Protect some capture calls with a mutex
[openal-soft.git] / Alc / ALu.c
blob1981333cb2b0effc0be3af6f945944275fe1c834
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <math.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <ctype.h>
27 #include <assert.h>
29 #include "alMain.h"
30 #include "AL/al.h"
31 #include "AL/alc.h"
32 #include "alSource.h"
33 #include "alBuffer.h"
34 #include "alThunk.h"
35 #include "alListener.h"
36 #include "alAuxEffectSlot.h"
37 #include "alu.h"
38 #include "bs2b.h"
40 #define FRACTIONBITS 14
41 #define FRACTIONMASK ((1L<<FRACTIONBITS)-1)
42 #define MAX_PITCH 65536
44 /* Minimum ramp length in milliseconds. The value below was chosen to
45 * adequately reduce clicks and pops from harsh gain changes. */
46 #define MIN_RAMP_LENGTH 16
48 ALboolean DuplicateStereo = AL_FALSE;
51 static __inline ALfloat aluF2F(ALfloat Value)
53 return Value;
56 static __inline ALshort aluF2S(ALfloat Value)
58 ALint i;
60 if(Value < 0.0f)
62 i = (ALint)(Value*32768.0f);
63 i = max(-32768, i);
65 else
67 i = (ALint)(Value*32767.0f);
68 i = min( 32767, i);
70 return ((ALshort)i);
73 static __inline ALubyte aluF2UB(ALfloat Value)
75 ALshort i = aluF2S(Value);
76 return (i>>8)+128;
80 static __inline ALvoid aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
82 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
83 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
84 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
87 static __inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2)
89 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
90 inVector1[2]*inVector2[2];
93 static __inline ALvoid aluNormalize(ALfloat *inVector)
95 ALfloat length, inverse_length;
97 length = aluSqrt(aluDotproduct(inVector, inVector));
98 if(length != 0.0f)
100 inverse_length = 1.0f/length;
101 inVector[0] *= inverse_length;
102 inVector[1] *= inverse_length;
103 inVector[2] *= inverse_length;
107 static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat w,ALfloat matrix[4][4])
109 ALfloat temp[4] = {
110 vector[0], vector[1], vector[2], w
113 vector[0] = temp[0]*matrix[0][0] + temp[1]*matrix[1][0] + temp[2]*matrix[2][0] + temp[3]*matrix[3][0];
114 vector[1] = temp[0]*matrix[0][1] + temp[1]*matrix[1][1] + temp[2]*matrix[2][1] + temp[3]*matrix[3][1];
115 vector[2] = temp[0]*matrix[0][2] + temp[1]*matrix[1][2] + temp[2]*matrix[2][2] + temp[3]*matrix[3][2];
118 static ALvoid SetSpeakerArrangement(const char *name, ALfloat SpeakerAngle[OUTPUTCHANNELS],
119 ALint Speaker2Chan[OUTPUTCHANNELS], ALint chans)
121 char layout_str[256];
122 char *confkey, *next;
123 char *sep, *end;
124 int i, val;
126 strncpy(layout_str, GetConfigValue(NULL, name, ""), sizeof(layout_str));
127 layout_str[255] = 0;
129 next = confkey = layout_str;
130 while(next && *next)
132 confkey = next;
133 next = strchr(confkey, ',');
134 if(next)
136 *next = 0;
137 do {
138 next++;
139 } while(isspace(*next) || *next == ',');
142 sep = strchr(confkey, '=');
143 if(!sep || confkey == sep)
144 continue;
146 end = sep - 1;
147 while(isspace(*end) && end != confkey)
148 end--;
149 *(++end) = 0;
151 if(strcmp(confkey, "fl") == 0 || strcmp(confkey, "front-left") == 0)
152 val = FRONT_LEFT;
153 else if(strcmp(confkey, "fr") == 0 || strcmp(confkey, "front-right") == 0)
154 val = FRONT_RIGHT;
155 else if(strcmp(confkey, "fc") == 0 || strcmp(confkey, "front-center") == 0)
156 val = FRONT_CENTER;
157 else if(strcmp(confkey, "bl") == 0 || strcmp(confkey, "back-left") == 0)
158 val = BACK_LEFT;
159 else if(strcmp(confkey, "br") == 0 || strcmp(confkey, "back-right") == 0)
160 val = BACK_RIGHT;
161 else if(strcmp(confkey, "bc") == 0 || strcmp(confkey, "back-center") == 0)
162 val = BACK_CENTER;
163 else if(strcmp(confkey, "sl") == 0 || strcmp(confkey, "side-left") == 0)
164 val = SIDE_LEFT;
165 else if(strcmp(confkey, "sr") == 0 || strcmp(confkey, "side-right") == 0)
166 val = SIDE_RIGHT;
167 else
169 AL_PRINT("Unknown speaker for %s: \"%s\"\n", name, confkey);
170 continue;
173 *(sep++) = 0;
174 while(isspace(*sep))
175 sep++;
177 for(i = 0;i < chans;i++)
179 if(Speaker2Chan[i] == val)
181 val = strtol(sep, NULL, 10);
182 if(val >= -180 && val <= 180)
183 SpeakerAngle[i] = val * M_PI/180.0f;
184 else
185 AL_PRINT("Invalid angle for speaker \"%s\": %d\n", confkey, val);
186 break;
191 for(i = 1;i < chans;i++)
193 if(SpeakerAngle[i] <= SpeakerAngle[i-1])
195 AL_PRINT("Speaker %d of %d does not follow previous: %f > %f\n", i, chans,
196 SpeakerAngle[i-1] * 180.0f/M_PI, SpeakerAngle[i] * 180.0f/M_PI);
197 SpeakerAngle[i] = SpeakerAngle[i-1] + 1 * M_PI/180.0f;
202 static __inline ALfloat aluLUTpos2Angle(ALint pos)
204 if(pos < QUADRANT_NUM)
205 return aluAtan((ALfloat)pos / (ALfloat)(QUADRANT_NUM - pos));
206 if(pos < 2 * QUADRANT_NUM)
207 return M_PI_2 + aluAtan((ALfloat)(pos - QUADRANT_NUM) / (ALfloat)(2 * QUADRANT_NUM - pos));
208 if(pos < 3 * QUADRANT_NUM)
209 return aluAtan((ALfloat)(pos - 2 * QUADRANT_NUM) / (ALfloat)(3 * QUADRANT_NUM - pos)) - M_PI;
210 return aluAtan((ALfloat)(pos - 3 * QUADRANT_NUM) / (ALfloat)(4 * QUADRANT_NUM - pos)) - M_PI_2;
213 ALvoid aluInitPanning(ALCcontext *Context)
215 ALint pos, offset, s;
216 ALfloat Alpha, Theta;
217 ALfloat SpeakerAngle[OUTPUTCHANNELS];
218 ALint Speaker2Chan[OUTPUTCHANNELS];
220 for(s = 0;s < OUTPUTCHANNELS;s++)
222 int s2;
223 for(s2 = 0;s2 < OUTPUTCHANNELS;s2++)
224 Context->ChannelMatrix[s][s2] = ((s==s2) ? 1.0f : 0.0f);
227 switch(Context->Device->Format)
229 case AL_FORMAT_MONO8:
230 case AL_FORMAT_MONO16:
231 case AL_FORMAT_MONO_FLOAT32:
232 Context->ChannelMatrix[FRONT_LEFT][FRONT_CENTER] = aluSqrt(0.5);
233 Context->ChannelMatrix[FRONT_RIGHT][FRONT_CENTER] = aluSqrt(0.5);
234 Context->ChannelMatrix[SIDE_LEFT][FRONT_CENTER] = aluSqrt(0.5);
235 Context->ChannelMatrix[SIDE_RIGHT][FRONT_CENTER] = aluSqrt(0.5);
236 Context->ChannelMatrix[BACK_LEFT][FRONT_CENTER] = aluSqrt(0.5);
