Use wrappers for float-typed math functions
[openal-soft.git] / Alc / panning.c
blob6b412f8958e6cd0e523391db204cdb1a70ee823d
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2010 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <math.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <ctype.h>
27 #include <assert.h>
29 #include "alMain.h"
30 #include "AL/al.h"
31 #include "AL/alc.h"
32 #include "alu.h"
34 static void SetSpeakerArrangement(const char *name, ALfloat SpeakerAngle[MaxChannels],
35 enum Channel Speaker2Chan[MaxChannels], ALint chans)
37 char *confkey, *next;
38 char *layout_str;
39 char *sep, *end;
40 enum Channel val;
41 const char *str;
42 int i;
44 if(!ConfigValueStr(NULL, name, &str) && !ConfigValueStr(NULL, "layout", &str))
45 return;
47 layout_str = strdup(str);
48 next = confkey = layout_str;
49 while(next && *next)
51 confkey = next;
52 next = strchr(confkey, ',');
53 if(next)
55 *next = 0;
56 do {
57 next++;
58 } while(isspace(*next) || *next == ',');
61 sep = strchr(confkey, '=');
62 if(!sep || confkey == sep)
64 ERR("Malformed speaker key: %s\n", confkey);
65 continue;
68 end = sep - 1;
69 while(isspace(*end) && end != confkey)
70 end--;
71 *(++end) = 0;
73 if(strcmp(confkey, "fl") == 0 || strcmp(confkey, "front-left") == 0)
74 val = FrontLeft;
75 else if(strcmp(confkey, "fr") == 0 || strcmp(confkey, "front-right") == 0)
76 val = FrontRight;
77 else if(strcmp(confkey, "fc") == 0 || strcmp(confkey, "front-center") == 0)
78 val = FrontCenter;
79 else if(strcmp(confkey, "bl") == 0 || strcmp(confkey, "back-left") == 0)
80 val = BackLeft;
81 else if(strcmp(confkey, "br") == 0 || strcmp(confkey, "back-right") == 0)
82 val = BackRight;
83 else if(strcmp(confkey, "bc") == 0 || strcmp(confkey, "back-center") == 0)
84 val = BackCenter;
85 else if(strcmp(confkey, "sl") == 0 || strcmp(confkey, "side-left") == 0)
86 val = SideLeft;
87 else if(strcmp(confkey, "sr") == 0 || strcmp(confkey, "side-right") == 0)
88 val = SideRight;
89 else
91 ERR("Unknown speaker for %s: \"%s\"\n", name, confkey);
92 continue;
95 *(sep++) = 0;
96 while(isspace(*sep))
97 sep++;
99 for(i = 0;i < chans;i++)
101 if(Speaker2Chan[i] == val)
103 long angle = strtol(sep, NULL, 10);
104 if(angle >= -180 && angle <= 180)
105 SpeakerAngle[i] = angle * F_PI/180.0f;
106 else
107 ERR("Invalid angle for speaker \"%s\": %ld\n", confkey, angle);
108 break;
112 free(layout_str);
113 layout_str = NULL;
115 for(i = 0;i < chans;i++)
117 int min = i;
118 int i2;
120 for(i2 = i+1;i2 < chans;i2++)
122 if(SpeakerAngle[i2] < SpeakerAngle[min])
123 min = i2;
126 if(min != i)
128 ALfloat tmpf;
129 enum Channel tmpc;
131 tmpf = SpeakerAngle[i];
132 SpeakerAngle[i] = SpeakerAngle[min];
133 SpeakerAngle[min] = tmpf;
135 tmpc = Speaker2Chan[i];
136 Speaker2Chan[i] = Speaker2Chan[min];
137 Speaker2Chan[min] = tmpc;
144 * ComputeAngleGains
146 * Sets channel gains based on a given source's angle and its half-width. The
147 * angle and hwidth parameters are in radians.
