Update cross-compiler toolchain to work better with Qt
[openal-soft.git] / Alc / ALu.c
blobcf8bfcfb7db06337fd4df0e046f3c46cc5391dca
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <math.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <ctype.h>
27 #include <assert.h>
29 #include "alMain.h"
30 #include "alSource.h"
31 #include "alBuffer.h"
32 #include "alListener.h"
33 #include "alAuxEffectSlot.h"
34 #include "alu.h"
35 #include "bs2b.h"
36 #include "hrtf.h"
37 #include "static_assert.h"
39 #include "backends/base.h"
40 #include "midi/base.h"
43 static_assert((INT_MAX>>FRACTIONBITS)/MAX_PITCH > BUFFERSIZE,
44 "MAX_PITCH and/or BUFFERSIZE are too large for FRACTIONBITS!");
46 struct ChanMap {
47 enum Channel channel;
48 ALfloat angle;
49 ALfloat elevation;
52 /* Cone scalar */
53 ALfloat ConeScale = 1.0f;
55 /* Localized Z scalar for mono sources */
56 ALfloat ZScale = 1.0f;
58 extern inline ALfloat minf(ALfloat a, ALfloat b);
59 extern inline ALfloat maxf(ALfloat a, ALfloat b);
60 extern inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max);
62 extern inline ALdouble mind(ALdouble a, ALdouble b);
63 extern inline ALdouble maxd(ALdouble a, ALdouble b);
64 extern inline ALdouble clampd(ALdouble val, ALdouble min, ALdouble max);
66 extern inline ALuint minu(ALuint a, ALuint b);
67 extern inline ALuint maxu(ALuint a, ALuint b);
68 extern inline ALuint clampu(ALuint val, ALuint min, ALuint max);
70 extern inline ALint mini(ALint a, ALint b);
71 extern inline ALint maxi(ALint a, ALint b);
72 extern inline ALint clampi(ALint val, ALint min, ALint max);
74 extern inline ALint64 mini64(ALint64 a, ALint64 b);
75 extern inline ALint64 maxi64(ALint64 a, ALint64 b);
76 extern inline ALint64 clampi64(ALint64 val, ALint64 min, ALint64 max);
78 extern inline ALuint64 minu64(ALuint64 a, ALuint64 b);
79 extern inline ALuint64 maxu64(ALuint64 a, ALuint64 b);
80 extern inline ALuint64 clampu64(ALuint64 val, ALuint64 min, ALuint64 max);
82 extern inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu);
83 extern inline ALfloat cubic(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALfloat mu);
86 static inline void aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
88 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
89 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
90 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
93 static inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2)
95 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
96 inVector1[2]*inVector2[2];
99 static inline void aluNormalize(ALfloat *inVector)
101 ALfloat lengthsqr = aluDotproduct(inVector, inVector);
102 if(lengthsqr > 0.0f)
104 ALfloat inv_length = 1.0f/sqrtf(lengthsqr);
105 inVector[0] *= inv_length;
106 inVector[1] *= inv_length;
107 inVector[2] *= inv_length;
111 static inline ALvoid aluMatrixVector(ALfloat *vector, ALfloat w, ALfloat (*restrict matrix)[4])
113 ALfloat temp[4] = {
114 vector[0], vector[1], vector[2], w
117 vector[0] = temp[0]*matrix[0][0] + temp[1]*matrix[1][0] + temp[2]*matrix[2][0] + temp[3]*matrix[3][0];
118 vector[1] = temp[0]*matrix[0][1] + temp[1]*matrix[1][1] + temp[2]*matrix[2][1] + temp[3]*matrix[3][1];
119 vector[2] = temp[0]*matrix[0][2] + temp[1]*matrix[1][2] + temp[2]*matrix[2][2] + temp[3]*matrix[3][2];
123 static void UpdateDryStepping(DirectParams *params, ALuint num_chans)
125 ALuint i, j;
127 if(!params->Moving)
129 for(i = 0;i < num_chans;i++)
131 MixGains *gains = params->Mix.Gains[i];
132 for(j = 0;j < MaxChannels;j++)
134 gains[j].Current = gains[j].Target;
135 gains[j].Step = 1.0f;
138 params->Moving = AL_TRUE;
139 params->Counter = 0;
140 return;
143 for(i = 0;i < num_chans;i++)
145 MixGains *gains = params->Mix.Gains[i];
146 for(j = 0;j < MaxChannels;j++)
148 ALfloat cur = maxf(gains[j].Current, FLT_EPSILON);
149 ALfloat trg = maxf(gains[j].Target, FLT_EPSILON);
150 if(fabs(trg - cur) >= GAIN_SILENCE_THRESHOLD)
151 gains[j].Step = powf(trg/cur, 1.0f/64.0f);
152 else
153 gains[j].Step = 1.0f;
154 gains[j].Current = cur;
157 params->Counter = 64;
160 static void UpdateWetStepping(SendParams *params)
162 ALfloat cur, trg;
164 if(!params->Moving)
166 params->Gain.Current = params->Gain.Target;
167 params->Gain.Step = 1.0f;
169 params->Moving = AL_TRUE;
170 params->Counter = 0;
171 return;
174 cur = maxf(params->Gain.Current, FLT_EPSILON);
175 trg = maxf(params->Gain.Target, FLT_EPSILON);
176 if(fabs(trg - cur) >= GAIN_SILENCE_THRESHOLD)
177 params->Gain.Step = powf(trg/cur, 1.0f/64.0f);
178 else
179 params->Gain.Step = 1.0f;
180 params->Gain.Current = cur;
182 params->Counter = 64;
186 static ALvoid CalcListenerParams(ALlistener *Listener)
188 ALfloat N[3], V[3], U[3], P[3];
190 /* AT then UP */
191 N[0] = Listener->Forward[0];
192 N[1] = Listener->Forward[1];