237 Context->ChannelMatrix[BACK_RIGHT][FRONT_CENTER] = aluSqrt(0.5);
238 Context->ChannelMatrix[BACK_CENTER][FRONT_CENTER] = 1.0f;
239 Context->NumChan = 1;
240 Speaker2Chan[0] = FRONT_CENTER;
241 SpeakerAngle[0] = 0.0f * M_PI/180.0f;
242 break;
244 case AL_FORMAT_STEREO8:
245 case AL_FORMAT_STEREO16:
246 case AL_FORMAT_STEREO_FLOAT32:
247 Context->ChannelMatrix[FRONT_CENTER][FRONT_LEFT] = aluSqrt(0.5);
248 Context->ChannelMatrix[FRONT_CENTER][FRONT_RIGHT] = aluSqrt(0.5);
249 Context->ChannelMatrix[SIDE_LEFT][FRONT_LEFT] = 1.0f;
250 Context->ChannelMatrix[SIDE_RIGHT][FRONT_RIGHT] = 1.0f;
251 Context->ChannelMatrix[BACK_LEFT][FRONT_LEFT] = 1.0f;
252 Context->ChannelMatrix[BACK_RIGHT][FRONT_RIGHT] = 1.0f;
253 Context->ChannelMatrix[BACK_CENTER][FRONT_LEFT] = aluSqrt(0.5);
254 Context->ChannelMatrix[BACK_CENTER][FRONT_RIGHT] = aluSqrt(0.5);
255 Context->NumChan = 2;
256 Speaker2Chan[0] = FRONT_LEFT;
257 Speaker2Chan[1] = FRONT_RIGHT;
258 SpeakerAngle[0] = -90.0f * M_PI/180.0f;
259 SpeakerAngle[1] = 90.0f * M_PI/180.0f;
260 SetSpeakerArrangement("layout_STEREO", SpeakerAngle, Speaker2Chan, Context->NumChan);
261 break;
263 case AL_FORMAT_QUAD8:
264 case AL_FORMAT_QUAD16:
265 case AL_FORMAT_QUAD32:
266 Context->ChannelMatrix[FRONT_CENTER][FRONT_LEFT] = aluSqrt(0.5);
267 Context->ChannelMatrix[FRONT_CENTER][FRONT_RIGHT] = aluSqrt(0.5);
268 Context->ChannelMatrix[SIDE_LEFT][FRONT_LEFT] = aluSqrt(0.5);
269 Context->ChannelMatrix[SIDE_LEFT][BACK_LEFT] = aluSqrt(0.5);
270 Context->ChannelMatrix[SIDE_RIGHT][FRONT_RIGHT] = aluSqrt(0.5);
271 Context->ChannelMatrix[SIDE_RIGHT][BACK_RIGHT] = aluSqrt(0.5);
272 Context->ChannelMatrix[BACK_CENTER][BACK_LEFT] = aluSqrt(0.5);
273 Context->ChannelMatrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(0.5);
274 Context->NumChan = 4;
275 Speaker2Chan[0] = BACK_LEFT;
276 Speaker2Chan[1] = FRONT_LEFT;
277 Speaker2Chan[2] = FRONT_RIGHT;
278 Speaker2Chan[3] = BACK_RIGHT;
279 SpeakerAngle[0] = -135.0f * M_PI/180.0f;
280 SpeakerAngle[1] = -45.0f * M_PI/180.0f;
281 SpeakerAngle[2] = 45.0f * M_PI/180.0f;
282 SpeakerAngle[3] = 135.0f * M_PI/180.0f;
283 SetSpeakerArrangement("layout_QUAD", SpeakerAngle, Speaker2Chan, Context->NumChan);
284 break;
286 case AL_FORMAT_51CHN8:
287 case AL_FORMAT_51CHN16:
288 case AL_FORMAT_51CHN32:
289 Context->ChannelMatrix[SIDE_LEFT][FRONT_LEFT] = aluSqrt(0.5);
290 Context->ChannelMatrix[SIDE_LEFT][BACK_LEFT] = aluSqrt(0.5);
291 Context->ChannelMatrix[SIDE_RIGHT][FRONT_RIGHT] = aluSqrt(0.5);
292 Context->ChannelMatrix[SIDE_RIGHT][BACK_RIGHT] = aluSqrt(0.5);
293 Context->ChannelMatrix[BACK_CENTER][BACK_LEFT] = aluSqrt(0.5);
294 Context->ChannelMatrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(0.5);
295 Context->NumChan = 5;
296 Speaker2Chan[0] = BACK_LEFT;
297 Speaker2Chan[1] = FRONT_LEFT;
298 Speaker2Chan[2] = FRONT_CENTER;
299 Speaker2Chan[3] = FRONT_RIGHT;
300 Speaker2Chan[4] = BACK_RIGHT;
301 SpeakerAngle[0] = -110.0f * M_PI/180.0f;
302 SpeakerAngle[1] = -30.0f * M_PI/180.0f;
303 SpeakerAngle[2] = 0.0f * M_PI/180.0f;
304 SpeakerAngle[3] = 30.0f * M_PI/180.0f;
305 SpeakerAngle[4] = 110.0f * M_PI/180.0f;
306 SetSpeakerArrangement("layout_51CHN", SpeakerAngle, Speaker2Chan, Context->NumChan);
307 break;
309 case AL_FORMAT_61CHN8:
310 case AL_FORMAT_61CHN16:
311 case AL_FORMAT_61CHN32:
312 Context->ChannelMatrix[BACK_LEFT][BACK_CENTER] = aluSqrt(0.5);
313 Context->ChannelMatrix[BACK_LEFT][SIDE_LEFT] = aluSqrt(0.5);
314 Context->ChannelMatrix[BACK_RIGHT][BACK_CENTER] = aluSqrt(0.5);
315 Context->ChannelMatrix[BACK_RIGHT][SIDE_RIGHT] = aluSqrt(0.5);
316 Context->NumChan = 6;
317 Speaker2Chan[0] = SIDE_LEFT;
318 Speaker2Chan[1] = FRONT_LEFT;
319 Speaker2Chan[2] = FRONT_CENTER;
320 Speaker2Chan[3] = FRONT_RIGHT;
321 Speaker2Chan[4] = SIDE_RIGHT;
322 Speaker2Chan[5] = BACK_CENTER;
323 SpeakerAngle[0] = -90.0f * M_PI/180.0f;
324 SpeakerAngle[1] = -30.0f * M_PI/180.0f;
325 SpeakerAngle[2] = 0.0f * M_PI/180.0f;
326 SpeakerAngle[3] = 30.0f * M_PI/180.0f;
327 SpeakerAngle[4] = 90.0f * M_PI/180.0f;
328 SpeakerAngle[5] = 180.0f * M_PI/180.0f;
329 SetSpeakerArrangement("layout_61CHN", SpeakerAngle, Speaker2Chan, Context->NumChan);
330 break;
332 case AL_FORMAT_71CHN8:
333 case AL_FORMAT_71CHN16:
334 case AL_FORMAT_71CHN32:
335 Context->ChannelMatrix[BACK_CENTER][BACK_LEFT] = aluSqrt(0.5);
336 Context->ChannelMatrix[BACK_CENTER][BACK_RIGHT] = aluSqrt(0.5);
337 Context->NumChan = 7;
338 Speaker2Chan[0] = BACK_LEFT;
339 Speaker2Chan[1] = SIDE_LEFT;
340 Speaker2Chan[2] = FRONT_LEFT;
341 Speaker2Chan[3] = FRONT_CENTER;
342 Speaker2Chan[4] = FRONT_RIGHT;
343 Speaker2Chan[5] = SIDE_RIGHT;
344 Speaker2Chan[6] = BACK_RIGHT;
345 SpeakerAngle[0] = -150.0f * M_PI/180.0f;
346 SpeakerAngle[1] = -90.0f * M_PI/180.0f;
347 SpeakerAngle[2] = -30.0f * M_PI/180.0f;
348 SpeakerAngle[3] = 0.0f * M_PI/180.0f;
349 SpeakerAngle[4] = 30.0f * M_PI/180.0f;
350 SpeakerAngle[5] = 90.0f * M_PI/180.0f;
351 SpeakerAngle[6] = 150.0f * M_PI/180.0f;
352 SetSpeakerArrangement("layout_71CHN", SpeakerAngle, Speaker2Chan, Context->NumChan);
353 break;
355 default:
356 assert(0);
359 for(pos = 0; pos < LUT_NUM; pos++)
361 /* clear all values */
362 offset = OUTPUTCHANNELS * pos;
363 for(s = 0; s < OUTPUTCHANNELS; s++)
364 Context->PanningLUT[offset+s] = 0.0f;
366 if(Context->NumChan == 1)
368 Context->PanningLUT[offset + Speaker2Chan[0]] = 1.0f;
369 continue;
372 /* source angle */
373 Theta = aluLUTpos2Angle(pos);
375 /* set panning values */
376 for(s = 0; s < Context->NumChan - 1; s++)
378 if(Theta >= SpeakerAngle[s] && Theta < SpeakerAngle[s+1])
380 /* source between speaker s and speaker s+1 */
381 Alpha = M_PI_2 * (Theta-SpeakerAngle[s]) /
382 (SpeakerAngle[s+1]-SpeakerAngle[s]);
383 Context->PanningLUT[offset + Speaker2Chan[s]] = cos(Alpha);
384 Context->PanningLUT[offset + Speaker2Chan[s+1]] = sin(Alpha);
