective paramters.
301 /* The modulator's line length is calculated from the maximum modulation
302 * time and depth coefficient, and halfed for the low-to-high frequency
303 * swing. An additional sample is added to keep it stable when there is no
306 length
= (AL_EAXREVERB_MAX_MODULATION_TIME
*MODULATION_DEPTH_COEFF
/2.0f
);
307 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
, 1,
310 // The initial delay is the sum of the reflections and late reverb
311 // delays. This must include space for storing a loop update to feed the
312 // early reflections, decorrelator, and echo.
313 length
= AL_EAXREVERB_MAX_REFLECTIONS_DELAY
+
314 AL_EAXREVERB_MAX_LATE_REVERB_DELAY
;
315 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
,
316 MAX_UPDATE_SAMPLES
, &State
->Delay
);
318 // The early reflection lines.
319 for(index
= 0;index
< 4;index
++)
320 totalSamples
+= CalcLineLength(EARLY_LINE_LENGTH
[index
], totalSamples
,
321 frequency
, 0, &State
->Early
.Delay
[index
]);
323 // The decorrelator line is calculated from the lowest reverb density (a
324 // parameter value of 1). This must include space for storing a loop update
325 // to feed the late reverb.
326 length
= (DECO_FRACTION
* DECO_MULTIPLIER
* DECO_MULTIPLIER
) *
327 LATE_LINE_LENGTH
[0] * (1.0f
+ LATE_LINE_MULTIPLIER
);
328 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
, MAX_UPDATE_SAMPLES
,
329 &State
->Decorrelator
);
331 // The late all-pass lines.
332 for(index
= 0;index
< 4;index
++)
333 totalSamples
+= CalcLineLength(ALLPASS_LINE_LENGTH
[index
], totalSamples
,
334 frequency
, 0, &State
->Late
.ApDelay
[index
]);
336 // The late delay lines are calculated from the lowest reverb density.
337 for(index
= 0;index
< 4;index
++)
339 length
= LATE_LINE_LENGTH
[index
] * (1.0f
+ LATE_LINE_MULTIPLIER
);
340 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
, 0,
341 &State
->Late
.Delay
[index
]);
344 // The echo all-pass and delay lines.
345 totalSamples
+= CalcLineLength(ECHO_ALLPASS_LENGTH
, totalSamples
,
346 frequency
, 0, &State
->Echo
.ApDelay
);
347 totalSamples
+= CalcLineLength(AL_EAXREVERB_MAX_ECHO_TIME
, totalSamples
,
348 frequency
, 0, &State
->Echo
.Delay
);
350 if(totalSamples
!= State
->TotalSamples
)
352 TRACE("New reverb buffer length: %u samples (%f sec)\n", totalSamples
, totalSamples
/(float)frequency
);
353 newBuffer
= realloc(State
->SampleBuffer
, sizeof(ALfloat
) * totalSamples
);
354 if(newBuffer
== NULL
)
356 State
->SampleBuffer
= newBuffer
;
357 State
->TotalSamples
= totalSamples
;
360 // Update all delays to reflect the new sample buffer.
361 RealizeLineOffset(State
->SampleBuffer
, &State
->Delay
);
362 RealizeLineOffset(State
->SampleBuffer
, &State
->Decorrelator
);
363 for(index
= 0;index
< 4;index
++)
365 RealizeLineOffset(State
->SampleBuffer
, &State
->Early
.Delay
[index
]);
366 RealizeLineOffset(State
->SampleBuffer
, &State
->Late
.ApDelay
[index
]);
367 RealizeLineOffset(State
->SampleBuffer
, &State
->Late
.Delay
[index
]);
369 RealizeLineOffset(State
->SampleBuffer
, &State
->Mod
.Delay
);
370 RealizeLineOffset(State
->SampleBuffer
, &State
->Echo
.ApDelay
);
371 RealizeLineOffset(State
->SampleBuffer
, &State
->Echo
.Delay
);
373 // Clear the sample buffer.
374 for(index
= 0;index
< State
->TotalSamples
;index
++)
375 State
->SampleBuffer
[index
] = 0.0f
;
380 static ALboolean
ALreverbState_deviceUpdate(ALreverbState
*State
, ALCdevice
*Device
)
382 ALuint frequency
= Device
->Frequency
, index
;
384 // Allocate the delay lines.
385 if(!AllocLines(frequency
, State
))
388 /* WARNING: This assumes the real output follows the virtual output in the
389 * device's DryBuffer.
391 if(Device
->Hrtf
|| Device
->Uhj_Encoder
)
392 State
->ExtraChannels
= ChannelsFromDevFmt(Device
->FmtChans
);
394 State
->ExtraChannels
= 0;
396 // Calculate the modulation filter coefficient. Notice that the exponent
397 // is calculated given the current sample rate. This ensures that the
398 // resulting filter response over time is consistent across all sample
400 State
->Mod
.Coeff
= powf(MODULATION_FILTER_COEFF
,
401 MODULATION_FILTER_CONST
/ frequency
);
403 // The early reflection and late all-pass filter line lengths are static,
404 // so their offsets only need to be calculated once.
405 for(index
= 0;index
< 4;index
++)
407 State
->Early
.Offset
[index
] = fastf2u(EARLY_LINE_LENGTH
[index
] * frequency
);
408 State
->Late
.ApOffset
[index
] = fastf2u(ALLPASS_LINE_LENGTH
[index
] * frequency
);
411 // The echo all-pass filter line length is static, so its offset only
412 // needs to be calculated once.
413 State
->Echo
.ApOffset
= fastf2u(ECHO_ALLPASS_LENGTH
* frequency
);
418 /**************************************
420 **************************************/
422 // Calculate a decay coefficient given the length of each cycle and the time
423 // until the decay reaches -60 dB.
424 static inline ALfloat
CalcDecayCoeff(ALfloat length
, ALfloat decayTime
)
426 return powf(0.001f
/*-60 dB*/, length
/decayTime
);
429 // Calculate a decay length from a coefficient and the time until the decay
431 static inline ALfloat
CalcDecayLength(ALfloat coeff
, ALfloat decayTime
)
433 return log10f(coeff
) * decayTime
/ log10f(0.001f
)/*-60 dB*/;
436 // Calculate an attenuation to be applied to the input of any echo models to
437 // compensate for modal density and decay time.
438 static inline ALfloat
CalcDensityGain(ALfloat a
)
440 /* The energy of a signal can be obtained by finding the area under the
441 * squared signal. This takes the form of Sum(x_n^2), where x is the
442 * amplitude for the sample n.
444 * Decaying feedback matches exponential decay of the form Sum(a^n),
445 * where a is the attenuation coefficient, and n is the sample. The area
446 * under this decay curve can be calculated as: 1 / (1 - a).
448 * Modifying the above equation to find the squared area under the curve
449 * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
450 * calculated by inverting the square root of this approximation,
451 * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
453 return sqrtf(1.0f
- (a
* a
));
456 // Calculate the mixing matrix coefficients given a diffusion factor.
457 static inline ALvoid
CalcMatrixCoeffs(ALfloat diffusion
, ALfloat
*x
, ALfloat
*y
)
461 // The matrix is of order 4, so n is sqrt (4 - 1).
463 t
= diffusion
* atanf(n
);
465 // Calculate the first mixing matrix coefficient.
467 // Calculate the second mixing matrix coefficient.
471 // Calculate the limited HF ratio for use with the late reverb low-pass
473 static ALfloat
CalcLimitedHfRatio(ALfloat hfRatio
, ALfloat airAbsorptionGainHF
, ALfloat decayTime
)
477 /* Find the attenuation due to air absorption in dB (converting delay
478 * time to meters using the speed of sound). Then reversing the decay
479 * equation, solve for HF ratio. The delay length is cancelled out of
480 * the equation, so it can be calculated once for all lines.
482 limitRatio
= 1.0f
/ (CalcDecayLength(airAbsorptionGainHF
, decayTime
) *
483 SPEEDOFSOUNDMETRESPERSEC
);
484 /* Using the limit calculated above, apply the upper bound to the HF
485 * ratio. Also need to limit the result to a minimum of 0.1, just like the
486 * HF ratio parameter. */
487 return clampf(limitRatio
, 0.1f
, hfRatio
);
490 // Calculate the coefficient for a HF (and eventually LF) decay damping
492 static inline ALfloat
CalcDampingCoeff(ALfloat hfRatio
, ALfloat length
, ALfloat decayTime
, ALfloat decayCoeff
, ALfloat cw
)
496 // Eventually this should boost the high frequencies when the ratio
501 // Calculate the low-pass coefficient by dividing the HF decay
502 // coefficient by the full decay coefficient.
503 g
= CalcDecayCoeff(length
, decayTime
* hfRatio
) / decayCoeff
;
505 // Damping is done with a 1-pole filter, so g needs to be squared.
507 if(g
< 0.9999f
) /* 1-epsilon */
509 /* Be careful with gains < 0.001, as that causes the coefficient
510 * head towards 1, which will flatten the signal. */
512 coeff
= (1 - g
*cw
- sqrtf(2*g
*(1-cw
) - g
*g
*(1 - cw
*cw
))) /
516 // Very low decay times will produce minimal output, so apply an
517 // upper bound to the coefficient.
518 coeff
= minf(coeff
, 0.98f
);
523 // Update the EAX modulation index, range, and depth. Keep in mind that this
524 // kind of vibrato is additive and not multiplicative as one may expect. The
525 // downswing will sound stronger than the upswing.