193 N[2] = Listener->Forward[2];
194 aluNormalize(N);
195 V[0] = Listener->Up[0];
196 V[1] = Listener->Up[1];
197 V[2] = Listener->Up[2];
198 aluNormalize(V);
199 /* Build and normalize right-vector */
200 aluCrossproduct(N, V, U);
201 aluNormalize(U);
203 Listener->Params.Matrix[0][0] = U[0];
204 Listener->Params.Matrix[0][1] = V[0];
205 Listener->Params.Matrix[0][2] = -N[0];
206 Listener->Params.Matrix[0][3] = 0.0f;
207 Listener->Params.Matrix[1][0] = U[1];
208 Listener->Params.Matrix[1][1] = V[1];
209 Listener->Params.Matrix[1][2] = -N[1];
210 Listener->Params.Matrix[1][3] = 0.0f;
211 Listener->Params.Matrix[2][0] = U[2];
212 Listener->Params.Matrix[2][1] = V[2];
213 Listener->Params.Matrix[2][2] = -N[2];
214 Listener->Params.Matrix[2][3] = 0.0f;
215 Listener->Params.Matrix[3][0] = 0.0f;
216 Listener->Params.Matrix[3][1] = 0.0f;
217 Listener->Params.Matrix[3][2] = 0.0f;
218 Listener->Params.Matrix[3][3] = 1.0f;
220 P[0] = Listener->Position[0];
221 P[1] = Listener->Position[1];
222 P[2] = Listener->Position[2];
223 aluMatrixVector(P, 1.0f, Listener->Params.Matrix);
224 Listener->Params.Matrix[3][0] = -P[0];
225 Listener->Params.Matrix[3][1] = -P[1];
226 Listener->Params.Matrix[3][2] = -P[2];
228 Listener->Params.Velocity[0] = Listener->Velocity[0];
229 Listener->Params.Velocity[1] = Listener->Velocity[1];
230 Listener->Params.Velocity[2] = Listener->Velocity[2];
231 aluMatrixVector(Listener->Params.Velocity, 0.0f, Listener->Params.Matrix);
234 ALvoid CalcNonAttnSourceParams(ALvoice *voice, const ALsource *ALSource, const ALCcontext *ALContext)
236 static const struct ChanMap MonoMap[1] = { { FrontCenter, 0.0f, 0.0f } };
237 static const struct ChanMap StereoMap[2] = {
238 { FrontLeft, DEG2RAD(-30.0f), DEG2RAD(0.0f) },
239 { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) }
241 static const struct ChanMap StereoWideMap[2] = {
242 { FrontLeft, DEG2RAD(-90.0f), DEG2RAD(0.0f) },
243 { FrontRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
245 static const struct ChanMap RearMap[2] = {
246 { BackLeft, DEG2RAD(-150.0f), DEG2RAD(0.0f) },
247 { BackRight, DEG2RAD( 150.0f), DEG2RAD(0.0f) }
249 static const struct ChanMap QuadMap[4] = {
250 { FrontLeft, DEG2RAD( -45.0f), DEG2RAD(0.0f) },
251 { FrontRight, DEG2RAD( 45.0f), DEG2RAD(0.0f) },
252 { BackLeft, DEG2RAD(-135.0f), DEG2RAD(0.0f) },
253 { BackRight, DEG2RAD( 135.0f), DEG2RAD(0.0f) }
255 static const struct ChanMap X51Map[6] = {
256 { FrontLeft, DEG2RAD( -30.0f), DEG2RAD(0.0f) },
257 { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
258 { FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
259 { LFE, 0.0f, 0.0f },
260 { BackLeft, DEG2RAD(-110.0f), DEG2RAD(0.0f) },
261 { BackRight, DEG2RAD( 110.0f), DEG2RAD(0.0f) }
263 static const struct ChanMap X61Map[7] = {
264 { FrontLeft, DEG2RAD(-30.0f), DEG2RAD(0.0f) },
265 { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
266 { FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
267 { LFE, 0.0f, 0.0f },
268 { BackCenter, DEG2RAD(180.0f), DEG2RAD(0.0f) },
269 { SideLeft, DEG2RAD(-90.0f), DEG2RAD(0.0f) },
270 { SideRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
272 static const struct ChanMap X71Map[8] = {
273 { FrontLeft, DEG2RAD( -30.0f), DEG2RAD(0.0f) },
274 { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
275 { FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
276 { LFE, 0.0f, 0.0f },
277 { BackLeft, DEG2RAD(-150.0f), DEG2RAD(0.0f) },
278 { BackRight, DEG2RAD( 150.0f), DEG2RAD(0.0f) },
279 { SideLeft, DEG2RAD( -90.0f), DEG2RAD(0.0f) },
280 { SideRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
283 ALCdevice *Device = ALContext->Device;
284 ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
285 ALbufferlistitem *BufferListItem;
286 enum FmtChannels Channels;
287 ALfloat DryGain, DryGainHF, DryGainLF;
288 ALfloat WetGain[MAX_SENDS];
289 ALfloat WetGainHF[MAX_SENDS];
290 ALfloat WetGainLF[MAX_SENDS];
291 ALuint NumSends, Frequency;
292 ALboolean Relative;
293 const struct ChanMap *chans = NULL;
294 ALuint num_channels = 0;
295 ALboolean DirectChannels;
296 ALboolean isbformat = AL_FALSE;
297 ALfloat Pitch;
298 ALuint i, j, c;
300 /* Get device properties */
301 NumSends = Device->NumAuxSends;
302 Frequency = Device->Frequency;
304 /* Get listener properties */
305 ListenerGain = ALContext->Listener->Gain;
307 /* Get source properties */
308 SourceVolume = ALSource->Gain;
309 MinVolume = ALSource->MinGain;
310 MaxVolume = ALSource->MaxGain;
311 Pitch = ALSource->Pitch;
312 Relative = ALSource->HeadRelative;
313 DirectChannels = ALSource->DirectChannels;
315 voice->Direct.OutBuffer = Device->DryBuffer;
316 for(i = 0;i < NumSends;i++)
318 ALeffectslot *Slot = ALSource->Send[i].Slot;
319 if(!Slot && i == 0)
320 Slot = Device->DefaultSlot;
