Move NextPowerOf2 to alMain.h
[openal-soft.git] / Alc / alcReverb.c
blob8a5a1149f55f8b8dbdf8c35a43907575b84756ef
1 /**
2 * Reverb for the OpenAL cross platform audio library
3 * Copyright (C) 2008-2009 by Christopher Fitzgerald.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <math.h>
24 #include <stdlib.h>
26 #include "AL/al.h"
27 #include "AL/alc.h"
28 #include "alMain.h"
29 #include "alAuxEffectSlot.h"
30 #include "alEffect.h"
31 #include "alError.h"
32 #include "alu.h"
34 typedef struct DelayLine
36 // The delay lines use sample lengths that are powers of 2 to allow
37 // bitmasking instead of modulus wrapping.
38 ALuint Mask;
39 ALfloat *Line;
40 } DelayLine;
42 typedef struct ALverbState {
43 // Must be first in all effects!
44 ALeffectState state;
46 // All delay lines are allocated as a single buffer to reduce memory
47 // fragmentation and management code.
48 ALfloat *SampleBuffer;
49 ALuint TotalLength;
50 // Master effect low-pass filter (2 chained 1-pole filters).
51 FILTER LpFilter;
52 ALfloat LpHistory[2];
53 // Initial effect delay and decorrelation.
54 DelayLine Delay;
55 // The tap points for the initial delay. First tap goes to early
56 // reflections, the last four decorrelate to late reverb.
57 ALuint Tap[5];
58 struct {
59 // Total gain for early reflections.
60 ALfloat Gain;
61 // Early reflections are done with 4 delay lines.
62 ALfloat Coeff[4];
63 DelayLine Delay[4];
64 ALuint Offset[4];
65 // The gain for each output channel based on 3D panning.
66 ALfloat PanGain[OUTPUTCHANNELS];
67 } Early;
68 struct {
69 // Total gain for late reverb.
70 ALfloat Gain;
71 // Attenuation to compensate for modal density and decay rate.
72 ALfloat DensityGain;
73 // The feed-back and feed-forward all-pass coefficient.
74 ALfloat ApFeedCoeff;
75 // Mixing matrix coefficient.
76 ALfloat MixCoeff;
77 // Late reverb has 4 parallel all-pass filters.
78 ALfloat ApCoeff[4];
79 DelayLine ApDelay[4];
80 ALuint ApOffset[4];
81 // In addition to 4 cyclical delay lines.
82 ALfloat Coeff[4];
83 DelayLine Delay[4];
84 ALuint Offset[4];
85 // The cyclical delay lines are 1-pole low-pass filtered.
86 ALfloat LpCoeff[4];
87 ALfloat LpSample[4];
88 // The gain for each output channel based on 3D panning.
89 ALfloat PanGain[OUTPUTCHANNELS];
90 } Late;
91 // The current read offset for all delay lines.
92 ALuint Offset;
93 } ALverbState;
95 // All delay line lengths are specified in seconds.
97 // The lengths of the early delay lines.
98 static const ALfloat EARLY_LINE_LENGTH[4] =
100 0.0015f, 0.0045f, 0.0135f, 0.0405f
103 // The lengths of the late all-pass delay lines.
104 static const ALfloat ALLPASS_LINE_LENGTH[4] =
106 0.0151f, 0.0167f, 0.0183f, 0.0200f,
109 // The lengths of the late cyclical delay lines.
110 static const ALfloat LATE_LINE_LENGTH[4] =
112 0.0211f, 0.0311f, 0.0461f, 0.0680f
115 // The late cyclical delay lines have a variable length dependent on the
116 // effect's density parameter (inverted for some reason) and this multiplier.
117 static const ALfloat LATE_LINE_MULTIPLIER = 4.0f;
119 // Input into the late reverb is decorrelated between four channels. Their
120 // timings are dependent on a fraction and multiplier. See VerbUpdate() for
121 // the calculations involved.
122 static const ALfloat DECO_FRACTION = 1.0f / 32.0f;
123 static const ALfloat DECO_MULTIPLIER = 2.0f;
125 // The maximum length of initial delay for the master delay line (a sum of
126 // the maximum early reflection and late reverb delays).