149 ALvoid ComputeAngleGains(const ALCdevice *device, ALfloat angle, ALfloat hwidth, ALfloat ingain, ALfloat *gains)
151 ALfloat tmpgains[MaxChannels] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
152 enum Channel Speaker2Chan[MaxChannels];
153 ALfloat SpeakerAngle[MaxChannels];
154 ALfloat langle, rangle;
155 ALfloat a;
156 ALuint i;
158 for(i = 0;i < device->NumChan;i++)
159 Speaker2Chan[i] = device->Speaker2Chan[i];
160 for(i = 0;i < device->NumChan;i++)
161 SpeakerAngle[i] = device->SpeakerAngle[i];
163 /* Some easy special-cases first... */
164 if(device->NumChan == 1 || hwidth >= F_PI)
166 /* Full coverage for all speakers. */
167 for(i = 0;i < device->NumChan;i++)
169 enum Channel chan = Speaker2Chan[i];
170 gains[chan] = ingain;
172 return;
174 if(hwidth <= 0.0f)
176 /* Infinitely small sound point. */
177 for(i = 0;i < device->NumChan-1;i++)
179 if(angle >= SpeakerAngle[i] && angle < SpeakerAngle[i+1])
181 /* Sound is between speakers i and i+1 */
182 a = (angle-SpeakerAngle[i]) /
183 (SpeakerAngle[i+1]-SpeakerAngle[i]);
184 gains[Speaker2Chan[i]] = sqrtf(1.0f-a) * ingain;
185 gains[Speaker2Chan[i+1]] = sqrtf( a) * ingain;
186 return;
189 /* Sound is between last and first speakers */
190 if(angle < SpeakerAngle[0])
191 angle += F_PI*2.0f;
192 a = (angle-SpeakerAngle[i]) /
193 (F_PI*2.0f + SpeakerAngle[0]-SpeakerAngle[i]);
194 gains[Speaker2Chan[i]] = sqrtf(1.0f-a) * ingain;
195 gains[Speaker2Chan[0]] = sqrtf( a) * ingain;
196 return;
199 if(fabsf(angle)+hwidth > F_PI)
201 /* The coverage area would go outside of -pi...+pi. Instead, rotate the
202 * speaker angles so it would be as if angle=0, and keep them wrapped
203 * within -pi...+pi. */
204 for(i = 0;i < device->NumChan;i++)
206 SpeakerAngle[i] -= angle;
207 if(SpeakerAngle[i] > F_PI)
208 SpeakerAngle[i] -= F_PI*2.0f;
209 else if(SpeakerAngle[i] < -F_PI)
210 SpeakerAngle[i] += F_PI*2.0f;
212 angle = 0.0f;
214 /* The speaker angles are expected to be in ascending order. There
215 * should be a better way to resort the lists... */
216 for(i = 0;i < device->NumChan-1;i++)
218 ALuint min = i;
219 ALuint j;
221 for(j = i+1;j < device->NumChan;j++)
223 if(SpeakerAngle[j] < SpeakerAngle[min])
224 min = j;
227 if(min != i)
229 ALfloat tmpf;
230 enum Channel tmpc;
232 tmpf = SpeakerAngle[i];
233 SpeakerAngle[i] = SpeakerAngle[min];
234 SpeakerAngle[min] = tmpf;
236 tmpc = Speaker2Chan[i];
237 Speaker2Chan[i] = Speaker2Chan[min];
238 Speaker2Chan[min] = tmpc;
242 langle = angle - hwidth;
243 rangle = angle + hwidth;
245 /* First speaker */
246 i = 0;
247 do {
248 ALuint last = device->NumChan-1;
249 enum Channel chan = Speaker2Chan[i];
251 if(SpeakerAngle[i] >= langle && SpeakerAngle[i] <= rangle)
253 tmpgains[chan] = 1.0f;