385 break;
388 if(s == Context->NumChan - 1)
390 /* source between last and first speaker */
391 if(Theta < SpeakerAngle[0])
392 Theta += 2.0f * M_PI;
393 Alpha = M_PI_2 * (Theta-SpeakerAngle[s]) /
394 (2.0f * M_PI + SpeakerAngle[0]-SpeakerAngle[s]);
395 Context->PanningLUT[offset + Speaker2Chan[s]] = cos(Alpha);
396 Context->PanningLUT[offset + Speaker2Chan[0]] = sin(Alpha);
401 static ALvoid CalcNonAttnSourceParams(const ALCcontext *ALContext, ALsource *ALSource)
403 ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
404 ALfloat DryGain, DryGainHF;
405 ALfloat WetGain[MAX_SENDS];
406 ALfloat WetGainHF[MAX_SENDS];
407 ALint NumSends, Frequency;
408 ALfloat cw;
409 ALint i;
411 //Get context properties
412 NumSends = ALContext->Device->NumAuxSends;
413 Frequency = ALContext->Device->Frequency;
415 //Get listener properties
416 ListenerGain = ALContext->Listener.Gain;
418 //Get source properties
419 SourceVolume = ALSource->flGain;
420 MinVolume = ALSource->flMinGain;
421 MaxVolume = ALSource->flMaxGain;
423 //1. Multi-channel buffers always play "normal"
424 ALSource->Params.Pitch = ALSource->flPitch;
426 DryGain = SourceVolume;
427 DryGain = __min(DryGain,MaxVolume);
428 DryGain = __max(DryGain,MinVolume);
429 DryGainHF = 1.0f;
431 switch(ALSource->DirectFilter.type)
433 case AL_FILTER_LOWPASS:
434 DryGain *= ALSource->DirectFilter.Gain;
435 DryGainHF *= ALSource->DirectFilter.GainHF;
436 break;
439 ALSource->Params.DryGains[FRONT_LEFT] = DryGain * ListenerGain;
440 ALSource->Params.DryGains[FRONT_RIGHT] = DryGain * ListenerGain;
441 ALSource->Params.DryGains[SIDE_LEFT] = DryGain * ListenerGain;
442 ALSource->Params.DryGains[SIDE_RIGHT] = DryGain * ListenerGain;
443 ALSource->Params.DryGains[BACK_LEFT] = DryGain * ListenerGain;
444 ALSource->Params.DryGains[BACK_RIGHT] = DryGain * ListenerGain;
445 ALSource->Params.DryGains[FRONT_CENTER] = DryGain * ListenerGain;
446 ALSource->Params.DryGains[BACK_CENTER] = DryGain * ListenerGain;
447 ALSource->Params.DryGains[LFE] = DryGain * ListenerGain;
449 for(i = 0;i < NumSends;i++)
451 WetGain[i] = SourceVolume;
452 WetGain[i] = __min(WetGain[i],MaxVolume);
453 WetGain[i] = __max(WetGain[i],MinVolume);
454 WetGainHF[i] = 1.0f;
456 switch(ALSource->Send[i].WetFilter.type)
458 case AL_FILTER_LOWPASS:
459 WetGain[i] *= ALSource->Send[i].WetFilter.Gain;
460 WetGainHF[i] *= ALSource->Send[i].WetFilter.GainHF;
461 break;
464 ALSource->Params.WetGains[i] = WetGain[i] * ListenerGain;
466 for(i = NumSends;i < MAX_SENDS;i++)
468 ALSource->Params.WetGains[i] = 0.0f;
469 WetGainHF[i] = 1.0f;
472 /* Update filter coefficients. Calculations based on the I3DL2
473 * spec. */
474 cw = cos(2.0*M_PI * LOWPASSFREQCUTOFF / Frequency);
476 /* We use two chained one-pole filters, so we need to take the
477 * square root of the squared gain, which is the same as the base
478 * gain. */
479 ALSource->Params.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw);
481 for(i = 0;i < NumSends;i++)
483 /* We use a one-pole filter, so we need to take the squared gain */
484 ALfloat a = lpCoeffCalc(WetGainHF[i]*WetGainHF[i], cw);
485 ALSource->Params.Send[i].iirFilter.coeff = a;
489 static ALvoid CalcSourceParams(const ALCcontext *ALContext, ALsource *ALSource)
491 ALfloat InnerAngle,OuterAngle,Angle,Distance,DryMix,OrigDist;
492 ALfloat Direction[3],Position[3],SourceToListener[3];
493 ALfloat Velocity[3],ListenerVel[3];
494 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff,OuterGainHF;
495 ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain;
496 ALfloat DopplerFactor, DopplerVelocity, flSpeedOfSound;
497 ALfloat Matrix[4][4];
498 ALfloat flAttenuation, effectiveDist;
499 ALfloat RoomAttenuation[MAX_SENDS];
500 ALfloat MetersPerUnit;
501 ALfloat RoomRolloff[MAX_SENDS];
502 ALfloat DryGainHF = 1.0f;
503 ALfloat WetGain[MAX_SENDS];
504 ALfloat WetGainHF[MAX_SENDS];
505 ALfloat DirGain, AmbientGain;
506 ALfloat length;
507 const ALfloat *SpeakerGain;
508 ALuint Frequency;
509 ALint NumSends;
510 ALint pos, s, i;
511 ALfloat cw;
513 for(i = 0;i < MAX_SENDS;i++)
514 WetGainHF[i] = 1.0f;
516 //Get context properties
517 DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
518 DopplerVelocity = ALContext->DopplerVelocity;
519 flSpeedOfSound = ALContext->flSpeedOfSound;
520 NumSends = ALContext->Device->NumAuxSends;
521 Frequency = ALContext->Device->Frequency;
523 //Get listener properties
524 ListenerGain = ALContext->Listener.Gain;
525 MetersPerUnit = ALContext->Listener.MetersPerUnit;
526 memcpy(ListenerVel, ALContext->Listener.Velocity, sizeof(ALContext->Listener.Velocity));
528 //Get source properties
529 SourceVolume = ALSource->flGain;
530 memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition));
531 memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation));
532 memcpy(Velocity, ALSource->vVelocity, sizeof(ALSource->vVelocity));
533 MinVolume = ALSource->flMinGain;
534 MaxVolume = ALSource->flMaxGain;
535 MinDist = ALSource->flRefDistance;
536 MaxDist = ALSource->flMaxDistance;
537 Rolloff = ALSource->flRollOffFactor;
538 InnerAngle = ALSource->flInnerAngle;
539 OuterAngle = ALSource->flOuterAngle;
540 OuterGainHF = ALSource->OuterGainHF;
542 //1. Translate Listener to origin (convert to head relative)
543 if(ALSource->bHeadRelative==AL_FALSE)
545 ALfloat U[3],V[3],N[3],P[3];
547 // Build transform matrix
548 memcpy(N, ALContext->Listener.Forward, sizeof(N)); // At-vector
549 aluNormalize(N); // Normalized At-vector
550 memcpy(V, ALContext->Listener.Up, sizeof(V)); // Up-vector
551 aluNormalize(V); // Normalized Up-vector
552 aluCrossproduct(N, V, U); // Right-vector
553 aluNormalize(U); // Normalized Right-vector
554 P[0] = -(ALContext->Listener.Position[0]*U[0] + // Translation
555 ALContext->Listener.Position[1]*U[1] +
556 ALContext->Listener.Position[2]*U[2]);
557 P[1] = -(ALContext->Listener.Position[0]*V[0] +