127 static const ALfloat MASTER_LINE_LENGTH = 0.3f + 0.1f;
129 static ALuint CalcLengths(ALuint length[13], ALuint frequency)
131 ALuint samples, totalLength, index;
133 // All line lengths are powers of 2, calculated from their lengths, with
134 // an additional sample in case of rounding errors.
136 // See VerbUpdate() for an explanation of the additional calculation
137 // added to the master line length.
138 samples = (ALuint)
139 ((MASTER_LINE_LENGTH +
140 (LATE_LINE_LENGTH[0] * (1.0f + LATE_LINE_MULTIPLIER) *
141 (DECO_FRACTION * ((DECO_MULTIPLIER * DECO_MULTIPLIER *
142 DECO_MULTIPLIER) - 1.0f)))) *
143 frequency) + 1;
144 length[0] = NextPowerOf2(samples);
145 totalLength = length[0];
146 for(index = 0;index < 4;index++)
148 samples = (ALuint)(EARLY_LINE_LENGTH[index] * frequency) + 1;
149 length[1 + index] = NextPowerOf2(samples);
150 totalLength += length[1 + index];
152 for(index = 0;index < 4;index++)
154 samples = (ALuint)(ALLPASS_LINE_LENGTH[index] * frequency) + 1;
155 length[5 + index] = NextPowerOf2(samples);
156 totalLength += length[5 + index];
158 for(index = 0;index < 4;index++)
160 samples = (ALuint)(LATE_LINE_LENGTH[index] *
161 (1.0f + LATE_LINE_MULTIPLIER) * frequency) + 1;
162 length[9 + index] = NextPowerOf2(samples);
163 totalLength += length[9 + index];
166 return totalLength;
169 // Basic delay line input/output routines.
170 static __inline ALfloat DelayLineOut(DelayLine *Delay, ALuint offset)
172 return Delay->Line[offset&Delay->Mask];
175 static __inline ALvoid DelayLineIn(DelayLine *Delay, ALuint offset, ALfloat in)
177 Delay->Line[offset&Delay->Mask] = in;
180 // Delay line output routine for early reflections.
181 static __inline ALfloat EarlyDelayLineOut(ALverbState *State, ALuint index)
183 return State->Early.Coeff[index] *
184 DelayLineOut(&State->Early.Delay[index],
185 State->Offset - State->Early.Offset[index]);
188 // Given an input sample, this function produces stereo output for early
189 // reflections.
190 static __inline ALvoid EarlyReflection(ALverbState *State, ALfloat in, ALfloat *out)
192 ALfloat d[4], v, f[4];
194 // Obtain the decayed results of each early delay line.
195 d[0] = EarlyDelayLineOut(State, 0);
196 d[1] = EarlyDelayLineOut(State, 1);
197 d[2] = EarlyDelayLineOut(State, 2);
198 d[3] = EarlyDelayLineOut(State, 3);
200 /* The following uses a lossless scattering junction from waveguide
201 * theory. It actually amounts to a householder mixing matrix, which
202 * will produce a maximally diffuse response, and means this can probably
203 * be considered a simple feedback delay network (FDN).
205 * ---
207 * v = 2/N / d_i
208 * ---
209 * i=1
211 v = (d[0] + d[1] + d[2] + d[3]) * 0.5f;
212 // The junction is loaded with the input here.
213 v += in;
215 // Calculate the feed values for the delay lines.
216 f[0] = v - d[0];
217 f[1] = v - d[1];
218 f[2] = v - d[2];
219 f[3] = v - d[3];
221 // Refeed the delay lines.
222 DelayLineIn(&State->Early.Delay[0], State->Offset, f[0]);
223 DelayLineIn(&State->Early.Delay[1], State->Offset, f[1]);
224 DelayLineIn(&State->Early.Delay[2], State->Offset, f[2]);
225 DelayLineIn(&State->Early.Delay[3], State->Offset, f[3]);
227 // Output the results of the junction for all four lines.
228 out[0] = State->Early.Gain * f[0];
229 out[1] = State->Early.Gain * f[1];
230 out[2] = State->Early.Gain * f[2];
231 out[3] = State->Early.Gain * f[3];
234 // All-pass input/output routine for late reverb.
