Remove another unused source member
[openal-soft.git] / Alc / ALu.c
blobe3bd069ac858853ba7afe90d0c2d7ddd0ff8715f
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #define _CRT_SECURE_NO_DEPRECATE // get rid of sprintf security warnings on VS2005
23 #include "config.h"
25 #include <math.h>
26 #include "alMain.h"
27 #include "AL/al.h"
28 #include "AL/alc.h"
29 #include "alSource.h"
30 #include "alBuffer.h"
31 #include "alThunk.h"
32 #include "alListener.h"
33 #include "alAuxEffectSlot.h"
34 #include "alu.h"
35 #include "bs2b.h"
37 #if defined(HAVE_STDINT_H)
38 #include <stdint.h>
39 typedef int64_t ALint64;
40 #elif defined(HAVE___INT64)
41 typedef __int64 ALint64;
42 #elif (SIZEOF_LONG == 8)
43 typedef long ALint64;
44 #elif (SIZEOF_LONG_LONG == 8)
45 typedef long long ALint64;
46 #endif
48 #ifdef HAVE_SQRTF
49 #define aluSqrt(x) ((ALfloat)sqrtf((float)(x)))
50 #else
51 #define aluSqrt(x) ((ALfloat)sqrt((double)(x)))
52 #endif
54 #ifdef HAVE_ACOSF
55 #define aluAcos(x) ((ALfloat)acosf((float)(x)))
56 #else
57 #define aluAcos(x) ((ALfloat)acos((double)(x)))
58 #endif
60 // fixes for mingw32.
61 #if defined(max) && !defined(__max)
62 #define __max max
63 #endif
64 #if defined(min) && !defined(__min)
65 #define __min min
66 #endif
68 #define BUFFERSIZE 24000
69 #define FRACTIONBITS 14
70 #define FRACTIONMASK ((1L<<FRACTIONBITS)-1)
71 #define MAX_PITCH 65536
73 /* Minimum ramp length in milliseconds. The value below was chosen to
74 * adequately reduce clicks and pops from harsh gain changes. */
75 #define MIN_RAMP_LENGTH 16
77 ALboolean DuplicateStereo = AL_FALSE;
79 /* NOTE: The AL_FORMAT_REAR* enums aren't handled here be cause they're
80 * converted to AL_FORMAT_QUAD* when loaded */
81 __inline ALuint aluBytesFromFormat(ALenum format)
83 switch(format)
85 case AL_FORMAT_MONO8:
86 case AL_FORMAT_STEREO8:
87 case AL_FORMAT_QUAD8_LOKI:
88 case AL_FORMAT_QUAD8:
89 case AL_FORMAT_51CHN8:
90 case AL_FORMAT_61CHN8:
91 case AL_FORMAT_71CHN8:
92 return 1;
94 case AL_FORMAT_MONO16:
95 case AL_FORMAT_STEREO16:
96 case AL_FORMAT_QUAD16_LOKI:
97 case AL_FORMAT_QUAD16:
98 case AL_FORMAT_51CHN16:
99 case AL_FORMAT_61CHN16:
100 case AL_FORMAT_71CHN16:
101 return 2;
103 case AL_FORMAT_MONO_FLOAT32:
104 case AL_FORMAT_STEREO_FLOAT32:
105 case AL_FORMAT_QUAD32:
106 case AL_FORMAT_51CHN32:
107 case AL_FORMAT_61CHN32:
108 case AL_FORMAT_71CHN32:
109 return 4;
111 default:
112 return 0;
116 __inline ALuint aluChannelsFromFormat(ALenum format)
118 switch(format)
120 case AL_FORMAT_MONO8:
121 case AL_FORMAT_MONO16:
122 case AL_FORMAT_MONO_FLOAT32:
123 return 1;
125 case AL_FORMAT_STEREO8:
126 case AL_FORMAT_STEREO16:
127 case AL_FORMAT_STEREO_FLOAT32:
128 return 2;
130 case AL_FORMAT_QUAD8_LOKI:
131 case AL_FORMAT_QUAD16_LOKI:
132 case AL_FORMAT_QUAD8:
133 case AL_FORMAT_QUAD16:
134 case AL_FORMAT_QUAD32:
135 return 4;
137 case AL_FORMAT_51CHN8:
138 case AL_FORMAT_51CHN16:
139 case AL_FORMAT_51CHN32:
140 return 6;
142 case AL_FORMAT_61CHN8:
143 case AL_FORMAT_61CHN16:
144 case AL_FORMAT_61CHN32:
145 return 7;
147 case AL_FORMAT_71CHN8:
148 case AL_FORMAT_71CHN16:
149 case AL_FORMAT_71CHN32:
150 return 8;
152 default:
153 return 0;
158 static __inline ALfloat lpFilter(FILTER *iir, ALfloat input)
160 ALfloat *history = iir->history;
161 ALfloat a = iir->coeff;
162 ALfloat output = input;
164 output = output + (history[0]-output)*a;
165 history[0] = output;
166 output = output + (history[1]-output)*a;