558 ALContext->Listener.Position[1]*V[1] +
559 ALContext->Listener.Position[2]*V[2]);
560 P[2] = -(ALContext->Listener.Position[0]*-N[0] +
561 ALContext->Listener.Position[1]*-N[1] +
562 ALContext->Listener.Position[2]*-N[2]);
563 Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0]; Matrix[0][3] = 0.0f;
564 Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1]; Matrix[1][3] = 0.0f;
565 Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2]; Matrix[2][3] = 0.0f;
566 Matrix[3][0] = P[0]; Matrix[3][1] = P[1]; Matrix[3][2] = P[2]; Matrix[3][3] = 1.0f;
568 // Transform source position and direction into listener space
569 aluMatrixVector(Position, 1.0f, Matrix);
570 aluMatrixVector(Direction, 0.0f, Matrix);
571 // Transform source and listener velocity into listener space
572 aluMatrixVector(Velocity, 0.0f, Matrix);
573 aluMatrixVector(ListenerVel, 0.0f, Matrix);
575 else
576 ListenerVel[0] = ListenerVel[1] = ListenerVel[2] = 0.0f;
578 SourceToListener[0] = -Position[0];
579 SourceToListener[1] = -Position[1];
580 SourceToListener[2] = -Position[2];
581 aluNormalize(SourceToListener);
582 aluNormalize(Direction);
584 //2. Calculate distance attenuation
585 Distance = aluSqrt(aluDotproduct(Position, Position));
586 OrigDist = Distance;
588 flAttenuation = 1.0f;
589 for(i = 0;i < NumSends;i++)
591 RoomAttenuation[i] = 1.0f;
593 RoomRolloff[i] = ALSource->RoomRolloffFactor;
594 if(ALSource->Send[i].Slot &&
595 (ALSource->Send[i].Slot->effect.type == AL_EFFECT_REVERB ||
596 ALSource->Send[i].Slot->effect.type == AL_EFFECT_EAXREVERB))
597 RoomRolloff[i] += ALSource->Send[i].Slot->effect.Reverb.RoomRolloffFactor;
600 switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel :
601 ALContext->DistanceModel)
603 case AL_INVERSE_DISTANCE_CLAMPED:
604 Distance=__max(Distance,MinDist);
605 Distance=__min(Distance,MaxDist);
606 if(MaxDist < MinDist)
607 break;
608 //fall-through
609 case AL_INVERSE_DISTANCE:
610 if(MinDist > 0.0f)
612 if((MinDist + (Rolloff * (Distance - MinDist))) > 0.0f)
613 flAttenuation = MinDist / (MinDist + (Rolloff * (Distance - MinDist)));
614 for(i = 0;i < NumSends;i++)
616 if((MinDist + (RoomRolloff[i] * (Distance - MinDist))) > 0.0f)
617 RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (Distance - MinDist)));
620 break;
622 case AL_LINEAR_DISTANCE_CLAMPED:
623 Distance=__max(Distance,MinDist);
624 Distance=__min(Distance,MaxDist);
625 if(MaxDist < MinDist)
626 break;
627 //fall-through
628 case AL_LINEAR_DISTANCE:
629 Distance=__min(Distance,MaxDist);
630 if(MaxDist != MinDist)
632 flAttenuation = 1.0f - (Rolloff*(Distance-MinDist)/(MaxDist - MinDist));
633 for(i = 0;i < NumSends;i++)
634 RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(Distance-MinDist)/(MaxDist - MinDist));
636 break;
638 case AL_EXPONENT_DISTANCE_CLAMPED:
639 Distance=__max(Distance,MinDist);
640 Distance=__min(Distance,MaxDist);
641 if(MaxDist < MinDist)
642 break;
643 //fall-through
644 case AL_EXPONENT_DISTANCE:
645 if(Distance > 0.0f && MinDist > 0.0f)
647 flAttenuation = aluPow(Distance/MinDist, -Rolloff);
648 for(i = 0;i < NumSends;i++)
649 RoomAttenuation[i] = aluPow(Distance/MinDist, -RoomRolloff[i]);
651 break;
653 case AL_NONE:
654 break;
657 // Source Gain + Attenuation
658 DryMix = SourceVolume * flAttenuation;
659 for(i = 0;i < NumSends;i++)
660 WetGain[i] = SourceVolume * RoomAttenuation[i];
662 effectiveDist = 0.0f;
663 if(MinDist > 0.0f)
664 effectiveDist = (MinDist/flAttenuation - MinDist)*MetersPerUnit;
666 // Distance-based air absorption
667 if(ALSource->AirAbsorptionFactor > 0.0f && effectiveDist > 0.0f)
669 ALfloat absorb;
671 // Absorption calculation is done in dB
672 absorb = (ALSource->AirAbsorptionFactor*AIRABSORBGAINDBHF) *
673 effectiveDist;
674 // Convert dB to linear gain before applying
675 absorb = aluPow(10.0f, absorb/20.0f);
677 DryGainHF *= absorb;
680 //3. Apply directional soundcones
681 Angle = aluAcos(aluDotproduct(Direction,SourceToListener)) * 180.0f/M_PI;
682 if(Angle >= InnerAngle && Angle <= OuterAngle)
684 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
685 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f)*scale);
686 ConeHF = (1.0f+(OuterGainHF-1.0f)*scale);
688 else if(Angle > OuterAngle)
690 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f));
691 ConeHF = (1.0f+(OuterGainHF-1.0f));
693 else
695 ConeVolume = 1.0f;
696 ConeHF = 1.0f;
699 // Apply some high-frequency attenuation for sources behind the listener
700 // NOTE: This should be aluDotproduct({0,0,-1}, ListenerToSource), however
701 // that is equivalent to aluDotproduct({0,0,1}, SourceToListener), which is
702 // the same as SourceToListener[2]
703 Angle = aluAcos(SourceToListener[2]) * 180.0f/M_PI;
704 // Sources within the minimum distance attenuate less
705 if(OrigDist < MinDist)
706 Angle *= OrigDist/MinDist;
707 if(Angle > 90.0f)
709 ALfloat scale = (Angle-90.0f) / (180.1f-90.0f); // .1 to account for fp errors
710 ConeHF *= 1.0f - (ALContext->Device->HeadDampen*scale);
713 DryMix *= ConeVolume;
714 if(ALSource->DryGainHFAuto)
715 DryGainHF *= ConeHF;
717 // Clamp to Min/Max Gain
718 DryMix = __min(DryMix,MaxVolume);
719 DryMix = __max(DryMix,MinVolume);
721 for(i = 0;i < NumSends;i++)
723 ALeffectslot *Slot = ALSource->Send[i].Slot;
725 if(!Slot || Slot->effect.type == AL_EFFECT_NULL)
727 ALSource->Params.WetGains[i] = 0.0f;
728 WetGainHF[i] = 1.0f;
729 continue;
732 if(Slot->AuxSendAuto)
734 if(ALSource->WetGainAuto)
735 WetGain[i] *= ConeVolume;
736 if(ALSource->WetGainHFAuto)
737 WetGainHF[i] *= ConeHF;
739 // Clamp to Min/Max Gain
740 WetGain[i] = __min(WetGain[i],MaxVolume);
741 WetGain[i] = __max(WetGain[i],MinVolume);
743 if(Slot->effect.type == AL_EFFECT_REVERB ||
744 Slot->effect.type == AL_EFFECT_EAXREVERB)
746 /* Apply a decay-time transformation to the wet path, based on
747 * the attenuation of the dry path.