526 static ALvoid
UpdateModulator(ALfloat modTime
, ALfloat modDepth
, ALuint frequency
, ALreverbState
*State
)
530 /* Modulation is calculated in two parts.
532 * The modulation time effects the sinus applied to the change in
533 * frequency. An index out of the current time range (both in samples)
534 * is incremented each sample. The range is bound to a reasonable
535 * minimum (1 sample) and when the timing changes, the index is rescaled
536 * to the new range (to keep the sinus consistent).
538 range
= maxu(fastf2u(modTime
*frequency
), 1);
539 State
->Mod
.Index
= (ALuint
)(State
->Mod
.Index
* (ALuint64
)range
/
541 State
->Mod
.Range
= range
;
543 /* The modulation depth effects the amount of frequency change over the
544 * range of the sinus. It needs to be scaled by the modulation time so
545 * that a given depth produces a consistent change in frequency over all
546 * ranges of time. Since the depth is applied to a sinus value, it needs
547 * to be halfed once for the sinus range and again for the sinus swing
548 * in time (half of it is spent decreasing the frequency, half is spent
551 State
->Mod
.Depth
= modDepth
* MODULATION_DEPTH_COEFF
* modTime
/ 2.0f
/
555 // Update the offsets for the initial effect delay line.
556 static ALvoid
UpdateDelayLine(ALfloat earlyDelay
, ALfloat lateDelay
, ALuint frequency
, ALreverbState
*State
)
558 // Calculate the initial delay taps.
559 State
->DelayTap
[0] = fastf2u(earlyDelay
* frequency
);
560 State
->DelayTap
[1] = fastf2u((earlyDelay
+ lateDelay
) * frequency
);
563 // Update the early reflections mix and line coefficients.
564 static ALvoid
UpdateEarlyLines(ALfloat lateDelay
, ALreverbState
*State
)
568 // Calculate the gain (coefficient) for each early delay line using the
569 // late delay time. This expands the early reflections to the start of
571 for(index
= 0;index
< 4;index
++)
572 State
->Early
.Coeff
[index
] = CalcDecayCoeff(EARLY_LINE_LENGTH
[index
],
576 // Update the offsets for the decorrelator line.
577 static ALvoid
UpdateDecorrelator(ALfloat density
, ALuint frequency
, ALreverbState
*State
)
582 /* The late reverb inputs are decorrelated to smooth the reverb tail and
583 * reduce harsh echos. The first tap occurs immediately, while the
584 * remaining taps are delayed by multiples of a fraction of the smallest
585 * cyclical delay time.
587 * offset[index] = (FRACTION (MULTIPLIER^index)) smallest_delay
589 for(index
= 0;index
< 3;index
++)
591 length
= (DECO_FRACTION
* powf(DECO_MULTIPLIER
, (ALfloat
)index
)) *
592 LATE_LINE_LENGTH
[0] * (1.0f
+ (density
* LATE_LINE_MULTIPLIER
));
593 State
->DecoTap
[index
] = fastf2u(length
* frequency
);
597 // Update the late reverb mix, line lengths, and line coefficients.
598 static ALvoid
UpdateLateLines(ALfloat xMix
, ALfloat density
, ALfloat decayTime
, ALfloat diffusion
, ALfloat echoDepth
, ALfloat hfRatio
, ALfloat cw
, ALuint frequency
, ALreverbState
*State
)
603 /* Calculate the late reverb gain. Since the output is tapped prior to the
604 * application of the next delay line coefficients, this gain needs to be
605 * attenuated by the 'x' mixing matrix coefficient as well. Also attenuate
606 * the late reverb when echo depth is high and diffusion is low, so the
607 * echo is slightly stronger than the decorrelated echos in the reverb
610 State
->Late
.Gain
= xMix
* (1.0f
- (echoDepth
*0.5f
*(1.0f
- diffusion
)));
612 /* To compensate for changes in modal density and decay time of the late
613 * reverb signal, the input is attenuated based on the maximal energy of
614 * the outgoing signal. This approximation is used to keep the apparent
615 * energy of the signal equal for all ranges of density and decay time.
617 * The average length of the cyclcical delay lines is used to calculate
618 * the attenuation coefficient.
620 length
= (LATE_LINE_LENGTH
[0] + LATE_LINE_LENGTH
[1] +
621 LATE_LINE_LENGTH
[2] + LATE_LINE_LENGTH
[3]) / 4.0f
;
622 length
*= 1.0f
+ (density
* LATE_LINE_MULTIPLIER
);
623 State
->Late
.DensityGain
= CalcDensityGain(
624 CalcDecayCoeff(length
, decayTime
)
627 // Calculate the all-pass feed-back and feed-forward coefficient.
628 State
->Late
.ApFeedCoeff
= 0.5f
* powf(diffusion
, 2.0f
);
630 for(index
= 0;index
< 4;index
++)
632 // Calculate the gain (coefficient) for each all-pass line.
633 State
->Late
.ApCoeff
[index
] = CalcDecayCoeff(
634 ALLPASS_LINE_LENGTH
[index
], decayTime
637 // Calculate the length (in seconds) of each cyclical delay line.
638 length
= LATE_LINE_LENGTH
[index
] *
639 (1.0f
+ (density
* LATE_LINE_MULTIPLIER
));
641 // Calculate the delay offset for each cyclical delay line.
642 State
->Late
.Offset
[index
] = fastf2u(length
* frequency
);
644 // Calculate the gain (coefficient) for each cyclical line.
645 State
->Late
.Coeff
[index
] = CalcDecayCoeff(length
, decayTime
);
647 // Calculate the damping coefficient for each low-pass filter.
648 State
->Late
.LpCoeff
[index
] = CalcDampingCoeff(
649 hfRatio
, length
, decayTime
, State
->Late
.Coeff
[index
], cw
652 // Attenuate the cyclical line coefficients by the mixing coefficient
654 State
->Late
.Coeff
[index
] *= xMix
;
658 // Update the echo gain, line offset, line coefficients, and mixing
660 static ALvoid
UpdateEchoLine(ALfloat echoTime
, ALfloat decayTime
, ALfloat diffusion
, ALfloat echoDepth
, ALfloat hfRatio
, ALfloat cw
, ALuint frequency
, ALreverbState
*State
)
662 // Update the offset and coefficient for the echo delay line.
663 State
->Echo
.Offset
= fastf2u(echoTime
* frequency
);
665 // Calculate the decay coefficient for the echo line.
666 State
->Echo
.Coeff
= CalcDecayCoeff(echoTime
, decayTime
);
668 // Calculate the energy-based attenuation coefficient for the echo delay
670 State
->Echo
.DensityGain
= CalcDensityGain(State
->Echo
.Coeff
);
672 // Calculate the echo all-pass feed coefficient.
673 State
->Echo
.ApFeedCoeff
= 0.5f
* powf(diffusion
, 2.0f
);
675 // Calculate the echo all-pass attenuation coefficient.
676 State
->Echo
.ApCoeff
= CalcDecayCoeff(ECHO_ALLPASS_LENGTH
, decayTime
);
678 // Calculate the damping coefficient for each low-pass filter.
679 State
->Echo
.LpCoeff
= CalcDampingCoeff(hfRatio
, echoTime
, decayTime
,
680 State
->Echo
.Coeff
, cw
);
682 /* Calculate the echo mixing coefficient. This is applied to the output mix
683 * only, not the feedback.
685 State
->Echo
.MixCoeff
= echoDepth
;
688 // Update the early and late 3D panning gains.
689 static ALvoid
UpdateMixedPanning(const ALCdevice
*Device
, const ALfloat
*ReflectionsPan
, const ALfloat
*LateReverbPan
, ALfloat Gain
, ALfloat EarlyGain
, ALfloat LateGain
, ALreverbState
*State
)
691 ALfloat DirGains
[MAX_OUTPUT_CHANNELS
];
692 ALfloat coeffs
[MAX_AMBI_COEFFS
];
696 /* With HRTF or UHJ, the normal output provides a panned reverb channel
697 * when a non-0-length vector is specified, while the real stereo output
698 * provides two other "direct" non-panned reverb channels.
700 * WARNING: This assumes the real output follows the virtual output in the
701 * device's DryBuffer.
703 memset(State
->Early
.PanGain
, 0, sizeof(State
->Early
.PanGain
));
704 length
= sqrtf(ReflectionsPan
[0]*ReflectionsPan
[0] + ReflectionsPan
[1]*ReflectionsPan
[1] + ReflectionsPan
[2]*ReflectionsPan
[2]);
705 if(!(length
> FLT_EPSILON
))
707 for(i
= 0;i
< Device
->RealOut
.NumChannels
;i
++)
708 State
->Early
.PanGain
[i
&3][Device
->Dry
.NumChannels
+i
] = Gain
* EarlyGain
;
712 /* Note that EAX Reverb's panning vectors are using right-handed
713 * coordinates, rather that the OpenAL's left-handed coordinates.
714 * Negate Z to fix this.