235 static __inline ALfloat LateAllPassInOut(ALverbState *State, ALuint index, ALfloat in)
237 ALfloat out;
239 out = State->Late.ApCoeff[index] *
240 DelayLineOut(&State->Late.ApDelay[index],
241 State->Offset - State->Late.ApOffset[index]);
242 out -= (State->Late.ApFeedCoeff * in);
243 DelayLineIn(&State->Late.ApDelay[index], State->Offset,
244 (State->Late.ApFeedCoeff * out) + in);
245 return out;
248 // Delay line output routine for late reverb.
249 static __inline ALfloat LateDelayLineOut(ALverbState *State, ALuint index)
251 return State->Late.Coeff[index] *
252 DelayLineOut(&State->Late.Delay[index],
253 State->Offset - State->Late.Offset[index]);
256 // Low-pass filter input/output routine for late reverb.
257 static __inline ALfloat LateLowPassInOut(ALverbState *State, ALuint index, ALfloat in)
259 State->Late.LpSample[index] = in +
260 ((State->Late.LpSample[index] - in) * State->Late.LpCoeff[index]);
261 return State->Late.LpSample[index];
264 // Given four decorrelated input samples, this function produces stereo
265 // output for late reverb.
266 static __inline ALvoid LateReverb(ALverbState *State, ALfloat *in, ALfloat *out)
268 ALfloat d[4], f[4];
270 // Obtain the decayed results of the cyclical delay lines, and add the
271 // corresponding input channels attenuated by density. Then pass the
272 // results through the low-pass filters.
273 d[0] = LateLowPassInOut(State, 0, (State->Late.DensityGain * in[0]) +
274 LateDelayLineOut(State, 0));
275 d[1] = LateLowPassInOut(State, 1, (State->Late.DensityGain * in[1]) +
276 LateDelayLineOut(State, 1));
277 d[2] = LateLowPassInOut(State, 2, (State->Late.DensityGain * in[2]) +
278 LateDelayLineOut(State, 2));
279 d[3] = LateLowPassInOut(State, 3, (State->Late.DensityGain * in[3]) +
280 LateDelayLineOut(State, 3));
282 // To help increase diffusion, run each line through an all-pass filter.
283 // The order of the all-pass filters is selected so that the shortest
284 // all-pass filter will feed the shortest delay line.
285 d[0] = LateAllPassInOut(State, 1, d[0]);
286 d[1] = LateAllPassInOut(State, 3, d[1]);
287 d[2] = LateAllPassInOut(State, 0, d[2]);
288 d[3] = LateAllPassInOut(State, 2, d[3]);
290 /* Late reverb is done with a modified feedback delay network (FDN)
291 * topology. Four input lines are each fed through their own all-pass
292 * filter and then into the mixing matrix. The four outputs of the
293 * mixing matrix are then cycled back to the inputs. Each output feeds
294 * a different input to form a circlular feed cycle.
296 * The mixing matrix used is a 4D skew-symmetric rotation matrix derived
297 * using a single unitary rotational parameter:
299 * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
300 * [ -a, d, c, -b ]
301 * [ -b, -c, d, a ]
302 * [ -c, b, -a, d ]
304 * The rotation is constructed from the effect's diffusion parameter,
305 * yielding: 1 = x^2 + 3 y^2; where a, b, and c are the coefficient y
306 * with differing signs, and d is the coefficient x. The matrix is thus:
308 * [ x, y, -y, y ] x = 1 - (0.5 diffusion^3)
309 * [ -y, x, y, y ] y = sqrt((1 - x^2) / 3)
310 * [ y, -y, x, y ]
311 * [ -y, -y, -y, x ]
313 * To reduce the number of multiplies, the x coefficient is applied with
314 * the cyclical delay line coefficients. Thus only the y coefficient is
315 * applied when mixing, and is modified to be: y / x.
317 f[0] = d[0] + (State->Late.MixCoeff * ( d[1] - d[2] + d[3]));
318 f[1] = d[1] + (State->Late.MixCoeff * (-d[0] + d[2] + d[3]));
319 f[2] = d[2] + (State->Late.MixCoeff * ( d[0] - d[1] + d[3]));
320 f[3] = d[3] + (State->Late.MixCoeff * (-d[0] - d[1] - d[2]));
322 // Output the results of the matrix for all four cyclical delay lines,
323 // attenuated by the late reverb gain (which is attenuated by the 'x'
324 // mix coefficient).
