Use a struct to store the FPU mode
[openal-soft.git] / Alc / ALu.c
blob3033e7ce6542334707c0a491148419d64acbae9e
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <math.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <ctype.h>
27 #include <assert.h>
29 #include "alMain.h"
30 #include "AL/al.h"
31 #include "AL/alc.h"
32 #include "alSource.h"
33 #include "alBuffer.h"
34 #include "alListener.h"
35 #include "alAuxEffectSlot.h"
36 #include "alu.h"
37 #include "bs2b.h"
39 #include "mixer_defs.h"
42 struct ChanMap {
43 enum Channel channel;
44 ALfloat angle;
47 /* Cone scalar */
48 ALfloat ConeScale = 1.0f;
50 /* Localized Z scalar for mono sources */
51 ALfloat ZScale = 1.0f;
54 static ResamplerFunc SelectResampler(enum Resampler Resampler, ALuint increment)
56 if(increment == FRACTIONONE)
57 return Resample_point32_C;
58 switch(Resampler)
60 case PointResampler:
61 return Resample_point32_C;
62 case LinearResampler:
63 #ifdef HAVE_SSE
64 if((CPUCapFlags&CPU_CAP_SSE))
65 return Resample_lerp32_SSE;
66 #endif
67 return Resample_lerp32_C;
68 case CubicResampler:
69 #ifdef HAVE_SSE
70 if((CPUCapFlags&CPU_CAP_SSE))
71 return Resample_cubic32_SSE;
72 #endif
73 return Resample_cubic32_C;
74 case ResamplerMax:
75 /* Shouldn't happen */
76 break;
79 return Resample_point32_C;
83 static DryMixerFunc SelectDirectMixer(void)
85 #ifdef HAVE_SSE
86 if((CPUCapFlags&CPU_CAP_SSE))
87 return MixDirect_SSE;
88 #endif
89 #ifdef HAVE_NEON
90 if((CPUCapFlags&CPU_CAP_NEON))
91 return MixDirect_Neon;
92 #endif
94 return MixDirect_C;
97 static DryMixerFunc SelectHrtfMixer(void)
99 #ifdef HAVE_SSE
100 if((CPUCapFlags&CPU_CAP_SSE))
101 return MixDirect_Hrtf_SSE;
102 #endif
103 #ifdef HAVE_NEON
104 if((CPUCapFlags&CPU_CAP_NEON))
105 return MixDirect_Hrtf_Neon;
106 #endif
108 return MixDirect_Hrtf_C;
111 static WetMixerFunc SelectSendMixer(void)
113 #ifdef HAVE_SSE
114 if((CPUCapFlags&CPU_CAP_SSE))
115 return MixSend_SSE;
116 #endif
117 #ifdef HAVE_NEON
118 if((CPUCapFlags&CPU_CAP_NEON))
119 return MixSend_Neon;
120 #endif
122 return MixSend_C;
126 static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat w,ALfloat matrix[4][4])
128 ALfloat temp[4] = {
129 vector[0], vector[1], vector[2], w
132 vector[0] = temp[0]*matrix[0][0] + temp[1]*matrix[1][0] + temp[2]*matrix[2][0] + temp[3]*matrix[3][0];
133 vector[1] = temp[0]*matrix[0][1] + temp[1]*matrix[1][1] + temp[2]*matrix[2][1] + temp[3]*matrix[3][1];
134 vector[2] = temp[0]*matrix[0][2] + temp[1]*matrix[1][2] + temp[2]*matrix[2][2] + temp[3]*matrix[3][2];
138 ALvoid CalcNonAttnSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
140 static const struct ChanMap MonoMap[1] = { { FrontCenter, 0.0f } };
141 static const struct ChanMap StereoMap[2] = {
142 { FrontLeft, -30.0f * F_PI/180.0f },
143 { FrontRight, 30.0f * F_PI/180.0f }
145 static const struct ChanMap StereoWideMap[2] = {
146 { FrontLeft, -90.0f * F_PI/180.0f },
147 { FrontRight, 90.0f * F_PI/180.0f }
149 static const struct ChanMap RearMap[2] = {
150 { BackLeft, -150.0f * F_PI/180.0f },
151 { BackRight, 150.0f * F_PI/180.0f }
153 static const struct ChanMap QuadMap[4] = {
154 { FrontLeft, -45.0f * F_PI/180.0f },
155 { FrontRight, 45.0f * F_PI/180.0f },
156 { BackLeft, -135.0f * F_PI/180.0f },
157 { BackRight, 135.0f * F_PI/180.0f }
159 static const struct ChanMap X51Map[6] = {
160 { FrontLeft, -30.0f * F_PI/180.0f },
161 { FrontRight, 30.0f * F_PI/180.0f },
162 { FrontCenter, 0.0f * F_PI/180.0f },
163 { LFE, 0.0f },
164 { BackLeft, -110.0f * F_PI/180.0f },
165 { BackRight, 110.0f * F_PI/180.0f }
167 static const struct ChanMap X61Map[7] = {
168 { FrontLeft, -30.0f * F_PI/180.0f },
169 { FrontRight, 30.0f * F_PI/180.0f },
170 { FrontCenter, 0.0f * F_PI/180.0f },
171 { LFE, 0.0f },