167 history[1] = output;
168 output = output + (history[2]-output)*a;
169 history[2] = output;
170 output = output + (history[3]-output)*a;
171 history[3] = output;
173 return output;
177 static __inline ALshort aluF2S(ALfloat Value)
179 ALint i;
181 i = (ALint)Value;
182 i = __min( 32767, i);
183 i = __max(-32768, i);
184 return ((ALshort)i);
187 static __inline ALvoid aluCrossproduct(ALfloat *inVector1,ALfloat *inVector2,ALfloat *outVector)
189 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
190 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
191 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
194 static __inline ALfloat aluDotproduct(ALfloat *inVector1,ALfloat *inVector2)
196 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
197 inVector1[2]*inVector2[2];
200 static __inline ALvoid aluNormalize(ALfloat *inVector)
202 ALfloat length, inverse_length;
204 length = aluSqrt(aluDotproduct(inVector, inVector));
205 if(length != 0.0f)
207 inverse_length = 1.0f/length;
208 inVector[0] *= inverse_length;
209 inVector[1] *= inverse_length;
210 inVector[2] *= inverse_length;
214 static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat matrix[3][3])
216 ALfloat result[3];
218 result[0] = vector[0]*matrix[0][0] + vector[1]*matrix[1][0] + vector[2]*matrix[2][0];
219 result[1] = vector[0]*matrix[0][1] + vector[1]*matrix[1][1] + vector[2]*matrix[2][1];
220 result[2] = vector[0]*matrix[0][2] + vector[1]*matrix[1][2] + vector[2]*matrix[2][2];
221 memcpy(vector, result, sizeof(result));
225 static ALvoid CalcSourceParams(ALCcontext *ALContext, ALsource *ALSource,
226 ALenum isMono, ALenum OutputFormat,
227 ALfloat *drysend, ALfloat *wetsend,
228 ALfloat *pitch, ALfloat *drygainhf,
229 ALfloat *wetgainhf)
231 ALfloat InnerAngle,OuterAngle,Angle,Distance,DryMix,WetMix=0.0f;
232 ALfloat Direction[3],Position[3],SourceToListener[3];
233 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff,OuterGainHF;
234 ALfloat ConeVolume,SourceVolume,PanningFB,PanningLR,ListenerGain;
235 ALfloat U[3],V[3],N[3];
236 ALfloat DopplerFactor, DopplerVelocity, flSpeedOfSound, flMaxVelocity;
237 ALfloat Matrix[3][3];
238 ALfloat flAttenuation;
239 ALfloat RoomAttenuation;
240 ALfloat MetersPerUnit;
241 ALfloat RoomRolloff;
242 ALfloat DryGainHF = 1.0f;
243 ALfloat WetGainHF = 1.0f;
244 ALfloat cw, a, g;
246 //Get context properties
247 DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
248 DopplerVelocity = ALContext->DopplerVelocity;
249 flSpeedOfSound = ALContext->flSpeedOfSound;
251 //Get listener properties
252 ListenerGain = ALContext->Listener.Gain;
253 MetersPerUnit = ALContext->Listener.MetersPerUnit;
255 //Get source properties
256 SourceVolume = ALSource->flGain;
257 memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition));
258 memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation));
259 MinVolume = ALSource->flMinGain;
260 MaxVolume = ALSource->flMaxGain;
261 MinDist = ALSource->flRefDistance;
262 MaxDist = ALSource->flMaxDistance;
263 Rolloff = ALSource->flRollOffFactor;
264 InnerAngle = ALSource->flInnerAngle;
265 OuterAngle = ALSource->flOuterAngle;
266 OuterGainHF = ALSource->OuterGainHF;
267 RoomRolloff = ALSource->RoomRolloffFactor;
269 //Only apply 3D calculations for mono buffers
270 if(isMono != AL_FALSE)
272 //1. Translate Listener to origin (convert to head relative)
273 // Note that Direction and SourceToListener are *not* transformed.