717 ReflectionsPan
[0] / length
,
718 ReflectionsPan
[1] / length
,
719 -ReflectionsPan
[2] / length
,
721 length
= minf(length
, 1.0f
);
723 CalcDirectionCoeffs(pan
, 0.0f
, coeffs
);
724 ComputePanningGains(Device
->Dry
, coeffs
, Gain
, DirGains
);
725 for(i
= 0;i
< Device
->Dry
.NumChannels
;i
++)
726 State
->Early
.PanGain
[3][i
] = DirGains
[i
] * EarlyGain
* length
;
727 for(i
= 0;i
< Device
->RealOut
.NumChannels
;i
++)
728 State
->Early
.PanGain
[i
&3][Device
->Dry
.NumChannels
+i
] = Gain
* EarlyGain
* (1.0f
-length
);
731 memset(State
->Late
.PanGain
, 0, sizeof(State
->Late
.PanGain
));
732 length
= sqrtf(LateReverbPan
[0]*LateReverbPan
[0] + LateReverbPan
[1]*LateReverbPan
[1] + LateReverbPan
[2]*LateReverbPan
[2]);
733 if(!(length
> FLT_EPSILON
))
735 for(i
= 0;i
< Device
->RealOut
.NumChannels
;i
++)
736 State
->Late
.PanGain
[i
&3][Device
->Dry
.NumChannels
+i
] = Gain
* LateGain
;
741 LateReverbPan
[0] / length
,
742 LateReverbPan
[1] / length
,
743 -LateReverbPan
[2] / length
,
745 length
= minf(length
, 1.0f
);
747 CalcDirectionCoeffs(pan
, 0.0f
, coeffs
);
748 ComputePanningGains(Device
->Dry
, coeffs
, Gain
, DirGains
);
749 for(i
= 0;i
< Device
->Dry
.NumChannels
;i
++)
750 State
->Late
.PanGain
[3][i
] = DirGains
[i
] * LateGain
* length
;
751 for(i
= 0;i
< Device
->RealOut
.NumChannels
;i
++)
752 State
->Late
.PanGain
[i
&3][Device
->Dry
.NumChannels
+i
] = Gain
* LateGain
* (1.0f
-length
);
756 static ALvoid
UpdateDirectPanning(const ALCdevice
*Device
, const ALfloat
*ReflectionsPan
, const ALfloat
*LateReverbPan
, ALfloat Gain
, ALfloat EarlyGain
, ALfloat LateGain
, ALreverbState
*State
)
758 ALfloat AmbientGains
[MAX_OUTPUT_CHANNELS
];
759 ALfloat DirGains
[MAX_OUTPUT_CHANNELS
];
760 ALfloat coeffs
[MAX_AMBI_COEFFS
];
764 /* Apply a boost of about 3dB to better match the expected stereo output volume. */
765 ComputeAmbientGains(Device
->Dry
, Gain
*1.414213562f
, AmbientGains
);
767 memset(State
->Early
.PanGain
, 0, sizeof(State
->Early
.PanGain
));
768 length
= sqrtf(ReflectionsPan
[0]*ReflectionsPan
[0] + ReflectionsPan
[1]*ReflectionsPan
[1] + ReflectionsPan
[2]*ReflectionsPan
[2]);
769 if(!(length
> FLT_EPSILON
))
771 for(i
= 0;i
< Device
->Dry
.NumChannels
;i
++)
772 State
->Early
.PanGain
[i
&3][i
] = AmbientGains
[i
] * EarlyGain
;
776 /* Note that EAX Reverb's panning vectors are using right-handed
777 * coordinates, rather that the OpenAL's left-handed coordinates.
778 * Negate Z to fix this.
781 ReflectionsPan
[0] / length
,
782 ReflectionsPan
[1] / length
,
783 -ReflectionsPan
[2] / length
,
785 length
= minf(length
, 1.0f
);
787 CalcDirectionCoeffs(pan
, 0.0f
, coeffs
);
788 ComputePanningGains(Device
->Dry
, coeffs
, Gain
, DirGains
);
789 for(i
= 0;i
< Device
->Dry
.NumChannels
;i
++)
790 State
->Early
.PanGain
[i
&3][i
] = lerp(AmbientGains
[i
], DirGains
[i
], length
) * EarlyGain
;
793 memset(State
->Late
.PanGain
, 0, sizeof(State
->Late
.PanGain
));
794 length
= sqrtf(LateReverbPan
[0]*LateReverbPan
[0] + LateReverbPan
[1]*LateReverbPan
[1] + LateReverbPan
[2]*LateReverbPan
[2]);
795 if(!(length
> FLT_EPSILON
))
797 for(i
= 0;i
< Device
->Dry
.NumChannels
;i
++)
798 State
->Late
.PanGain
[i
&3][i
] = AmbientGains
[i
] * LateGain
;
803 LateReverbPan
[0] / length
,
804 LateReverbPan
[1] / length
,
805 -LateReverbPan
[2] / length
,
807 length
= minf(length
, 1.0f
);
809 CalcDirectionCoeffs(pan
, 0.0f
, coeffs
);
810 ComputePanningGains(Device
->Dry
, coeffs
, Gain
, DirGains
);
811 for(i
= 0;i
< Device
->Dry
.NumChannels
;i
++)
812 State
->Late
.PanGain
[i
&3][i
] = lerp(AmbientGains
[i
], DirGains
[i
], length
) * LateGain
;
816 static ALvoid
Update3DPanning(const ALCdevice
*Device
, const ALfloat
*ReflectionsPan
, const ALfloat
*LateReverbPan
, ALfloat Gain
, ALfloat EarlyGain
, ALfloat LateGain
, ALreverbState
*State
)
818 static const ALfloat PanDirs
[4][3] = {
819 { -0.707106781f
, 0.0f
, -0.707106781f
}, /* Front left */
820 { 0.707106781f
, 0.0f
, -0.707106781f
}, /* Front right */
821 { 0.707106781f
, 0.0f
, 0.707106781f
}, /* Back right */
822 { -0.707106781f
, 0.0f
, 0.707106781f
} /* Back left */
824 ALfloat coeffs
[MAX_AMBI_COEFFS
];
829 /* 0.5 would be the gain scaling when the panning vector is 0. This also
830 * equals sqrt(1/4), a nice gain scaling for the four virtual points
831 * producing an "ambient" response.
833 gain
[0] = gain
[1] = gain
[2] = gain
[3] = 0.5f
;
834 length
= sqrtf(ReflectionsPan
[0]*ReflectionsPan
[0] + ReflectionsPan
[1]*ReflectionsPan
[1] + ReflectionsPan
[2]*ReflectionsPan
[2]);
838 ReflectionsPan
[0] / length
,
839 ReflectionsPan
[1] / length
,
840 -ReflectionsPan
[2] / length
,
844 ALfloat dotp
= pan
[0]*PanDirs
[i
][0] + pan
[1]*PanDirs
[i
][1] + pan
[2]*PanDirs
[i
][2];
845 gain
[i
] = dotp
*0.5f
+ 0.5f
;
848 else if(length
> FLT_EPSILON
)
852 ALfloat dotp
= ReflectionsPan
[0]*PanDirs
[i
][0] + ReflectionsPan
[1]*PanDirs
[i
][1] +
853 -ReflectionsPan
[2]*PanDirs
[i
][2];
854 gain
[i
] = dotp
*0.5f
+ 0.5f
;
859 CalcDirectionCoeffs(PanDirs
[i
], 0.0f
, coeffs
);
860 ComputePanningGains(Device
->Dry
, coeffs
, Gain
*EarlyGain
*gain
[i
],
861 State
->Early
.PanGain
[i
]);
864 gain
[0] = gain
[1] = gain
[2] = gain
[3] = 0.5f
;
865 length
= sqrtf(LateReverbPan
[0]*LateReverbPan
[0] + LateReverbPan
[1]*LateReverbPan
[1] + LateReverbPan
[2]*LateReverbPan
[2]);
869 LateReverbPan
[0] / length
,
870 LateReverbPan
[1] / length
,
871 -LateReverbPan
[2] / length
,
875 ALfloat dotp
= pan
[0]*PanDirs
[i
][0] + pan
[1]*PanDirs
[i
][1] + pan
[2]*PanDirs
[i
][2];
876 gain
[i
] = dotp
*0.5f
+ 0.5f
;
879 else if(length
> FLT_EPSILON
)
883 ALfloat dotp
= LateReverbPan
[0]*PanDirs
[i
][0] + LateReverbPan
[1]*PanDirs
[i
][1] +
884 -LateReverbPan
[2]*PanDirs
[i
][2];
885 gain
[i
] = dotp
*0.5f
+ 0.5f
;
890 CalcDirectionCoeffs(PanDirs
[i
], 0.0f
, coeffs
);
891 ComputePanningGains(Device
->Dry
, coeffs
, Gain
*LateGain
*gain
[i
],
892 State
->Late
.PanGain
[i
]);
896 static ALvoid
ALreverbState_update(ALreverbState
*State
, const ALCdevice
*Device
, const ALeffectslot
*Slot
)
898 const ALeffectProps
*props
= &Slot
->Params
.EffectProps
;
899 ALuint frequency
= Device
->Frequency
;
900 ALfloat lfscale
, hfscale
, hfRatio
;
901 ALfloat gain
, gainlf
, gainhf
;
904 if(Slot
->Params
.EffectType
== AL_EFFECT_EAXREVERB
&& !EmulateEAXReverb
)
905 State
->IsEax
= AL_TRUE
;
906 else if(Slot
->Params
.EffectType
== AL_EFFECT_REVERB
|| EmulateEAXReverb
)
907 State
->IsEax
= AL_FALSE
;
909 // Calculate the master filters
910 hfscale
= props
->Reverb
.HFReference
/ frequency
;
911 gainhf
= maxf(props
->Reverb
.GainHF
, 0.0001f
);
912 ALfilterState_setParams(&State
->LpFilter
, ALfilterType_HighShelf
,
913 gainhf
, hfscale
, calc_rcpQ_from_slope(gainhf
, 0.75f
));
914 lfscale
= props
->Reverb
.LFReference
/ frequency
;
915 gainlf
= maxf(props
->Reverb
.GainLF
, 0.0001f
);
916 ALfilterState_setParams(&State
->HpFilter
, ALfilterType_LowShelf
,
917 gainlf
, lfscale
, calc_rcpQ_from_slope(gainlf
, 0.75f
));
919 // Update the modulator line.