172 { BackCenter, 180.0f * F_PI/180.0f },
173 { SideLeft, -90.0f * F_PI/180.0f },
174 { SideRight, 90.0f * F_PI/180.0f }
176 static const struct ChanMap X71Map[8] = {
177 { FrontLeft, -30.0f * F_PI/180.0f },
178 { FrontRight, 30.0f * F_PI/180.0f },
179 { FrontCenter, 0.0f * F_PI/180.0f },
180 { LFE, 0.0f },
181 { BackLeft, -150.0f * F_PI/180.0f },
182 { BackRight, 150.0f * F_PI/180.0f },
183 { SideLeft, -90.0f * F_PI/180.0f },
184 { SideRight, 90.0f * F_PI/180.0f }
187 ALCdevice *Device = ALContext->Device;
188 ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
189 ALbufferlistitem *BufferListItem;
190 enum FmtChannels Channels;
191 ALfloat (*SrcMatrix)[MaxChannels];
192 ALfloat DryGain, DryGainHF;
193 ALfloat WetGain[MAX_SENDS];
194 ALfloat WetGainHF[MAX_SENDS];
195 ALint NumSends, Frequency;
196 const struct ChanMap *chans = NULL;
197 enum Resampler Resampler;
198 ALint num_channels = 0;
199 ALboolean DirectChannels;
200 ALfloat hwidth = 0.0f;
201 ALfloat Pitch;
202 ALfloat cw;
203 ALint i, c;
205 /* Get device properties */
206 NumSends = Device->NumAuxSends;
207 Frequency = Device->Frequency;
209 /* Get listener properties */
210 ListenerGain = ALContext->Listener.Gain;
212 /* Get source properties */
213 SourceVolume = ALSource->Gain;
214 MinVolume = ALSource->MinGain;
215 MaxVolume = ALSource->MaxGain;
216 Pitch = ALSource->Pitch;
217 Resampler = ALSource->Resampler;
218 DirectChannels = ALSource->DirectChannels;
220 /* Calculate the stepping value */
221 Channels = FmtMono;
222 BufferListItem = ALSource->queue;
223 while(BufferListItem != NULL)
225 ALbuffer *ALBuffer;
226 if((ALBuffer=BufferListItem->buffer) != NULL)
228 ALsizei maxstep = BUFFERSIZE / ALSource->NumChannels;
229 maxstep -= ResamplerPadding[Resampler] +
230 ResamplerPrePadding[Resampler] + 1;
231 maxstep = mini(maxstep, INT_MAX>>FRACTIONBITS);
233 Pitch = Pitch * ALBuffer->Frequency / Frequency;
234 if(Pitch > (ALfloat)maxstep)
235 ALSource->Params.Step = maxstep<<FRACTIONBITS;
236 else
238 ALSource->Params.Step = fastf2i(Pitch*FRACTIONONE);
239 if(ALSource->Params.Step == 0)
240 ALSource->Params.Step = 1;
242 ALSource->Params.Resample = SelectResampler(Resampler, ALSource->Params.Step);
244 Channels = ALBuffer->FmtChannels;
245 break;
247 BufferListItem = BufferListItem->next;
249 if(!DirectChannels && Device->Hrtf)
250 ALSource->Params.DryMix = SelectHrtfMixer();
251 else
252 ALSource->Params.DryMix = SelectDirectMixer();
253 ALSource->Params.WetMix = SelectSendMixer();
255 /* Calculate gains */
256 DryGain = clampf(SourceVolume, MinVolume, MaxVolume);
257 DryGain *= ALSource->DirectGain * ListenerGain;
258 DryGainHF = ALSource->DirectGainHF;
259 for(i = 0;i < NumSends;i++)
261 WetGain[i] = clampf(SourceVolume, MinVolume, MaxVolume);
262 WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
263 WetGainHF[i] = ALSource->Send[i].GainHF;
266 SrcMatrix = ALSource->Params.Direct.Gains;
267 for(i = 0;i < MaxChannels;i++)
269 for(c = 0;c < MaxChannels;c++)
270 SrcMatrix[i][c] = 0.0f;
272 switch(Channels)
274 case FmtMono:
275 chans = MonoMap;
276 num_channels = 1;
277 break;
279 case FmtStereo:
280 if(!(Device->Flags&DEVICE_WIDE_STEREO))
281 chans = StereoMap;
282 else
284 chans = StereoWideMap;
285 hwidth = 60.0f * F_PI/180.0f;
287 num_channels = 2;
288 break;
290 case FmtRear:
291 chans = RearMap;
292 num_channels = 2;
293 break;
295 case FmtQuad:
296 chans = QuadMap;
297 num_channels = 4;
298 break;
300 case FmtX51:
301 chans = X51Map;
302 num_channels = 6;
303 break;
305 case FmtX61:
306 chans = X61Map;
307 num_channels = 7;
308 break;
310 case FmtX71:
311 chans = X71Map;
312 num_channels = 8;
313 break;
316 if(DirectChannels != AL_FALSE)
318 for(c = 0;c < num_channels;c++)
320 for(i = 0;i < (ALint)Device->NumChan;i++)