274 // SourceToListener is used with the source and listener velocities,
275 // which are untransformed, and Direction is used with SourceToListener
276 // for the sound cone
277 if(ALSource->bHeadRelative==AL_FALSE)
279 // Build transform matrix
280 aluCrossproduct(ALContext->Listener.Forward, ALContext->Listener.Up, U); // Right-vector
281 aluNormalize(U); // Normalized Right-vector
282 memcpy(V, ALContext->Listener.Up, sizeof(V)); // Up-vector
283 aluNormalize(V); // Normalized Up-vector
284 memcpy(N, ALContext->Listener.Forward, sizeof(N)); // At-vector
285 aluNormalize(N); // Normalized At-vector
286 Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0];
287 Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1];
288 Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2];
290 // Translate source position into listener space
291 Position[0] -= ALContext->Listener.Position[0];
292 Position[1] -= ALContext->Listener.Position[1];
293 Position[2] -= ALContext->Listener.Position[2];
295 SourceToListener[0] = -Position[0];
296 SourceToListener[1] = -Position[1];
297 SourceToListener[2] = -Position[2];
299 // Transform source position and direction into listener space
300 aluMatrixVector(Position, Matrix);
302 else
304 SourceToListener[0] = -Position[0];
305 SourceToListener[1] = -Position[1];
306 SourceToListener[2] = -Position[2];
308 aluNormalize(SourceToListener);
309 aluNormalize(Direction);
311 //2. Calculate distance attenuation
312 Distance = aluSqrt(aluDotproduct(Position, Position));
314 if(ALSource->Send[0].Slot)
316 if(ALSource->Send[0].Slot->effect.type == AL_EFFECT_REVERB)
317 RoomRolloff += ALSource->Send[0].Slot->effect.Reverb.RoomRolloffFactor;
320 flAttenuation = 1.0f;
321 RoomAttenuation = 1.0f;
322 switch (ALContext->DistanceModel)
324 case AL_INVERSE_DISTANCE_CLAMPED:
325 Distance=__max(Distance,MinDist);
326 Distance=__min(Distance,MaxDist);
327 if (MaxDist < MinDist)
328 break;
329 //fall-through
330 case AL_INVERSE_DISTANCE:
331 if (MinDist > 0.0f)
333 if ((MinDist + (Rolloff * (Distance - MinDist))) > 0.0f)
334 flAttenuation = MinDist / (MinDist + (Rolloff * (Distance - MinDist)));
335 if ((MinDist + (RoomRolloff * (Distance - MinDist))) > 0.0f)
336 RoomAttenuation = MinDist / (MinDist + (RoomRolloff * (Distance - MinDist)));
338 break;
340 case AL_LINEAR_DISTANCE_CLAMPED:
341 Distance=__max(Distance,MinDist);
342 Distance=__min(Distance,MaxDist);
343 if (MaxDist < MinDist)
344 break;
345 //fall-through
346 case AL_LINEAR_DISTANCE:
347 Distance=__min(Distance,MaxDist);
348 if (MaxDist != MinDist)
350 flAttenuation = 1.0f - (Rolloff*(Distance-MinDist)/(MaxDist - MinDist));
351 RoomAttenuation = 1.0f - (RoomRolloff*(Distance-MinDist)/(MaxDist - MinDist));
353 break;
355 case AL_EXPONENT_DISTANCE_CLAMPED:
356 Distance=__max(Distance,MinDist);
357 Distance=__min(Distance,MaxDist);
358 if (MaxDist < MinDist)
359 break;
360 //fall-through
361 case AL_EXPONENT_DISTANCE:
362 if ((Distance > 0.0f) && (MinDist > 0.0f))
364 flAttenuation = (ALfloat)pow(Distance/MinDist, -Rolloff);
365 RoomAttenuation = (ALfloat)pow(Distance/MinDist, -RoomRolloff);
367 break;
369 case AL_NONE:
370 flAttenuation = 1.0f;
371 RoomAttenuation = 1.0f;
372 break;
375 // Distance-based air absorption
376 if(ALSource->AirAbsorptionFactor > 0.0f && ALContext->DistanceModel != AL_NONE)
378 ALfloat dist = Distance-MinDist;
379 ALfloat absorb;
381 if(dist < 0.0f) dist = 0.0f;
382 // Absorption calculation is done in dB
383 absorb = (ALSource->AirAbsorptionFactor*AIRABSORBGAINDBHF) *
384 (Distance*MetersPerUnit);
385 // Convert dB to linear gain before applying
386 absorb = pow(0.5, absorb/-6.0);
387 DryGainHF *= absorb;
388 WetGainHF *= absorb;