321 if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
322 voice->Send[i].OutBuffer = NULL;
323 else
324 voice->Send[i].OutBuffer = Slot->WetBuffer;
327 /* Calculate the stepping value */
328 Channels = FmtMono;
329 BufferListItem = ATOMIC_LOAD(&ALSource->queue);
330 while(BufferListItem != NULL)
332 ALbuffer *ALBuffer;
333 if((ALBuffer=BufferListItem->buffer) != NULL)
335 Pitch = Pitch * ALBuffer->Frequency / Frequency;
336 if(Pitch > (ALfloat)MAX_PITCH)
337 voice->Step = MAX_PITCH<<FRACTIONBITS;
338 else
340 voice->Step = fastf2i(Pitch*FRACTIONONE);
341 if(voice->Step == 0)
342 voice->Step = 1;
345 Channels = ALBuffer->FmtChannels;
346 break;
348 BufferListItem = BufferListItem->next;
351 /* Calculate gains */
352 DryGain = clampf(SourceVolume, MinVolume, MaxVolume);
353 DryGain *= ALSource->Direct.Gain * ListenerGain;
354 DryGainHF = ALSource->Direct.GainHF;
355 DryGainLF = ALSource->Direct.GainLF;
356 for(i = 0;i < NumSends;i++)
358 WetGain[i] = clampf(SourceVolume, MinVolume, MaxVolume);
359 WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
360 WetGainHF[i] = ALSource->Send[i].GainHF;
361 WetGainLF[i] = ALSource->Send[i].GainLF;
364 switch(Channels)
366 case FmtMono:
367 chans = MonoMap;
368 num_channels = 1;
369 break;
371 case FmtStereo:
372 /* HACK: Place the stereo channels at +/-90 degrees when using non-
373 * HRTF stereo output. This helps reduce the "monoization" caused
374 * by them panning towards the center. */
375 if(Device->FmtChans == DevFmtStereo && !Device->Hrtf)
376 chans = StereoWideMap;
377 else
378 chans = StereoMap;
379 num_channels = 2;
380 break;
382 case FmtRear:
383 chans = RearMap;
384 num_channels = 2;
385 break;
387 case FmtQuad:
388 chans = QuadMap;
389 num_channels = 4;
390 break;
392 case FmtX51:
393 chans = X51Map;
394 num_channels = 6;
395 break;
397 case FmtX61:
398 chans = X61Map;
399 num_channels = 7;
400 break;
402 case FmtX71:
403 chans = X71Map;
404 num_channels = 8;
405 break;
407 case FmtBFormat2D:
408 num_channels = 3;
409 isbformat = AL_TRUE;
410 DirectChannels = AL_FALSE;
411 break;
413 case FmtBFormat3D:
414 num_channels = 4;
415 isbformat = AL_TRUE;
416 DirectChannels = AL_FALSE;
417 break;
420 if(isbformat)
422 ALfloat N[3], V[3], U[3];
423 ALfloat matrix[4][4];
425 /* AT then UP */
426 N[0] = ALSource->Orientation[0][0];
427 N[1] = ALSource->Orientation[0][1];
428 N[2] = ALSource->Orientation[0][2];
429 aluNormalize(N);
430 V[0] = ALSource->Orientation[1][0];
431 V[1] = ALSource->Orientation[1][1];
432 V[2] = ALSource->Orientation[1][2];
433 aluNormalize(V);
434 if(!Relative)
436 ALfloat (*restrict lmatrix)[4] = ALContext->Listener->Params.Matrix;
437 aluMatrixVector(N, 0.0f, lmatrix);
438 aluMatrixVector(V, 0.0f, lmatrix);
440 /* Build and normalize right-vector */
441 aluCrossproduct(N, V, U);
442 aluNormalize(U);
444 matrix[0][0] = 1.0f;
445 matrix[0][1] = 0.0f;
446 matrix[0][2] = 0.0f;
447 matrix[0][3] = 0.0f;
448 matrix[1][0] = 0.0f;
449 matrix[1][1] = -N[2];
450 matrix[1][2] = -N[0];
451 matrix[1][3] = N[1];
452 matrix[2][0] = 0.0f;
453 matrix[2][1] = U[2];
454 matrix[2][2] = U[0];
455 matrix[2][3] = -U[1];
456 matrix[3][0] = 0.0f;
457 matrix[3][1] = -V[2];
458 matrix[3][2] = -V[0];
459 matrix[3][3] = V[1];
461 for(c = 0;c < num_channels;c++)
463 MixGains *gains = voice->Direct.Mix.Gains[c];
464 ALfloat Target[MaxChannels];
466 ComputeBFormatGains(Device, matrix[c], DryGain, Target);
467 for(i = 0;i < MaxChannels;i++)
468 gains[i].Target = Target[i];
470 /* B-Format cannot handle logarithmic gain stepping, since the gain can
471 * switch between positive and negative values. */
472 voice->Direct.Moving = AL_FALSE;
473 UpdateDryStepping(&voice->Direct, num_channels);
475 voice->IsHrtf = AL_FALSE;
476 for(i = 0;i < NumSends;i++)
477 WetGain[i] *= 1.4142f;
479 else if(DirectChannels != AL_FALSE)
481 for(c = 0;c < num_channels;c++)
483 MixGains *gains = voice->Direct.Mix.Gains[c];
484 int idx;
486 for(j = 0;j < MaxChannels;j++)
487 gains[j].Target = 0.0f;
488 if((idx=GetChannelIdxByName(Device, chans[c].channel)) != -1)
489 gains[idx].Target = DryGain;
491 UpdateDryStepping(&voice->Direct, num_channels);
493 voice->IsHrtf = AL_FALSE;
495 else if(Device->Hrtf)
497 for(c = 0;c < num_channels;c++)
499 if(chans[c].channel == LFE)
501 /* Skip LFE */
502 voice->Direct.Mix.Hrtf.Params[c].Delay[0] = 0;
503 voice->Direct.Mix.Hrtf.Params[c].Delay[1] = 0;
504 for(i = 0;i < HRIR_LENGTH;i++)
506 voice->Direct.Mix.Hrtf.Params[c].Coeffs[i][0] = 0.0f;
507 voice->Direct.Mix.Hrtf.Params[c].Coeffs[i][1] = 0.0f;
510 else
512 /* Get the static HRIR coefficients and delays for this
513 * channel. */
514 GetLerpedHrtfCoeffs(Device->Hrtf,
515 chans[c].elevation, chans[c].angle, 1.0f, DryGain,
516 voice->Direct.Mix.Hrtf.Params[c].Coeffs,