322 enum Channel chan = Device->Speaker2Chan[i];
323 if(chan == chans[c].channel)
325 SrcMatrix[c][chan] += DryGain;
326 break;
331 else if(Device->Hrtf)
333 for(c = 0;c < num_channels;c++)
335 if(chans[c].channel == LFE)
337 /* Skip LFE */
338 ALSource->Params.Direct.Hrtf.Delay[c][0] = 0;
339 ALSource->Params.Direct.Hrtf.Delay[c][1] = 0;
340 for(i = 0;i < HRIR_LENGTH;i++)
342 ALSource->Params.Direct.Hrtf.Coeffs[c][i][0] = 0.0f;
343 ALSource->Params.Direct.Hrtf.Coeffs[c][i][1] = 0.0f;
346 else
348 /* Get the static HRIR coefficients and delays for this
349 * channel. */
350 GetLerpedHrtfCoeffs(Device->Hrtf,
351 0.0f, chans[c].angle, DryGain,
352 ALSource->Params.Direct.Hrtf.Coeffs[c],
353 ALSource->Params.Direct.Hrtf.Delay[c]);
356 ALSource->Hrtf.Counter = 0;
358 else
360 DryGain *= lerp(1.0f, 1.0f/sqrtf(Device->NumChan), hwidth/(F_PI*2.0f));
361 for(c = 0;c < num_channels;c++)
363 /* Special-case LFE */
364 if(chans[c].channel == LFE)
366 SrcMatrix[c][chans[c].channel] = DryGain;
367 continue;
369 ComputeAngleGains(Device, chans[c].angle, hwidth, DryGain,
370 SrcMatrix[c]);
373 for(i = 0;i < NumSends;i++)
375 ALeffectslot *Slot = ALSource->Send[i].Slot;
377 if(!Slot && i == 0)
378 Slot = Device->DefaultSlot;
379 if(Slot && Slot->effect.type == AL_EFFECT_NULL)
380 Slot = NULL;
381 ALSource->Params.Send[i].Slot = Slot;
382 ALSource->Params.Send[i].Gain = WetGain[i];
385 /* Update filter coefficients. Calculations based on the I3DL2
386 * spec. */
387 cw = cosf(F_PI*2.0f * LOWPASSFREQREF / Frequency);
389 /* We use two chained one-pole filters, so we need to take the
390 * square root of the squared gain, which is the same as the base
391 * gain. */
392 ALSource->Params.Direct.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw);
393 for(i = 0;i < NumSends;i++)
395 ALfloat a = lpCoeffCalc(WetGainHF[i], cw);
396 ALSource->Params.Send[i].iirFilter.coeff = a;
400 ALvoid CalcSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
402 const ALCdevice *Device = ALContext->Device;
403 ALfloat InnerAngle,OuterAngle,Angle,Distance,ClampedDist;
404 ALfloat Direction[3],Position[3],SourceToListener[3];
405 ALfloat Velocity[3],ListenerVel[3];
406 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff;
407 ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain;
408 ALfloat DopplerFactor, SpeedOfSound;
409 ALfloat AirAbsorptionFactor;
410 ALfloat RoomAirAbsorption[MAX_SENDS];
411 ALbufferlistitem *BufferListItem;
412 ALfloat Attenuation;
413 ALfloat RoomAttenuation[MAX_SENDS];
414 ALfloat MetersPerUnit;
415 ALfloat RoomRolloffBase;
416 ALfloat RoomRolloff[MAX_SENDS];
417 ALfloat DecayDistance[MAX_SENDS];
418 ALfloat DryGain;
419 ALfloat DryGainHF;
420 ALboolean DryGainHFAuto;
421 ALfloat WetGain[MAX_SENDS];
422 ALfloat WetGainHF[MAX_SENDS];
423 ALboolean WetGainAuto;
424 ALboolean WetGainHFAuto;
425 enum Resampler Resampler;
426 ALfloat Matrix[4][4];
427 ALfloat Pitch;
428 ALuint Frequency;
429 ALint NumSends;
430 ALfloat cw;
431 ALint i, j;
433 DryGainHF = 1.0f;
434 for(i = 0;i < MAX_SENDS;i++)
435 WetGainHF[i] = 1.0f;
437 /* Get context/device properties */
438 DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
439 SpeedOfSound = ALContext->SpeedOfSound * ALContext->DopplerVelocity;
440 NumSends = Device->NumAuxSends;
441 Frequency = Device->Frequency;
443 /* Get listener properties */
444 ListenerGain = ALContext->Listener.Gain;
445 MetersPerUnit = ALContext->Listener.MetersPerUnit;
446 ListenerVel[0] = ALContext->Listener.Velocity[0];
447 ListenerVel[1] = ALContext->Listener.Velocity[1];
448 ListenerVel[2] = ALContext->Listener.Velocity[2];
449 for(i = 0;i < 4;i++)
451 for(j = 0;j < 4;j++)
452 Matrix[i][j] = ALContext->Listener.Matrix[i][j];
455 /* Get source properties */