391 // Source Gain + Attenuation and clamp to Min/Max Gain
392 DryMix = SourceVolume * flAttenuation;
393 DryMix = __min(DryMix,MaxVolume);
394 DryMix = __max(DryMix,MinVolume);
396 WetMix = SourceVolume * RoomAttenuation;
397 WetMix = __min(WetMix,MaxVolume);
398 WetMix = __max(WetMix,MinVolume);
400 //3. Apply directional soundcones
401 Angle = aluAcos(aluDotproduct(Direction,SourceToListener)) * 180.0f /
402 3.141592654f;
403 if(Angle >= InnerAngle && Angle <= OuterAngle)
405 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
406 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f)*scale);
407 DryMix *= ConeVolume;
408 if(ALSource->WetGainAuto)
409 WetMix *= ConeVolume;
410 if(ALSource->DryGainHFAuto)
411 DryGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
412 if(ALSource->WetGainHFAuto)
413 WetGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
415 else if(Angle > OuterAngle)
417 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f));
418 DryMix *= ConeVolume;
419 if(ALSource->WetGainAuto)
420 WetMix *= ConeVolume;
421 if(ALSource->DryGainHFAuto)
422 DryGainHF *= (1.0f+(OuterGainHF-1.0f));
423 if(ALSource->WetGainHFAuto)
424 WetGainHF *= (1.0f+(OuterGainHF-1.0f));
427 //4. Calculate Velocity
428 if(DopplerFactor != 0.0f)
430 ALfloat flVSS, flVLS = 0.0f;
432 if(ALSource->bHeadRelative==AL_FALSE)
433 flVLS = aluDotproduct(ALContext->Listener.Velocity, SourceToListener);
434 flVSS = aluDotproduct(ALSource->vVelocity, SourceToListener);
436 flMaxVelocity = (DopplerVelocity * flSpeedOfSound) / DopplerFactor;
438 if (flVSS >= flMaxVelocity)
439 flVSS = (flMaxVelocity - 1.0f);
440 else if (flVSS <= -flMaxVelocity)
441 flVSS = -flMaxVelocity + 1.0f;
443 if (flVLS >= flMaxVelocity)
444 flVLS = (flMaxVelocity - 1.0f);
445 else if (flVLS <= -flMaxVelocity)
446 flVLS = -flMaxVelocity + 1.0f;
448 pitch[0] = ALSource->flPitch *
449 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVLS)) /
450 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVSS));
452 else
453 pitch[0] = ALSource->flPitch;
455 if(ALSource->Send[0].Slot &&
456 ALSource->Send[0].Slot->effect.type != AL_EFFECT_NULL)
458 // If the slot's auxilliary send auto is off, the data sent to the
459 // effect slot is the same as the dry path, sans filter effects
460 if(!ALSource->Send[0].Slot->AuxSendAuto)
462 WetMix = DryMix;
463 WetGainHF = DryGainHF;
466 // Note that these are really applied by the effect slot. However,
467 // it's easier to handle them here (particularly the lowpass
468 // filter). Applying the gain to the individual sources going to
469 // the effect slot should have the same effect as applying the gain
470 // to the accumulated sources in the effect slot.
471 // vol1*g + vol2*g + ... voln*g = (vol1+vol2+...voln)*g
472 WetMix *= ALSource->Send[0].Slot->Gain;
473 if(ALSource->Send[0].Slot->effect.type == AL_EFFECT_REVERB)
475 WetMix *= ALSource->Send[0].Slot->effect.Reverb.Gain;
476 WetGainHF *= ALSource->Send[0].Slot->effect.Reverb.GainHF;
477 WetGainHF *= pow(ALSource->Send[0].Slot->effect.Reverb.AirAbsorptionGainHF,
478 Distance * MetersPerUnit);
481 else
483 WetMix = 0.0f;
484 WetGainHF = 1.0f;
487 //5. Apply filter gains and filters
488 switch(ALSource->DirectFilter.type)
490 case AL_FILTER_LOWPASS:
491 DryMix *= ALSource->DirectFilter.Gain;
492 DryGainHF *= ALSource->DirectFilter.GainHF;
493 break;
496 switch(ALSource->Send[0].WetFilter.type)
498 case AL_FILTER_LOWPASS:
499 WetMix *= ALSource->Send[0].WetFilter.Gain;
500 WetGainHF *= ALSource->Send[0].WetFilter.GainHF;
501 break;
504 DryMix *= ListenerGain;
505 WetMix *= ListenerGain;
507 //6. Convert normalized position into pannings, then into channel volumes
508 aluNormalize(Position);
