Add missing returns
[openal-soft.git] / OpenAL32 / Include / alu.h
blob951ef0d7f375ac582fd89aa2c572f2815ef3186e
1 #ifndef _ALU_H_
2 #define _ALU_H_
4 #include "AL/al.h"
5 #include "AL/alc.h"
6 #include "AL/alext.h"
8 #include <limits.h>
9 #include <math.h>
10 #ifdef HAVE_FLOAT_H
11 #include <float.h>
12 /* HACK: Seems cross-compiling with MinGW includes the wrong float.h, which
13 * doesn't define Windows' _controlfp and related macros */
14 #if defined(__MINGW32__) && !defined(_RC_CHOP)
15 /* Control word masks for unMask */
16 #define _MCW_EM 0x0008001F /* Error masks */
17 #define _MCW_IC 0x00040000 /* Infinity */
18 #define _MCW_RC 0x00000300 /* Rounding */
19 #define _MCW_PC 0x00030000 /* Precision */
20 /* Control word values for unNew (use with related unMask above) */
21 #define _EM_INVALID 0x00000010
22 #define _EM_DENORMAL 0x00080000
23 #define _EM_ZERODIVIDE 0x00000008
24 #define _EM_OVERFLOW 0x00000004
25 #define _EM_UNDERFLOW 0x00000002
26 #define _EM_INEXACT 0x00000001
27 #define _IC_AFFINE 0x00040000
28 #define _IC_PROJECTIVE 0x00000000
29 #define _RC_CHOP 0x00000300
30 #define _RC_UP 0x00000200
31 #define _RC_DOWN 0x00000100
32 #define _RC_NEAR 0x00000000
33 #define _PC_24 0x00020000
34 #define _PC_53 0x00010000
35 #define _PC_64 0x00000000
36 _CRTIMP unsigned int __cdecl __MINGW_NOTHROW _controlfp (unsigned int unNew, unsigned int unMask);
37 #endif
38 #endif
39 #ifdef HAVE_IEEEFP_H
40 #include <ieeefp.h>
41 #endif
44 #define F_PI (3.14159265358979323846f) /* pi */
45 #define F_PI_2 (1.57079632679489661923f) /* pi/2 */
47 #ifndef HAVE_POWF
48 static __inline float powf(float x, float y)
49 { return (float)pow(x, y); }
50 #endif
52 #ifndef HAVE_SQRTF
53 static __inline float sqrtf(float x)
54 { return (float)sqrt(x); }
55 #endif
57 #ifndef HAVE_COSF
58 static __inline float cosf(float x)
59 { return (float)cos(x); }
60 #endif
62 #ifndef HAVE_SINF
63 static __inline float sinf(float x)
64 { return (float)sin(x); }
65 #endif
67 #ifndef HAVE_ACOSF
68 static __inline float acosf(float x)
69 { return (float)acos(x); }
70 #endif
72 #ifndef HAVE_ASINF
73 static __inline float asinf(float x)
74 { return (float)asin(x); }
75 #endif
77 #ifndef HAVE_ATANF
78 static __inline float atanf(float x)
79 { return (float)atan(x); }
80 #endif
82 #ifndef HAVE_ATAN2F
83 static __inline float atan2f(float x, float y)
84 { return (float)atan2(x, y); }
85 #endif
87 #ifndef HAVE_FABSF
88 static __inline float fabsf(float x)
89 { return (float)fabs(x); }
90 #endif
92 #ifndef HAVE_LOG10F
93 static __inline float log10f(float x)
94 { return (float)log10(x); }
95 #endif
97 #ifndef HAVE_FLOORF
98 static __inline float floorf(float x)
99 { return (float)floor(x); }
100 #endif
102 #ifdef __cplusplus
103 extern "C" {
104 #endif
106 struct ALsource;
107 struct ALbuffer;
108 struct DirectParams;
109 struct SendParams;
111 typedef ALvoid (*DryMixerFunc)(struct ALsource *self, ALCdevice *Device,
112 struct DirectParams *params,
113 const ALfloat *RESTRICT data, ALuint srcchan,
114 ALuint OutPos, ALuint SamplesToDo,
115 ALuint BufferSize);