517 voice->Direct.Mix.Hrtf.Params[c].Delay);
520 voice->Direct.Counter = 0;
521 voice->Direct.Moving = AL_TRUE;
522 voice->Direct.Mix.Hrtf.IrSize = GetHrtfIrSize(Device->Hrtf);
524 voice->IsHrtf = AL_TRUE;
526 else
528 for(c = 0;c < num_channels;c++)
530 MixGains *gains = voice->Direct.Mix.Gains[c];
531 ALfloat Target[MaxChannels];
533 /* Special-case LFE */
534 if(chans[c].channel == LFE)
536 int idx;
537 for(i = 0;i < MaxChannels;i++)
538 gains[i].Target = 0.0f;
539 if((idx=GetChannelIdxByName(Device, chans[c].channel)) != -1)
540 gains[idx].Target = DryGain;
541 continue;
544 ComputeAngleGains(Device, chans[c].angle, chans[c].elevation, DryGain, Target);
545 for(i = 0;i < MaxChannels;i++)
546 gains[i].Target = Target[i];
548 UpdateDryStepping(&voice->Direct, num_channels);
550 voice->IsHrtf = AL_FALSE;
552 for(i = 0;i < NumSends;i++)
554 voice->Send[i].Gain.Target = WetGain[i];
555 UpdateWetStepping(&voice->Send[i]);
559 ALfloat gainhf = maxf(0.01f, DryGainHF);
560 ALfloat gainlf = maxf(0.01f, DryGainLF);
561 ALfloat hfscale = ALSource->Direct.HFReference / Frequency;
562 ALfloat lfscale = ALSource->Direct.LFReference / Frequency;
563 for(c = 0;c < num_channels;c++)
565 voice->Direct.Filters[c].ActiveType = AF_None;
566 if(gainhf != 1.0f) voice->Direct.Filters[c].ActiveType |= AF_LowPass;
567 if(gainlf != 1.0f) voice->Direct.Filters[c].ActiveType |= AF_HighPass;
568 ALfilterState_setParams(
569 &voice->Direct.Filters[c].LowPass, ALfilterType_HighShelf, gainhf,
570 hfscale, 0.0f
572 ALfilterState_setParams(
573 &voice->Direct.Filters[c].HighPass, ALfilterType_LowShelf, gainlf,
574 lfscale, 0.0f
578 for(i = 0;i < NumSends;i++)
580 ALfloat gainhf = maxf(0.01f, WetGainHF[i]);
581 ALfloat gainlf = maxf(0.01f, WetGainLF[i]);
582 ALfloat hfscale = ALSource->Send[i].HFReference / Frequency;
583 ALfloat lfscale = ALSource->Send[i].LFReference / Frequency;
584 for(c = 0;c < num_channels;c++)
586 voice->Send[i].Filters[c].ActiveType = AF_None;
587 if(gainhf != 1.0f) voice->Send[i].Filters[c].ActiveType |= AF_LowPass;
588 if(gainlf != 1.0f) voice->Send[i].Filters[c].ActiveType |= AF_HighPass;
589 ALfilterState_setParams(
590 &voice->Send[i].Filters[c].LowPass, ALfilterType_HighShelf, gainhf,
591 hfscale, 0.0f
593 ALfilterState_setParams(
594 &voice->Send[i].Filters[c].HighPass, ALfilterType_LowShelf, gainlf,
595 lfscale, 0.0f
601 ALvoid CalcSourceParams(ALvoice *voice, const ALsource *ALSource, const ALCcontext *ALContext)
603 ALCdevice *Device = ALContext->Device;
604 ALfloat Velocity[3],Direction[3],Position[3],SourceToListener[3];
605 ALfloat InnerAngle,OuterAngle,Angle,Distance,ClampedDist;
606 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff;
607 ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain;
608 ALfloat DopplerFactor, SpeedOfSound;
609 ALfloat AirAbsorptionFactor;
610 ALfloat RoomAirAbsorption[MAX_SENDS];
611 ALbufferlistitem *BufferListItem;
612 ALfloat Attenuation;
613 ALfloat RoomAttenuation[MAX_SENDS];
614 ALfloat MetersPerUnit;
615 ALfloat RoomRolloffBase;
616 ALfloat RoomRolloff[MAX_SENDS];
617 ALfloat DecayDistance[MAX_SENDS];
618 ALfloat DryGain;
619 ALfloat DryGainHF;
620 ALfloat DryGainLF;
621 ALboolean DryGainHFAuto;
622 ALfloat WetGain[MAX_SENDS];
623 ALfloat WetGainHF[MAX_SENDS];
624 ALfloat WetGainLF[MAX_SENDS];
625 ALboolean WetGainAuto;
626 ALboolean WetGainHFAuto;
627 ALfloat Pitch;
628 ALuint Frequency;
629 ALint NumSends;
630 ALint i, j;
632 DryGainHF = 1.0f;
633 DryGainLF = 1.0f;
634 for(i = 0;i < MAX_SENDS;i++)
636 WetGainHF[i] = 1.0f;
637 WetGainLF[i] = 1.0f;
640 /* Get context/device properties */
641 DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
642 SpeedOfSound = ALContext->SpeedOfSound * ALContext->DopplerVelocity;
643 NumSends = Device->NumAuxSends;
644 Frequency = Device->Frequency;
646 /* Get listener properties */
647 ListenerGain = ALContext->Listener->Gain;
648 MetersPerUnit = ALContext->Listener->MetersPerUnit;
650 /* Get source properties */
651 SourceVolume = ALSource->Gain;
652 MinVolume = ALSource->MinGain;
653 MaxVolume = ALSource->MaxGain;
654 Pitch = ALSource->Pitch;
655 Position[0] = ALSource->Position[0];
656 Position[1] = ALSource->Position[1];
657 Position[2] = ALSource->Position[2];
658 Direction[0] = ALSource->Direction[0];
659 Direction[1] = ALSource->Direction[1];
660 Direction[2] = ALSource->Direction[2];
661 Velocity[0] = ALSource->Velocity[0];
662 Velocity[1] = ALSource->Velocity[1];
663 Velocity[2] = ALSource->Velocity[2];
664 MinDist = ALSource->RefDistance;
665 MaxDist = ALSource->MaxDistance;
666 Rolloff = ALSource->RollOffFactor;
667 InnerAngle = ALSource->InnerAngle;
668 OuterAngle = ALSource->OuterAngle;
669 AirAbsorptionFactor = ALSource->AirAbsorptionFactor;
670 DryGainHFAuto = ALSource->DryGainHFAuto;