509 switch(aluChannelsFromFormat(OutputFormat))
511 case 1:
512 case 2:
513 PanningLR = 0.5f + 0.5f*Position[0];
514 drysend[FRONT_LEFT] = DryMix * aluSqrt(1.0f-PanningLR); //L Direct
515 drysend[FRONT_RIGHT] = DryMix * aluSqrt( PanningLR); //R Direct
516 drysend[BACK_LEFT] = 0.0f;
517 drysend[BACK_RIGHT] = 0.0f;
518 drysend[SIDE_LEFT] = 0.0f;
519 drysend[SIDE_RIGHT] = 0.0f;
520 break;
521 case 4:
522 /* TODO: Add center/lfe channel in spatial calculations? */
523 case 6:
524 // Apply a scalar so each individual speaker has more weight
525 PanningLR = 0.5f + (0.5f*Position[0]*1.41421356f);
526 PanningLR = __min(1.0f, PanningLR);
527 PanningLR = __max(0.0f, PanningLR);
528 PanningFB = 0.5f + (0.5f*Position[2]*1.41421356f);
529 PanningFB = __min(1.0f, PanningFB);
530 PanningFB = __max(0.0f, PanningFB);
531 drysend[FRONT_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
532 drysend[FRONT_RIGHT] = DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
533 drysend[BACK_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
534 drysend[BACK_RIGHT] = DryMix * aluSqrt(( PanningLR)*( PanningFB));
535 drysend[SIDE_LEFT] = 0.0f;
536 drysend[SIDE_RIGHT] = 0.0f;
537 break;
538 case 7:
539 case 8:
540 PanningFB = 1.0f - fabs(Position[2]*1.15470054f);
541 PanningFB = __min(1.0f, PanningFB);
542 PanningFB = __max(0.0f, PanningFB);
543 PanningLR = 0.5f + (0.5*Position[0]*((1.0f-PanningFB)*2.0f));
544 PanningLR = __min(1.0f, PanningLR);
545 PanningLR = __max(0.0f, PanningLR);
546 if(Position[2] > 0.0f)
548 drysend[BACK_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
549 drysend[BACK_RIGHT] = DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
550 drysend[SIDE_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
551 drysend[SIDE_RIGHT] = DryMix * aluSqrt(( PanningLR)*( PanningFB));
552 drysend[FRONT_LEFT] = 0.0f;
553 drysend[FRONT_RIGHT] = 0.0f;
555 else
557 drysend[FRONT_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
558 drysend[FRONT_RIGHT] = DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
559 drysend[SIDE_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
560 drysend[SIDE_RIGHT] = DryMix * aluSqrt(( PanningLR)*( PanningFB));
561 drysend[BACK_LEFT] = 0.0f;
562 drysend[BACK_RIGHT] = 0.0f;
564 default:
565 break;
567 *wetsend = WetMix;
569 // Update filter coefficients. Calculations based on the I3DL2 spec.
570 cw = cos(2.0f*3.141592654f * LOWPASSFREQCUTOFF / ALContext->Frequency);
571 // We use four chained one-pole filters, so we need to take the fourth
572 // root of the squared gain, which is the same as the square root of
573 // the base gain.
574 // Be careful with gains < 0.0001, as that causes the coefficient to
575 // head towards 1, which will flatten the signal
576 g = aluSqrt(__max(DryGainHF, 0.0001f));
577 a = 0.0f;
578 if(g < 0.9999f) // 1-epsilon
579 a = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) / (1 - g);
580 ALSource->iirFilter.coeff = a;
582 g = aluSqrt(__max(WetGainHF, 0.0001f));
583 a = 0.0f;
584 if(g < 0.9999f) // 1-epsilon
585 a = (1 - g*cw - aluSqrt(2*g*(1-cw) - g*g*(1 - cw*cw))) / (1 - g);
586 ALSource->Send[0].iirFilter.coeff = a;
588 *drygainhf = DryGainHF;
589 *wetgainhf = WetGainHF;
591 else
593 //1. Multi-channel buffers always play "normal"
594 pitch[0] = ALSource->flPitch;
596 drysend[FRONT_LEFT] = SourceVolume * ListenerGain;
597 drysend[FRONT_RIGHT] = SourceVolume * ListenerGain;
598 drysend[SIDE_LEFT] = SourceVolume * ListenerGain;
599 drysend[SIDE_RIGHT] = SourceVolume * ListenerGain;
600 drysend[BACK_LEFT] = SourceVolume * ListenerGain;
601 drysend[BACK_RIGHT] = SourceVolume * ListenerGain;
602 drysend[CENTER] = SourceVolume * ListenerGain;
603 drysend[LFE] = SourceVolume * ListenerGain;