456 SourceVolume = ALSource->Gain;
457 MinVolume = ALSource->MinGain;
458 MaxVolume = ALSource->MaxGain;
459 Pitch = ALSource->Pitch;
460 Resampler = ALSource->Resampler;
461 Position[0] = ALSource->Position[0];
462 Position[1] = ALSource->Position[1];
463 Position[2] = ALSource->Position[2];
464 Direction[0] = ALSource->Orientation[0];
465 Direction[1] = ALSource->Orientation[1];
466 Direction[2] = ALSource->Orientation[2];
467 Velocity[0] = ALSource->Velocity[0];
468 Velocity[1] = ALSource->Velocity[1];
469 Velocity[2] = ALSource->Velocity[2];
470 MinDist = ALSource->RefDistance;
471 MaxDist = ALSource->MaxDistance;
472 Rolloff = ALSource->RollOffFactor;
473 InnerAngle = ALSource->InnerAngle;
474 OuterAngle = ALSource->OuterAngle;
475 AirAbsorptionFactor = ALSource->AirAbsorptionFactor;
476 DryGainHFAuto = ALSource->DryGainHFAuto;
477 WetGainAuto = ALSource->WetGainAuto;
478 WetGainHFAuto = ALSource->WetGainHFAuto;
479 RoomRolloffBase = ALSource->RoomRolloffFactor;
480 for(i = 0;i < NumSends;i++)
482 ALeffectslot *Slot = ALSource->Send[i].Slot;
484 if(!Slot && i == 0)
485 Slot = Device->DefaultSlot;
486 if(!Slot || Slot->effect.type == AL_EFFECT_NULL)
488 Slot = NULL;
489 RoomRolloff[i] = 0.0f;
490 DecayDistance[i] = 0.0f;
491 RoomAirAbsorption[i] = 1.0f;
493 else if(Slot->AuxSendAuto)
495 RoomRolloff[i] = RoomRolloffBase;
496 if(IsReverbEffect(Slot->effect.type))
498 RoomRolloff[i] += Slot->effect.Reverb.RoomRolloffFactor;
499 DecayDistance[i] = Slot->effect.Reverb.DecayTime *
500 SPEEDOFSOUNDMETRESPERSEC;
501 RoomAirAbsorption[i] = Slot->effect.Reverb.AirAbsorptionGainHF;
503 else
505 DecayDistance[i] = 0.0f;
506 RoomAirAbsorption[i] = 1.0f;
509 else
511 /* If the slot's auxiliary send auto is off, the data sent to the
512 * effect slot is the same as the dry path, sans filter effects */
513 RoomRolloff[i] = Rolloff;
514 DecayDistance[i] = 0.0f;
515 RoomAirAbsorption[i] = AIRABSORBGAINHF;
518 ALSource->Params.Send[i].Slot = Slot;
521 /* Transform source to listener space (convert to head relative) */
522 if(ALSource->HeadRelative == AL_FALSE)
524 /* Translate position */
525 Position[0] -= ALContext->Listener.Position[0];
526 Position[1] -= ALContext->Listener.Position[1];
527 Position[2] -= ALContext->Listener.Position[2];
529 /* Transform source vectors */
530 aluMatrixVector(Position, 1.0f, Matrix);
531 aluMatrixVector(Direction, 0.0f, Matrix);
532 aluMatrixVector(Velocity, 0.0f, Matrix);
533 /* Transform listener velocity */
534 aluMatrixVector(ListenerVel, 0.0f, Matrix);
536 else
538 /* Transform listener velocity from world space to listener space */
539 aluMatrixVector(ListenerVel, 0.0f, Matrix);
540 /* Offset the source velocity to be relative of the listener velocity */
541 Velocity[0] += ListenerVel[0];
542 Velocity[1] += ListenerVel[1];
543 Velocity[2] += ListenerVel[2];
546 SourceToListener[0] = -Position[0];
547 SourceToListener[1] = -Position[1];
548 SourceToListener[2] = -Position[2];
549 aluNormalize(SourceToListener);
550 aluNormalize(Direction);
552 /* Calculate distance attenuation */
553 Distance = sqrtf(aluDotproduct(Position, Position));
554 ClampedDist = Distance;
556 Attenuation = 1.0f;
557 for(i = 0;i < NumSends;i++)
558 RoomAttenuation[i] = 1.0f;
559 switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel :
560 ALContext->DistanceModel)
562 case InverseDistanceClamped:
563 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
564 if(MaxDist < MinDist)
565 break;
566 /*fall-through*/
567 case InverseDistance:
568 if(MinDist > 0.0f)
570 if((MinDist + (Rolloff * (ClampedDist - MinDist))) > 0.0f)
571 Attenuation = MinDist / (MinDist + (Rolloff * (ClampedDist - MinDist)));
572 for(i = 0;i < NumSends;i++)
574 if((MinDist + (RoomRolloff[i] * (ClampedDist - MinDist))) > 0.0f)