325 out[0] = State->Late.Gain * f[0];
326 out[1] = State->Late.Gain * f[1];
327 out[2] = State->Late.Gain * f[2];
328 out[3] = State->Late.Gain * f[3];
330 // The delay lines are fed circularly in the order:
331 // 0 -> 1 -> 3 -> 2 -> 0 ...
332 DelayLineIn(&State->Late.Delay[0], State->Offset, f[2]);
333 DelayLineIn(&State->Late.Delay[1], State->Offset, f[0]);
334 DelayLineIn(&State->Late.Delay[2], State->Offset, f[3]);
335 DelayLineIn(&State->Late.Delay[3], State->Offset, f[1]);
338 // Process the reverb for a given input sample, resulting in separate four-
339 // channel output for both early reflections and late reverb.
340 static __inline ALvoid ReverbInOut(ALverbState *State, ALfloat in, ALfloat *early, ALfloat *late)
342 ALfloat taps[4];
344 // Low-pass filter the incoming sample.
345 in = lpFilter2P(&State->LpFilter, 0, in);
347 // Feed the initial delay line.
348 DelayLineIn(&State->Delay, State->Offset, in);
350 // Calculate the early reflection from the first delay tap.
351 in = DelayLineOut(&State->Delay, State->Offset - State->Tap[0]);
352 EarlyReflection(State, in, early);
354 // Calculate the late reverb from the last four delay taps.
355 taps[0] = DelayLineOut(&State->Delay, State->Offset - State->Tap[1]);
356 taps[1] = DelayLineOut(&State->Delay, State->Offset - State->Tap[2]);
357 taps[2] = DelayLineOut(&State->Delay, State->Offset - State->Tap[3]);
358 taps[3] = DelayLineOut(&State->Delay, State->Offset - State->Tap[4]);
359 LateReverb(State, taps, late);
361 // Step all delays forward one sample.
362 State->Offset++;
365 // This destroys the reverb state. It should be called only when the effect
366 // slot has a different (or no) effect loaded over the reverb effect.
367 ALvoid VerbDestroy(ALeffectState *effect)
369 ALverbState *State = (ALverbState*)effect;
370 if(State)
372 free(State->SampleBuffer);
373 State->SampleBuffer = NULL;
374 free(State);
378 // This updates the device-dependant reverb state. This is called on
379 // initialization and any time the device parameters (eg. playback frequency,
380 // format) have been changed.
381 ALboolean VerbDeviceUpdate(ALeffectState *effect, ALCdevice *Device)
383 ALverbState *State = (ALverbState*)effect;
384 ALuint length[13], totalLength;
385 ALuint index;
387 totalLength = CalcLengths(length, Device->Frequency);
388 if(totalLength != State->TotalLength)
390 void *temp;
392 temp = realloc(State->SampleBuffer, totalLength * sizeof(ALfloat));
393 if(!temp)
395 alSetError(AL_OUT_OF_MEMORY);
396 return AL_FALSE;
398 State->TotalLength = totalLength;
399 State->SampleBuffer = temp;
401 // All lines share a single sample buffer
402 State->Delay.Mask = length[0] - 1;
403 State->Delay.Line = &State->SampleBuffer[0];
404 totalLength = length[0];
405 for(index = 0;index < 4;index++)
407 State->Early.Delay[index].Mask = length[1 + index] - 1;
408 State->Early.Delay[index].Line = &State->SampleBuffer[totalLength];
409 totalLength += length[1 + index];
411 for(index = 0;index < 4;index++)
413 State->Late.ApDelay[index].Mask = length[5 + index] - 1;
414 State->Late.ApDelay[index].Line = &State->SampleBuffer[totalLength];
415 totalLength += length[5 + index];
417 for(index = 0;index < 4;index++)
419 State->Late.Delay[index].Mask = length[9 + index] - 1;
420 State->Late.Delay[index].Line = &State->SampleBuffer[totalLength];
421 totalLength += length[9 + index];
425 for(index = 0;index < 4;index++)
427 State->Early.Offset[index] = (ALuint)(EARLY_LINE_LENGTH[index] *
428 Device->Frequency);
429 State->Late.ApOffset[index] = (ALuint)(ALLPASS_LINE_LENGTH[index] *
430 Device->Frequency);
433 for(index = 0;index < State->TotalLength;index++)
434 State->SampleBuffer[index] = 0.0f;
436 return AL_TRUE;
439 // This updates the reverb state. This is called any time the reverb effect
440 // is loaded into a slot.