749 * Using the approximate (effective) source to listener
750 * distance, the initial decay of the reverb effect is
751 * calculated and applied to the wet path.
753 WetGain[i] *= aluPow(10.0f, effectiveDist /
754 (SPEEDOFSOUNDMETRESPERSEC *
755 Slot->effect.Reverb.DecayTime) *
756 -60.0 / 20.0);
758 WetGainHF[i] *= aluPow(10.0f,
759 log10(Slot->effect.Reverb.AirAbsorptionGainHF) *
760 ALSource->AirAbsorptionFactor * effectiveDist);
763 else
765 /* If the slot's auxiliary send auto is off, the data sent to the
766 * effect slot is the same as the dry path, sans filter effects */
767 WetGain[i] = DryMix;
768 WetGainHF[i] = DryGainHF;
771 switch(ALSource->Send[i].WetFilter.type)
773 case AL_FILTER_LOWPASS:
774 WetGain[i] *= ALSource->Send[i].WetFilter.Gain;
775 WetGainHF[i] *= ALSource->Send[i].WetFilter.GainHF;
776 break;
778 ALSource->Params.WetGains[i] = WetGain[i] * ListenerGain;
780 for(i = NumSends;i < MAX_SENDS;i++)
782 ALSource->Params.WetGains[i] = 0.0f;
783 WetGainHF[i] = 1.0f;
786 // Apply filter gains and filters
787 switch(ALSource->DirectFilter.type)
789 case AL_FILTER_LOWPASS:
790 DryMix *= ALSource->DirectFilter.Gain;
791 DryGainHF *= ALSource->DirectFilter.GainHF;
792 break;
794 DryMix *= ListenerGain;
796 // Calculate Velocity
797 if(DopplerFactor != 0.0f)
799 ALfloat flVSS, flVLS;
800 ALfloat flMaxVelocity = (DopplerVelocity * flSpeedOfSound) /
801 DopplerFactor;
803 flVSS = aluDotproduct(Velocity, SourceToListener);
804 if(flVSS >= flMaxVelocity)
805 flVSS = (flMaxVelocity - 1.0f);
806 else if(flVSS <= -flMaxVelocity)
807 flVSS = -flMaxVelocity + 1.0f;
809 flVLS = aluDotproduct(ListenerVel, SourceToListener);
810 if(flVLS >= flMaxVelocity)
811 flVLS = (flMaxVelocity - 1.0f);
812 else if(flVLS <= -flMaxVelocity)
813 flVLS = -flMaxVelocity + 1.0f;
815 ALSource->Params.Pitch = ALSource->flPitch *
816 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVLS)) /
817 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVSS));
819 else
820 ALSource->Params.Pitch = ALSource->flPitch;
822 // Use energy-preserving panning algorithm for multi-speaker playback
823 length = __max(OrigDist, MinDist);
824 if(length > 0.0f)
826 ALfloat invlen = 1.0f/length;
827 Position[0] *= invlen;
828 Position[1] *= invlen;
829 Position[2] *= invlen;
832 pos = aluCart2LUTpos(-Position[2], Position[0]);
833 SpeakerGain = &ALContext->PanningLUT[OUTPUTCHANNELS * pos];
835 DirGain = aluSqrt(Position[0]*Position[0] + Position[2]*Position[2]);
836 // elevation adjustment for directional gain. this sucks, but
837 // has low complexity
838 AmbientGain = 1.0/aluSqrt(ALContext->NumChan) * (1.0-DirGain);
839 for(s = 0; s < OUTPUTCHANNELS; s++)
841 ALfloat gain = SpeakerGain[s]*DirGain + AmbientGain;
842 ALSource->Params.DryGains[s] = DryMix * gain;
845 /* Update filter coefficients. */
846 cw = cos(2.0*M_PI * LOWPASSFREQCUTOFF / Frequency);
848 /* Spatialized sources use four chained one-pole filters, so we need to
849 * take the fourth root of the squared gain, which is the same as the
850 * square root of the base gain. */
851 ALSource->Params.iirFilter.coeff = lpCoeffCalc(aluSqrt(DryGainHF), cw);
853 for(i = 0;i < NumSends;i++)
855 /* The wet path uses two chained one-pole filters, so take the
856 * base gain (square root of the squared gain) */
857 ALSource->Params.Send[i].iirFilter.coeff = lpCoeffCalc(WetGainHF[i], cw);
861 static __inline ALfloat point(ALfloat val1, ALfloat val2, ALint frac)
863 return val1;
864 (void)val2;
865 (void)frac;
867 static __inline ALfloat lerp(ALfloat val1, ALfloat val2, ALint frac)
869 return val1 + ((val2-val1)*(frac * (1.0f/(1<<FRACTIONBITS))));
871 static __inline ALfloat cos_lerp(ALfloat val1, ALfloat val2, ALint frac)
873 ALfloat mult = (1.0f-cos(frac * (1.0f/(1<<FRACTIONBITS)) * M_PI)) * 0.5f;
874 return val1 + ((val2-val1)*mult);
877 static void MixSomeSources(ALCcontext *ALContext, float (*DryBuffer)[OUTPUTCHANNELS], ALuint SamplesToDo)
879 static float DummyBuffer[BUFFERSIZE];
880 ALfloat *WetBuffer[MAX_SENDS];
881 ALfloat (*Matrix)[OUTPUTCHANNELS] = ALContext->ChannelMatrix;
882 ALfloat DrySend[OUTPUTCHANNELS];
883 ALfloat dryGainStep[OUTPUTCHANNELS];
884 ALfloat wetGainStep[MAX_SENDS];
885 ALuint i, j, k, out;
886 ALsource *ALSource;
887 ALfloat value, outsamp;
888 ALbufferlistitem *BufferListItem;
889 ALint64 DataSize64,DataPos64;
890 FILTER *DryFilter, *WetFilter[MAX_SENDS];
891 ALfloat WetSend[MAX_SENDS];
892 ALuint rampLength;
893 ALuint DeviceFreq;
894 ALint increment;
895 ALuint DataPosInt, DataPosFrac;
896 ALuint Channels, Bytes;
897 ALuint Frequency;
898 resampler_t Resampler;
899 ALuint BuffersPlayed;
900 ALfloat Pitch;
901 ALenum State;
903 if(!(ALSource=ALContext->Source))
904 return;
906 DeviceFreq = ALContext->Device->Frequency;
908 rampLength = DeviceFreq * MIN_RAMP_LENGTH / 1000;
909 rampLength = max(rampLength, SamplesToDo);
911 another_source:
912 if(ALSource->state != AL_PLAYING)
914 if((ALSource=ALSource->next) != NULL)
915 goto another_source;
916 return;
918 j = 0;
920 /* Find buffer format */
921 Frequency = 0;
922 Channels = 0;
923 Bytes = 0;
924 BufferListItem = ALSource->queue;
925 while(BufferListItem != NULL)
927 ALbuffer *ALBuffer;