575 RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (ClampedDist - MinDist)));
578 break;
580 case LinearDistanceClamped:
581 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
582 if(MaxDist < MinDist)
583 break;
584 /*fall-through*/
585 case LinearDistance:
586 if(MaxDist != MinDist)
588 Attenuation = 1.0f - (Rolloff*(ClampedDist-MinDist)/(MaxDist - MinDist));
589 Attenuation = maxf(Attenuation, 0.0f);
590 for(i = 0;i < NumSends;i++)
592 RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(ClampedDist-MinDist)/(MaxDist - MinDist));
593 RoomAttenuation[i] = maxf(RoomAttenuation[i], 0.0f);
596 break;
598 case ExponentDistanceClamped:
599 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
600 if(MaxDist < MinDist)
601 break;
602 /*fall-through*/
603 case ExponentDistance:
604 if(ClampedDist > 0.0f && MinDist > 0.0f)
606 Attenuation = powf(ClampedDist/MinDist, -Rolloff);
607 for(i = 0;i < NumSends;i++)
608 RoomAttenuation[i] = powf(ClampedDist/MinDist, -RoomRolloff[i]);
610 break;
612 case DisableDistance:
613 ClampedDist = MinDist;
614 break;
617 /* Source Gain + Attenuation */
618 DryGain = SourceVolume * Attenuation;
619 for(i = 0;i < NumSends;i++)
620 WetGain[i] = SourceVolume * RoomAttenuation[i];
622 /* Distance-based air absorption */
623 if(AirAbsorptionFactor > 0.0f && ClampedDist > MinDist)
625 ALfloat meters = maxf(ClampedDist-MinDist, 0.0f) * MetersPerUnit;
626 DryGainHF *= powf(AIRABSORBGAINHF, AirAbsorptionFactor*meters);
627 for(i = 0;i < NumSends;i++)
628 WetGainHF[i] *= powf(RoomAirAbsorption[i], AirAbsorptionFactor*meters);
631 if(WetGainAuto)
633 ALfloat ApparentDist = 1.0f/maxf(Attenuation, 0.00001f) - 1.0f;
635 /* Apply a decay-time transformation to the wet path, based on the
636 * attenuation of the dry path.
638 * Using the apparent distance, based on the distance attenuation, the
639 * initial decay of the reverb effect is calculated and applied to the
640 * wet path.
642 for(i = 0;i < NumSends;i++)
644 if(DecayDistance[i] > 0.0f)
645 WetGain[i] *= powf(0.001f/*-60dB*/, ApparentDist/DecayDistance[i]);
649 /* Calculate directional soundcones */
650 Angle = acosf(aluDotproduct(Direction,SourceToListener)) * ConeScale * (360.0f/F_PI);
651 if(Angle > InnerAngle && Angle <= OuterAngle)
653 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
654 ConeVolume = lerp(1.0f, ALSource->OuterGain, scale);
655 ConeHF = lerp(1.0f, ALSource->OuterGainHF, scale);
657 else if(Angle > OuterAngle)
659 ConeVolume = ALSource->OuterGain;
660 ConeHF = ALSource->OuterGainHF;
662 else
664 ConeVolume = 1.0f;
665 ConeHF = 1.0f;
668 DryGain *= ConeVolume;
669 if(WetGainAuto)
671 for(i = 0;i < NumSends;i++)
672 WetGain[i] *= ConeVolume;
674 if(DryGainHFAuto)
675 DryGainHF *= ConeHF;
676 if(WetGainHFAuto)
678 for(i = 0;i < NumSends;i++)
679 WetGainHF[i] *= ConeHF;
682 /* Clamp to Min/Max Gain */
683 DryGain = clampf(DryGain, MinVolume, MaxVolume);
684 for(i = 0;i < NumSends;i++)
685 WetGain[i] = clampf(WetGain[i], MinVolume, MaxVolume);
687 /* Apply gain and frequency filters */
688 DryGain *= ALSource->DirectGain * ListenerGain;
689 DryGainHF *= ALSource->DirectGainHF;
690 for(i = 0;i < NumSends;i++)
692 WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
693 WetGainHF[i] *= ALSource->Send[i].GainHF;
696 /* Calculate velocity-based doppler effect */
697 if(DopplerFactor > 0.0f)
699 ALfloat VSS, VLS;
701 if(SpeedOfSound < 1.0f)
703 DopplerFactor *= 1.0f/SpeedOfSound;
704 SpeedOfSound = 1.0f;
707 VSS = aluDotproduct(Velocity, SourceToListener) * DopplerFactor;
708 VLS = aluDotproduct(ListenerVel, SourceToListener) * DopplerFactor;
710 Pitch *= clampf(SpeedOfSound-VLS, 1.0f, SpeedOfSound*2.0f - 1.0f) /
711 clampf(SpeedOfSound-VSS, 1.0f, SpeedOfSound*2.0f - 1.0f);
