Allocate enough temp space for the ADPCM decoders and encoders
[openal-soft.git] / Alc / ALu.c
blob5e1965f9054cbccac5bf01d1cc789f670b4cb6ce
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <math.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <ctype.h>
27 #include <assert.h>
29 #include "alMain.h"
30 #include "alSource.h"
31 #include "alBuffer.h"
32 #include "alListener.h"
33 #include "alAuxEffectSlot.h"
34 #include "alu.h"
35 #include "bs2b.h"
36 #include "hrtf.h"
38 #include "mixer_defs.h"
40 #include "midi/base.h"
43 struct ChanMap {
44 enum Channel channel;
45 ALfloat angle;
48 /* Cone scalar */
49 ALfloat ConeScale = 1.0f;
51 /* Localized Z scalar for mono sources */
52 ALfloat ZScale = 1.0f;
54 extern inline ALfloat minf(ALfloat a, ALfloat b);
55 extern inline ALfloat maxf(ALfloat a, ALfloat b);
56 extern inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max);
58 extern inline ALdouble mind(ALdouble a, ALdouble b);
59 extern inline ALdouble maxd(ALdouble a, ALdouble b);
60 extern inline ALdouble clampd(ALdouble val, ALdouble min, ALdouble max);
62 extern inline ALuint minu(ALuint a, ALuint b);
63 extern inline ALuint maxu(ALuint a, ALuint b);
64 extern inline ALuint clampu(ALuint val, ALuint min, ALuint max);
66 extern inline ALint mini(ALint a, ALint b);
67 extern inline ALint maxi(ALint a, ALint b);
68 extern inline ALint clampi(ALint val, ALint min, ALint max);
70 extern inline ALint64 mini64(ALint64 a, ALint64 b);
71 extern inline ALint64 maxi64(ALint64 a, ALint64 b);
72 extern inline ALint64 clampi64(ALint64 val, ALint64 min, ALint64 max);
74 extern inline ALuint64 minu64(ALuint64 a, ALuint64 b);
75 extern inline ALuint64 maxu64(ALuint64 a, ALuint64 b);
76 extern inline ALuint64 clampu64(ALuint64 val, ALuint64 min, ALuint64 max);
78 extern inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu);
79 extern inline ALfloat cubic(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALfloat mu);
81 static ResamplerFunc SelectResampler(enum Resampler Resampler, ALuint increment)
83 if(increment == FRACTIONONE)
84 return Resample_copy32_C;
85 switch(Resampler)
87 case PointResampler:
88 return Resample_point32_C;
89 case LinearResampler:
90 return Resample_lerp32_C;
91 case CubicResampler:
92 return Resample_cubic32_C;
93 case ResamplerMax:
94 /* Shouldn't happen */
95 break;
98 return Resample_point32_C;
102 static DryMixerFunc SelectHrtfMixer(void)
104 #ifdef HAVE_SSE
105 if((CPUCapFlags&CPU_CAP_SSE))
106 return MixDirect_Hrtf_SSE;
107 #endif
108 #ifdef HAVE_NEON
109 if((CPUCapFlags&CPU_CAP_NEON))
110 return MixDirect_Hrtf_Neon;
111 #endif
113 return MixDirect_Hrtf_C;
116 static DryMixerFunc SelectDirectMixer(void)
118 #ifdef HAVE_SSE
119 if((CPUCapFlags&CPU_CAP_SSE))
120 return MixDirect_SSE;
121 #endif
122 #ifdef HAVE_NEON
123 if((CPUCapFlags&CPU_CAP_NEON))
124 return MixDirect_Neon;
125 #endif
127 return MixDirect_C;
130 static WetMixerFunc SelectSendMixer(void)
132 #ifdef HAVE_SSE
133 if((CPUCapFlags&CPU_CAP_SSE))
134 return MixSend_SSE;
135 #endif
136 #ifdef HAVE_NEON
137 if((CPUCapFlags&CPU_CAP_NEON))
138 return MixSend_Neon;
139 #endif
141 return MixSend_C;
145 static inline void aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
147 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
148 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
149 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
152 static inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2)
154 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
155 inVector1[2]*inVector2[2];
158 static inline void aluNormalize(ALfloat *inVector)
160 ALfloat lengthsqr = aluDotproduct(inVector, inVector);
161 if(lengthsqr > 0.0f)
163 ALfloat inv_length = 1.0f/sqrtf(lengthsqr);
164 inVector[0] *= inv_length;
165 inVector[1] *= inv_length;
166 inVector[2] *= inv_length;
170 static inline ALvoid aluMatrixVector(ALfloat *vector, ALfloat w, ALfloat (*restrict matrix)[4])
172 ALfloat temp[4] = {
173 vector[0], vector[1], vector[2], w
176 vector[0] = temp[0]*matrix[0][0] + temp[1]*matrix[1][0] + temp[2]*matrix[2][0] + temp[3]*matrix[3][0];
177 vector[1] = temp[0]*matrix[0][1] + temp[1]*matrix[1][1] + temp[2]*matrix[2][1] + temp[3]*matrix[3][1];
178 vector[2] = temp[0]*matrix[0][2] + temp[1]*matrix[1][2] + temp[2]*matrix[2][2] + temp[3]*matrix[3][2];
182 static ALvoid CalcListenerParams(ALlistener *Listener)