928 if((ALBuffer=BufferListItem->buffer) != NULL)
930 Channels = aluChannelsFromFormat(ALBuffer->format);
931 Bytes = aluBytesFromFormat(ALBuffer->format);
932 Frequency = ALBuffer->frequency;
933 break;
935 BufferListItem = BufferListItem->next;
938 if(ALSource->NeedsUpdate)
940 //Only apply 3D calculations for mono buffers
941 if(Channels == 1)
942 CalcSourceParams(ALContext, ALSource);
943 else
944 CalcNonAttnSourceParams(ALContext, ALSource);
945 ALSource->NeedsUpdate = AL_FALSE;
948 /* Get source info */
949 Resampler = ALSource->Resampler;
950 State = ALSource->state;
951 BuffersPlayed = ALSource->BuffersPlayed;
952 DataPosInt = ALSource->position;
953 DataPosFrac = ALSource->position_fraction;
955 /* Compute 18.14 fixed point step */
956 Pitch = (ALSource->Params.Pitch*Frequency) / DeviceFreq;
957 if(Pitch > (float)MAX_PITCH) Pitch = (float)MAX_PITCH;
958 increment = (ALint)(Pitch*(ALfloat)(1L<<FRACTIONBITS));
959 if(increment <= 0) increment = (1<<FRACTIONBITS);
961 /* Compute the gain steps for each output channel */
962 if(ALSource->FirstStart)
964 for(i = 0;i < OUTPUTCHANNELS;i++)
965 DrySend[i] = ALSource->Params.DryGains[i];
966 for(i = 0;i < MAX_SENDS;i++)
967 WetSend[i] = ALSource->Params.WetGains[i];
969 else
971 for(i = 0;i < OUTPUTCHANNELS;i++)
972 DrySend[i] = ALSource->DryGains[i];
973 for(i = 0;i < MAX_SENDS;i++)
974 WetSend[i] = ALSource->WetGains[i];
977 DryFilter = &ALSource->Params.iirFilter;
978 for(i = 0;i < MAX_SENDS;i++)
980 WetFilter[i] = &ALSource->Params.Send[i].iirFilter;
981 WetBuffer[i] = (ALSource->Send[i].Slot ?
982 ALSource->Send[i].Slot->WetBuffer :
983 DummyBuffer);
986 if(DuplicateStereo && Channels == 2)
988 Matrix[FRONT_LEFT][SIDE_LEFT] = 1.0f;
989 Matrix[FRONT_RIGHT][SIDE_RIGHT] = 1.0f;
990 Matrix[FRONT_LEFT][BACK_LEFT] = 1.0f;
991 Matrix[FRONT_RIGHT][BACK_RIGHT] = 1.0f;
993 else if(DuplicateStereo)
995 Matrix[FRONT_LEFT][SIDE_LEFT] = 0.0f;
996 Matrix[FRONT_RIGHT][SIDE_RIGHT] = 0.0f;
997 Matrix[FRONT_LEFT][BACK_LEFT] = 0.0f;
998 Matrix[FRONT_RIGHT][BACK_RIGHT] = 0.0f;
1001 /* Get current buffer queue item */
1002 BufferListItem = ALSource->queue;
1003 for(i = 0;i < BuffersPlayed && BufferListItem;i++)
1004 BufferListItem = BufferListItem->next;
1006 while(State == AL_PLAYING && j < SamplesToDo)
1008 ALuint DataSize = 0;
1009 ALbuffer *ALBuffer;
1010 ALfloat *Data;
1011 ALuint BufferSize;
1013 /* Get buffer info */
1014 if((ALBuffer=BufferListItem->buffer) != NULL)
1016 Data = ALBuffer->data;
1017 DataSize = ALBuffer->size;
1018 DataSize /= Channels * Bytes;
1020 if(DataPosInt >= DataSize)
1021 goto skipmix;
1023 if(BufferListItem->next)
1025 ALbuffer *NextBuf = BufferListItem->next->buffer;
1026 if(NextBuf && NextBuf->size)
1028 ALint ulExtraSamples = BUFFER_PADDING*Channels*Bytes;
1029 ulExtraSamples = min(NextBuf->size, ulExtraSamples);
1030 memcpy(&Data[DataSize*Channels], NextBuf->data, ulExtraSamples);
1033 else if(ALSource->bLooping)
1035 ALbuffer *NextBuf = ALSource->queue->buffer;
1036 if(NextBuf && NextBuf->size)
1038 ALint ulExtraSamples = BUFFER_PADDING*Channels*Bytes;
1039 ulExtraSamples = min(NextBuf->size, ulExtraSamples);
1040 memcpy(&Data[DataSize*Channels], NextBuf->data, ulExtraSamples);
1043 else
1044 memset(&Data[DataSize*Channels], 0, (BUFFER_PADDING*Channels*Bytes));
1046 /* Compute the gain steps for each output channel */
1047 for(i = 0;i < OUTPUTCHANNELS;i++)
1048 dryGainStep[i] = (ALSource->Params.DryGains[i]-DrySend[i]) /
1049 rampLength;
1050 for(i = 0;i < MAX_SENDS;i++)
1051 wetGainStep[i] = (ALSource->Params.WetGains[i]-WetSend[i]) /
1052 rampLength;
1054 /* Figure out how many samples we can mix. */
1055 DataSize64 = DataSize;
1056 DataSize64 <<= FRACTIONBITS;
1057 DataPos64 = DataPosInt;
1058 DataPos64 <<= FRACTIONBITS;
1059 DataPos64 += DataPosFrac;
1060 BufferSize = (ALuint)((DataSize64-DataPos64+(increment-1)) / increment);
1062 BufferSize = min(BufferSize, (SamplesToDo-j));
1064 /* Actual sample mixing loop */
1065 k = 0;
1066 Data += DataPosInt*Channels;
1068 if(Channels == 1) /* Mono */
1070 #define DO_MIX(resampler) do { \
1071 while(BufferSize--) \
1073 for(i = 0;i < OUTPUTCHANNELS;i++) \
1074 DrySend[i] += dryGainStep[i]; \
1075 for(i = 0;i < MAX_SENDS;i++) \
1076 WetSend[i] += wetGainStep[i]; \
1078 /* First order interpolator */ \
1079 value = (resampler)(Data[k], Data[k+1], DataPosFrac); \
1081 /* Direct path final mix buffer and panning */ \
1082 outsamp = lpFilter4P(DryFilter, 0, value); \
1083 DryBuffer[j][FRONT_LEFT] += outsamp*DrySend[FRONT_LEFT]; \
1084 DryBuffer[j][FRONT_RIGHT] += outsamp*DrySend[FRONT_RIGHT]; \
1085 DryBuffer[j][SIDE_LEFT] += outsamp*DrySend[SIDE_LEFT]; \
1086 DryBuffer[j][SIDE_RIGHT] += outsamp*DrySend[SIDE_RIGHT]; \
1087 DryBuffer[j][BACK_LEFT] += outsamp*DrySend[BACK_LEFT]; \
1088 DryBuffer[j][BACK_RIGHT] += outsamp*DrySend[BACK_RIGHT]; \
1089 DryBuffer[j][FRONT_CENTER] += outsamp*DrySend[FRONT_CENTER]; \
1090 DryBuffer[j][BACK_CENTER] += outsamp*DrySend[BACK_CENTER]; \
1092 /* Room path final mix buffer and panning */ \
1093 for(i = 0;i < MAX_SENDS;i++) \
1095 outsamp = lpFilter2P(WetFilter[i], 0, value); \
1096 WetBuffer[i][j] += outsamp*WetSend[i]; \
1099 DataPosFrac += increment; \