671 WetGainAuto = ALSource->WetGainAuto;
672 WetGainHFAuto = ALSource->WetGainHFAuto;
673 RoomRolloffBase = ALSource->RoomRolloffFactor;
675 voice->Direct.OutBuffer = Device->DryBuffer;
676 for(i = 0;i < NumSends;i++)
678 ALeffectslot *Slot = ALSource->Send[i].Slot;
680 if(!Slot && i == 0)
681 Slot = Device->DefaultSlot;
682 if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
684 Slot = NULL;
685 RoomRolloff[i] = 0.0f;
686 DecayDistance[i] = 0.0f;
687 RoomAirAbsorption[i] = 1.0f;
689 else if(Slot->AuxSendAuto)
691 RoomRolloff[i] = RoomRolloffBase;
692 if(IsReverbEffect(Slot->EffectType))
694 RoomRolloff[i] += Slot->EffectProps.Reverb.RoomRolloffFactor;
695 DecayDistance[i] = Slot->EffectProps.Reverb.DecayTime *
696 SPEEDOFSOUNDMETRESPERSEC;
697 RoomAirAbsorption[i] = Slot->EffectProps.Reverb.AirAbsorptionGainHF;
699 else
701 DecayDistance[i] = 0.0f;
702 RoomAirAbsorption[i] = 1.0f;
705 else
707 /* If the slot's auxiliary send auto is off, the data sent to the
708 * effect slot is the same as the dry path, sans filter effects */
709 RoomRolloff[i] = Rolloff;
710 DecayDistance[i] = 0.0f;
711 RoomAirAbsorption[i] = AIRABSORBGAINHF;
714 if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
715 voice->Send[i].OutBuffer = NULL;
716 else
717 voice->Send[i].OutBuffer = Slot->WetBuffer;
720 /* Transform source to listener space (convert to head relative) */
721 if(ALSource->HeadRelative == AL_FALSE)
723 ALfloat (*restrict Matrix)[4] = ALContext->Listener->Params.Matrix;
724 /* Transform source vectors */
725 aluMatrixVector(Position, 1.0f, Matrix);
726 aluMatrixVector(Direction, 0.0f, Matrix);
727 aluMatrixVector(Velocity, 0.0f, Matrix);
729 else
731 const ALfloat *ListenerVel = ALContext->Listener->Params.Velocity;
732 /* Offset the source velocity to be relative of the listener velocity */
733 Velocity[0] += ListenerVel[0];
734 Velocity[1] += ListenerVel[1];
735 Velocity[2] += ListenerVel[2];
738 SourceToListener[0] = -Position[0];
739 SourceToListener[1] = -Position[1];
740 SourceToListener[2] = -Position[2];
741 aluNormalize(SourceToListener);
742 aluNormalize(Direction);
744 /* Calculate distance attenuation */
745 Distance = sqrtf(aluDotproduct(Position, Position));
746 ClampedDist = Distance;
748 Attenuation = 1.0f;
749 for(i = 0;i < NumSends;i++)
750 RoomAttenuation[i] = 1.0f;
751 switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel :
752 ALContext->DistanceModel)
754 case InverseDistanceClamped:
755 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
756 if(MaxDist < MinDist)
757 break;
758 /*fall-through*/
759 case InverseDistance:
760 if(MinDist > 0.0f)
762 if((MinDist + (Rolloff * (ClampedDist - MinDist))) > 0.0f)
763 Attenuation = MinDist / (MinDist + (Rolloff * (ClampedDist - MinDist)));
764 for(i = 0;i < NumSends;i++)
766 if((MinDist + (RoomRolloff[i] * (ClampedDist - MinDist))) > 0.0f)
767 RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (ClampedDist - MinDist)));
770 break;
772 case LinearDistanceClamped:
773 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
774 if(MaxDist < MinDist)
775 break;
776 /*fall-through*/
777 case LinearDistance:
778 if(MaxDist != MinDist)
780 Attenuation = 1.0f - (Rolloff*(ClampedDist-MinDist)/(MaxDist - MinDist));
781 Attenuation = maxf(Attenuation, 0.0f);
782 for(i = 0;i < NumSends;i++)
784 RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(ClampedDist-MinDist)/(MaxDist - MinDist));
785 RoomAttenuation[i] = maxf(RoomAttenuation[i], 0.0f);
788 break;
790 case ExponentDistanceClamped:
791 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
792 if(MaxDist < MinDist)
793 break;
794 /*fall-through*/
795 case ExponentDistance:
796 if(ClampedDist > 0.0f && MinDist > 0.0f)
798 Attenuation = powf(ClampedDist/MinDist, -Rolloff);
799 for(i = 0;i < NumSends;i++)
800 RoomAttenuation[i] = powf(ClampedDist/MinDist, -RoomRolloff[i]);
802 break;
804 case DisableDistance:
805 ClampedDist = MinDist;
806 break;
809 /* Source Gain + Attenuation */
810 DryGain = SourceVolume * Attenuation;
811 for(i = 0;i < NumSends;i++)
812 WetGain[i] = SourceVolume * RoomAttenuation[i];
814 /* Distance-based air absorption */
815 if(AirAbsorptionFactor > 0.0f && ClampedDist > MinDist)
817 ALfloat meters = maxf(ClampedDist-MinDist, 0.0f) * MetersPerUnit;
818 DryGainHF *= powf(AIRABSORBGAINHF, AirAbsorptionFactor*meters);
819 for(i = 0;i < NumSends;i++)
820 WetGainHF[i] *= powf(RoomAirAbsorption[i], AirAbsorptionFactor*meters);
823 if(WetGainAuto)
825 ALfloat ApparentDist = 1.0f/maxf(Attenuation, 0.00001f) - 1.0f;
827 /* Apply a decay-time transformation to the wet path, based on the
828 * attenuation of the dry path.
830 * Using the apparent distance, based on the distance attenuation, the
831 * initial decay of the reverb effect is calculated and applied to the
832 * wet path.