184 ALfloat N[3], V[3], U[3], P[3];
186 /* AT then UP */
187 N[0] = Listener->Forward[0];
188 N[1] = Listener->Forward[1];
189 N[2] = Listener->Forward[2];
190 aluNormalize(N);
191 V[0] = Listener->Up[0];
192 V[1] = Listener->Up[1];
193 V[2] = Listener->Up[2];
194 aluNormalize(V);
195 /* Build and normalize right-vector */
196 aluCrossproduct(N, V, U);
197 aluNormalize(U);
199 Listener->Params.Matrix[0][0] = U[0];
200 Listener->Params.Matrix[0][1] = V[0];
201 Listener->Params.Matrix[0][2] = -N[0];
202 Listener->Params.Matrix[0][3] = 0.0f;
203 Listener->Params.Matrix[1][0] = U[1];
204 Listener->Params.Matrix[1][1] = V[1];
205 Listener->Params.Matrix[1][2] = -N[1];
206 Listener->Params.Matrix[1][3] = 0.0f;
207 Listener->Params.Matrix[2][0] = U[2];
208 Listener->Params.Matrix[2][1] = V[2];
209 Listener->Params.Matrix[2][2] = -N[2];
210 Listener->Params.Matrix[2][3] = 0.0f;
211 Listener->Params.Matrix[3][0] = 0.0f;
212 Listener->Params.Matrix[3][1] = 0.0f;
213 Listener->Params.Matrix[3][2] = 0.0f;
214 Listener->Params.Matrix[3][3] = 1.0f;
216 P[0] = Listener->Position[0];
217 P[1] = Listener->Position[1];
218 P[2] = Listener->Position[2];
219 aluMatrixVector(P, 1.0f, Listener->Params.Matrix);
220 Listener->Params.Matrix[3][0] = -P[0];
221 Listener->Params.Matrix[3][1] = -P[1];
222 Listener->Params.Matrix[3][2] = -P[2];
224 Listener->Params.Velocity[0] = Listener->Velocity[0];
225 Listener->Params.Velocity[1] = Listener->Velocity[1];
226 Listener->Params.Velocity[2] = Listener->Velocity[2];
227 aluMatrixVector(Listener->Params.Velocity, 0.0f, Listener->Params.Matrix);
230 ALvoid CalcNonAttnSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
232 static const struct ChanMap MonoMap[1] = { { FrontCenter, 0.0f } };
233 static const struct ChanMap StereoMap[2] = {
234 { FrontLeft, DEG2RAD(-30.0f) },
235 { FrontRight, DEG2RAD( 30.0f) }
237 static const struct ChanMap StereoWideMap[2] = {
238 { FrontLeft, DEG2RAD(-90.0f) },
239 { FrontRight, DEG2RAD( 90.0f) }
241 static const struct ChanMap RearMap[2] = {
242 { BackLeft, DEG2RAD(-150.0f) },
243 { BackRight, DEG2RAD( 150.0f) }
245 static const struct ChanMap QuadMap[4] = {
246 { FrontLeft, DEG2RAD( -45.0f) },
247 { FrontRight, DEG2RAD( 45.0f) },
248 { BackLeft, DEG2RAD(-135.0f) },
249 { BackRight, DEG2RAD( 135.0f) }
251 static const struct ChanMap X51Map[6] = {
252 { FrontLeft, DEG2RAD( -30.0f) },
253 { FrontRight, DEG2RAD( 30.0f) },
254 { FrontCenter, DEG2RAD( 0.0f) },
255 { LFE, 0.0f },
256 { BackLeft, DEG2RAD(-110.0f) },
257 { BackRight, DEG2RAD( 110.0f) }
259 static const struct ChanMap X61Map[7] = {
260 { FrontLeft, DEG2RAD(-30.0f) },
261 { FrontRight, DEG2RAD( 30.0f) },
262 { FrontCenter, DEG2RAD( 0.0f) },
263 { LFE, 0.0f },
264 { BackCenter, DEG2RAD(180.0f) },
265 { SideLeft, DEG2RAD(-90.0f) },
266 { SideRight, DEG2RAD( 90.0f) }
268 static const struct ChanMap X71Map[8] = {
269 { FrontLeft, DEG2RAD( -30.0f) },
270 { FrontRight, DEG2RAD( 30.0f) },
271 { FrontCenter, DEG2RAD( 0.0f) },
272 { LFE, 0.0f },
273 { BackLeft, DEG2RAD(-150.0f) },
274 { BackRight, DEG2RAD( 150.0f) },
275 { SideLeft, DEG2RAD( -90.0f) },
276 { SideRight, DEG2RAD( 90.0f) }
279 ALCdevice *Device = ALContext->Device;
280 ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
281 ALbufferlistitem *BufferListItem;
282 enum FmtChannels Channels;
283 ALfloat (*SrcMatrix)[MaxChannels];
284 ALfloat DryGain, DryGainHF;
285 ALfloat WetGain[MAX_SENDS];
286 ALfloat WetGainHF[MAX_SENDS];
287 ALint NumSends, Frequency;
288 const struct ChanMap *chans = NULL;
289 enum Resampler Resampler;
290 ALint num_channels = 0;
291 ALboolean DirectChannels;
292 ALfloat hwidth = 0.0f;
293 ALfloat Pitch;
294 ALint i, c;
296 /* Get device properties */
297 NumSends = Device->NumAuxSends;
298 Frequency = Device->Frequency;
300 /* Get listener properties */
301 ListenerGain = ALContext->Listener->Gain;
303 /* Get source properties */
304 SourceVolume = ALSource->Gain;
305 MinVolume = ALSource->MinGain;
306 MaxVolume = ALSource->MaxGain;
307 Pitch = ALSource->Pitch;
308 Resampler = ALSource->Resampler;
309 DirectChannels = ALSource->DirectChannels;
311 /* Calculate the stepping value */
312 Channels = FmtMono;
313 BufferListItem = ALSource->queue;
314 while(BufferListItem != NULL)
316 ALbuffer *ALBuffer;
317 if((ALBuffer=BufferListItem->buffer) != NULL)
319 Pitch = Pitch * ALBuffer->Frequency / Frequency;
320 if(Pitch > 10.0f)