254 continue;
257 if(SpeakerAngle[i] < langle && SpeakerAngle[i+1] > langle)
259 a = (langle-SpeakerAngle[i]) /
260 (SpeakerAngle[i+1]-SpeakerAngle[i]);
261 tmpgains[chan] = lerp(tmpgains[chan], 1.0f, 1.0f-a);
263 if(SpeakerAngle[i] > rangle)
265 a = (F_PI*2.0f + rangle-SpeakerAngle[last]) /
266 (F_PI*2.0f + SpeakerAngle[i]-SpeakerAngle[last]);
267 tmpgains[chan] = lerp(tmpgains[chan], 1.0f, a);
269 else if(SpeakerAngle[last] < rangle)
271 a = (rangle-SpeakerAngle[last]) /
272 (F_PI*2.0f + SpeakerAngle[i]-SpeakerAngle[last]);
273 tmpgains[chan] = lerp(tmpgains[chan], 1.0f, a);
275 } while(0);
277 for(i = 1;i < device->NumChan-1;i++)
279 enum Channel chan = Speaker2Chan[i];
280 if(SpeakerAngle[i] >= langle && SpeakerAngle[i] <= rangle)
282 tmpgains[chan] = 1.0f;
283 continue;
286 if(SpeakerAngle[i] < langle && SpeakerAngle[i+1] > langle)
288 a = (langle-SpeakerAngle[i]) /
289 (SpeakerAngle[i+1]-SpeakerAngle[i]);
290 tmpgains[chan] = lerp(tmpgains[chan], 1.0f, 1.0f-a);
292 if(SpeakerAngle[i] > rangle && SpeakerAngle[i-1] < rangle)
294 a = (rangle-SpeakerAngle[i-1]) /
295 (SpeakerAngle[i]-SpeakerAngle[i-1]);
296 tmpgains[chan] = lerp(tmpgains[chan], 1.0f, a);
300 /* Last speaker */
301 i = device->NumChan-1;
302 do {
303 enum Channel chan = Speaker2Chan[i];
304 if(SpeakerAngle[i] >= langle && SpeakerAngle[i] <= rangle)
306 tmpgains[Speaker2Chan[i]] = 1.0f;
307 continue;
309 if(SpeakerAngle[i] > rangle && SpeakerAngle[i-1] < rangle)
311 a = (rangle-SpeakerAngle[i-1]) /
312 (SpeakerAngle[i]-SpeakerAngle[i-1]);
313 tmpgains[chan] = lerp(tmpgains[chan], 1.0f, a);
315 if(SpeakerAngle[i] < langle)
317 a = (langle-SpeakerAngle[i]) /
318 (F_PI*2.0f + SpeakerAngle[0]-SpeakerAngle[i]);
319 tmpgains[chan] = lerp(tmpgains[chan], 1.0f, 1.0f-a);
321 else if(SpeakerAngle[0] > langle)
323 a = (F_PI*2.0f + langle-SpeakerAngle[i]) /
324 (F_PI*2.0f + SpeakerAngle[0]-SpeakerAngle[i]);
325 tmpgains[chan] = lerp(tmpgains[chan], 1.0f, 1.0f-a);
327 } while(0);
329 for(i = 0;i < device->NumChan;i++)
331 enum Channel chan = device->Speaker2Chan[i];
332 gains[chan] = sqrtf(tmpgains[chan]) * ingain;
337 ALvoid aluInitPanning(ALCdevice *Device)
339 const char *layoutname = NULL;
340 enum Channel *Speaker2Chan;
341 ALfloat *SpeakerAngle;
343 Speaker2Chan = Device->Speaker2Chan;
344 SpeakerAngle = Device->SpeakerAngle;
345 switch(Device->FmtChans)
347 case DevFmtMono:
348 Device->NumChan = 1;
349 Speaker2Chan[0] = FrontCenter;
350 SpeakerAngle[0] = F_PI/180.0f * 0.0f;
351 layoutname = NULL;
352 break;
354 case DevFmtStereo:
355 Device->NumChan = 2;
356 Speaker2Chan[0] = FrontLeft;
357 Speaker2Chan[1] = FrontRight;
358 SpeakerAngle[0] = F_PI/180.0f * -90.0f;
359 SpeakerAngle[1] = F_PI/180.0f * 90.0f;