116 typedef ALvoid (*WetMixerFunc)(struct SendParams *params,
117 const ALfloat *RESTRICT data, ALuint srcchan,
118 ALuint OutPos, ALuint SamplesToDo,
119 ALuint BufferSize);
121 enum Resampler {
122 PointResampler,
123 LinearResampler,
124 CubicResampler,
126 ResamplerMax,
129 enum Channel {
130 FrontLeft = 0,
131 FrontRight,
132 FrontCenter,
133 LFE,
134 BackLeft,
135 BackRight,
136 BackCenter,
137 SideLeft,
138 SideRight,
140 MaxChannels,
143 enum DistanceModel {
144 InverseDistanceClamped = AL_INVERSE_DISTANCE_CLAMPED,
145 LinearDistanceClamped = AL_LINEAR_DISTANCE_CLAMPED,
146 ExponentDistanceClamped = AL_EXPONENT_DISTANCE_CLAMPED,
147 InverseDistance = AL_INVERSE_DISTANCE,
148 LinearDistance = AL_LINEAR_DISTANCE,
149 ExponentDistance = AL_EXPONENT_DISTANCE,
150 DisableDistance = AL_NONE,
152 DefaultDistanceModel = InverseDistanceClamped
156 /* Size for temporary storage of buffer data, in ALfloats. Larger values need
157 * more stack, while smaller values may need more iterations. The value needs
158 * to be a sensible size, however, as it constrains the max stepping value used
159 * for mixing, as well as the maximum number of samples per mixing iteration.
160 * The mixer requires being able to do two samplings per mixing loop. A 16KB
161 * buffer can hold 512 sample frames for a 7.1 float buffer. With the cubic
162 * resampler (which requires 3 padding sample frames), this limits the maximum
163 * step to about 508. This means that buffer_freq*source_pitch cannot exceed
164 * device_freq*508 for an 8-channel 32-bit buffer.
166 #ifndef BUFFERSIZE
167 #define BUFFERSIZE 4096
168 #endif
170 #define FRACTIONBITS (14)
171 #define FRACTIONONE (1<<FRACTIONBITS)
172 #define FRACTIONMASK (FRACTIONONE-1)
175 static __inline ALfloat minf(ALfloat a, ALfloat b)
176 { return ((a > b) ? b : a); }
177 static __inline ALfloat maxf(ALfloat a, ALfloat b)
178 { return ((a > b) ? a : b); }
179 static __inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max)
180 { return minf(max, maxf(min, val)); }
182 static __inline ALuint minu(ALuint a, ALuint b)
183 { return ((a > b) ? b : a); }
184 static __inline ALuint maxu(ALuint a, ALuint b)
185 { return ((a > b) ? a : b); }
186 static __inline ALuint clampu(ALuint val, ALuint min, ALuint max)
187 { return minu(max, maxu(min, val)); }
189 static __inline ALint mini(ALint a, ALint b)
190 { return ((a > b) ? b : a); }
191 static __inline ALint maxi(ALint a, ALint b)
192 { return ((a > b) ? a : b); }
193 static __inline ALint clampi(ALint val, ALint min, ALint max)
194 { return mini(max, maxi(min, val)); }
196 static __inline ALint64 mini64(ALint64 a, ALint64 b)
197 { return ((a > b) ? b : a); }
198 static __inline ALint64 maxi64(ALint64 a, ALint64 b)
199 { return ((a > b) ? a : b); }
200 static __inline ALint64 clampi64(ALint64 val, ALint64 min, ALint64 max)
201 { return mini64(max, maxi64(min, val)); }
203 static __inline ALuint64 minu64(ALuint64 a, ALuint64 b)
204 { return ((a > b) ? b : a); }
205 static __inline ALuint64 maxu64(ALuint64 a, ALuint64 b)
206 { return ((a > b) ? a : b); }