321 ALSource->Params.Step = 10<<FRACTIONBITS;
322 else
324 ALSource->Params.Step = fastf2i(Pitch*FRACTIONONE);
325 if(ALSource->Params.Step == 0)
326 ALSource->Params.Step = 1;
328 ALSource->Params.Resample = SelectResampler(Resampler, ALSource->Params.Step);
330 Channels = ALBuffer->FmtChannels;
331 break;
333 BufferListItem = BufferListItem->next;
335 if(!DirectChannels && Device->Hrtf)
336 ALSource->Params.DryMix = SelectHrtfMixer();
337 else
338 ALSource->Params.DryMix = SelectDirectMixer();
339 ALSource->Params.WetMix = SelectSendMixer();
341 /* Calculate gains */
342 DryGain = clampf(SourceVolume, MinVolume, MaxVolume);
343 DryGain *= ALSource->DirectGain * ListenerGain;
344 DryGainHF = ALSource->DirectGainHF;
345 for(i = 0;i < NumSends;i++)
347 WetGain[i] = clampf(SourceVolume, MinVolume, MaxVolume);
348 WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
349 WetGainHF[i] = ALSource->Send[i].GainHF;
352 SrcMatrix = ALSource->Params.Direct.Gains;
353 for(i = 0;i < MAX_INPUT_CHANNELS;i++)
355 for(c = 0;c < MaxChannels;c++)
356 SrcMatrix[i][c] = 0.0f;
358 switch(Channels)
360 case FmtMono:
361 chans = MonoMap;
362 num_channels = 1;
363 break;
365 case FmtStereo:
366 if(!(Device->Flags&DEVICE_WIDE_STEREO))
368 /* HACK: Place the stereo channels at +/-90 degrees when using non-
369 * HRTF stereo output. This helps reduce the "monoization" caused
370 * by them panning towards the center. */
371 if(Device->FmtChans == DevFmtStereo && !Device->Hrtf)
372 chans = StereoWideMap;
373 else
374 chans = StereoMap;
376 else
378 chans = StereoWideMap;
379 hwidth = DEG2RAD(60.0f);
381 num_channels = 2;
382 break;
384 case FmtRear:
385 chans = RearMap;
386 num_channels = 2;
387 break;
389 case FmtQuad:
390 chans = QuadMap;
391 num_channels = 4;
392 break;
394 case FmtX51:
395 chans = X51Map;
396 num_channels = 6;
397 break;
399 case FmtX61:
400 chans = X61Map;
401 num_channels = 7;
402 break;
404 case FmtX71:
405 chans = X71Map;
406 num_channels = 8;
407 break;
410 if(DirectChannels != AL_FALSE)
412 for(c = 0;c < num_channels;c++)
414 for(i = 0;i < (ALint)Device->NumChan;i++)
416 enum Channel chan = Device->Speaker2Chan[i];
417 if(chan == chans[c].channel)
419 SrcMatrix[c][chan] = DryGain;
420 break;
425 else if(Device->Hrtf)
427 for(c = 0;c < num_channels;c++)
429 if(chans[c].channel == LFE)
431 /* Skip LFE */
432 ALSource->Params.Direct.Hrtf.Params.Delay[c][0] = 0;
433 ALSource->Params.Direct.Hrtf.Params.Delay[c][1] = 0;
434 for(i = 0;i < HRIR_LENGTH;i++)
436 ALSource->Params.Direct.Hrtf.Params.Coeffs[c][i][0] = 0.0f;
437 ALSource->Params.Direct.Hrtf.Params.Coeffs[c][i][1] = 0.0f;
440 else
442 /* Get the static HRIR coefficients and delays for this
443 * channel. */
444 GetLerpedHrtfCoeffs(Device->Hrtf,
445 0.0f, chans[c].angle, DryGain,
446 ALSource->Params.Direct.Hrtf.Params.Coeffs[c],
447 ALSource->Params.Direct.Hrtf.Params.Delay[c]);
450 ALSource->Hrtf.Counter = 0;
451 ALSource->Params.Direct.Hrtf.Params.IrSize = GetHrtfIrSize(Device->Hrtf);
453 ALSource->Params.Direct.Hrtf.State = &ALSource->Hrtf;
455 else
457 DryGain *= lerp(1.0f, 1.0f/sqrtf((float)Device->NumChan), hwidth/F_PI);
458 for(c = 0;c < num_channels;c++)
460 /* Special-case LFE */
461 if(chans[c].channel == LFE)
463 SrcMatrix[c][chans[c].channel] = DryGain;
464 continue;
466 ComputeAngleGains(Device, chans[c].angle, hwidth, DryGain,
467 SrcMatrix[c]);
471 ALSource->Params.Direct.OutBuffer = Device->DryBuffer;
472 ALSource->Params.Direct.ClickRemoval = Device->ClickRemoval;
473 ALSource->Params.Direct.PendingClicks = Device->PendingClicks;
474 for(i = 0;i < NumSends;i++)
476 ALeffectslot *Slot = ALSource->Send[i].Slot;
477 if(!Slot && i == 0)
478 Slot = Device->DefaultSlot;
479 if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
481 ALSource->Params.Send[i].OutBuffer = NULL;
482 ALSource->Params.Send[i].ClickRemoval = NULL;
483 ALSource->Params.Send[i].PendingClicks = NULL;
485 else
487 ALSource->Params.Send[i].OutBuffer = Slot->WetBuffer;
488 ALSource->Params.Send[i].ClickRemoval = Slot->ClickRemoval;
489 ALSource->Params.Send[i].PendingClicks = Slot->PendingClicks;
491 ALSource->Params.Send[i].Gain = WetGain[i];
495 ALfloat gain = maxf(0.01f, DryGainHF);
496 for(c = 0;c < num_channels;c++)
497 ALfilterState_setParams(&ALSource->Params.Direct.LpFilter[c],
498 ALfilterType_HighShelf, gain,
499 (ALfloat)LOWPASSFREQREF/Frequency, 0.0f);