1100 k += DataPosFrac>>FRACTIONBITS; \
1101 DataPosFrac &= FRACTIONMASK; \
1102 j++; \
1104 } while(0)
1106 switch(Resampler)
1108 case POINT_RESAMPLER:
1109 DO_MIX(point); break;
1110 case LINEAR_RESAMPLER:
1111 DO_MIX(lerp); break;
1112 case COSINE_RESAMPLER:
1113 DO_MIX(cos_lerp); break;
1114 case RESAMPLER_MIN:
1115 case RESAMPLER_MAX:
1116 break;
1118 #undef DO_MIX
1120 else if(Channels == 2) /* Stereo */
1122 const int chans[] = {
1123 FRONT_LEFT, FRONT_RIGHT
1125 const ALfloat scaler = aluSqrt(1.0f/Channels);
1127 #define DO_MIX(resampler) do { \
1128 while(BufferSize--) \
1130 for(i = 0;i < OUTPUTCHANNELS;i++) \
1131 DrySend[i] += dryGainStep[i]; \
1132 for(i = 0;i < MAX_SENDS;i++) \
1133 WetSend[i] += wetGainStep[i]; \
1135 for(i = 0;i < Channels;i++) \
1137 value = (resampler)(Data[k*Channels + i], Data[(k+1)*Channels + i], \
1138 DataPosFrac); \
1139 outsamp = lpFilter2P(DryFilter, chans[i]*2, value)*DrySend[chans[i]]; \
1140 for(out = 0;out < OUTPUTCHANNELS;out++) \
1141 DryBuffer[j][out] += outsamp*Matrix[chans[i]][out]; \
1142 for(out = 0;out < MAX_SENDS;out++) \
1144 outsamp = lpFilter1P(WetFilter[out], chans[i], value); \
1145 WetBuffer[out][j] += outsamp*WetSend[out]*scaler; \
1149 DataPosFrac += increment; \
1150 k += DataPosFrac>>FRACTIONBITS; \
1151 DataPosFrac &= FRACTIONMASK; \
1152 j++; \
1154 } while(0)
1156 switch(Resampler)
1158 case POINT_RESAMPLER:
1159 DO_MIX(point); break;
1160 case LINEAR_RESAMPLER:
1161 DO_MIX(lerp); break;
1162 case COSINE_RESAMPLER:
1163 DO_MIX(cos_lerp); break;
1164 case RESAMPLER_MIN:
1165 case RESAMPLER_MAX:
1166 break;
1169 else if(Channels == 4) /* Quad */
1171 const int chans[] = {
1172 FRONT_LEFT, FRONT_RIGHT,
1173 BACK_LEFT, BACK_RIGHT
1175 const ALfloat scaler = aluSqrt(1.0f/Channels);
1177 switch(Resampler)
1179 case POINT_RESAMPLER:
1180 DO_MIX(point); break;
1181 case LINEAR_RESAMPLER:
1182 DO_MIX(lerp); break;
1183 case COSINE_RESAMPLER:
1184 DO_MIX(cos_lerp); break;
1185 case RESAMPLER_MIN:
1186 case RESAMPLER_MAX:
1187 break;
1190 else if(Channels == 6) /* 5.1 */
1192 const int chans[] = {
1193 FRONT_LEFT, FRONT_RIGHT,
1194 FRONT_CENTER, LFE,
1195 BACK_LEFT, BACK_RIGHT
1197 const ALfloat scaler = aluSqrt(1.0f/Channels);
1199 switch(Resampler)
1201 case POINT_RESAMPLER:
1202 DO_MIX(point); break;
1203 case LINEAR_RESAMPLER:
1204 DO_MIX(lerp); break;
1205 case COSINE_RESAMPLER:
1206 DO_MIX(cos_lerp); break;
1207 case RESAMPLER_MIN:
1208 case RESAMPLER_MAX:
1209 break;
1212 else if(Channels == 7) /* 6.1 */
1214 const int chans[] = {
1215 FRONT_LEFT, FRONT_RIGHT,
1216 FRONT_CENTER, LFE,
1217 BACK_CENTER,
1218 SIDE_LEFT, SIDE_RIGHT
1220 const ALfloat scaler = aluSqrt(1.0f/Channels);
1222 switch(Resampler)
1224 case POINT_RESAMPLER:
1225 DO_MIX(point); break;
1226 case LINEAR_RESAMPLER:
1227 DO_MIX(lerp); break;
1228 case COSINE_RESAMPLER:
1229 DO_MIX(cos_lerp); break;
1230 case RESAMPLER_MIN:
1231 case RESAMPLER_MAX:
1232 break;
1235 else if(Channels == 8) /* 7.1 */
1237 const int chans[] = {
1238 FRONT_LEFT, FRONT_RIGHT,
1239 FRONT_CENTER, LFE,
1240 BACK_LEFT, BACK_RIGHT,
1241 SIDE_LEFT, SIDE_RIGHT
1243 const ALfloat scaler = aluSqrt(1.0f/Channels);
1245 switch(Resampler)
1247 case POINT_RESAMPLER:
1248 DO_MIX(point); break;
1249 case LINEAR_RESAMPLER:
1250 DO_MIX(lerp); break;
1251 case COSINE_RESAMPLER:
1252 DO_MIX(cos_lerp); break;
1253 case RESAMPLER_MIN:
1254 case RESAMPLER_MAX:
1255 break;
1257 #undef DO_MIX
1259 else /* Unknown? */
1261 for(i = 0;i < OUTPUTCHANNELS;i++)
1262 DrySend[i] += dryGainStep[i]*BufferSize;
1263 for(i = 0;i < MAX_SENDS;i++)
1264 WetSend[i] += wetGainStep[i]*BufferSize;
1265 while(BufferSize--)
1267 DataPosFrac += increment;
1268 k += DataPosFrac>>FRACTIONBITS;
1269 DataPosFrac &= FRACTIONMASK;
1270 j++;
1273 DataPosInt += k;
1275 skipmix:
1276 /* Handle looping sources */
1277 if(DataPosInt >= DataSize)
1279 if(BuffersPlayed < (ALSource->BuffersInQueue-1))
1281 BufferListItem = BufferListItem->next;
1282 BuffersPlayed++;
1283 DataPosInt -= DataSize;
1285 else if(ALSource->bLooping)
1287 BufferListItem = ALSource->queue;
1288 BuffersPlayed = 0;
1289 if(ALSource->BuffersInQueue == 1)
1290 DataPosInt %= DataSize;
1291 else
1292 DataPosInt -= DataSize;
1294 else
1296 State = AL_STOPPED;
1297 BufferListItem = ALSource->queue;
1298 BuffersPlayed = ALSource->BuffersInQueue;
1299 DataPosInt = 0;
1300 DataPosFrac = 0;
1305 /* Update source info */
1306 ALSource->state = State;
1307 ALSource->BuffersPlayed = BuffersPlayed;
1308 ALSource->position = DataPosInt;
1309 ALSource->position_fraction = DataPosFrac;
1310 ALSource->Buffer = BufferListItem->buffer;
1312 for(i = 0;i < OUTPUTCHANNELS;i++)
1313 ALSource->DryGains[i] = DrySend[i];
1314 for(i = 0;i < MAX_SENDS;i++)
1315 ALSource->WetGains[i] = WetSend[i];
1317 ALSource->FirstStart = AL_FALSE;
1319 if((ALSource=ALSource->next) != NULL)
1320 goto another_source;
1323 ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
1325 float (*DryBuffer)[OUTPUTCHANNELS];
1326 const Channel *ChanMap;
1327 ALuint SamplesToDo;
1328 ALeffectslot *ALEffectSlot;
1329 ALCcontext *ALContext;
1330 int fpuState;
1331 ALuint i, c;
1333 #if defined(HAVE_FESETROUND)