714 BufferListItem = ALSource->queue;
715 while(BufferListItem != NULL)
717 ALbuffer *ALBuffer;
718 if((ALBuffer=BufferListItem->buffer) != NULL)
720 /* Calculate fixed-point stepping value, based on the pitch, buffer
721 * frequency, and output frequency. */
722 ALsizei maxstep = BUFFERSIZE / ALSource->NumChannels;
723 maxstep -= ResamplerPadding[Resampler] +
724 ResamplerPrePadding[Resampler] + 1;
725 maxstep = mini(maxstep, INT_MAX>>FRACTIONBITS);
727 Pitch = Pitch * ALBuffer->Frequency / Frequency;
728 if(Pitch > (ALfloat)maxstep)
729 ALSource->Params.Step = maxstep<<FRACTIONBITS;
730 else
732 ALSource->Params.Step = fastf2i(Pitch*FRACTIONONE);
733 if(ALSource->Params.Step == 0)
734 ALSource->Params.Step = 1;
736 ALSource->Params.Resample = SelectResampler(Resampler, ALSource->Params.Step);
738 break;
740 BufferListItem = BufferListItem->next;
742 if(Device->Hrtf)
743 ALSource->Params.DryMix = SelectHrtfMixer();
744 else
745 ALSource->Params.DryMix = SelectDirectMixer();
746 ALSource->Params.WetMix = SelectSendMixer();
748 if(Device->Hrtf)
750 /* Use a binaural HRTF algorithm for stereo headphone playback */
751 ALfloat delta, ev = 0.0f, az = 0.0f;
753 if(Distance > 0.0f)
755 ALfloat invlen = 1.0f/Distance;
756 Position[0] *= invlen;
757 Position[1] *= invlen;
758 Position[2] *= invlen;
760 /* Calculate elevation and azimuth only when the source is not at
761 * the listener. This prevents +0 and -0 Z from producing
762 * inconsistent panning. Also, clamp Y in case FP precision errors
763 * cause it to land outside of -1..+1. */
764 ev = asinf(clampf(Position[1], -1.0f, 1.0f));
765 az = atan2f(Position[0], -Position[2]*ZScale);
768 /* Check to see if the HRIR is already moving. */
769 if(ALSource->Hrtf.Moving)
771 /* Calculate the normalized HRTF transition factor (delta). */
772 delta = CalcHrtfDelta(ALSource->Params.Direct.Hrtf.Gain, DryGain,
773 ALSource->Params.Direct.Hrtf.Dir, Position);
774 /* If the delta is large enough, get the moving HRIR target
775 * coefficients, target delays, steppping values, and counter. */
776 if(delta > 0.001f)
778 ALSource->Hrtf.Counter = GetMovingHrtfCoeffs(Device->Hrtf,
779 ev, az, DryGain, delta,
780 ALSource->Hrtf.Counter,
781 ALSource->Params.Direct.Hrtf.Coeffs[0],
782 ALSource->Params.Direct.Hrtf.Delay[0],
783 ALSource->Params.Direct.Hrtf.CoeffStep,
784 ALSource->Params.Direct.Hrtf.DelayStep);
785 ALSource->Params.Direct.Hrtf.Gain = DryGain;
786 ALSource->Params.Direct.Hrtf.Dir[0] = Position[0];
787 ALSource->Params.Direct.Hrtf.Dir[1] = Position[1];
788 ALSource->Params.Direct.Hrtf.Dir[2] = Position[2];
791 else
793 /* Get the initial (static) HRIR coefficients and delays. */
794 GetLerpedHrtfCoeffs(Device->Hrtf, ev, az, DryGain,
795 ALSource->Params.Direct.Hrtf.Coeffs[0],
796 ALSource->Params.Direct.Hrtf.Delay[0]);
797 ALSource->Hrtf.Counter = 0;
798 ALSource->Params.Direct.Hrtf.Gain = DryGain;
799 ALSource->Params.Direct.Hrtf.Dir[0] = Position[0];
800 ALSource->Params.Direct.Hrtf.Dir[1] = Position[1];
801 ALSource->Params.Direct.Hrtf.Dir[2] = Position[2];
804 else
806 ALfloat (*Matrix)[MaxChannels] = ALSource->Params.Direct.Gains;
807 ALfloat DirGain = 0.0f;
808 ALfloat AmbientGain;
810 for(i = 0;i < MaxChannels;i++)
812 for(j = 0;j < MaxChannels;j++)
813 Matrix[i][j] = 0.0f;
816 /* Normalize the length, and compute panned gains. */
817 if(Distance > 0.0f)
819 ALfloat invlen = 1.0f/Distance;
820 Position[0] *= invlen;
821 Position[1] *= invlen;
822 Position[2] *= invlen;
824 DirGain = sqrtf(Position[0]*Position[0] + Position[2]*Position[2]);
825 ComputeAngleGains(Device, atan2f(Position[0], -Position[2]*ZScale), 0.0f,
826 DryGain*DirGain, Matrix[0]);
829 /* Adjustment for vertical offsets. Not the greatest, but simple