501 for(i = 0;i < NumSends;i++)
503 ALfloat gain = maxf(0.01f, WetGainHF[i]);
504 for(c = 0;c < num_channels;c++)
505 ALfilterState_setParams(&ALSource->Params.Send[i].LpFilter[c],
506 ALfilterType_HighShelf, gain,
507 (ALfloat)LOWPASSFREQREF/Frequency, 0.0f);
511 ALvoid CalcSourceParams(ALsource *ALSource, const ALCcontext *ALContext)
513 ALCdevice *Device = ALContext->Device;
514 ALfloat Velocity[3],Direction[3],Position[3],SourceToListener[3];
515 ALfloat InnerAngle,OuterAngle,Angle,Distance,ClampedDist;
516 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff;
517 ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain;
518 ALfloat DopplerFactor, SpeedOfSound;
519 ALfloat AirAbsorptionFactor;
520 ALfloat RoomAirAbsorption[MAX_SENDS];
521 ALbufferlistitem *BufferListItem;
522 ALfloat Attenuation;
523 ALfloat RoomAttenuation[MAX_SENDS];
524 ALfloat MetersPerUnit;
525 ALfloat RoomRolloffBase;
526 ALfloat RoomRolloff[MAX_SENDS];
527 ALfloat DecayDistance[MAX_SENDS];
528 ALfloat DryGain;
529 ALfloat DryGainHF;
530 ALboolean DryGainHFAuto;
531 ALfloat WetGain[MAX_SENDS];
532 ALfloat WetGainHF[MAX_SENDS];
533 ALboolean WetGainAuto;
534 ALboolean WetGainHFAuto;
535 enum Resampler Resampler;
536 ALfloat Pitch;
537 ALuint Frequency;
538 ALint NumSends;
539 ALint i, j;
541 DryGainHF = 1.0f;
542 for(i = 0;i < MAX_SENDS;i++)
543 WetGainHF[i] = 1.0f;
545 /* Get context/device properties */
546 DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
547 SpeedOfSound = ALContext->SpeedOfSound * ALContext->DopplerVelocity;
548 NumSends = Device->NumAuxSends;
549 Frequency = Device->Frequency;
551 /* Get listener properties */
552 ListenerGain = ALContext->Listener->Gain;
553 MetersPerUnit = ALContext->Listener->MetersPerUnit;
555 /* Get source properties */
556 SourceVolume = ALSource->Gain;
557 MinVolume = ALSource->MinGain;
558 MaxVolume = ALSource->MaxGain;
559 Pitch = ALSource->Pitch;
560 Resampler = ALSource->Resampler;
561 Position[0] = ALSource->Position[0];
562 Position[1] = ALSource->Position[1];
563 Position[2] = ALSource->Position[2];
564 Direction[0] = ALSource->Orientation[0];
565 Direction[1] = ALSource->Orientation[1];
566 Direction[2] = ALSource->Orientation[2];
567 Velocity[0] = ALSource->Velocity[0];
568 Velocity[1] = ALSource->Velocity[1];
569 Velocity[2] = ALSource->Velocity[2];
570 MinDist = ALSource->RefDistance;
571 MaxDist = ALSource->MaxDistance;
572 Rolloff = ALSource->RollOffFactor;
573 InnerAngle = ALSource->InnerAngle;
574 OuterAngle = ALSource->OuterAngle;
575 AirAbsorptionFactor = ALSource->AirAbsorptionFactor;
576 DryGainHFAuto = ALSource->DryGainHFAuto;
577 WetGainAuto = ALSource->WetGainAuto;
578 WetGainHFAuto = ALSource->WetGainHFAuto;
579 RoomRolloffBase = ALSource->RoomRolloffFactor;
581 ALSource->Params.Direct.OutBuffer = Device->DryBuffer;
582 ALSource->Params.Direct.ClickRemoval = Device->ClickRemoval;
583 ALSource->Params.Direct.PendingClicks = Device->PendingClicks;
584 for(i = 0;i < NumSends;i++)
586 ALeffectslot *Slot = ALSource->Send[i].Slot;
588 if(!Slot && i == 0)
589 Slot = Device->DefaultSlot;
590 if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
592 Slot = NULL;
593 RoomRolloff[i] = 0.0f;
594 DecayDistance[i] = 0.0f;
595 RoomAirAbsorption[i] = 1.0f;
597 else if(Slot->AuxSendAuto)
599 RoomRolloff[i] = RoomRolloffBase;
600 if(IsReverbEffect(Slot->EffectType))
602 RoomRolloff[i] += Slot->EffectProps.Reverb.RoomRolloffFactor;
603 DecayDistance[i] = Slot->EffectProps.Reverb.DecayTime *
604 SPEEDOFSOUNDMETRESPERSEC;
605 RoomAirAbsorption[i] = Slot->EffectProps.Reverb.AirAbsorptionGainHF;
607 else
609 DecayDistance[i] = 0.0f;
610 RoomAirAbsorption[i] = 1.0f;
613 else
615 /* If the slot's auxiliary send auto is off, the data sent to the
616 * effect slot is the same as the dry path, sans filter effects */
617 RoomRolloff[i] = Rolloff;
618 DecayDistance[i] = 0.0f;
619 RoomAirAbsorption[i] = AIRABSORBGAINHF;
622 if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
624 ALSource->Params.Send[i].OutBuffer = NULL;
625 ALSource->Params.Send[i].ClickRemoval = NULL;
626 ALSource->Params.Send[i].PendingClicks = NULL;
628 else
630 ALSource->Params.Send[i].OutBuffer = Slot->WetBuffer;
631 ALSource->Params.Send[i].ClickRemoval = Slot->ClickRemoval;
632 ALSource->Params.Send[i].PendingClicks = Slot->PendingClicks;
636 /* Transform source to listener space (convert to head relative) */