604 *wetsend = 0.0f;
605 WetGainHF = 1.0f;
607 *drygainhf = DryGainHF;
608 *wetgainhf = WetGainHF;
612 static __inline ALshort lerp(ALshort val1, ALshort val2, ALint frac)
614 return val1 + (((val2-val1)*frac)>>FRACTIONBITS);
617 ALvoid aluMixData(ALCcontext *ALContext,ALvoid *buffer,ALsizei size,ALenum format)
619 static float DryBuffer[BUFFERSIZE][OUTPUTCHANNELS];
620 static float WetBuffer[BUFFERSIZE];
621 ALfloat newDrySend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
622 ALfloat newWetSend = 0.0f;
623 ALfloat DryGainHF = 0.0f;
624 ALfloat WetGainHF = 0.0f;
625 ALfloat *DrySend;
626 ALfloat *WetSend;
627 ALuint rampLength;
628 ALfloat dryGainStep[OUTPUTCHANNELS];
629 ALfloat wetGainStep;
630 ALuint BlockAlign,BufferSize;
631 ALuint DataSize=0,DataPosInt=0,DataPosFrac=0;
632 ALuint Channels,Frequency,ulExtraSamples;
633 ALfloat Pitch;
634 ALint Looping,State;
635 ALint increment;
636 ALuint Buffer;
637 ALuint SamplesToDo;
638 ALsource *ALSource;
639 ALbuffer *ALBuffer;
640 ALeffectslot *ALEffectSlot;
641 ALfloat value;
642 ALshort *Data;
643 ALuint i,j,k;
644 ALbufferlistitem *BufferListItem;
645 ALuint loop;
646 ALint64 DataSize64,DataPos64;
647 FILTER *DryFilter, *WetFilter;
648 int fpuState;
650 SuspendContext(ALContext);
652 #if defined(HAVE_FESETROUND)
653 fpuState = fegetround();
654 fesetround(FE_TOWARDZERO);
655 #elif defined(HAVE__CONTROLFP)
656 fpuState = _controlfp(0, 0);
657 _controlfp(_RC_CHOP, _MCW_RC);
658 #else
659 (void)fpuState;
660 #endif
662 //Figure output format variables
663 BlockAlign = aluChannelsFromFormat(format);
664 BlockAlign *= aluBytesFromFormat(format);
666 size /= BlockAlign;
667 while(size > 0)
669 //Setup variables
670 SamplesToDo = min(size, BUFFERSIZE);
671 if(ALContext)
673 ALEffectSlot = ALContext->AuxiliaryEffectSlot;
674 ALSource = ALContext->Source;
675 rampLength = ALContext->Frequency * MIN_RAMP_LENGTH / 1000;
677 else
679 ALEffectSlot = NULL;
680 ALSource = NULL;
681 rampLength = 0;
683 rampLength = max(rampLength, SamplesToDo);
685 //Clear mixing buffer
686 memset(WetBuffer, 0, SamplesToDo*sizeof(ALfloat));
687 memset(DryBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
689 //Actual mixing loop
690 while(ALSource)
692 j = 0;
693 State = ALSource->state;
695 while(State == AL_PLAYING && j < SamplesToDo)
697 DataSize = 0;
698 DataPosInt = 0;
699 DataPosFrac = 0;
701 //Get buffer info
702 if((Buffer = ALSource->ulBufferID))
704 ALBuffer = (ALbuffer*)ALTHUNK_LOOKUPENTRY(Buffer);
706 Data = ALBuffer->data;
707 Channels = aluChannelsFromFormat(ALBuffer->format);
708 DataSize = ALBuffer->size;
709 DataSize /= Channels * aluBytesFromFormat(ALBuffer->format);
710 Frequency = ALBuffer->frequency;
711 DataPosInt = ALSource->position;
712 DataPosFrac = ALSource->position_fraction;
714 if(DataPosInt >= DataSize)
715 goto skipmix;
717 CalcSourceParams(ALContext, ALSource,
718 (Channels==1) ? AL_TRUE : AL_FALSE,
719 format, newDrySend, &newWetSend, &Pitch,
720 &DryGainHF, &WetGainHF);
722 Pitch = (Pitch*Frequency) / ALContext->Frequency;
724 //Get source info
725 DryFilter = &ALSource->iirFilter;
726 WetFilter = &ALSource->Send[0].iirFilter;
727 DrySend = ALSource->DryGains;
728 WetSend = &ALSource->WetGain;
730 //Compute the gain steps for each output channel
731 for(i = 0;i < OUTPUTCHANNELS;i++)
732 dryGainStep[i] = (newDrySend[i]-DrySend[i]) / rampLength;
733 wetGainStep = (newWetSend-(*WetSend)) / rampLength;
735 //Compute 18.14 fixed point step
736 if(Pitch > (float)MAX_PITCH)
737 Pitch = (float)MAX_PITCH;
738 increment = (ALint)(Pitch*(ALfloat)(1L<<FRACTIONBITS));
739 if(increment <= 0)
740 increment = (1<<FRACTIONBITS);
742 //Figure out how many samples we can mix.