830 * enough. */
831 AmbientGain = DryGain * sqrtf(1.0f/Device->NumChan) * (1.0f-DirGain);
832 for(i = 0;i < (ALint)Device->NumChan;i++)
834 enum Channel chan = Device->Speaker2Chan[i];
835 Matrix[0][chan] = maxf(Matrix[0][chan], AmbientGain);
838 for(i = 0;i < NumSends;i++)
839 ALSource->Params.Send[i].Gain = WetGain[i];
841 /* Update filter coefficients. */
842 cw = cosf(F_PI*2.0f * LOWPASSFREQREF / Frequency);
844 ALSource->Params.Direct.iirFilter.coeff = lpCoeffCalc(DryGainHF, cw);
845 for(i = 0;i < NumSends;i++)
847 ALfloat a = lpCoeffCalc(WetGainHF[i], cw);
848 ALSource->Params.Send[i].iirFilter.coeff = a;
853 static __inline ALfloat aluF2F(ALfloat val)
854 { return val; }
855 static __inline ALint aluF2I(ALfloat val)
857 if(val > 1.0f) return 2147483647;
858 if(val < -1.0f) return -2147483647-1;
859 return fastf2i((ALfloat)(val*2147483647.0));
861 static __inline ALuint aluF2UI(ALfloat val)
862 { return aluF2I(val)+2147483648u; }
863 static __inline ALshort aluF2S(ALfloat val)
864 { return aluF2I(val)>>16; }
865 static __inline ALushort aluF2US(ALfloat val)
866 { return aluF2S(val)+32768; }
867 static __inline ALbyte aluF2B(ALfloat val)
868 { return aluF2I(val)>>24; }
869 static __inline ALubyte aluF2UB(ALfloat val)
870 { return aluF2B(val)+128; }
872 #define DECL_TEMPLATE(T, func) \
873 static void Write_##T(ALCdevice *device, T *RESTRICT buffer, \
874 ALuint SamplesToDo) \
876 ALfloat (*RESTRICT DryBuffer)[BUFFERSIZE] = device->DryBuffer; \
877 ALuint numchans = ChannelsFromDevFmt(device->FmtChans); \
878 const enum Channel *ChanMap = device->DevChannels; \
879 ALuint i, j; \
881 for(j = 0;j < numchans;j++) \
883 T *RESTRICT out = buffer + j; \
884 enum Channel chan = ChanMap[j]; \
886 for(i = 0;i < SamplesToDo;i++) \
887 out[i*numchans] = func(DryBuffer[chan][i]); \
891 DECL_TEMPLATE(ALfloat, aluF2F)
892 DECL_TEMPLATE(ALuint, aluF2UI)
893 DECL_TEMPLATE(ALint, aluF2I)
894 DECL_TEMPLATE(ALushort, aluF2US)
895 DECL_TEMPLATE(ALshort, aluF2S)
896 DECL_TEMPLATE(ALubyte, aluF2UB)
897 DECL_TEMPLATE(ALbyte, aluF2B)
899 #undef DECL_TEMPLATE
902 ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
904 ALuint SamplesToDo;
905 ALeffectslot **slot, **slot_end;
906 ALsource **src, **src_end;
907 ALCcontext *ctx;
908 FPUCtl oldMode;
909 ALuint i, c;
911 SetMixerFPUMode(&oldMode);
913 while(size > 0)
915 SamplesToDo = minu(size, BUFFERSIZE);
916 for(c = 0;c < MaxChannels;c++)
917 memset(device->DryBuffer[c], 0, SamplesToDo*sizeof(ALfloat));
919 ALCdevice_Lock(device);
920 ctx = device->ContextList;
921 while(ctx)
923 ALenum DeferUpdates = ctx->DeferUpdates;
924 ALenum UpdateSources = AL_FALSE;
926 if(!DeferUpdates)
927 UpdateSources = ExchangeInt(&ctx->UpdateSources, AL_FALSE);
929 /* source processing */
930 src = ctx->ActiveSources;
931 src_end = src + ctx->ActiveSourceCount;
932 while(src != src_end)
934 if((*src)->state != AL_PLAYING)
936 --(ctx->ActiveSourceCount);
937 *src = *(--src_end);
938 continue;
941 if(!DeferUpdates && (ExchangeInt(&(*src)->NeedsUpdate, AL_FALSE) ||
942 UpdateSources))
943 ALsource_Update(*src, ctx);
945 MixSource(*src, device, SamplesToDo);
946 src++;
949 /* effect slot processing */
950 slot = ctx->ActiveEffectSlots;
951 slot_end = slot + ctx->ActiveEffectSlotCount;
952 while(slot != slot_end)
954 for(c = 0;c < SamplesToDo;c++)
956 (*slot)->WetBuffer[c] += (*slot)->ClickRemoval[0];
957 (*slot)->ClickRemoval[0] -= (*slot)->ClickRemoval[0] * (1.0f/256.0f);
959 (*slot)->ClickRemoval[0] += (*slot)->PendingClicks[0];
960 (*slot)->PendingClicks[0] = 0.0f;
962 if(!DeferUpdates && ExchangeInt(&(*slot)->NeedsUpdate, AL_FALSE))
963 ALeffectState_Update((*slot)->EffectState, device, *slot);
965 ALeffectState_Process((*slot)->EffectState, SamplesToDo,