637 if(ALSource->HeadRelative == AL_FALSE)
639 ALfloat (*restrict Matrix)[4] = ALContext->Listener->Params.Matrix;
640 /* Transform source vectors */
641 aluMatrixVector(Position, 1.0f, Matrix);
642 aluMatrixVector(Direction, 0.0f, Matrix);
643 aluMatrixVector(Velocity, 0.0f, Matrix);
645 else
647 const ALfloat *ListenerVel = ALContext->Listener->Params.Velocity;
648 /* Offset the source velocity to be relative of the listener velocity */
649 Velocity[0] += ListenerVel[0];
650 Velocity[1] += ListenerVel[1];
651 Velocity[2] += ListenerVel[2];
654 SourceToListener[0] = -Position[0];
655 SourceToListener[1] = -Position[1];
656 SourceToListener[2] = -Position[2];
657 aluNormalize(SourceToListener);
658 aluNormalize(Direction);
660 /* Calculate distance attenuation */
661 Distance = sqrtf(aluDotproduct(Position, Position));
662 ClampedDist = Distance;
664 Attenuation = 1.0f;
665 for(i = 0;i < NumSends;i++)
666 RoomAttenuation[i] = 1.0f;
667 switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel :
668 ALContext->DistanceModel)
670 case InverseDistanceClamped:
671 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
672 if(MaxDist < MinDist)
673 break;
674 /*fall-through*/
675 case InverseDistance:
676 if(MinDist > 0.0f)
678 if((MinDist + (Rolloff * (ClampedDist - MinDist))) > 0.0f)
679 Attenuation = MinDist / (MinDist + (Rolloff * (ClampedDist - MinDist)));
680 for(i = 0;i < NumSends;i++)
682 if((MinDist + (RoomRolloff[i] * (ClampedDist - MinDist))) > 0.0f)
683 RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (ClampedDist - MinDist)));
686 break;
688 case LinearDistanceClamped:
689 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
690 if(MaxDist < MinDist)
691 break;
692 /*fall-through*/
693 case LinearDistance:
694 if(MaxDist != MinDist)
696 Attenuation = 1.0f - (Rolloff*(ClampedDist-MinDist)/(MaxDist - MinDist));
697 Attenuation = maxf(Attenuation, 0.0f);
698 for(i = 0;i < NumSends;i++)
700 RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(ClampedDist-MinDist)/(MaxDist - MinDist));
701 RoomAttenuation[i] = maxf(RoomAttenuation[i], 0.0f);
704 break;
706 case ExponentDistanceClamped:
707 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
708 if(MaxDist < MinDist)
709 break;
710 /*fall-through*/
711 case ExponentDistance:
712 if(ClampedDist > 0.0f && MinDist > 0.0f)
714 Attenuation = powf(ClampedDist/MinDist, -Rolloff);
715 for(i = 0;i < NumSends;i++)
716 RoomAttenuation[i] = powf(ClampedDist/MinDist, -RoomRolloff[i]);
718 break;
720 case DisableDistance:
721 ClampedDist = MinDist;
722 break;
725 /* Source Gain + Attenuation */
726 DryGain = SourceVolume * Attenuation;
727 for(i = 0;i < NumSends;i++)
728 WetGain[i] = SourceVolume * RoomAttenuation[i];
730 /* Distance-based air absorption */
731 if(AirAbsorptionFactor > 0.0f && ClampedDist > MinDist)
733 ALfloat meters = maxf(ClampedDist-MinDist, 0.0f) * MetersPerUnit;
734 DryGainHF *= powf(AIRABSORBGAINHF, AirAbsorptionFactor*meters);
735 for(i = 0;i < NumSends;i++)
736 WetGainHF[i] *= powf(RoomAirAbsorption[i], AirAbsorptionFactor*meters);
739 if(WetGainAuto)
741 ALfloat ApparentDist = 1.0f/maxf(Attenuation, 0.00001f) - 1.0f;
743 /* Apply a decay-time transformation to the wet path, based on the
744 * attenuation of the dry path.
746 * Using the apparent distance, based on the distance attenuation, the
747 * initial decay of the reverb effect is calculated and applied to the
748 * wet path.
750 for(i = 0;i < NumSends;i++)
752 if(DecayDistance[i] > 0.0f)
753 WetGain[i] *= powf(0.001f/*-60dB*/, ApparentDist/DecayDistance[i]);
757 /* Calculate directional soundcones */
758 Angle = RAD2DEG(acosf(aluDotproduct(Direction,SourceToListener)) * ConeScale) * 2.0f;
759 if(Angle > InnerAngle && Angle <= OuterAngle)
761 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
762 ConeVolume = lerp(1.0f, ALSource->OuterGain, scale);
763 ConeHF = lerp(1.0f, ALSource->OuterGainHF, scale);
765 else if(Angle > OuterAngle)
767 ConeVolume = ALSource->OuterGain;
768 ConeHF = ALSource->OuterGainHF;
770 else
772 ConeVolume = 1.0f;
773 ConeHF = 1.0f;
776 DryGain *= ConeVolume;
777 if(WetGainAuto)
779 for(i = 0;i < NumSends;i++)
780 WetGain[i] *= ConeVolume;
782 if(DryGainHFAuto)
783 DryGainHF *= ConeHF;
784 if(WetGainHFAuto)
786 for(i = 0;i < NumSends;i++)
787 WetGainHF[i] *= ConeHF;
790 /* Clamp to Min/Max Gain */
791 DryGain = clampf(DryGain, MinVolume, MaxVolume);