1334 fpuState = fegetround();
1335 fesetround(FE_TOWARDZERO);
1336 #elif defined(HAVE__CONTROLFP)
1337 fpuState = _controlfp(0, 0);
1338 _controlfp(_RC_CHOP, _MCW_RC);
1339 #else
1340 (void)fpuState;
1341 #endif
1343 DryBuffer = device->DryBuffer;
1344 while(size > 0)
1346 /* Setup variables */
1347 SamplesToDo = min(size, BUFFERSIZE);
1349 /* Clear mixing buffer */
1350 memset(DryBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
1352 SuspendContext(NULL);
1353 for(c = 0;c < device->NumContexts;c++)
1355 ALContext = device->Contexts[c];
1356 SuspendContext(ALContext);
1358 MixSomeSources(ALContext, DryBuffer, SamplesToDo);
1360 /* effect slot processing */
1361 ALEffectSlot = ALContext->AuxiliaryEffectSlot;
1362 while(ALEffectSlot)
1364 if(ALEffectSlot->EffectState)
1365 ALEffect_Process(ALEffectSlot->EffectState, ALEffectSlot, SamplesToDo, ALEffectSlot->WetBuffer, DryBuffer);
1367 for(i = 0;i < SamplesToDo;i++)
1368 ALEffectSlot->WetBuffer[i] = 0.0f;
1369 ALEffectSlot = ALEffectSlot->next;
1371 ProcessContext(ALContext);
1373 ProcessContext(NULL);
1375 //Post processing loop
1376 ChanMap = device->DevChannels;
1377 switch(device->Format)
1379 #define CHECK_WRITE_FORMAT(bits, type, func) \
1380 case AL_FORMAT_MONO##bits: \
1381 for(i = 0;i < SamplesToDo;i++) \
1383 ((type*)buffer)[0] = (func)(DryBuffer[i][ChanMap[0]]); \
1384 buffer = ((type*)buffer) + 1; \
1386 break; \
1387 case AL_FORMAT_STEREO##bits: \
1388 if(device->Bs2b) \
1390 for(i = 0;i < SamplesToDo;i++) \
1392 float samples[2]; \
1393 samples[0] = DryBuffer[i][ChanMap[0]]; \
1394 samples[1] = DryBuffer[i][ChanMap[1]]; \
1395 bs2b_cross_feed(device->Bs2b, samples); \
1396 ((type*)buffer)[0] = (func)(samples[0]); \
1397 ((type*)buffer)[1] = (func)(samples[1]); \
1398 buffer = ((type*)buffer) + 2; \
1401 else \
1403 for(i = 0;i < SamplesToDo;i++) \
1405 ((type*)buffer)[0] = (func)(DryBuffer[i][ChanMap[0]]); \
1406 ((type*)buffer)[1] = (func)(DryBuffer[i][ChanMap[1]]); \
1407 buffer = ((type*)buffer) + 2; \
1410 break; \
1411 case AL_FORMAT_QUAD##bits: \
1412 for(i = 0;i < SamplesToDo;i++) \
1414 ((type*)buffer)[0] = (func)(DryBuffer[i][ChanMap[0]]); \
1415 ((type*)buffer)[1] = (func)(DryBuffer[i][ChanMap[1]]); \
1416 ((type*)buffer)[2] = (func)(DryBuffer[i][ChanMap[2]]); \
1417 ((type*)buffer)[3] = (func)(DryBuffer[i][ChanMap[3]]); \
1418 buffer = ((type*)buffer) + 4; \
1420 break; \
1421 case AL_FORMAT_51CHN##bits: \
1422 for(i = 0;i < SamplesToDo;i++) \
1424 ((type*)buffer)[0] = (func)(DryBuffer[i][ChanMap[0]]); \
1425 ((type*)buffer)[1] = (func)(DryBuffer[i][ChanMap[1]]); \
1426 ((type*)buffer)[2] = (func)(DryBuffer[i][ChanMap[2]]); \
1427 ((type*)buffer)[3] = (func)(DryBuffer[i][ChanMap[3]]); \
1428 ((type*)buffer)[4] = (func)(DryBuffer[i][ChanMap[4]]); \
1429 ((type*)buffer)[5] = (func)(DryBuffer[i][ChanMap[5]]); \
1430 buffer = ((type*)buffer) + 6; \
1432 break; \
1433 case AL_FORMAT_61CHN##bits: \
1434 for(i = 0;i < SamplesToDo;i++) \
1436 ((type*)buffer)[0] = (func)(DryBuffer[i][ChanMap[0]]); \
1437 ((type*)buffer)[1] = (func)(DryBuffer[i][ChanMap[1]]); \
1438 ((type*)buffer)[2] = (func)(DryBuffer[i][ChanMap[2]]); \
1439 ((type*)buffer)[3] = (func)(DryBuffer[i][ChanMap[3]]); \
1440 ((type*)buffer)[4] = (func)(DryBuffer[i][ChanMap[4]]); \
1441 ((type*)buffer)[5] = (func)(DryBuffer[i][ChanMap[5]]); \
1442 ((type*)buffer)[6] = (func)(DryBuffer[i][ChanMap[6]]); \
1443 buffer = ((type*)buffer) + 7; \
1445 break; \
1446 case AL_FORMAT_71CHN##bits: \
1447 for(i = 0;i < SamplesToDo;i++) \
1449 ((type*)buffer)[0] = (func)(DryBuffer[i][ChanMap[0]]); \
1450 ((type*)buffer)[1] = (func)(DryBuffer[i][ChanMap[1]]); \
1451 ((type*)buffer)[2] = (func)(DryBuffer[i][ChanMap[2]]); \
1452 ((type*)buffer)[3] = (func)(DryBuffer[i][ChanMap[3]]); \
1453 ((type*)buffer)[4] = (func)(DryBuffer[i][ChanMap[4]]); \
1454 ((type*)buffer)[5] = (func)(DryBuffer[i][ChanMap[5]]); \
1455 ((type*)buffer)[6] = (func)(DryBuffer[i][ChanMap[6]]); \
1456 ((type*)buffer)[7] = (func)(DryBuffer[i][ChanMap[7]]); \
1457 buffer = ((type*)buffer) + 8; \
1459 break;
1461 #define AL_FORMAT_MONO32 AL_FORMAT_MONO_FLOAT32
1462 #define AL_FORMAT_STEREO32 AL_FORMAT_STEREO_FLOAT32
1463 CHECK_WRITE_FORMAT(8, ALubyte, aluF2UB)
1464 CHECK_WRITE_FORMAT(16, ALshort, aluF2S)
1465 CHECK_WRITE_FORMAT(32, ALfloat, aluF2F)
1466 #undef AL_FORMAT_STEREO32
1467 #undef AL_FORMAT_MONO32
1468 #undef CHECK_WRITE_FORMAT
1470 default:
1471 break;
1474 size -= SamplesToDo;
1477 #if defined(HAVE_FESETROUND)
1478 fesetround(fpuState);
1479 #elif defined(HAVE__CONTROLFP)
1480 _controlfp(fpuState, 0xfffff);
1481 #endif
1484 ALvoid aluHandleDisconnect(ALCdevice *device)
1486 ALuint i;
1488 SuspendContext(NULL);
1489 for(i = 0;i < device->NumContexts;i++)
1491 ALsource *source;
1493 SuspendContext(device->Contexts[i]);
1495 source = device->Contexts[i]->Source;
1496 while(source)
1498 if(source->state == AL_PLAYING)
1500 source->state = AL_STOPPED;
1501 source->BuffersPlayed = source->BuffersInQueue;
1502 source->position = 0;
1503 source->position_fraction = 0;
1505 source = source->next;
1507 ProcessContext(device->Contexts[i]);
1510 device->Connected = ALC_FALSE;
1511 ProcessContext(NULL);