920 UpdateModulator(props
->Reverb
.ModulationTime
, props
->Reverb
.ModulationDepth
,
923 // Update the initial effect delay.
924 UpdateDelayLine(props
->Reverb
.ReflectionsDelay
, props
->Reverb
.LateReverbDelay
,
927 // Update the early lines.
928 UpdateEarlyLines(props
->Reverb
.LateReverbDelay
, State
);
930 // Update the decorrelator.
931 UpdateDecorrelator(props
->Reverb
.Density
, frequency
, State
);
933 // Get the mixing matrix coefficients (x and y).
934 CalcMatrixCoeffs(props
->Reverb
.Diffusion
, &x
, &y
);
935 // Then divide x into y to simplify the matrix calculation.
936 State
->Late
.MixCoeff
= y
/ x
;
938 // If the HF limit parameter is flagged, calculate an appropriate limit
939 // based on the air absorption parameter.
940 hfRatio
= props
->Reverb
.DecayHFRatio
;
941 if(props
->Reverb
.DecayHFLimit
&& props
->Reverb
.AirAbsorptionGainHF
< 1.0f
)
942 hfRatio
= CalcLimitedHfRatio(hfRatio
, props
->Reverb
.AirAbsorptionGainHF
,
943 props
->Reverb
.DecayTime
);
945 cw
= cosf(F_TAU
* hfscale
);
946 // Update the late lines.
947 UpdateLateLines(x
, props
->Reverb
.Density
, props
->Reverb
.DecayTime
,
948 props
->Reverb
.Diffusion
, props
->Reverb
.EchoDepth
,
949 hfRatio
, cw
, frequency
, State
);
951 // Update the echo line.
952 UpdateEchoLine(props
->Reverb
.EchoTime
, props
->Reverb
.DecayTime
,
953 props
->Reverb
.Diffusion
, props
->Reverb
.EchoDepth
,
954 hfRatio
, cw
, frequency
, State
);
956 gain
= props
->Reverb
.Gain
* Slot
->Params
.Gain
* ReverbBoost
;
957 // Update early and late 3D panning.
958 if(Device
->Hrtf
|| Device
->Uhj_Encoder
)
959 UpdateMixedPanning(Device
, props
->Reverb
.ReflectionsPan
,
960 props
->Reverb
.LateReverbPan
, gain
,
961 props
->Reverb
.ReflectionsGain
,
962 props
->Reverb
.LateReverbGain
, State
);
963 else if(Device
->FmtChans
== DevFmtBFormat3D
|| Device
->AmbiDecoder
)
964 Update3DPanning(Device
, props
->Reverb
.ReflectionsPan
,
965 props
->Reverb
.LateReverbPan
, gain
,
966 props
->Reverb
.ReflectionsGain
,
967 props
->Reverb
.LateReverbGain
, State
);
969 UpdateDirectPanning(Device
, props
->Reverb
.ReflectionsPan
,
970 props
->Reverb
.LateReverbPan
, gain
,
971 props
->Reverb
.ReflectionsGain
,
972 props
->Reverb
.LateReverbGain
, State
);
976 /**************************************
977 * Effect Processing *
978 **************************************/
980 // Basic delay line input/output routines.
981 static inline ALfloat
DelayLineOut(DelayLine
*Delay
, ALuint offset
)
983 return Delay
->Line
[offset
&Delay
->Mask
];
986 static inline ALvoid
DelayLineIn(DelayLine
*Delay
, ALuint offset
, ALfloat in
)
988 Delay
->Line
[offset
&Delay
->Mask
] = in
;
991 // Given an input sample, this function produces modulation for the late
993 static inline ALfloat
EAXModulation(ALreverbState
*State
, ALuint offset
, ALfloat in
)
995 ALfloat sinus
, frac
, fdelay
;
999 // Calculate the sinus rythm (dependent on modulation time and the
1000 // sampling rate). The center of the sinus is moved to reduce the delay
1001 // of the effect when the time or depth are low.
1002 sinus
= 1.0f
- cosf(F_TAU
* State
->Mod
.Index
/ State
->Mod
.Range
);
1004 // Step the modulation index forward, keeping it bound to its range.
1005 State
->Mod
.Index
= (State
->Mod
.Index
+ 1) % State
->Mod
.Range
;
1007 // The depth determines the range over which to read the input samples
1008 // from, so it must be filtered to reduce the distortion caused by even
1009 // small parameter changes.
1010 State
->Mod
.Filter
= lerp(State
->Mod
.Filter
, State
->Mod
.Depth
,
1013 // Calculate the read offset and fraction between it and the next sample.
1014 frac
= modff(State
->Mod
.Filter
*sinus
, &fdelay
);
1015 delay
= fastf2u(fdelay
);
1017 /* Add the incoming sample to the delay line first, so a 0 delay gets the
1020 DelayLineIn(&State
->Mod
.Delay
, offset
, in
);
1021 /* Get the two samples crossed by the offset delay */
1022 out0
= DelayLineOut(&State
->Mod
.Delay
, offset
- delay
);
1023 out1
= DelayLineOut(&State
->Mod
.Delay
, offset
- delay
- 1);
1025 // The output is obtained by linearly interpolating the two samples that
1026 // were acquired above.
1027 return lerp(out0
, out1
, frac
);
1030 // Given some input sample, this function produces four-channel outputs for the
1031 // early reflections.
1032 static inline ALvoid
EarlyReflection(ALreverbState
*State
, ALuint todo
, ALfloat (*restrict out
)[4])
1034 ALfloat d
[4], v
, f
[4];
1037 for(i
= 0;i
< todo
;i
++)
1039 ALuint offset
= State
->Offset
+i
;
1041 // Obtain the decayed results of each early delay line.
1042 d
[0] = DelayLineOut(&State
->Early
.Delay
[0], offset
-State
->Early
.Offset
[0]) * State
->Early
.Coeff
[0];
1043 d
[1] = DelayLineOut(&State
->Early
.Delay
[1], offset
-State
->Early
.Offset
[1]) * State
->Early
.Coeff
[1];
1044 d
[2] = DelayLineOut(&State
->Early
.Delay
[2], offset
-State
->Early
.Offset
[2]) * State
->Early
.Coeff
[2];
1045 d
[3] = DelayLineOut(&State
->Early
.Delay
[3], offset
-State
->Early
.Offset
[3]) * State
->Early
.Coeff
[3];
1047 /* The following uses a lossless scattering junction from waveguide
1048 * theory. It actually amounts to a householder mixing matrix, which
1049 * will produce a maximally diffuse response, and means this can
1050 * probably be considered a simple feed-back delay network (FDN).
1058 v
= (d
[0] + d
[1] + d
[2] + d
[3]) * 0.5f
;
1059 // The junction is loaded with the input here.
1060 v
+= DelayLineOut(&State
->Delay
, offset
-State
->DelayTap
[0]);
1062 // Calculate the feed values for the delay lines.
1068 // Re-feed the delay lines.
1069 DelayLineIn(&State
->Early
.Delay
[0], offset
, f
[0]);
1070 DelayLineIn(&State
->Early
.Delay
[1], offset
, f
[1]);
1071 DelayLineIn(&State
->Early
.Delay
[2], offset
, f
[2]);
1072 DelayLineIn(&State
->Early
.Delay
[3], offset
, f
[3]);
1074 /* Output the results of the junction for all four channels with a
1075 * constant attenuation of 0.5.
1077 out
[i
][0] = f
[0] * 0.5f
;
1078 out
[i
][1] = f
[1] * 0.5f
;
1079 out
[i
][2] = f
[2] * 0.5f
;
1080 out
[i
][3] = f
[3] * 0.5f
;
1084 // Basic attenuated all-pass input/output routine.
1085 static inline ALfloat
AllpassInOut(DelayLine
*Delay
, ALuint outOffset
, ALuint inOffset
, ALfloat in
, ALfloat feedCoeff
, ALfloat coeff
)
1089 out
= DelayLineOut(Delay
, outOffset
);
1090 feed
= feedCoeff
* in
;
1091 DelayLineIn(Delay
, inOffset
, (feedCoeff
* (out
- feed
)) + in
);
1093 // The time-based attenuation is only applied to the delay output to
1094 // keep it from affecting the feed-back path (which is already controlled
1095 // by the all-pass feed coefficient).
1096 return (coeff
* out
) - feed
;
1099 // All-pass input/output routine for late reverb.
1100 static inline ALfloat
LateAllPassInOut(ALreverbState
*State
, ALuint offset
, ALuint index
, ALfloat in
)
1102 return AllpassInOut(&State
->Late
.ApDelay
[index
],
1103 offset
- State
->Late
.ApOffset
[index
],
1104 offset
, in
, State
->Late
.ApFeedCoeff
,
1105 State
->Late
.ApCoeff
[index
]);
1108 // Low-pass filter input/output routine for late reverb.