966 (*slot)->WetBuffer, device->DryBuffer);
968 for(i = 0;i < SamplesToDo;i++)
969 (*slot)->WetBuffer[i] = 0.0f;
971 slot++;
974 ctx = ctx->next;
977 slot = &device->DefaultSlot;
978 if(*slot != NULL)
980 for(c = 0;c < SamplesToDo;c++)
982 (*slot)->WetBuffer[c] += (*slot)->ClickRemoval[0];
983 (*slot)->ClickRemoval[0] -= (*slot)->ClickRemoval[0] * (1.0f/256.0f);
985 (*slot)->ClickRemoval[0] += (*slot)->PendingClicks[0];
986 (*slot)->PendingClicks[0] = 0.0f;
988 if(ExchangeInt(&(*slot)->NeedsUpdate, AL_FALSE))
989 ALeffectState_Update((*slot)->EffectState, device, *slot);
991 ALeffectState_Process((*slot)->EffectState, SamplesToDo,
992 (*slot)->WetBuffer, device->DryBuffer);
994 for(i = 0;i < SamplesToDo;i++)
995 (*slot)->WetBuffer[i] = 0.0f;
997 ALCdevice_Unlock(device);
999 /* Click-removal. Could do better; this only really handles immediate
1000 * changes between updates where a predictive sample could be
1001 * generated. Delays caused by effects and HRTF aren't caught. */
1002 if(device->FmtChans == DevFmtMono)
1004 for(i = 0;i < SamplesToDo;i++)
1006 device->DryBuffer[FrontCenter][i] += device->ClickRemoval[FrontCenter];
1007 device->ClickRemoval[FrontCenter] -= device->ClickRemoval[FrontCenter] * (1.0f/256.0f);
1009 device->ClickRemoval[FrontCenter] += device->PendingClicks[FrontCenter];
1010 device->PendingClicks[FrontCenter] = 0.0f;
1012 else if(device->FmtChans == DevFmtStereo)
1014 /* Assumes the first two channels are FrontLeft and FrontRight */
1015 for(c = 0;c < 2;c++)
1017 ALfloat offset = device->ClickRemoval[c];
1018 for(i = 0;i < SamplesToDo;i++)
1020 device->DryBuffer[c][i] += offset;
1021 offset -= offset * (1.0f/256.0f);
1023 device->ClickRemoval[c] = offset + device->PendingClicks[c];
1024 device->PendingClicks[c] = 0.0f;
1026 if(device->Bs2b)
1028 float samples[2];
1029 for(i = 0;i < SamplesToDo;i++)
1031 samples[0] = device->DryBuffer[FrontLeft][i];
1032 samples[1] = device->DryBuffer[FrontRight][i];
1033 bs2b_cross_feed(device->Bs2b, samples);
1034 device->DryBuffer[FrontLeft][i] = samples[0];
1035 device->DryBuffer[FrontRight][i] = samples[1];
1039 else
1041 for(c = 0;c < MaxChannels;c++)
1043 ALfloat offset = device->ClickRemoval[c];
1044 for(i = 0;i < SamplesToDo;i++)
1046 device->DryBuffer[c][i] += offset;
1047 offset -= offset * (1.0f/256.0f);
1049 device->ClickRemoval[c] = offset + device->PendingClicks[c];
1050 device->PendingClicks[c] = 0.0f;
1054 if(buffer)
1056 switch(device->FmtType)
1058 case DevFmtByte:
1059 Write_ALbyte(device, buffer, SamplesToDo);
1060 break;
1061 case DevFmtUByte:
1062 Write_ALubyte(device, buffer, SamplesToDo);
1063 break;
1064 case DevFmtShort:
1065 Write_ALshort(device, buffer, SamplesToDo);
1066 break;
1067 case DevFmtUShort:
1068 Write_ALushort(device, buffer, SamplesToDo);
1069 break;
1070 case DevFmtInt:
1071 Write_ALint(device, buffer, SamplesToDo);
1072 break;
1073 case DevFmtUInt:
1074 Write_ALuint(device, buffer, SamplesToDo);
1075 break;
1076 case DevFmtFloat:
1077 Write_ALfloat(device, buffer, SamplesToDo);
1078 break;
1082 size -= SamplesToDo;
1085 RestoreFPUMode(&oldMode);
1089 ALvoid aluHandleDisconnect(ALCdevice *device)
1091 ALCcontext *Context;
1093 ALCdevice_Lock(device);
1094 device->Connected = ALC_FALSE;
1096 Context = device->ContextList;
1097 while(Context)
1099 ALsource **src, **src_end;
1101 src = Context->ActiveSources;
1102 src_end = src + Context->ActiveSourceCount;
1103 while(src != src_end)
1105 if((*src)->state == AL_PLAYING)
1107 (*src)->state = AL_STOPPED;
1108 (*src)->BuffersPlayed = (*src)->BuffersInQueue;
1109 (*src)->position = 0;
1110 (*src)->position_fraction = 0;
1112 src++;
1114 Context->ActiveSourceCount = 0;
1116 Context = Context->next;
1118 ALCdevice_Unlock(device);