441 ALvoid VerbUpdate(ALeffectState *effect, ALCcontext *Context, const ALeffect *Effect)
443 ALverbState *State = (ALverbState*)effect;
444 ALuint frequency = Context->Device->Frequency;
445 ALuint index;
446 ALfloat length, mixCoeff, cw, g, coeff;
447 ALfloat hfRatio = Effect->Reverb.DecayHFRatio;
449 // Calculate the master low-pass filter (from the master effect HF gain).
450 cw = cos(2.0*M_PI * Effect->Reverb.HFReference / frequency);
451 g = __max(Effect->Reverb.GainHF, 0.0001f);
452 State->LpFilter.coeff = 0.0f;
453 if(g < 0.9999f) // 1-epsilon
454 State->LpFilter.coeff = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) / (1 - g);
456 // Calculate the initial delay taps.
457 length = Effect->Reverb.ReflectionsDelay;
458 State->Tap[0] = (ALuint)(length * frequency);
460 length += Effect->Reverb.LateReverbDelay;
462 /* The four inputs to the late reverb are decorrelated to smooth the
463 * initial reverb and reduce harsh echos. The timings are calculated as
464 * multiples of a fraction of the smallest cyclical delay time. This
465 * result is then adjusted so that the first tap occurs immediately (all
466 * taps are reduced by the shortest fraction).
468 * offset[index] = ((FRACTION MULTIPLIER^index) - 1) delay
470 for(index = 0;index < 4;index++)
472 length += LATE_LINE_LENGTH[0] *
473 (1.0f + (Effect->Reverb.Density * LATE_LINE_MULTIPLIER)) *
474 (DECO_FRACTION * (pow(DECO_MULTIPLIER, (ALfloat)index) - 1.0f));
475 State->Tap[1 + index] = (ALuint)(length * frequency);
478 // Calculate the early reflections gain (from the master effect gain, and
479 // reflections gain parameters).
480 State->Early.Gain = Effect->Reverb.Gain * Effect->Reverb.ReflectionsGain;
482 // Calculate the gain (coefficient) for each early delay line.
483 for(index = 0;index < 4;index++)
484 State->Early.Coeff[index] = pow(10.0f, EARLY_LINE_LENGTH[index] /
485 Effect->Reverb.LateReverbDelay *
486 -60.0f / 20.0f);
488 // Calculate the first mixing matrix coefficient (x).
489 mixCoeff = 1.0f - (0.5f * pow(Effect->Reverb.Diffusion, 3.0f));
491 // Calculate the late reverb gain (from the master effect gain, and late
492 // reverb gain parameters). Since the output is tapped prior to the
493 // application of the delay line coefficients, this gain needs to be
494 // attenuated by the 'x' mix coefficient from above.
495 State->Late.Gain = Effect->Reverb.Gain * Effect->Reverb.LateReverbGain * mixCoeff;
497 /* To compensate for changes in modal density and decay time of the late
498 * reverb signal, the input is attenuated based on the maximal energy of
499 * the outgoing signal. This is calculated as the ratio between a
500 * reference value and the current approximation of energy for the output
501 * signal.
503 * Reverb output matches exponential decay of the form Sum(a^n), where a
504 * is the attenuation coefficient, and n is the sample ranging from 0 to
505 * infinity. The signal energy can thus be approximated using the area
506 * under this curve, calculated as: 1 / (1 - a).
508 * The reference energy is calculated from a signal at the lowest (effect
509 * at 1.0) density with a decay time of one second.
511 * The coefficient is calculated as the average length of the cyclical
512 * delay lines. This produces a better result than calculating the gain
513 * for each line individually (most likely a side effect of diffusion).
515 * The final result is the square root of the ratio bound to a maximum
516 * value of 1 (no amplification).
518 length = (LATE_LINE_LENGTH[0] + LATE_LINE_LENGTH[1] +
519 LATE_LINE_LENGTH[2] + LATE_LINE_LENGTH[3]);
520 g = length * (1.0f + LATE_LINE_MULTIPLIER) * 0.25f;
521 g = pow(10.0f, g * -60.0f / 20.0f);
522 g = 1.0f / (1.0f - (g * g));
523 length *= 1.0f + (Effect->Reverb.Density * LATE_LINE_MULTIPLIER) * 0.25f;
524 length = pow(10.0f, length / Effect->Reverb.DecayTime * -60.0f / 20.0f);
525 length = 1.0f / (1.0f - (length * length));
526 State->Late.DensityGain = __min(aluSqrt(g / length), 1.0f);
528 // Calculate the all-pass feed-back and feed-forward coefficient.