1109 static inline ALfloat
LateLowPassInOut(ALreverbState
*State
, ALuint index
, ALfloat in
)
1111 in
= lerp(in
, State
->Late
.LpSample
[index
], State
->Late
.LpCoeff
[index
]);
1112 State
->Late
.LpSample
[index
] = in
;
1116 // Given four decorrelated input samples, this function produces four-channel
1117 // output for the late reverb.
1118 static inline ALvoid
LateReverb(ALreverbState
*State
, ALuint todo
, ALfloat (*restrict out
)[4])
1123 // Feed the decorrelator from the energy-attenuated output of the second
1125 for(i
= 0;i
< todo
;i
++)
1127 ALuint offset
= State
->Offset
+i
;
1128 ALfloat sample
= DelayLineOut(&State
->Delay
, offset
- State
->DelayTap
[1]) *
1129 State
->Late
.DensityGain
;
1130 DelayLineIn(&State
->Decorrelator
, offset
, sample
);
1133 for(i
= 0;i
< todo
;i
++)
1135 ALuint offset
= State
->Offset
+i
;
1137 /* Obtain four decorrelated input samples. */
1138 f
[0] = DelayLineOut(&State
->Decorrelator
, offset
);
1139 f
[1] = DelayLineOut(&State
->Decorrelator
, offset
-State
->DecoTap
[0]);
1140 f
[2] = DelayLineOut(&State
->Decorrelator
, offset
-State
->DecoTap
[1]);
1141 f
[3] = DelayLineOut(&State
->Decorrelator
, offset
-State
->DecoTap
[2]);
1143 /* Add the decayed results of the cyclical delay lines, then pass the
1144 * results through the low-pass filters.
1146 f
[0] += DelayLineOut(&State
->Late
.Delay
[0], offset
-State
->Late
.Offset
[0]) * State
->Late
.Coeff
[0];
1147 f
[1] += DelayLineOut(&State
->Late
.Delay
[1], offset
-State
->Late
.Offset
[1]) * State
->Late
.Coeff
[1];
1148 f
[2] += DelayLineOut(&State
->Late
.Delay
[2], offset
-State
->Late
.Offset
[2]) * State
->Late
.Coeff
[2];
1149 f
[3] += DelayLineOut(&State
->Late
.Delay
[3], offset
-State
->Late
.Offset
[3]) * State
->Late
.Coeff
[3];
1151 // This is where the feed-back cycles from line 0 to 1 to 3 to 2 and
1153 d
[0] = LateLowPassInOut(State
, 2, f
[2]);
1154 d
[1] = LateLowPassInOut(State
, 0, f
[0]);
1155 d
[2] = LateLowPassInOut(State
, 3, f
[3]);
1156 d
[3] = LateLowPassInOut(State
, 1, f
[1]);
1158 // To help increase diffusion, run each line through an all-pass filter.
1159 // When there is no diffusion, the shortest all-pass filter will feed
1160 // the shortest delay line.
1161 d
[0] = LateAllPassInOut(State
, offset
, 0, d
[0]);
1162 d
[1] = LateAllPassInOut(State
, offset
, 1, d
[1]);
1163 d
[2] = LateAllPassInOut(State
, offset
, 2, d
[2]);
1164 d
[3] = LateAllPassInOut(State
, offset
, 3, d
[3]);
1166 /* Late reverb is done with a modified feed-back delay network (FDN)
1167 * topology. Four input lines are each fed through their own all-pass
1168 * filter and then into the mixing matrix. The four outputs of the
1169 * mixing matrix are then cycled back to the inputs. Each output feeds
1170 * a different input to form a circlular feed cycle.
1172 * The mixing matrix used is a 4D skew-symmetric rotation matrix
1173 * derived using a single unitary rotational parameter:
1175 * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
1180 * The rotation is constructed from the effect's diffusion parameter,
1181 * yielding: 1 = x^2 + 3 y^2; where a, b, and c are the coefficient y
1182 * with differing signs, and d is the coefficient x. The matrix is
1185 * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
1186 * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
1187 * [ y, -y, x, y ] x = cos(t)
1188 * [ -y, -y, -y, x ] y = sin(t) / n
1190 * To reduce the number of multiplies, the x coefficient is applied
1191 * with the cyclical delay line coefficients. Thus only the y
1192 * coefficient is applied when mixing, and is modified to be: y / x.
1194 f
[0] = d
[0] + (State
->Late
.MixCoeff
* ( d
[1] + -d
[2] + d
[3]));
1195 f
[1] = d
[1] + (State
->Late
.MixCoeff
* (-d
[0] + d
[2] + d
[3]));
1196 f
[2] = d
[2] + (State
->Late
.MixCoeff
* ( d
[0] + -d
[1] + d
[3]));
1197 f
[3] = d
[3] + (State
->Late
.MixCoeff
* (-d
[0] + -d
[1] + -d
[2] ));
1199 // Output the results of the matrix for all four channels, attenuated by
1200 // the late reverb gain (which is attenuated by the 'x' mix coefficient).
1201 out
[i
][0] = State
->Late
.Gain
* f
[0];
1202 out
[i
][1] = State
->Late
.Gain
* f
[1];
1203 out
[i
][2] = State
->Late
.Gain
* f
[2];
1204 out
[i
][3] = State
->Late
.Gain
* f
[3];
1206 // Re-feed the cyclical delay lines.
1207 DelayLineIn(&State
->Late
.Delay
[0], offset
, f
[0]);
1208 DelayLineIn(&State
->Late
.Delay
[1], offset
, f
[1]);
1209 DelayLineIn(&State
->Late
.Delay
[2], offset
, f
[2]);
1210 DelayLineIn(&State
->Late
.Delay
[3], offset
, f
[3]);
1214 // Given an input sample, this function mixes echo into the four-channel late
1216 static inline ALvoid
EAXEcho(ALreverbState
*State
, ALuint todo
, ALfloat (*restrict late
)[4])
1221 for(i
= 0;i
< todo
;i
++)
1223 ALuint offset
= State
->Offset
+i
;
1225 // Get the latest attenuated echo sample for output.
1226 feed
= DelayLineOut(&State
->Echo
.Delay
, offset
-State
->Echo
.Offset
) *
1229 // Mix the output into the late reverb channels.
1230 out
= State
->Echo
.MixCoeff
* feed
;
1236 // Mix the energy-attenuated input with the output and pass it through
1237 // the echo low-pass filter.
1238 feed
+= DelayLineOut(&State
->Delay
, offset
-State
->DelayTap
[1]) *
1239 State
->Echo
.DensityGain
;
1240 feed
= lerp(feed
, State
->Echo
.LpSample
, State
->Echo
.LpCoeff
);
1241 State
->Echo
.LpSample
= feed
;
1243 // Then the echo all-pass filter.
1244 feed
= AllpassInOut(&State
->Echo
.ApDelay
, offset
-State
->Echo
.ApOffset
,
1245 offset
, feed
, State
->Echo
.ApFeedCoeff
,
1246 State
->Echo
.ApCoeff
);
1248 // Feed the delay with the mixed and filtered sample.
1249 DelayLineIn(&State
->Echo
.Delay
, offset
, feed
);
1253 // Perform the non-EAX reverb pass on a given input sample, resulting in
1254 // four-channel output.
1255 static inline ALvoid
VerbPass(ALreverbState
*State
, ALuint todo
, const ALfloat
*in
, ALfloat (*restrict early
)[4], ALfloat (*restrict late
)[4])
1259 // Low-pass filter the incoming samples.
1260 for(i
= 0;i
< todo
;i
++)
1261 DelayLineIn(&State
->Delay
, State
->Offset
+i
,
1262 ALfilterState_processSingle(&State
->LpFilter
, in
[i
])
1265 // Calculate the early reflection from the first delay tap.
1266 EarlyReflection(State
, todo
, early
);
1268 // Calculate the late reverb from the decorrelator taps.
1269 LateReverb(State
, todo
, late
);
1271 // Step all delays forward one sample.
1272 State
->Offset
+= todo
;
1275 // Perform the EAX reverb pass on a given input sample, resulting in four-
1277 static inline ALvoid
EAXVerbPass(ALreverbState
*State
, ALuint todo
, const ALfloat
*input
, ALfloat (*restrict early
)[4], ALfloat (*restrict late
)[4])
1281 // Band-pass and modulate the incoming samples.
1282 for(i
= 0;i
< todo
;i
++)
1284 ALfloat sample
= input
[i
];
1285 sample
= ALfilterState_processSingle(&State
->LpFilter
, sample
);
1286 sample
= ALfilterState_processSingle(&State
->HpFilter
, sample
);
1288 // Perform any modulation on the input.
1289 sample
= EAXModulation(State
, State
->Offset
+i
, sample
);
1291 // Feed the initial delay line.
1292 DelayLineIn(&State
->Delay
, State
->Offset
+i
, sample
);
1295 // Calculate the early reflection from the first delay tap.
1296 EarlyReflection(State
, todo
, early
);
1298 // Calculate the late reverb from the decorrelator taps.
1299 LateReverb(State
, todo
, late
);
1301 // Calculate and mix in any echo.
1302 EAXEcho(State
, todo
, late
);
1304 // Step all delays forward.