360 layoutname = "layout_stereo";
361 break;
363 case DevFmtQuad:
364 Device->NumChan = 4;
365 Speaker2Chan[0] = BackLeft;
366 Speaker2Chan[1] = FrontLeft;
367 Speaker2Chan[2] = FrontRight;
368 Speaker2Chan[3] = BackRight;
369 SpeakerAngle[0] = F_PI/180.0f * -135.0f;
370 SpeakerAngle[1] = F_PI/180.0f * -45.0f;
371 SpeakerAngle[2] = F_PI/180.0f * 45.0f;
372 SpeakerAngle[3] = F_PI/180.0f * 135.0f;
373 layoutname = "layout_quad";
374 break;
376 case DevFmtX51:
377 Device->NumChan = 5;
378 Speaker2Chan[0] = BackLeft;
379 Speaker2Chan[1] = FrontLeft;
380 Speaker2Chan[2] = FrontCenter;
381 Speaker2Chan[3] = FrontRight;
382 Speaker2Chan[4] = BackRight;
383 SpeakerAngle[0] = F_PI/180.0f * -110.0f;
384 SpeakerAngle[1] = F_PI/180.0f * -30.0f;
385 SpeakerAngle[2] = F_PI/180.0f * 0.0f;
386 SpeakerAngle[3] = F_PI/180.0f * 30.0f;
387 SpeakerAngle[4] = F_PI/180.0f * 110.0f;
388 layoutname = "layout_surround51";
389 break;
391 case DevFmtX51Side:
392 Device->NumChan = 5;
393 Speaker2Chan[0] = SideLeft;
394 Speaker2Chan[1] = FrontLeft;
395 Speaker2Chan[2] = FrontCenter;
396 Speaker2Chan[3] = FrontRight;
397 Speaker2Chan[4] = SideRight;
398 SpeakerAngle[0] = F_PI/180.0f * -90.0f;
399 SpeakerAngle[1] = F_PI/180.0f * -30.0f;
400 SpeakerAngle[2] = F_PI/180.0f * 0.0f;
401 SpeakerAngle[3] = F_PI/180.0f * 30.0f;
402 SpeakerAngle[4] = F_PI/180.0f * 90.0f;
403 layoutname = "layout_side51";
404 break;
406 case DevFmtX61:
407 Device->NumChan = 6;
408 Speaker2Chan[0] = SideLeft;
409 Speaker2Chan[1] = FrontLeft;
410 Speaker2Chan[2] = FrontCenter;
411 Speaker2Chan[3] = FrontRight;
412 Speaker2Chan[4] = SideRight;
413 Speaker2Chan[5] = BackCenter;
414 SpeakerAngle[0] = F_PI/180.0f * -90.0f;
415 SpeakerAngle[1] = F_PI/180.0f * -30.0f;
416 SpeakerAngle[2] = F_PI/180.0f * 0.0f;
417 SpeakerAngle[3] = F_PI/180.0f * 30.0f;
418 SpeakerAngle[4] = F_PI/180.0f * 90.0f;
419 SpeakerAngle[5] = F_PI/180.0f * 180.0f;
420 layoutname = "layout_surround61";
421 break;
423 case DevFmtX71:
424 Device->NumChan = 7;
425 Speaker2Chan[0] = BackLeft;
426 Speaker2Chan[1] = SideLeft;
427 Speaker2Chan[2] = FrontLeft;
428 Speaker2Chan[3] = FrontCenter;
429 Speaker2Chan[4] = FrontRight;
430 Speaker2Chan[5] = SideRight;
431 Speaker2Chan[6] = BackRight;
432 SpeakerAngle[0] = F_PI/180.0f * -150.0f;
433 SpeakerAngle[1] = F_PI/180.0f * -90.0f;
434 SpeakerAngle[2] = F_PI/180.0f * -30.0f;
435 SpeakerAngle[3] = F_PI/180.0f * 0.0f;
436 SpeakerAngle[4] = F_PI/180.0f * 30.0f;
437 SpeakerAngle[5] = F_PI/180.0f * 90.0f;
438 SpeakerAngle[6] = F_PI/180.0f * 150.0f;
439 layoutname = "layout_surround71";
440 break;
442 if(layoutname && Device->Type != Loopback)
443 SetSpeakerArrangement(layoutname, SpeakerAngle, Speaker2Chan, Device->NumChan);