834 for(i = 0;i < NumSends;i++)
836 if(DecayDistance[i] > 0.0f)
837 WetGain[i] *= powf(0.001f/*-60dB*/, ApparentDist/DecayDistance[i]);
841 /* Calculate directional soundcones */
842 Angle = RAD2DEG(acosf(aluDotproduct(Direction,SourceToListener)) * ConeScale) * 2.0f;
843 if(Angle > InnerAngle && Angle <= OuterAngle)
845 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
846 ConeVolume = lerp(1.0f, ALSource->OuterGain, scale);
847 ConeHF = lerp(1.0f, ALSource->OuterGainHF, scale);
849 else if(Angle > OuterAngle)
851 ConeVolume = ALSource->OuterGain;
852 ConeHF = ALSource->OuterGainHF;
854 else
856 ConeVolume = 1.0f;
857 ConeHF = 1.0f;
860 DryGain *= ConeVolume;
861 if(WetGainAuto)
863 for(i = 0;i < NumSends;i++)
864 WetGain[i] *= ConeVolume;
866 if(DryGainHFAuto)
867 DryGainHF *= ConeHF;
868 if(WetGainHFAuto)
870 for(i = 0;i < NumSends;i++)
871 WetGainHF[i] *= ConeHF;
874 /* Clamp to Min/Max Gain */
875 DryGain = clampf(DryGain, MinVolume, MaxVolume);
876 for(i = 0;i < NumSends;i++)
877 WetGain[i] = clampf(WetGain[i], MinVolume, MaxVolume);
879 /* Apply gain and frequency filters */
880 DryGain *= ALSource->Direct.Gain * ListenerGain;
881 DryGainHF *= ALSource->Direct.GainHF;
882 DryGainLF *= ALSource->Direct.GainLF;
883 for(i = 0;i < NumSends;i++)
885 WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
886 WetGainHF[i] *= ALSource->Send[i].GainHF;
887 WetGainLF[i] *= ALSource->Send[i].GainLF;
890 /* Calculate velocity-based doppler effect */
891 if(DopplerFactor > 0.0f)
893 const ALfloat *ListenerVel = ALContext->Listener->Params.Velocity;
894 ALfloat VSS, VLS;
896 if(SpeedOfSound < 1.0f)
898 DopplerFactor *= 1.0f/SpeedOfSound;
899 SpeedOfSound = 1.0f;
902 VSS = aluDotproduct(Velocity, SourceToListener) * DopplerFactor;
903 VLS = aluDotproduct(ListenerVel, SourceToListener) * DopplerFactor;
905 Pitch *= clampf(SpeedOfSound-VLS, 1.0f, SpeedOfSound*2.0f - 1.0f) /
906 clampf(SpeedOfSound-VSS, 1.0f, SpeedOfSound*2.0f - 1.0f);
909 BufferListItem = ATOMIC_LOAD(&ALSource->queue);
910 while(BufferListItem != NULL)
912 ALbuffer *ALBuffer;
913 if((ALBuffer=BufferListItem->buffer) != NULL)
915 /* Calculate fixed-point stepping value, based on the pitch, buffer
916 * frequency, and output frequency. */
917 Pitch = Pitch * ALBuffer->Frequency / Frequency;
918 if(Pitch > (ALfloat)MAX_PITCH)
919 voice->Step = MAX_PITCH<<FRACTIONBITS;
920 else
922 voice->Step = fastf2i(Pitch*FRACTIONONE);
923 if(voice->Step == 0)
924 voice->Step = 1;
927 break;
929 BufferListItem = BufferListItem->next;
932 if(Device->Hrtf)
934 /* Use a binaural HRTF algorithm for stereo headphone playback */
935 ALfloat delta, ev = 0.0f, az = 0.0f;
936 ALfloat radius = ALSource->Radius;
937 ALfloat dirfact = 1.0f;
939 if(Distance > FLT_EPSILON)
941 ALfloat invlen = 1.0f/Distance;
942 Position[0] *= invlen;
943 Position[1] *= invlen;
944 Position[2] *= invlen;
946 /* Calculate elevation and azimuth only when the source is not at
947 * the listener. This prevents +0 and -0 Z from producing
948 * inconsistent panning. Also, clamp Y in case FP precision errors
949 * cause it to land outside of -1..+1. */
950 ev = asinf(clampf(Position[1], -1.0f, 1.0f));
951 az = atan2f(Position[0], -Position[2]*ZScale);
953 if(radius > Distance)
954 dirfact *= Distance / radius;
956 /* Check to see if the HRIR is already moving. */
957 if(voice->Direct.Moving)
959 /* Calculate the normalized HRTF transition factor (delta). */
960 delta = CalcHrtfDelta(voice->Direct.Mix.Hrtf.Gain, DryGain,
961 voice->Direct.Mix.Hrtf.Dir, Position);
962 /* If the delta is large enough, get the moving HRIR target
963 * coefficients, target delays, steppping values, and counter. */
964 if(delta > 0.001f)
966 ALuint counter = GetMovingHrtfCoeffs(Device->Hrtf,
967 ev, az, dirfact, DryGain, delta, voice->Direct.Counter,
968 voice->Direct.Mix.Hrtf.Params[0].Coeffs, voice->Direct.Mix.Hrtf.Params[0].Delay,
969 voice->Direct.Mix.Hrtf.Params[0].CoeffStep, voice->Direct.Mix.Hrtf.Params[0].DelayStep
971 voice->Direct.Counter = counter;
972 voice->Direct.Mix.Hrtf.Gain = DryGain;
973 voice->Direct.Mix.Hrtf.Dir[0] = Position[0];
974 voice->Direct.Mix.Hrtf.Dir[1] = Position[1];
975 voice->Direct.Mix.Hrtf.Dir[2] = Position[2];
978 else
980 /* Get the initial (static) HRIR coefficients and delays. */
981 GetLerpedHrtfCoeffs(Device->Hrtf, ev, az, dirfact, DryGain,
982 voice->Direct.Mix.Hrtf.Params[0].Coeffs,
983 voice->Direct.Mix.Hrtf.Params[0].Delay);
984 voice->Direct.Counter = 0;
985 voice->Direct.Moving = AL_TRUE;
986 voice->Direct.Mix.Hrtf.Gain = DryGain;
987 voice->Direct.Mix.Hrtf.Dir[0] = Position[0];