1305 State
->Offset
+= todo
;
1308 static ALvoid
ALreverbState_processStandard(ALreverbState
*State
, ALuint SamplesToDo
, const ALfloat
*restrict SamplesIn
, ALfloat (*restrict SamplesOut
)[BUFFERSIZE
], ALuint NumChannels
)
1310 ALfloat (*restrict early
)[4] = State
->EarlySamples
;
1311 ALfloat (*restrict late
)[4] = State
->ReverbSamples
;
1312 ALuint index
, c
, i
, l
;
1315 /* Process reverb for these samples. */
1316 for(index
= 0;index
< SamplesToDo
;)
1318 ALuint todo
= minu(SamplesToDo
-index
, MAX_UPDATE_SAMPLES
);
1320 VerbPass(State
, todo
, &SamplesIn
[index
], early
, late
);
1322 for(l
= 0;l
< 4;l
++)
1324 for(c
= 0;c
< NumChannels
;c
++)
1326 gain
= State
->Early
.PanGain
[l
][c
];
1327 if(fabsf(gain
) > GAIN_SILENCE_THRESHOLD
)
1329 for(i
= 0;i
< todo
;i
++)
1330 SamplesOut
[c
][index
+i
] += gain
*early
[i
][l
];
1332 gain
= State
->Late
.PanGain
[l
][c
];
1333 if(fabsf(gain
) > GAIN_SILENCE_THRESHOLD
)
1335 for(i
= 0;i
< todo
;i
++)
1336 SamplesOut
[c
][index
+i
] += gain
*late
[i
][l
];
1345 static ALvoid
ALreverbState_processEax(ALreverbState
*State
, ALuint SamplesToDo
, const ALfloat
*restrict SamplesIn
, ALfloat (*restrict SamplesOut
)[BUFFERSIZE
], ALuint NumChannels
)
1347 ALfloat (*restrict early
)[4] = State
->EarlySamples
;
1348 ALfloat (*restrict late
)[4] = State
->ReverbSamples
;
1349 ALuint index
, c
, i
, l
;
1352 /* Process reverb for these samples. */
1353 for(index
= 0;index
< SamplesToDo
;)
1355 ALuint todo
= minu(SamplesToDo
-index
, MAX_UPDATE_SAMPLES
);
1357 EAXVerbPass(State
, todo
, &SamplesIn
[index
], early
, late
);
1359 for(l
= 0;l
< 4;l
++)
1361 for(c
= 0;c
< NumChannels
;c
++)
1363 gain
= State
->Early
.PanGain
[l
][c
];
1364 if(fabsf(gain
) > GAIN_SILENCE_THRESHOLD
)
1366 for(i
= 0;i
< todo
;i
++)
1367 SamplesOut
[c
][index
+i
] += gain
*early
[i
][l
];
1369 gain
= State
->Late
.PanGain
[l
][c
];
1370 if(fabsf(gain
) > GAIN_SILENCE_THRESHOLD
)
1372 for(i
= 0;i
< todo
;i
++)
1373 SamplesOut
[c
][index
+i
] += gain
*late
[i
][l
];
1382 static ALvoid
ALreverbState_process(ALreverbState
*State
, ALuint SamplesToDo
, const ALfloat (*restrict SamplesIn
)[BUFFERSIZE
], ALfloat (*restrict SamplesOut
)[BUFFERSIZE
], ALuint NumChannels
)
1384 NumChannels
+= State
->ExtraChannels
;
1386 ALreverbState_processEax(State
, SamplesToDo
, SamplesIn
[0], SamplesOut
, NumChannels
);
1388 ALreverbState_processStandard(State
, SamplesToDo
, SamplesIn
[0], SamplesOut
, NumChannels
);
1392 typedef struct ALreverbStateFactory
{
1393 DERIVE_FROM_TYPE(ALeffectStateFactory
);
1394 } ALreverbStateFactory
;
1396 static ALeffectState
*ALreverbStateFactory_create(ALreverbStateFactory
* UNUSED(factory
))
1398 ALreverbState
*state
;
1401 state
= ALreverbState_New(sizeof(*state
));
1402 if(!state
) return NULL
;
1403 SET_VTABLE2(ALreverbState
, ALeffectState
, state
);
1405 state
->IsEax
= AL_FALSE
;
1406 state
->ExtraChannels
= 0;
1408 state
->TotalSamples
= 0;
1409 state
->SampleBuffer
= NULL
;
1411 ALfilterState_clear(&state
->LpFilter
);
1412 ALfilterState_clear(&state
->HpFilter
);
1414 state
->Mod
.Delay
.Mask
= 0;
1415 state
->Mod
.Delay
.Line
= NULL
;
1416 state
->Mod
.Index
= 0;
1417 state
->Mod
.Range
= 1;
1418 state
->Mod
.Depth
= 0.0f
;
1419 state
->Mod
.Coeff
= 0.0f
;
1420 state
->Mod
.Filter
= 0.0f
;
1422 state
->Delay
.Mask
= 0;
1423 state
->Delay
.Line
= NULL
;
1424 state
->DelayTap
[0] = 0;
1425 state
->DelayTap
[1] = 0;
1427 for(index
= 0;index
< 4;index
++)
1429 state
->Early
.Coeff
[index
] = 0.0f
;
1430 state
->Early
.Delay
[index
].Mask
= 0;
1431 state
->Early
.Delay
[index
].Line
= NULL
;
1432 state
->Early
.Offset
[index
] = 0;
1435 state
->Decorrelator
.Mask
= 0;
1436 state
->Decorrelator
.Line
= NULL
;
1437 state
->DecoTap
[0] = 0;
1438 state
->DecoTap
[1] = 0;
1439 state
->DecoTap
[2] = 0;
1441 state
->Late
.Gain
= 0.0f
;
1442 state
->Late
.DensityGain
= 0.0f
;
1443 state
->Late
.ApFeedCoeff
= 0.0f
;
1444 state
->Late
.MixCoeff
= 0.0f
;
1445 for(index
= 0;index
< 4;index
++)
1447 state
->Late
.ApCoeff
[index
] = 0.0f
;
1448 state
->Late
.ApDelay
[index
].Mask
= 0;
1449 state
->Late
.ApDelay
[index
].Line
= NULL
;
1450 state
->Late
.ApOffset
[index
] = 0;
1452 state
->Late
.Coeff
[index
] = 0.0f
;
1453 state
->Late
.Delay
[index
].Mask
= 0;
1454 state
->Late
.Delay
[index
].Line
= NULL
;
1455 state
->Late
.Offset
[index
] = 0;
1457 state
->Late
.LpCoeff
[index
] = 0.0f
;
1458 state
->Late
.LpSample
[index
] = 0.0f
;
1461 for(l
= 0;l
< 4;l
++)
1463 for(index
= 0;index
< MAX_OUTPUT_CHANNELS
;index
++)
1465 state
->Early
.PanGain
[l
][index
] = 0.0f
;
1466 state
->Late
.PanGain
[l
][index
] = 0.0f
;
1470 state
->Echo
.DensityGain
= 0.0f
;
1471 state
->Echo
.Delay
.Mask
= 0;
1472 state
->Echo
.Delay
.Line
= NULL
;
1473 state
->Echo
.ApDelay
.Mask
= 0;
1474 state
->Echo
.ApDelay
.Line
= NULL
;
1475 state
->Echo
.Coeff
= 0.0f
;
1476 state
->Echo
.ApFeedCoeff
= 0.0f
;
1477 state
->Echo
.ApCoeff
= 0.0f
;
1478 state
->Echo
.Offset
= 0;
1479 state
->Echo
.ApOffset
= 0;
1480 state
->Echo
.LpCoeff
= 0.0f
;
1481 state
->Echo
.LpSample
= 0.0f
;
1482 state
->Echo
.MixCoeff
= 0.0f
;
1486 return STATIC_CAST(ALeffectState
, state
);
1489 DEFINE_ALEFFECTSTATEFACTORY_VTABLE(ALreverbStateFactory
);
1491 ALeffectStateFactory
*ALreverbStateFactory_getFactory(void)
1493 static ALreverbStateFactory ReverbFactory
= { { GET_VTABLE2(ALreverbStateFactory
, ALeffectStateFactory
) } };
1495 return STATIC_CAST(ALeffectStateFactory
, &ReverbFactory
);
1499 void ALeaxreverb_setParami(ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALint val
)
1501 ALeffectProps
*props
= &effect
->Props
;
1504 case AL_EAXREVERB_DECAY_HFLIMIT
:
1505 if(!(val
>= AL_EAXREVERB_MIN_DECAY_HFLIMIT
&& val
<= AL_EAXREVERB_MAX_DECAY_HFLIMIT
))
1506 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1507 props
->Reverb
.DecayHFLimit
= val
;
1511 SET_ERROR_AND_RETURN(context
, AL_INVALID_ENUM
);
1514 void ALeaxreverb_setParamiv(ALeffect
*effect
, ALCcontext
*context
, ALenum param
, const ALint
*vals
)
1516 ALeaxreverb_setParami(effect
, context
, param
, vals
[0]);
1518 void ALeaxreverb_setParamf(ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALfloat val
)
1520 ALeffectProps
*props
= &effect
->Props
;
1523 case AL_EAXREVERB_DENSITY
:
1524 if(!(val
>= AL_EAXREVERB_MIN_DENSITY
&& val
<= AL_EAXREVERB_MAX_DENSITY
))
1525 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1526 props
->Reverb
.Density
= val
;
1529 case AL_EAXREVERB_DIFFUSION
:
1530 if(!(val
>= AL_EAXREVERB_MIN_DIFFUSION
&& val
<= AL_EAXREVERB_MAX_DIFFUSION
))
1531 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1532 props
->Reverb
.Diffusion
= val
;
1535 case AL_EAXREVERB_GAIN
:
1536 if(!(val
>= AL_EAXREVERB_MIN_GAIN