792 for(i = 0;i < NumSends;i++)
793 WetGain[i] = clampf(WetGain[i], MinVolume, MaxVolume);
795 /* Apply gain and frequency filters */
796 DryGain *= ALSource->DirectGain * ListenerGain;
797 DryGainHF *= ALSource->DirectGainHF;
798 for(i = 0;i < NumSends;i++)
800 WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
801 WetGainHF[i] *= ALSource->Send[i].GainHF;
804 /* Calculate velocity-based doppler effect */
805 if(DopplerFactor > 0.0f)
807 const ALfloat *ListenerVel = ALContext->Listener->Params.Velocity;
808 ALfloat VSS, VLS;
810 if(SpeedOfSound < 1.0f)
812 DopplerFactor *= 1.0f/SpeedOfSound;
813 SpeedOfSound = 1.0f;
816 VSS = aluDotproduct(Velocity, SourceToListener) * DopplerFactor;
817 VLS = aluDotproduct(ListenerVel, SourceToListener) * DopplerFactor;
819 Pitch *= clampf(SpeedOfSound-VLS, 1.0f, SpeedOfSound*2.0f - 1.0f) /
820 clampf(SpeedOfSound-VSS, 1.0f, SpeedOfSound*2.0f - 1.0f);
823 BufferListItem = ALSource->queue;
824 while(BufferListItem != NULL)
826 ALbuffer *ALBuffer;
827 if((ALBuffer=BufferListItem->buffer) != NULL)
829 /* Calculate fixed-point stepping value, based on the pitch, buffer
830 * frequency, and output frequency. */
831 Pitch = Pitch * ALBuffer->Frequency / Frequency;
832 if(Pitch > 10.0f)
833 ALSource->Params.Step = 10<<FRACTIONBITS;
834 else
836 ALSource->Params.Step = fastf2i(Pitch*FRACTIONONE);
837 if(ALSource->Params.Step == 0)
838 ALSource->Params.Step = 1;
840 ALSource->Params.Resample = SelectResampler(Resampler, ALSource->Params.Step);
842 break;
844 BufferListItem = BufferListItem->next;
846 if(Device->Hrtf)
847 ALSource->Params.DryMix = SelectHrtfMixer();
848 else
849 ALSource->Params.DryMix = SelectDirectMixer();
850 ALSource->Params.WetMix = SelectSendMixer();
852 if(Device->Hrtf)
854 /* Use a binaural HRTF algorithm for stereo headphone playback */
855 ALfloat delta, ev = 0.0f, az = 0.0f;
857 if(Distance > FLT_EPSILON)
859 ALfloat invlen = 1.0f/Distance;
860 Position[0] *= invlen;
861 Position[1] *= invlen;
862 Position[2] *= invlen;
864 /* Calculate elevation and azimuth only when the source is not at
865 * the listener. This prevents +0 and -0 Z from producing
866 * inconsistent panning. Also, clamp Y in case FP precision errors
867 * cause it to land outside of -1..+1. */
868 ev = asinf(clampf(Position[1], -1.0f, 1.0f));
869 az = atan2f(Position[0], -Position[2]*ZScale);
872 /* Check to see if the HRIR is already moving. */
873 if(ALSource->Hrtf.Moving)
875 /* Calculate the normalized HRTF transition factor (delta). */
876 delta = CalcHrtfDelta(ALSource->Params.Direct.Hrtf.Params.Gain, DryGain,
877 ALSource->Params.Direct.Hrtf.Params.Dir, Position);
878 /* If the delta is large enough, get the moving HRIR target
879 * coefficients, target delays, steppping values, and counter. */
880 if(delta > 0.001f)
882 ALSource->Hrtf.Counter = GetMovingHrtfCoeffs(Device->Hrtf,
883 ev, az, DryGain, delta,
884 ALSource->Hrtf.Counter,
885 ALSource->Params.Direct.Hrtf.Params.Coeffs[0],
886 ALSource->Params.Direct.Hrtf.Params.Delay[0],
887 ALSource->Params.Direct.Hrtf.Params.CoeffStep,
888 ALSource->Params.Direct.Hrtf.Params.DelayStep);
889 ALSource->Params.Direct.Hrtf.Params.Gain = DryGain;
890 ALSource->Params.Direct.Hrtf.Params.Dir[0] = Position[0];
891 ALSource->Params.Direct.Hrtf.Params.Dir[1] = Position[1];
892 ALSource->Params.Direct.Hrtf.Params.Dir[2] = Position[2];
895 else
897 /* Get the initial (static) HRIR coefficients and delays. */
898 GetLerpedHrtfCoeffs(Device->Hrtf, ev, az, DryGain,
899 ALSource->Params.Direct.Hrtf.Params.Coeffs[0],
900 ALSource->Params.Direct.Hrtf.Params.Delay[0]);
901 ALSource->Hrtf.Counter = 0;
902 ALSource->Hrtf.Moving = AL_TRUE;
903 ALSource->Params.Direct.Hrtf.Params.Gain = DryGain;
904 ALSource->Params.Direct.Hrtf.Params.Dir[0] = Position[0];
905 ALSource->Params.Direct.Hrtf.Params.Dir[1] = Position[1];
906 ALSource->Params.Direct.Hrtf.Params.Dir[2] = Position[2];
908 ALSource->Params.Direct.Hrtf.Params.IrSize = GetHrtfIrSize(Device->Hrtf);
910 ALSource->Params.Direct.Hrtf.State = &ALSource->Hrtf;
912 else
914 ALfloat (*Matrix)[MaxChannels] = ALSource->Params.Direct.Gains;
915 ALfloat DirGain = 0.0f;
916 ALfloat AmbientGain;
918 for(i = 0;i < MAX_INPUT_CHANNELS;i++)
920 for(j = 0;j < MaxChannels;j++)
921 Matrix[i][j] = 0.0f;
924 /* Normalize the length, and compute panned gains. */
925 if(Distance > FLT_EPSILON)
