Update HRTF code
[openal-soft.git] / hrtf.txt
blobf0f0d0737e165a4addbb970744e3d9280495bfc6
1 HRTF Support
2 ============
4 Starting with OpenAL Soft 1.14, HRTFs can be used to enable enhanced
5 spatialization for both 3D (mono) and multi-channel sources, when used with
6 headphones/stereo output. This can be enabled using the 'hrtf' config option.
8 For multi-channel sources this creates a virtual speaker effect, making it
9 sound as if speakers provide a discrete position for each channel around the
10 listener. For mono sources this provides much more versatility in the perceived
11 placement of sounds, making it seem as though they are coming from all around,
12 including above and below the listener, instead of just to the front, back, and
13 sides.
15 The built-in data set is based on the KEMAR HRTF data provided by MIT, which
16 can be found at <http://sound.media.mit.edu/resources/KEMAR.html>. It's only
17 available when using 44100hz playback.
20 External HRTF Data Sets
21 =======================
23 OpenAL Soft also provides an option to use user-specified data sets, in
24 addition to or in place of the built-in set. This allows users to provide their
25 own data sets, which could be better suited for their heads, or to work with
26 stereo speakers instead of headphones, or to support more playback sample
27 rates, for example.
29 The file format is specified below. It uses little-endian byte order.
32 ALchar   magic[8] = "MinPHR01";
33 ALuint   sampleRate;
35 ALushort hrirSize;  /* Can be 8 to 128. */
36 ALubyte  evCount;   /* Can be 5 to 128. */
38 ALushort azCount[evCount]; /* Each can be 1 to 128. */
40 ALshort coefficients[hrirCount][hrirSize];
41 ALubyte delays[hrirCount]; /* Each can be 0 to 63. */
44 The data is described as thus:
46 The file first starts with the 8-byte marker, "MinPHR01", to identify it as an
47 HRTF data set. This is followed by an unsigned 32-bit integer, specifying the
48 sample rate the data set is designed for (OpenAL Soft will not use it if the
49 output device's playback rate doesn't match).
51 Afterward, an unsigned 16-bit integer specifies how many sample points (or
52 finite impulse response filter coefficients) make up each HRIR.
54 The following unsigned 8-bit integer specifies the number of elevations used
55 by the data set. The elevations start at the bottom (-90 degrees), and
56 increment upwards.  Following this is an array of unsigned 16-bit integers, one
57 for each elevation which specifies the number of azimuths (and thus HRIRs) that
58 make up each elevation.  Azimuths start clockwise from the front, constructing
59 a full circle for the left ear only. The right ear uses the same HRIRs but in
60 reverse (ie, left = angle, right = 360-angle).
62 The actual coefficients follow. Each coefficient is a signed 16-bit sample,
63 with each HRIR being a consecutive number of sample points.  The HRIRs must be
64 minimum-phase.  This allows the use of a smaller filter length, reducing
65 computation.  For reference, the built-in data set uses a 32-point filter while
66 even the smallest data set provided by MIT used a 128-sample filter (a 4x
67 reduction by applying minimum-phase reconstruction). Theoretically, one could
68 further reduce the minimum-phase version down to a 16-point filter with only a
69 small reduction in quality.
71 After the coefficients is an array of unsigned 8-bit delay values, one for
72 each HRIR. This is the propagation delay (in samples) a signal must wait before
73 being convolved with the corresponding minimum-phase HRIR filter.