&& val
<= AL_EAXREVERB_MAX_GAIN
))
1537 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1538 props
->Reverb
.Gain
= val
;
1541 case AL_EAXREVERB_GAINHF
:
1542 if(!(val
>= AL_EAXREVERB_MIN_GAINHF
&& val
<= AL_EAXREVERB_MAX_GAINHF
))
1543 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1544 props
->Reverb
.GainHF
= val
;
1547 case AL_EAXREVERB_GAINLF
:
1548 if(!(val
>= AL_EAXREVERB_MIN_GAINLF
&& val
<= AL_EAXREVERB_MAX_GAINLF
))
1549 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1550 props
->Reverb
.GainLF
= val
;
1553 case AL_EAXREVERB_DECAY_TIME
:
1554 if(!(val
>= AL_EAXREVERB_MIN_DECAY_TIME
&& val
<= AL_EAXREVERB_MAX_DECAY_TIME
))
1555 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1556 props
->Reverb
.DecayTime
= val
;
1559 case AL_EAXREVERB_DECAY_HFRATIO
:
1560 if(!(val
>= AL_EAXREVERB_MIN_DECAY_HFRATIO
&& val
<= AL_EAXREVERB_MAX_DECAY_HFRATIO
))
1561 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1562 props
->Reverb
.DecayHFRatio
= val
;
1565 case AL_EAXREVERB_DECAY_LFRATIO
:
1566 if(!(val
>= AL_EAXREVERB_MIN_DECAY_LFRATIO
&& val
<= AL_EAXREVERB_MAX_DECAY_LFRATIO
))
1567 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1568 props
->Reverb
.DecayLFRatio
= val
;
1571 case AL_EAXREVERB_REFLECTIONS_GAIN
:
1572 if(!(val
>= AL_EAXREVERB_MIN_REFLECTIONS_GAIN
&& val
<= AL_EAXREVERB_MAX_REFLECTIONS_GAIN
))
1573 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1574 props
->Reverb
.ReflectionsGain
= val
;
1577 case AL_EAXREVERB_REFLECTIONS_DELAY
:
1578 if(!(val
>= AL_EAXREVERB_MIN_REFLECTIONS_DELAY
&& val
<= AL_EAXREVERB_MAX_REFLECTIONS_DELAY
))
1579 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1580 props
->Reverb
.ReflectionsDelay
= val
;
1583 case AL_EAXREVERB_LATE_REVERB_GAIN
:
1584 if(!(val
>= AL_EAXREVERB_MIN_LATE_REVERB_GAIN
&& val
<= AL_EAXREVERB_MAX_LATE_REVERB_GAIN
))
1585 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1586 props
->Reverb
.LateReverbGain
= val
;
1589 case AL_EAXREVERB_LATE_REVERB_DELAY
:
1590 if(!(val
>= AL_EAXREVERB_MIN_LATE_REVERB_DELAY
&& val
<= AL_EAXREVERB_MAX_LATE_REVERB_DELAY
))
1591 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1592 props
->Reverb
.LateReverbDelay
= val
;
1595 case AL_EAXREVERB_AIR_ABSORPTION_GAINHF
:
1596 if(!(val
>= AL_EAXREVERB_MIN_AIR_ABSORPTION_GAINHF
&& val
<= AL_EAXREVERB_MAX_AIR_ABSORPTION_GAINHF
))
1597 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1598 props
->Reverb
.AirAbsorptionGainHF
= val
;
1601 case AL_EAXREVERB_ECHO_TIME
:
1602 if(!(val
>= AL_EAXREVERB_MIN_ECHO_TIME
&& val
<= AL_EAXREVERB_MAX_ECHO_TIME
))
1603 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1604 props
->Reverb
.EchoTime
= val
;
1607 case AL_EAXREVERB_ECHO_DEPTH
:
1608 if(!(val
>= AL_EAXREVERB_MIN_ECHO_DEPTH
&& val
<= AL_EAXREVERB_MAX_ECHO_DEPTH
))
1609 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1610 props
->Reverb
.EchoDepth
= val
;
1613 case AL_EAXREVERB_MODULATION_TIME
:
1614 if(!(val
>= AL_EAXREVERB_MIN_MODULATION_TIME
&& val
<= AL_EAXREVERB_MAX_MODULATION_TIME
))
1615 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1616 props
->Reverb
.ModulationTime
= val
;
1619 case AL_EAXREVERB_MODULATION_DEPTH
:
1620 if(!(val
>= AL_EAXREVERB_MIN_MODULATION_DEPTH
&& val
<= AL_EAXREVERB_MAX_MODULATION_DEPTH
))
1621 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1622 props
->Reverb
.ModulationDepth
= val
;
1625 case AL_EAXREVERB_HFREFERENCE
:
1626 if(!(val
>= AL_EAXREVERB_MIN_HFREFERENCE
&& val
<= AL_EAXREVERB_MAX_HFREFERENCE
))
1627 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1628 props
->Reverb
.HFReference
= val
;
1631 case AL_EAXREVERB_LFREFERENCE
:
1632 if(!(val
>= AL_EAXREVERB_MIN_LFREFERENCE
&& val
<= AL_EAXREVERB_MAX_LFREFERENCE
))
1633 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1634 props
->Reverb
.LFReference
= val
;
1637 case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR
:
1638 if(!(val
>= AL_EAXREVERB_MIN_ROOM_ROLLOFF_FACTOR
&& val
<= AL_EAXREVERB_MAX_ROOM_ROLLOFF_FACTOR
))
1639 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1640 props
->Reverb
.RoomRolloffFactor
= val
;
1644 SET_ERROR_AND_RETURN(context
, AL_INVALID_ENUM
);
1647 void ALeaxreverb_setParamfv(ALeffect
*effect
, ALCcontext
*context
, ALenum param
, const ALfloat
*vals
)
1649 ALeffectProps
*props
= &effect
->Props
;
1652 case AL_EAXREVERB_REFLECTIONS_PAN
:
1653 if(!(isfinite(vals
[0]) && isfinite(vals
[1]) && isfinite(vals
[2])))
1654 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1655 props
->Reverb
.ReflectionsPan
[0] = vals
[0];
1656 props
->Reverb
.ReflectionsPan
[1] = vals
[1];
1657 props
->Reverb
.ReflectionsPan
[2] = vals
[2];
1659 case AL_EAXREVERB_LATE_REVERB_PAN
:
1660 if(!(isfinite(vals
[0]) && isfinite(vals
[1]) && isfinite(vals
[2])))
1661 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1662 props
->Reverb
.LateReverbPan
[0] = vals
[0];
1663 props
->Reverb
.LateReverbPan
[1] = vals
[1];
1664 props
->Reverb
.LateReverbPan
[2] = vals
[2];
1668 ALeaxreverb_setParamf(effect
, context
, param
, vals
[0]);
1673 void ALeaxreverb_getParami(const ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALint
*val
)
1675 const ALeffectProps
*props
= &effect
->Props
;
1678 case AL_EAXREVERB_DECAY_HFLIMIT
:
1679 *val
= props
->Reverb
.DecayHFLimit
;
1683 SET_ERROR_AND_RETURN(context
, AL_INVALID_ENUM
);
1686 void ALeaxreverb_getParamiv(const ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALint
*vals
)
1688 ALeaxreverb_getParami(effect
, context
, param
, vals
);
1690 void ALeaxreverb_getParamf(const ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALfloat
*val
)
1692 const ALeffectProps
*props
= &effect
->Props
;
1695 case AL_EAXREVERB_DENSITY
:
1696 *val
= props
->Reverb
.Density
;
1699 case AL_EAXREVERB_DIFFUSION
:
1700 *val
= props
->Reverb
.Diffusion
;
1703 case AL_EAXREVERB_GAIN
:
1704 *val
= props
->Reverb
.Gain
;
1707 case AL_EAXREVERB_GAINHF
:
1708 *val
= props
->Reverb
.GainHF
;
1711 case AL_EAXREVERB_GAINLF
:
1712 *val
= props
->Reverb
.GainLF
;
1715 case AL_EAXREVERB_DECAY_TIME
:
1716 *val
= props
->Reverb
.DecayTime
;
1719 case AL_EAXREVERB_DECAY_HFRATIO
:
1720 *val
= props
->Reverb
.DecayHFRatio
;
1723 case AL_EAXREVERB_DECAY_LFRATIO
:
1724 *val
= props
->Reverb
.DecayLFRatio
;
1727 case AL_EAXREVERB_REFLECTIONS_GAIN
:
1728 *val
= props
->Reverb
.ReflectionsGain
;
1731 case AL_EAXREVERB_REFLECTIONS_DELAY
:
1732 *val
= props
->Reverb
.ReflectionsDelay
;
1735 case AL_EAXREVERB_LATE_REVERB_GAIN
:
1736 *val
= props
->Reverb
.LateReverbGain
;
1739 case AL_EAXREVERB_LATE_REVERB_DELAY
:
1740 *val
= props
->Reverb
.LateReverbDelay
;
1743 case AL_EAXREVERB_AIR_ABSORPTION_GAINHF
:
1744 *val
= props
->Reverb
.AirAbsorptionGainHF
;
1747 case AL_EAXREVERB_ECHO_TIME