529 State->Late.ApFeedCoeff = 0.6f * pow(Effect->Reverb.Diffusion, 3.0f);
531 // Calculate the mixing matrix coefficient (y / x).
532 g = aluSqrt((1.0f - (mixCoeff * mixCoeff)) / 3.0f);
533 State->Late.MixCoeff = g / mixCoeff;
535 for(index = 0;index < 4;index++)
537 // Calculate the gain (coefficient) for each all-pass line.
538 State->Late.ApCoeff[index] = pow(10.0f, ALLPASS_LINE_LENGTH[index] /
539 Effect->Reverb.DecayTime *
540 -60.0f / 20.0f);
543 // If the HF limit parameter is flagged, calculate an appropriate limit
544 // based on the air absorption parameter.
545 if(Effect->Reverb.DecayHFLimit && Effect->Reverb.AirAbsorptionGainHF < 1.0f)
547 ALfloat limitRatio;
549 // For each of the cyclical delays, find the attenuation due to air
550 // absorption in dB (converting delay time to meters using the speed
551 // of sound). Then reversing the decay equation, solve for HF ratio.
552 // The delay length is cancelled out of the equation, so it can be
553 // calculated once for all lines.
554 limitRatio = 1.0f / (log10(Effect->Reverb.AirAbsorptionGainHF) *
555 SPEEDOFSOUNDMETRESPERSEC *
556 Effect->Reverb.DecayTime / -60.0f * 20.0f);
557 // Need to limit the result to a minimum of 0.1, just like the HF
558 // ratio parameter.
559 limitRatio = __max(limitRatio, 0.1f);
561 // Using the limit calculated above, apply the upper bound to the
562 // HF ratio.
563 hfRatio = __min(hfRatio, limitRatio);
566 // Calculate the low-pass filter frequency.
567 cw = cos(2.0*M_PI * Effect->Reverb.HFReference / frequency);
569 for(index = 0;index < 4;index++)
571 // Calculate the length (in seconds) of each cyclical delay line.
572 length = LATE_LINE_LENGTH[index] * (1.0f + (Effect->Reverb.Density *
573 LATE_LINE_MULTIPLIER));
574 // Calculate the delay offset for the cyclical delay lines.
575 State->Late.Offset[index] = (ALuint)(length * frequency);
577 // Calculate the gain (coefficient) for each cyclical line.
578 State->Late.Coeff[index] = pow(10.0f, length / Effect->Reverb.DecayTime *
579 -60.0f / 20.0f);
581 // Eventually this should boost the high frequencies when the ratio
582 // exceeds 1.
583 coeff = 0.0f;
584 if (hfRatio < 1.0f)
586 // Calculate the decay equation for each low-pass filter.
587 g = pow(10.0f, length / (Effect->Reverb.DecayTime * hfRatio) *
588 -60.0f / 20.0f) / State->Late.Coeff[index];
589 g = __max(g, 0.1f);
590 g *= g;
592 // Calculate the gain (coefficient) for each low-pass filter.
593 if(g < 0.9999f) // 1-epsilon
594 coeff = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) / (1 - g);
596 // Very low decay times will produce minimal output, so apply an
597 // upper bound to the coefficient.
598 coeff = __min(coeff, 0.98f);
600 State->Late.LpCoeff[index] = coeff;
602 // Attenuate the cyclical line coefficients by the mixing coefficient
603 // (x).
604 State->Late.Coeff[index] *= mixCoeff;
607 // Calculate the 3D-panning gains for the early reflections and late
608 // reverb (for EAX mode).