988 voice->Direct.Mix.Hrtf.Dir[1] = Position[1];
989 voice->Direct.Mix.Hrtf.Dir[2] = Position[2];
991 voice->Direct.Mix.Hrtf.IrSize = GetHrtfIrSize(Device->Hrtf);
993 voice->IsHrtf = AL_TRUE;
995 else
997 MixGains *gains = voice->Direct.Mix.Gains[0];
998 ALfloat radius = ALSource->Radius;
999 ALfloat Target[MaxChannels];
1001 /* Normalize the length, and compute panned gains. */
1002 if(!(Distance > FLT_EPSILON) && !(radius > FLT_EPSILON))
1004 const ALfloat front[3] = { 0.0f, 0.0f, -1.0f };
1005 ComputeDirectionalGains(Device, front, DryGain, Target);
1007 else
1009 ALfloat invlen = 1.0f/maxf(Distance, radius);
1010 Position[0] *= invlen;
1011 Position[1] *= invlen;
1012 Position[2] *= invlen;
1013 ComputeDirectionalGains(Device, Position, DryGain, Target);
1016 for(j = 0;j < MaxChannels;j++)
1017 gains[j].Target = Target[j];
1018 UpdateDryStepping(&voice->Direct, 1);
1020 voice->IsHrtf = AL_FALSE;
1022 for(i = 0;i < NumSends;i++)
1024 voice->Send[i].Gain.Target = WetGain[i];
1025 UpdateWetStepping(&voice->Send[i]);
1029 ALfloat gainhf = maxf(0.01f, DryGainHF);
1030 ALfloat gainlf = maxf(0.01f, DryGainLF);
1031 ALfloat hfscale = ALSource->Direct.HFReference / Frequency;
1032 ALfloat lfscale = ALSource->Direct.LFReference / Frequency;
1033 voice->Direct.Filters[0].ActiveType = AF_None;
1034 if(gainhf != 1.0f) voice->Direct.Filters[0].ActiveType |= AF_LowPass;
1035 if(gainlf != 1.0f) voice->Direct.Filters[0].ActiveType |= AF_HighPass;
1036 ALfilterState_setParams(
1037 &voice->Direct.Filters[0].LowPass, ALfilterType_HighShelf, gainhf,
1038 hfscale, 0.0f
1040 ALfilterState_setParams(
1041 &voice->Direct.Filters[0].HighPass, ALfilterType_LowShelf, gainlf,
1042 lfscale, 0.0f
1045 for(i = 0;i < NumSends;i++)
1047 ALfloat gainhf = maxf(0.01f, WetGainHF[i]);
1048 ALfloat gainlf = maxf(0.01f, WetGainLF[i]);
1049 ALfloat hfscale = ALSource->Send[i].HFReference / Frequency;
1050 ALfloat lfscale = ALSource->Send[i].LFReference / Frequency;
1051 voice->Send[i].Filters[0].ActiveType = AF_None;
1052 if(gainhf != 1.0f) voice->Send[i].Filters[0].ActiveType |= AF_LowPass;
1053 if(gainlf != 1.0f) voice->Send[i].Filters[0].ActiveType |= AF_HighPass;
1054 ALfilterState_setParams(
1055 &voice->Send[i].Filters[0].LowPass, ALfilterType_HighShelf, gainhf,
1056 hfscale, 0.0f
1058 ALfilterState_setParams(
1059 &voice->Send[i].Filters[0].HighPass, ALfilterType_LowShelf, gainlf,
1060 lfscale, 0.0f
1066 static inline ALint aluF2I25(ALfloat val)
1068 /* Clamp the value between -1 and +1. This handles that with only a single branch. */
1069 if(fabsf(val) > 1.0f)
1070 val = (ALfloat)((0.0f < val) - (val < 0.0f));
1071 /* Convert to a signed integer, between -16777215 and +16777215. */
1072 return fastf2i(val*16777215.0f);
1075 static inline ALfloat aluF2F(ALfloat val)
1076 { return val; }
1077 static inline ALint aluF2I(ALfloat val)
1078 { return aluF2I25(val)<<7; }
1079 static inline ALuint aluF2UI(ALfloat val)
1080 { return aluF2I(val)+2147483648u; }
1081 static inline ALshort aluF2S(ALfloat val)
1082 { return aluF2I25(val)>>9; }
1083 static inline ALushort aluF2US(ALfloat val)
1084 { return aluF2S(val)+32768; }
1085 static inline ALbyte aluF2B(ALfloat val)
1086 { return aluF2I25(val)>>17; }
1087 static inline ALubyte aluF2UB(ALfloat val)
1088 { return aluF2B(val)+128; }
1090 #define DECL_TEMPLATE(T, func) \
1091 static void Write_##T(const ALfloatBUFFERSIZE *DryBuffer, ALvoid *buffer, \
1092 ALuint SamplesToDo, ALuint numchans) \
1094 ALuint i, j; \
1095 for(j = 0;j < numchans;j++) \
1097 const ALfloat *in = DryBuffer[j]; \
1098 T *restrict out = (T*)buffer + j; \
1099 for(i = 0;i < SamplesToDo;i++) \
1100 out[i*numchans] = func(in[i]); \
1104 DECL_TEMPLATE(ALfloat, aluF2F)
1105 DECL_TEMPLATE(ALuint, aluF2UI)
1106 DECL_TEMPLATE(ALint, aluF2I)
1107 DECL_TEMPLATE(ALushort, aluF2US)
1108 DECL_TEMPLATE(ALshort, aluF2S)
1109 DECL_TEMPLATE(ALubyte, aluF2UB)
1110 DECL_TEMPLATE(ALbyte, aluF2B)
1112 #undef DECL_TEMPLATE
1115 ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
1117 ALuint SamplesToDo;
1118 ALeffectslot **slot, **slot_end;
1119 ALvoice *voice, *voice_end;
1120 ALCcontext *ctx;
1121 FPUCtl oldMode;
1122 ALuint i, c;
1124 SetMixerFPUMode(&oldMode);
1126 while(size > 0)
1128 IncrementRef(&device->MixCount);
1130 SamplesToDo = minu(size, BUFFERSIZE);
1131 for(c = 0;c < MaxChannels;c++)
1132 memset(device->DryBuffer[c], 0, SamplesToDo*sizeof(ALfloat));
1134 V0(device->Backend,lock)();
1135 V(device->Synth,process)(SamplesToDo, device->DryBuffer);
1137 ctx = ATOMIC_LOAD(&device->ContextList);
1138 while(ctx)