743 DataSize64 = DataSize;
744 DataSize64 <<= FRACTIONBITS;
745 DataPos64 = DataPosInt;
746 DataPos64 <<= FRACTIONBITS;
747 DataPos64 += DataPosFrac;
748 BufferSize = (ALuint)((DataSize64-DataPos64+(increment-1)) / increment);
750 BufferListItem = ALSource->queue;
751 for(loop = 0; loop < ALSource->BuffersPlayed; loop++)
753 if(BufferListItem)
754 BufferListItem = BufferListItem->next;
756 if (BufferListItem)
758 if (BufferListItem->next)
760 ALbuffer *NextBuf = (ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer);
761 if(NextBuf && NextBuf->data)
763 ulExtraSamples = min(NextBuf->size, (ALint)(ALBuffer->padding*Channels*2));
764 memcpy(&Data[DataSize*Channels], NextBuf->data, ulExtraSamples);
767 else if (ALSource->bLooping)
769 ALbuffer *NextBuf = (ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer);
770 if (NextBuf && NextBuf->data)
772 ulExtraSamples = min(NextBuf->size, (ALint)(ALBuffer->padding*Channels*2));
773 memcpy(&Data[DataSize*Channels], NextBuf->data, ulExtraSamples);
776 else
777 memset(&Data[DataSize*Channels], 0, (ALBuffer->padding*Channels*2));
779 BufferSize = min(BufferSize, (SamplesToDo-j));
781 //Actual sample mixing loop
782 k = 0;
783 Data += DataPosInt*Channels;
784 while(BufferSize--)
786 for(i = 0;i < OUTPUTCHANNELS;i++)
787 DrySend[i] += dryGainStep[i];
788 *WetSend += wetGainStep;
790 if(Channels==1)
792 ALfloat sample, outsamp;
793 //First order interpolator
794 sample = lerp(Data[k], Data[k+1], DataPosFrac);
796 //Direct path final mix buffer and panning
797 outsamp = lpFilter(DryFilter, sample);
798 DryBuffer[j][FRONT_LEFT] += outsamp*DrySend[FRONT_LEFT];
799 DryBuffer[j][FRONT_RIGHT] += outsamp*DrySend[FRONT_RIGHT];
800 DryBuffer[j][SIDE_LEFT] += outsamp*DrySend[SIDE_LEFT];
801 DryBuffer[j][SIDE_RIGHT] += outsamp*DrySend[SIDE_RIGHT];
802 DryBuffer[j][BACK_LEFT] += outsamp*DrySend[BACK_LEFT];
803 DryBuffer[j][BACK_RIGHT] += outsamp*DrySend[BACK_RIGHT];
804 //Room path final mix buffer and panning
805 outsamp = lpFilter(WetFilter, sample);
806 WetBuffer[j] += outsamp*(*WetSend);
808 else
810 ALfloat samp1, samp2;
811 //First order interpolator (front left)
812 samp1 = lerp(Data[k*Channels], Data[(k+1)*Channels], DataPosFrac);
813 DryBuffer[j][FRONT_LEFT] += samp1*DrySend[FRONT_LEFT];
814 //First order interpolator (front right)
815 samp2 = lerp(Data[k*Channels+1], Data[(k+1)*Channels+1], DataPosFrac);
816 DryBuffer[j][FRONT_RIGHT] += samp2*DrySend[FRONT_RIGHT];
817 if(Channels >= 4)
819 int i = 2;
820 if(Channels >= 6)
822 if(Channels != 7)
824 //First order interpolator (center)
825 value = lerp(Data[k*Channels+i], Data[(k+1)*Channels+i], DataPosFrac);
826 DryBuffer[j][CENTER] += value*DrySend[CENTER];
827 i++;
829 //First order interpolator (lfe)
830 value = lerp(Data[k*Channels+i], Data[(k+1)*Channels+i], DataPosFrac);
831 DryBuffer[j][LFE] += value*DrySend[LFE];
832 i++;
834 //First order interpolator (back left)
835 value = lerp(Data[k*Channels+i], Data[(k+1)*Channels+i], DataPosFrac);
836 DryBuffer[j][BACK_LEFT] += value*DrySend[BACK_LEFT];
837 i++;
838 //First order interpolator (back right)
839 value = lerp(Data[k*Channels+i], Data[(k+1)*Channels+i], DataPosFrac);
840 DryBuffer[j][BACK_RIGHT] += value*DrySend[BACK_RIGHT];
841 i++;
842 if(Channels >= 7)