610 ALfloat earlyPan[3] = { Effect->Reverb.ReflectionsPan[0], Effect->Reverb.ReflectionsPan[1], Effect->Reverb.ReflectionsPan[2] };
611 ALfloat latePan[3] = { Effect->Reverb.LateReverbPan[0], Effect->Reverb.LateReverbPan[1], Effect->Reverb.LateReverbPan[2] };
612 ALfloat *speakerGain, dirGain, ambientGain;
613 ALfloat length;
614 ALint pos;
616 length = earlyPan[0]*earlyPan[0] + earlyPan[1]*earlyPan[1] + earlyPan[2]*earlyPan[2];
617 if(length > 1.0f)
619 length = 1.0f / aluSqrt(length);
620 earlyPan[0] *= length;
621 earlyPan[1] *= length;
622 earlyPan[2] *= length;
624 length = latePan[0]*latePan[0] + latePan[1]*latePan[1] + latePan[2]*latePan[2];
625 if(length > 1.0f)
627 length = 1.0f / aluSqrt(length);
628 latePan[0] *= length;
629 latePan[1] *= length;
630 latePan[2] *= length;
633 // This code applies directional reverb just like the mixer applies
634 // directional sources. It diffuses the sound toward all speakers
635 // as the magnitude of the panning vector drops, which is only an
636 // approximation of the expansion of sound across the speakers from
637 // the panning direction.
638 pos = aluCart2LUTpos(earlyPan[2], earlyPan[0]);
639 speakerGain = &Context->PanningLUT[OUTPUTCHANNELS * pos];
640 dirGain = aluSqrt((earlyPan[0] * earlyPan[0]) + (earlyPan[2] * earlyPan[2]));
641 ambientGain = (1.0 - dirGain);
642 for(index = 0;index < OUTPUTCHANNELS;index++)
643 State->Early.PanGain[index] = dirGain * speakerGain[index] + ambientGain;
645 pos = aluCart2LUTpos(latePan[2], latePan[0]);
646 speakerGain = &Context->PanningLUT[OUTPUTCHANNELS * pos];
647 dirGain = aluSqrt((latePan[0] * latePan[0]) + (latePan[2] * latePan[2]));
648 ambientGain = (1.0 - dirGain);
649 for(index = 0;index < OUTPUTCHANNELS;index++)
650 State->Late.PanGain[index] = dirGain * speakerGain[index] + ambientGain;
654 // This processes the reverb state, given the input samples and an output
655 // buffer.
656 ALvoid VerbProcess(ALeffectState *effect, const ALeffectslot *Slot, ALuint SamplesToDo, const ALfloat *SamplesIn, ALfloat (*SamplesOut)[OUTPUTCHANNELS])
658 ALverbState *State = (ALverbState*)effect;
659 ALuint index;
660 ALfloat early[4], late[4], out[4];
661 ALfloat gain = Slot->Gain;
663 for(index = 0;index < SamplesToDo;index++)
665 // Process reverb for this sample.
666 ReverbInOut(State, SamplesIn[index], early, late);
668 // Mix early reflections and late reverb.
669 out[0] = (early[0] + late[0]) * gain;
670 out[1] = (early[1] + late[1]) * gain;
671 out[2] = (early[2] + late[2]) * gain;
672 out[3] = (early[3] + late[3]) * gain;
674 // Output the results.
675 SamplesOut[index][FRONT_LEFT] += out[0];
676 SamplesOut[index][FRONT_RIGHT] += out[1];
677 SamplesOut[index][FRONT_CENTER] += out[3];
678 SamplesOut[index][SIDE_LEFT] += out[0];
679 SamplesOut[index][SIDE_RIGHT] += out[1];
680 SamplesOut[index][BACK_LEFT] += out[0];
681 SamplesOut[index][BACK_RIGHT] += out[1];
682 SamplesOut[index][BACK_CENTER] += out[2];
686 // This processes the EAX reverb state, given the input samples and an output
687 // buffer.
688 ALvoid EAXVerbProcess(ALeffectState *effect, const ALeffectslot *Slot, ALuint SamplesToDo, const ALfloat *SamplesIn, ALfloat (*SamplesOut)[OUTPUTCHANNELS])
690 ALverbState *State = (ALverbState*)effect;
691 ALuint index;
692 ALfloat early[4], late[4];
693 ALfloat gain = Slot->Gain;
695 for(index = 0;index < SamplesToDo;index++)
697 // Process reverb for this sample.
698 ReverbInOut(State, SamplesIn[index], early, late);
700 // Unfortunately, while the number and configuration of gains for
701 // panning adjust according to OUTPUTCHANNELS, the output from the
702 // reverb engine is not so scalable.