927 ALfloat invlen = 1.0f/Distance;
928 Position[0] *= invlen;
929 Position[1] *= invlen;
930 Position[2] *= invlen;
932 DirGain = sqrtf(Position[0]*Position[0] + Position[2]*Position[2]);
933 ComputeAngleGains(Device, atan2f(Position[0], -Position[2]*ZScale), 0.0f,
934 DryGain*DirGain, Matrix[0]);
937 /* Adjustment for vertical offsets. Not the greatest, but simple
938 * enough. */
939 AmbientGain = DryGain * sqrtf(1.0f/Device->NumChan) * (1.0f-DirGain);
940 for(i = 0;i < (ALint)Device->NumChan;i++)
942 enum Channel chan = Device->Speaker2Chan[i];
943 Matrix[0][chan] = maxf(Matrix[0][chan], AmbientGain);
946 for(i = 0;i < NumSends;i++)
947 ALSource->Params.Send[i].Gain = WetGain[i];
951 ALfloat gain = maxf(0.01f, DryGainHF);
952 ALfilterState_setParams(&ALSource->Params.Direct.LpFilter[0],
953 ALfilterType_HighShelf, gain,
954 (ALfloat)LOWPASSFREQREF/Frequency, 0.0f);
956 for(i = 0;i < NumSends;i++)
958 ALfloat gain = maxf(0.01f, WetGainHF[i]);
959 ALfilterState_setParams(&ALSource->Params.Send[i].LpFilter[0],
960 ALfilterType_HighShelf, gain,
961 (ALfloat)LOWPASSFREQREF/Frequency, 0.0f);
966 static inline ALint aluF2I25(ALfloat val)
968 /* Clamp the value between -1 and +1. This handles that with only a single branch. */
969 if(fabsf(val) > 1.0f)
970 val = (ALfloat)((0.0f < val) - (val < 0.0f));
971 /* Convert to a signed integer, between -16777215 and +16777215. */
972 return fastf2i(val*16777215.0f);
975 static inline ALfloat aluF2F(ALfloat val)
976 { return val; }
977 static inline ALint aluF2I(ALfloat val)
978 { return aluF2I25(val)<<7; }
979 static inline ALuint aluF2UI(ALfloat val)
980 { return aluF2I(val)+2147483648u; }
981 static inline ALshort aluF2S(ALfloat val)
982 { return aluF2I25(val)>>9; }
983 static inline ALushort aluF2US(ALfloat val)
984 { return aluF2S(val)+32768; }
985 static inline ALbyte aluF2B(ALfloat val)
986 { return aluF2I25(val)>>17; }
987 static inline ALubyte aluF2UB(ALfloat val)
988 { return aluF2B(val)+128; }
990 #define DECL_TEMPLATE(T, func) \
991 static int Write_##T(ALCdevice *device, T *restrict buffer, \
992 ALuint SamplesToDo) \
994 ALfloat (*restrict DryBuffer)[BUFFERSIZE] = device->DryBuffer; \
995 ALuint numchans = ChannelsFromDevFmt(device->FmtChans); \
996 const ALuint *offsets = device->ChannelOffsets; \
997 ALuint i, j; \
999 for(j = 0;j < MaxChannels;j++) \
1001 T *restrict out; \
1003 if(offsets[j] == INVALID_OFFSET) \
1004 continue; \
1006 out = buffer + offsets[j]; \
1007 for(i = 0;i < SamplesToDo;i++) \
1008 out[i*numchans] = func(DryBuffer[j][i]); \
1010 return SamplesToDo*numchans*sizeof(T); \
1013 DECL_TEMPLATE(ALfloat, aluF2F)
1014 DECL_TEMPLATE(ALuint, aluF2UI)
1015 DECL_TEMPLATE(ALint, aluF2I)
1016 DECL_TEMPLATE(ALushort, aluF2US)
1017 DECL_TEMPLATE(ALshort, aluF2S)
1018 DECL_TEMPLATE(ALubyte, aluF2UB)
1019 DECL_TEMPLATE(ALbyte, aluF2B)
1021 #undef DECL_TEMPLATE
1024 ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
1026 ALuint SamplesToDo;
1027 ALeffectslot **slot, **slot_end;
1028 ALsource **src, **src_end;
1029 ALCcontext *ctx;
1030 FPUCtl oldMode;
1031 ALuint i, c;
1033 SetMixerFPUMode(&oldMode);
1035 while(size > 0)
1037 SamplesToDo = minu(size, BUFFERSIZE);
1038 for(c = 0;c < MaxChannels;c++)
1039 memset(device->DryBuffer[c], 0, SamplesToDo*sizeof(ALfloat));
1041 ALCdevice_Lock(device);
1042 V(device->Synth,process)(SamplesToDo, device->DryBuffer);
1044 ctx = device->ContextList;
1045 while(ctx)
1047 ALenum DeferUpdates = ctx->DeferUpdates;
1048 ALenum UpdateSources = AL_FALSE;
1050 if(!DeferUpdates)
1051 UpdateSources = ExchangeInt(&ctx->UpdateSources, AL_FALSE);
1053 if(UpdateSources)
1054 CalcListenerParams(ctx->Listener);
1056 /* source processing */
1057 src = ctx->ActiveSources;
1058 src_end = src + ctx->ActiveSourceCount;
1059 while(src != src_end)
1061 if((*src)->state != AL_PLAYING)
1063 --(ctx->ActiveSourceCount);
1064 *src = *(--src_end);
1065 continue;
1068 if(!DeferUpdates && (ExchangeInt(&(*src)->NeedsUpdate, AL_FALSE) ||
1069 UpdateSources))
1070 ALsource_Update(*src, ctx);
1072 MixSource(*src, device, SamplesToDo);
1073 src++;
1076 /* effect slot processing */
1077 slot = ctx->ActiveEffectSlots;
1078 slot_end = slot + ctx->ActiveEffectSlotCount;
1079 while(slot != slot_end)
1081 ALfloat offset = (*slot)->ClickRemoval[0];
1082 if(offset < (1.0f/32768.0f))
1083 offset = 0.0f;
1084 else for(i = 0;i < SamplesToDo;i++)