207 static __inline ALuint64 clampu64(ALuint64 val, ALuint64 min, ALuint64 max)
208 { return minu64(max, maxu64(min, val)); }
211 static __inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu)
213 return val1 + (val2-val1)*mu;
215 static __inline ALfloat cubic(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALfloat mu)
217 ALfloat mu2 = mu*mu;
218 ALfloat a0 = -0.5f*val0 + 1.5f*val1 + -1.5f*val2 + 0.5f*val3;
219 ALfloat a1 = val0 + -2.5f*val1 + 2.0f*val2 + -0.5f*val3;
220 ALfloat a2 = -0.5f*val0 + 0.5f*val2;
221 ALfloat a3 = val1;
223 return a0*mu*mu2 + a1*mu2 + a2*mu + a3;
227 static __inline int SetMixerFPUMode(void)
229 #if defined(_FPU_GETCW) && defined(_FPU_SETCW) && (defined(__i386__) || defined(__x86_64__))
230 fpu_control_t fpuState, newState;
231 _FPU_GETCW(fpuState);
232 newState = fpuState&~(_FPU_EXTENDED|_FPU_DOUBLE|_FPU_SINGLE |
233 _FPU_RC_NEAREST|_FPU_RC_DOWN|_FPU_RC_UP|_FPU_RC_ZERO);
234 newState |= _FPU_SINGLE | _FPU_RC_ZERO;
235 _FPU_SETCW(newState);
236 #else
237 int fpuState;
238 #if defined(HAVE__CONTROLFP)
239 fpuState = _controlfp(0, 0);
240 (void)_controlfp(_RC_CHOP|_PC_24, _MCW_RC|_MCW_PC);
241 #elif defined(HAVE_FESETROUND)
242 fpuState = fegetround();
243 #ifdef FE_TOWARDZERO
244 fesetround(FE_TOWARDZERO);
245 #endif
246 #endif
247 #endif
248 return fpuState;
251 static __inline void RestoreFPUMode(int state)
253 #if defined(_FPU_GETCW) && defined(_FPU_SETCW) && (defined(__i386__) || defined(__x86_64__))
254 fpu_control_t fpuState = state;
255 _FPU_SETCW(fpuState);
256 #elif defined(HAVE__CONTROLFP)
257 _controlfp(state, _MCW_RC|_MCW_PC);
258 #elif defined(HAVE_FESETROUND)
259 fesetround(state);
260 #endif
264 static __inline void aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
266 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
267 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
268 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
271 static __inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2)
273 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
274 inVector1[2]*inVector2[2];
277 static __inline void aluNormalize(ALfloat *inVector)
279 ALfloat lengthsqr = aluDotproduct(inVector, inVector);
280 if(lengthsqr > 0.0f)
282 ALfloat inv_length = 1.0f/sqrtf(lengthsqr);
283 inVector[0] *= inv_length;
284 inVector[1] *= inv_length;
285 inVector[2] *= inv_length;
290 ALvoid aluInitPanning(ALCdevice *Device);
292 ALvoid ComputeAngleGains(const ALCdevice *device, ALfloat angle, ALfloat hwidth, ALfloat ingain, ALfloat *gains);
294 ALvoid CalcSourceParams(struct ALsource *ALSource, const ALCcontext *ALContext);
295 ALvoid CalcNonAttnSourceParams(struct ALsource *ALSource, const ALCcontext *ALContext);
297 DryMixerFunc SelectDirectMixer(void);
298 DryMixerFunc SelectHrtfMixer(void);
299 WetMixerFunc SelectSendMixer(void);
301 ALvoid MixSource(struct ALsource *Source, ALCdevice *Device, ALuint SamplesToDo);
303 ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size);
304 ALvoid aluHandleDisconnect(ALCdevice *device);
306 extern ALfloat ConeScale;
307 extern ALfloat ZScale;
309 #ifdef __cplusplus
311 #endif
313 #endif