:
1748 *val
= props
->Reverb
.EchoTime
;
1751 case AL_EAXREVERB_ECHO_DEPTH
:
1752 *val
= props
->Reverb
.EchoDepth
;
1755 case AL_EAXREVERB_MODULATION_TIME
:
1756 *val
= props
->Reverb
.ModulationTime
;
1759 case AL_EAXREVERB_MODULATION_DEPTH
:
1760 *val
= props
->Reverb
.ModulationDepth
;
1763 case AL_EAXREVERB_HFREFERENCE
:
1764 *val
= props
->Reverb
.HFReference
;
1767 case AL_EAXREVERB_LFREFERENCE
:
1768 *val
= props
->Reverb
.LFReference
;
1771 case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR
:
1772 *val
= props
->Reverb
.RoomRolloffFactor
;
1776 SET_ERROR_AND_RETURN(context
, AL_INVALID_ENUM
);
1779 void ALeaxreverb_getParamfv(const ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALfloat
*vals
)
1781 const ALeffectProps
*props
= &effect
->Props
;
1784 case AL_EAXREVERB_REFLECTIONS_PAN
:
1785 vals
[0] = props
->Reverb
.ReflectionsPan
[0];
1786 vals
[1] = props
->Reverb
.ReflectionsPan
[1];
1787 vals
[2] = props
->Reverb
.ReflectionsPan
[2];
1789 case AL_EAXREVERB_LATE_REVERB_PAN
:
1790 vals
[0] = props
->Reverb
.LateReverbPan
[0];
1791 vals
[1] = props
->Reverb
.LateReverbPan
[1];
1792 vals
[2] = props
->Reverb
.LateReverbPan
[2];
1796 ALeaxreverb_getParamf(effect
, context
, param
, vals
);
1801 DEFINE_ALEFFECT_VTABLE(ALeaxreverb
);
1803 void ALreverb_setParami(ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALint val
)
1805 ALeffectProps
*props
= &effect
->Props
;
1808 case AL_REVERB_DECAY_HFLIMIT
:
1809 if(!(val
>= AL_REVERB_MIN_DECAY_HFLIMIT
&& val
<= AL_REVERB_MAX_DECAY_HFLIMIT
))
1810 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1811 props
->Reverb
.DecayHFLimit
= val
;
1815 SET_ERROR_AND_RETURN(context
, AL_INVALID_ENUM
);
1818 void ALreverb_setParamiv(ALeffect
*effect
, ALCcontext
*context
, ALenum param
, const ALint
*vals
)
1820 ALreverb_setParami(effect
, context
, param
, vals
[0]);
1822 void ALreverb_setParamf(ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALfloat val
)
1824 ALeffectProps
*props
= &effect
->Props
;
1827 case AL_REVERB_DENSITY
:
1828 if(!(val
>= AL_REVERB_MIN_DENSITY
&& val
<= AL_REVERB_MAX_DENSITY
))
1829 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1830 props
->Reverb
.Density
= val
;
1833 case AL_REVERB_DIFFUSION
:
1834 if(!(val
>= AL_REVERB_MIN_DIFFUSION
&& val
<= AL_REVERB_MAX_DIFFUSION
))
1835 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1836 props
->Reverb
.Diffusion
= val
;
1839 case AL_REVERB_GAIN
:
1840 if(!(val
>= AL_REVERB_MIN_GAIN
&& val
<= AL_REVERB_MAX_GAIN
))
1841 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1842 props
->Reverb
.Gain
= val
;
1845 case AL_REVERB_GAINHF
:
1846 if(!(val
>= AL_REVERB_MIN_GAINHF
&& val
<= AL_REVERB_MAX_GAINHF
))
1847 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1848 props
->Reverb
.GainHF
= val
;
1851 case AL_REVERB_DECAY_TIME
:
1852 if(!(val
>= AL_REVERB_MIN_DECAY_TIME
&& val
<= AL_REVERB_MAX_DECAY_TIME
))
1853 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1854 props
->Reverb
.DecayTime
= val
;
1857 case AL_REVERB_DECAY_HFRATIO
:
1858 if(!(val
>= AL_REVERB_MIN_DECAY_HFRATIO
&& val
<= AL_REVERB_MAX_DECAY_HFRATIO
))
1859 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1860 props
->Reverb
.DecayHFRatio
= val
;
1863 case AL_REVERB_REFLECTIONS_GAIN
:
1864 if(!(val
>= AL_REVERB_MIN_REFLECTIONS_GAIN
&& val
<= AL_REVERB_MAX_REFLECTIONS_GAIN
))
1865 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1866 props
->Reverb
.ReflectionsGain
= val
;
1869 case AL_REVERB_REFLECTIONS_DELAY
:
1870 if(!(val
>= AL_REVERB_MIN_REFLECTIONS_DELAY
&& val
<= AL_REVERB_MAX_REFLECTIONS_DELAY
))
1871 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1872 props
->Reverb
.ReflectionsDelay
= val
;
1875 case AL_REVERB_LATE_REVERB_GAIN
:
1876 if(!(val
>= AL_REVERB_MIN_LATE_REVERB_GAIN
&& val
<= AL_REVERB_MAX_LATE_REVERB_GAIN
))
1877 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1878 props
->Reverb
.LateReverbGain
= val
;
1881 case AL_REVERB_LATE_REVERB_DELAY
:
1882 if(!(val
>= AL_REVERB_MIN_LATE_REVERB_DELAY
&& val
<= AL_REVERB_MAX_LATE_REVERB_DELAY
))
1883 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1884 props
->Reverb
.LateReverbDelay
= val
;
1887 case AL_REVERB_AIR_ABSORPTION_GAINHF
:
1888 if(!(val
>= AL_REVERB_MIN_AIR_ABSORPTION_GAINHF
&& val
<= AL_REVERB_MAX_AIR_ABSORPTION_GAINHF
))
1889 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1890 props
->Reverb
.AirAbsorptionGainHF
= val
;
1893 case AL_REVERB_ROOM_ROLLOFF_FACTOR
:
1894 if(!(val
>= AL_REVERB_MIN_ROOM_ROLLOFF_FACTOR
&& val
<= AL_REVERB_MAX_ROOM_ROLLOFF_FACTOR
))
1895 SET_ERROR_AND_RETURN(context
, AL_INVALID_VALUE
);
1896 props
->Reverb
.RoomRolloffFactor
= val
;
1900 SET_ERROR_AND_RETURN(context
, AL_INVALID_ENUM
);
1903 void ALreverb_setParamfv(ALeffect
*effect
, ALCcontext
*context
, ALenum param
, const ALfloat
*vals
)
1905 ALreverb_setParamf(effect
, context
, param
, vals
[0]);
1908 void ALreverb_getParami(const ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALint
*val
)
1910 const ALeffectProps
*props
= &effect
->Props
;
1913 case AL_REVERB_DECAY_HFLIMIT
:
1914 *val
= props
->Reverb
.DecayHFLimit
;
1918 SET_ERROR_AND_RETURN(context
, AL_INVALID_ENUM
);
1921 void ALreverb_getParamiv(const ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALint
*vals
)
1923 ALreverb_getParami(effect
, context
, param
, vals
);
1925 void ALreverb_getParamf(const ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALfloat
*val
)
1927 const ALeffectProps
*props
= &effect
->Props
;
1930 case AL_REVERB_DENSITY
:
1931 *val
= props
->Reverb
.Density
;
1934 case AL_REVERB_DIFFUSION
:
1935 *val
= props
->Reverb
.Diffusion
;
1938 case AL_REVERB_GAIN
:
1939 *val
= props
->Reverb
.Gain
;
1942 case AL_REVERB_GAINHF
:
1943 *val
= props
->Reverb
.GainHF
;
1946 case AL_REVERB_DECAY_TIME
:
1947 *val
= props
->Reverb
.DecayTime
;
1950 case AL_REVERB_DECAY_HFRATIO
:
1951 *val
= props
->Reverb
.DecayHFRatio
;
1954 case AL_REVERB_REFLECTIONS_GAIN
:
1955 *val
= props
->Reverb
.ReflectionsGain
;
1958 case AL_REVERB_REFLECTIONS_DELAY
:
1959 *val
= props
->Reverb
.ReflectionsDelay
;
1962 case AL_REVERB_LATE_REVERB_GAIN
:
1963 *val
= props
->Reverb
.LateReverbGain
;
1966 case AL_REVERB_LATE_REVERB_DELAY
:
1967 *val
= props
->Reverb
.LateReverbDelay
;
1970 case AL_REVERB_AIR_ABSORPTION_GAINHF
:
1971 *val
= props
->Reverb
.AirAbsorptionGainHF
;
1974 case AL_REVERB_ROOM_ROLLOFF_FACTOR
:
1975 *val
= props
->Reverb
.RoomRolloffFactor
;
1979 SET_ERROR_AND_RETURN(context
, AL_INVALID_ENUM
);
1982 void ALreverb_getParamfv(const ALeffect
*effect
, ALCcontext
*context
, ALenum param
, ALfloat
*vals
)
1984 ALreverb_getParamf(effect
, context
, param
, vals
);
1987 DEFINE_ALEFFECT_VTABLE(ALreverb
);