1086 (*slot)->WetBuffer[0][i] += offset;
1087 offset -= offset * (1.0f/256.0f);
1089 (*slot)->ClickRemoval[0] = offset + (*slot)->PendingClicks[0];
1090 (*slot)->PendingClicks[0] = 0.0f;
1092 if(!DeferUpdates && ExchangeInt(&(*slot)->NeedsUpdate, AL_FALSE))
1093 V((*slot)->EffectState,update)(device, *slot);
1095 V((*slot)->EffectState,process)(SamplesToDo, (*slot)->WetBuffer[0],
1096 device->DryBuffer);
1098 for(i = 0;i < SamplesToDo;i++)
1099 (*slot)->WetBuffer[0][i] = 0.0f;
1101 slot++;
1104 ctx = ctx->next;
1107 slot = &device->DefaultSlot;
1108 if(*slot != NULL)
1110 ALfloat offset = (*slot)->ClickRemoval[0];
1111 if(offset < (1.0f/32768.0f))
1112 offset = 0.0f;
1113 else for(i = 0;i < SamplesToDo;i++)
1115 (*slot)->WetBuffer[0][i] += offset;
1116 offset -= offset * (1.0f/256.0f);
1118 (*slot)->ClickRemoval[0] = offset + (*slot)->PendingClicks[0];
1119 (*slot)->PendingClicks[0] = 0.0f;
1121 if(ExchangeInt(&(*slot)->NeedsUpdate, AL_FALSE))
1122 V((*slot)->EffectState,update)(device, *slot);
1124 V((*slot)->EffectState,process)(SamplesToDo, (*slot)->WetBuffer[0],
1125 device->DryBuffer);
1127 for(i = 0;i < SamplesToDo;i++)
1128 (*slot)->WetBuffer[0][i] = 0.0f;
1131 /* Increment the clock time. Every second's worth of samples is
1132 * converted and added to clock base so that large sample counts don't
1133 * overflow during conversion. This also guarantees an exact, stable
1134 * conversion. */
1135 device->SamplesDone += SamplesToDo;
1136 device->ClockBase += (device->SamplesDone/device->Frequency) * DEVICE_CLOCK_RES;
1137 device->SamplesDone %= device->Frequency;
1138 ALCdevice_Unlock(device);
1140 /* Click-removal. Could do better; this only really handles immediate
1141 * changes between updates where a predictive sample could be
1142 * generated. Delays caused by effects and HRTF aren't caught. */
1143 if(device->FmtChans == DevFmtStereo)
1145 /* Assumes the first two channels are FrontLeft and FrontRight */
1146 for(c = 0;c < 2;c++)
1148 ALfloat offset = device->ClickRemoval[c];
1149 if(offset < (1.0f/32768.0f))
1150 offset = 0.0f;
1151 else for(i = 0;i < SamplesToDo;i++)
1153 device->DryBuffer[c][i] += offset;
1154 offset -= offset * (1.0f/256.0f);
1156 device->ClickRemoval[c] = offset + device->PendingClicks[c];
1157 device->PendingClicks[c] = 0.0f;
1159 if(device->Bs2b)
1161 float samples[2];
1162 for(i = 0;i < SamplesToDo;i++)
1164 samples[0] = device->DryBuffer[FrontLeft][i];
1165 samples[1] = device->DryBuffer[FrontRight][i];
1166 bs2b_cross_feed(device->Bs2b, samples);
1167 device->DryBuffer[FrontLeft][i] = samples[0];
1168 device->DryBuffer[FrontRight][i] = samples[1];
1172 else
1174 for(c = 0;c < MaxChannels;c++)
1176 ALfloat offset = device->ClickRemoval[c];
1177 if(offset < (1.0f/32768.0f))
1178 offset = 0.0f;
1179 else for(i = 0;i < SamplesToDo;i++)
1181 device->DryBuffer[c][i] += offset;
1182 offset -= offset * (1.0f/256.0f);
1184 device->ClickRemoval[c] = offset + device->PendingClicks[c];
1185 device->PendingClicks[c] = 0.0f;
1189 if(buffer)
1191 int bytes = 0;
1192 switch(device->FmtType)
1194 case DevFmtByte:
1195 bytes = Write_ALbyte(device, buffer, SamplesToDo);
1196 break;
1197 case DevFmtUByte:
1198 bytes = Write_ALubyte(device, buffer, SamplesToDo);
1199 break;
1200 case DevFmtShort:
1201 bytes = Write_ALshort(device, buffer, SamplesToDo);
1202 break;
1203 case DevFmtUShort:
1204 bytes = Write_ALushort(device, buffer, SamplesToDo);
1205 break;
1206 case DevFmtInt:
1207 bytes = Write_ALint(device, buffer, SamplesToDo);
1208 break;
1209 case DevFmtUInt:
1210 bytes = Write_ALuint(device, buffer, SamplesToDo);
1211 break;
1212 case DevFmtFloat:
1213 bytes = Write_ALfloat(device, buffer, SamplesToDo);
1214 break;
1217 buffer = (ALubyte*)buffer + bytes;
1220 size -= SamplesToDo;
1223 RestoreFPUMode(&oldMode);
1227 ALvoid aluHandleDisconnect(ALCdevice *device)
1229 ALCcontext *Context;
1231 device->Connected = ALC_FALSE;
1233 Context = device->ContextList;
1234 while(Context)
1236 ALsource **src, **src_end;
1238 src = Context->ActiveSources;
1239 src_end = src + Context->ActiveSourceCount;
1240 while(src != src_end)
1242 if((*src)->state == AL_PLAYING)
1244 (*src)->state = AL_STOPPED;
1245 (*src)->BuffersPlayed = (*src)->BuffersInQueue;
1246 (*src)->position = 0;
1247 (*src)->position_fraction = 0;
1249 src++;
1251 Context->ActiveSourceCount = 0;
1253 Context = Context->next;