1140 ALenum DeferUpdates = ctx->DeferUpdates;
1141 ALenum UpdateSources = AL_FALSE;
1143 if(!DeferUpdates)
1144 UpdateSources = ATOMIC_EXCHANGE(ALenum, &ctx->UpdateSources, AL_FALSE);
1146 if(UpdateSources)
1147 CalcListenerParams(ctx->Listener);
1149 /* source processing */
1150 voice = ctx->Voices;
1151 voice_end = voice + ctx->VoiceCount;
1152 while(voice != voice_end)
1154 ALsource *source = voice->Source;
1155 if(!source) goto next;
1157 if(source->state != AL_PLAYING && source->state != AL_PAUSED)
1159 voice->Source = NULL;
1160 goto next;
1163 if(!DeferUpdates && (ATOMIC_EXCHANGE(ALenum, &source->NeedsUpdate, AL_FALSE) ||
1164 UpdateSources))
1165 voice->Update(voice, source, ctx);
1167 if(source->state != AL_PAUSED)
1168 MixSource(voice, source, device, SamplesToDo);
1169 next:
1170 voice++;
1173 /* effect slot processing */
1174 slot = VECTOR_ITER_BEGIN(ctx->ActiveAuxSlots);
1175 slot_end = VECTOR_ITER_END(ctx->ActiveAuxSlots);
1176 while(slot != slot_end)
1178 if(!DeferUpdates && ATOMIC_EXCHANGE(ALenum, &(*slot)->NeedsUpdate, AL_FALSE))
1179 V((*slot)->EffectState,update)(device, *slot);
1181 V((*slot)->EffectState,process)(SamplesToDo, (*slot)->WetBuffer[0],
1182 device->DryBuffer);
1184 for(i = 0;i < SamplesToDo;i++)
1185 (*slot)->WetBuffer[0][i] = 0.0f;
1187 slot++;
1190 ctx = ctx->next;
1193 slot = &device->DefaultSlot;
1194 if(*slot != NULL)
1196 if(ATOMIC_EXCHANGE(ALenum, &(*slot)->NeedsUpdate, AL_FALSE))
1197 V((*slot)->EffectState,update)(device, *slot);
1199 V((*slot)->EffectState,process)(SamplesToDo, (*slot)->WetBuffer[0],
1200 device->DryBuffer);
1202 for(i = 0;i < SamplesToDo;i++)
1203 (*slot)->WetBuffer[0][i] = 0.0f;
1206 /* Increment the clock time. Every second's worth of samples is
1207 * converted and added to clock base so that large sample counts don't
1208 * overflow during conversion. This also guarantees an exact, stable
1209 * conversion. */
1210 device->SamplesDone += SamplesToDo;
1211 device->ClockBase += (device->SamplesDone/device->Frequency) * DEVICE_CLOCK_RES;
1212 device->SamplesDone %= device->Frequency;
1213 V0(device->Backend,unlock)();
1215 if(device->Bs2b)
1217 /* Apply binaural/crossfeed filter */
1218 for(i = 0;i < SamplesToDo;i++)
1220 float samples[2];
1221 samples[0] = device->DryBuffer[0][i];
1222 samples[1] = device->DryBuffer[1][i];
1223 bs2b_cross_feed(device->Bs2b, samples);
1224 device->DryBuffer[0][i] = samples[0];
1225 device->DryBuffer[1][i] = samples[1];
1229 if(buffer)
1231 switch(device->FmtType)
1233 case DevFmtByte:
1234 Write_ALbyte(device->DryBuffer, buffer, SamplesToDo, device->NumSpeakers);
1235 buffer = (char*)buffer + SamplesToDo*device->NumSpeakers*sizeof(ALbyte);
1236 break;
1237 case DevFmtUByte:
1238 Write_ALubyte(device->DryBuffer, buffer, SamplesToDo, device->NumSpeakers);
1239 buffer = (char*)buffer + SamplesToDo*device->NumSpeakers*sizeof(ALubyte);
1240 break;
1241 case DevFmtShort:
1242 Write_ALshort(device->DryBuffer, buffer, SamplesToDo, device->NumSpeakers);
1243 buffer = (char*)buffer + SamplesToDo*device->NumSpeakers*sizeof(ALshort);
1244 break;
1245 case DevFmtUShort:
1246 Write_ALushort(device->DryBuffer, buffer, SamplesToDo, device->NumSpeakers);
1247 buffer = (char*)buffer + SamplesToDo*device->NumSpeakers*sizeof(ALushort);
1248 break;
1249 case DevFmtInt:
1250 Write_ALint(device->DryBuffer, buffer, SamplesToDo, device->NumSpeakers);
1251 buffer = (char*)buffer + SamplesToDo*device->NumSpeakers*sizeof(ALint);
1252 break;
1253 case DevFmtUInt:
1254 Write_ALuint(device->DryBuffer, buffer, SamplesToDo, device->NumSpeakers);
1255 buffer = (char*)buffer + SamplesToDo*device->NumSpeakers*sizeof(ALuint);
1256 break;
1257 case DevFmtFloat:
1258 Write_ALfloat(device->DryBuffer, buffer, SamplesToDo, device->NumSpeakers);
1259 buffer = (char*)buffer + SamplesToDo*device->NumSpeakers*sizeof(ALfloat);
1260 break;
1264 size -= SamplesToDo;
1265 IncrementRef(&device->MixCount);
1268 RestoreFPUMode(&oldMode);
1272 ALvoid aluHandleDisconnect(ALCdevice *device)
1274 ALCcontext *Context;
1276 device->Connected = ALC_FALSE;
1278 Context = ATOMIC_LOAD(&device->ContextList);
1279 while(Context)
1281 ALvoice *voice, *voice_end;
1283 voice = Context->Voices;
1284 voice_end = voice + Context->VoiceCount;
1285 while(voice != voice_end)
1287 ALsource *source = voice->Source;
1288 voice->Source = NULL;
1290 if(source && source->state == AL_PLAYING)
1292 source->state = AL_STOPPED;
1293 ATOMIC_STORE(&source->current_buffer, NULL);
1294 source->position = 0;
1295 source->position_fraction = 0;
1298 voice++;
1300 Context->VoiceCount = 0;
1302 Context = Context->next;