703 SamplesOut[index][FRONT_LEFT] +=
704 (State->Early.PanGain[FRONT_LEFT]*early[0] +
705 State->Late.PanGain[FRONT_LEFT]*late[0]) * gain;
706 SamplesOut[index][FRONT_RIGHT] +=
707 (State->Early.PanGain[FRONT_RIGHT]*early[1] +
708 State->Late.PanGain[FRONT_RIGHT]*late[1]) * gain;
709 SamplesOut[index][FRONT_CENTER] +=
710 (State->Early.PanGain[FRONT_CENTER]*early[3] +
711 State->Late.PanGain[FRONT_CENTER]*late[3]) * gain;
712 SamplesOut[index][SIDE_LEFT] +=
713 (State->Early.PanGain[SIDE_LEFT]*early[0] +
714 State->Late.PanGain[SIDE_LEFT]*late[0]) * gain;
715 SamplesOut[index][SIDE_RIGHT] +=
716 (State->Early.PanGain[SIDE_RIGHT]*early[1] +
717 State->Late.PanGain[SIDE_RIGHT]*late[1]) * gain;
718 SamplesOut[index][BACK_LEFT] +=
719 (State->Early.PanGain[BACK_LEFT]*early[0] +
720 State->Late.PanGain[BACK_LEFT]*late[0]) * gain;
721 SamplesOut[index][BACK_RIGHT] +=
722 (State->Early.PanGain[BACK_RIGHT]*early[1] +
723 State->Late.PanGain[BACK_RIGHT]*late[1]) * gain;
724 SamplesOut[index][BACK_CENTER] +=
725 (State->Early.PanGain[BACK_CENTER]*early[2] +
726 State->Late.PanGain[BACK_CENTER]*late[2]) * gain;
730 // This creates the reverb state. It should be called only when the reverb
731 // effect is loaded into a slot that doesn't already have a reverb effect.
732 ALeffectState *VerbCreate(void)
734 ALverbState *State = NULL;
735 ALuint index;
737 State = malloc(sizeof(ALverbState));
738 if(!State)
740 alSetError(AL_OUT_OF_MEMORY);
741 return NULL;
744 State->state.Destroy = VerbDestroy;
745 State->state.DeviceUpdate = VerbDeviceUpdate;
746 State->state.Update = VerbUpdate;
747 State->state.Process = VerbProcess;
749 State->TotalLength = 0;
750 State->SampleBuffer = NULL;
752 State->LpFilter.coeff = 0.0f;
753 State->LpFilter.history[0] = 0.0f;
754 State->LpFilter.history[1] = 0.0f;
755 State->Delay.Mask = 0;
756 State->Delay.Line = NULL;
758 State->Tap[0] = 0;
759 State->Tap[1] = 0;
760 State->Tap[2] = 0;
761 State->Tap[3] = 0;
762 State->Tap[4] = 0;
764 State->Early.Gain = 0.0f;
765 for(index = 0;index < 4;index++)
767 State->Early.Coeff[index] = 0.0f;
768 State->Early.Delay[index].Mask = 0;
769 State->Early.Delay[index].Line = NULL;
770 State->Early.Offset[index] = 0;
773 State->Late.Gain = 0.0f;
774 State->Late.DensityGain = 0.0f;
775 State->Late.ApFeedCoeff = 0.0f;
776 State->Late.MixCoeff = 0.0f;
778 for(index = 0;index < 4;index++)
780 State->Late.ApCoeff[index] = 0.0f;
781 State->Late.ApDelay[index].Mask = 0;
782 State->Late.ApDelay[index].Line = NULL;
783 State->Late.ApOffset[index] = 0;
785 State->Late.Coeff[index] = 0.0f;
786 State->Late.Delay[index].Mask = 0;
787 State->Late.Delay[index].Line = NULL;
788 State->Late.Offset[index] = 0;
790 State->Late.LpCoeff[index] = 0.0f;
791 State->Late.LpSample[index] = 0.0f;
794 // Panning is applied as an independent gain for each output channel.
795 for(index = 0;index < OUTPUTCHANNELS;index++)
797 State->Early.PanGain[index] = 0.0f;
798 State->Late.PanGain[index] = 0.0f;
801 State->Offset = 0;
802 return &State->state;
805 ALeffectState *EAXVerbCreate(void)
807 ALeffectState *State = VerbCreate();
808 if(State) State->Process = EAXVerbProcess;
809 return State;