844 //First order interpolator (side left)
845 value = lerp(Data[k*Channels+i], Data[(k+1)*Channels+i], DataPosFrac);
846 DryBuffer[j][SIDE_LEFT] += value*DrySend[SIDE_LEFT];
847 i++;
848 //First order interpolator (side right)
849 value = lerp(Data[k*Channels+i], Data[(k+1)*Channels+i], DataPosFrac);
850 DryBuffer[j][SIDE_RIGHT] += value*DrySend[SIDE_RIGHT];
851 i++;
854 else if(DuplicateStereo)
856 //Duplicate stereo channels on the back speakers
857 DryBuffer[j][BACK_LEFT] += samp1*DrySend[BACK_LEFT];
858 DryBuffer[j][BACK_RIGHT] += samp2*DrySend[BACK_RIGHT];
861 DataPosFrac += increment;
862 k += DataPosFrac>>FRACTIONBITS;
863 DataPosFrac &= FRACTIONMASK;
864 j++;
866 DataPosInt += k;
868 //Update source info
869 ALSource->position = DataPosInt;
870 ALSource->position_fraction = DataPosFrac;
872 skipmix: ;
875 //Handle looping sources
876 if(!Buffer || DataPosInt >= DataSize)
878 //queueing
879 if(ALSource->queue)
881 Looping = ALSource->bLooping;
882 if(ALSource->BuffersPlayed < (ALSource->BuffersInQueue-1))
884 BufferListItem = ALSource->queue;
885 for(loop = 0; loop <= ALSource->BuffersPlayed; loop++)
887 if(BufferListItem)
889 if(!Looping)
890 BufferListItem->bufferstate = PROCESSED;
891 BufferListItem = BufferListItem->next;
894 if(BufferListItem)
895 ALSource->ulBufferID = BufferListItem->buffer;
896 ALSource->position = DataPosInt-DataSize;
897 ALSource->position_fraction = DataPosFrac;
898 ALSource->BuffersPlayed++;
900 else
902 if(!Looping)
904 /* alSourceStop */
905 ALSource->state = AL_STOPPED;
906 ALSource->inuse = AL_FALSE;
907 ALSource->BuffersPlayed = ALSource->BuffersInQueue;
908 BufferListItem = ALSource->queue;
909 while(BufferListItem != NULL)
911 BufferListItem->bufferstate = PROCESSED;
912 BufferListItem = BufferListItem->next;
914 ALSource->position = DataSize;
915 ALSource->position_fraction = 0;
917 else
919 /* alSourceRewind */
920 /* alSourcePlay */
921 ALSource->state = AL_PLAYING;
922 ALSource->inuse = AL_TRUE;
923 ALSource->play = AL_TRUE;
924 ALSource->BuffersPlayed = 0;
925 BufferListItem = ALSource->queue;
926 while(BufferListItem != NULL)
928 BufferListItem->bufferstate = PENDING;
929 BufferListItem = BufferListItem->next;
931 ALSource->ulBufferID = ALSource->queue->buffer;
933 if(ALSource->BuffersInQueue == 1)
934 ALSource->position = DataPosInt%DataSize;
935 else
936 ALSource->position = DataPosInt-DataSize;
937 ALSource->position_fraction = DataPosFrac;
943 //Get source state
944 State = ALSource->state;
947 ALSource = ALSource->next;
950 // effect slot processing
951 while(ALEffectSlot)
953 if(ALEffectSlot->effect.type == AL_EFFECT_REVERB)
955 ALfloat *DelayBuffer = ALEffectSlot->ReverbBuffer;
956 ALuint Pos = ALEffectSlot->ReverbPos;
957 ALuint LatePos = ALEffectSlot->ReverbLatePos;
958 ALuint ReflectPos = ALEffectSlot->ReverbReflectPos;
959 ALuint Length = ALEffectSlot->ReverbLength;
960 ALfloat DecayGain = ALEffectSlot->ReverbDecayGain;
961 ALfloat DecayHFRatio = ALEffectSlot->effect.Reverb.DecayHFRatio;
962 ALfloat ReflectGain = ALEffectSlot->effect.Reverb.ReflectionsGain;
963 ALfloat LateReverbGain = ALEffectSlot->effect.Reverb.LateReverbGain;
964 ALfloat sample, lowsample;
966 WetFilter = &ALEffectSlot->iirFilter;
967 for(i = 0;i < SamplesToDo;i++)
969 DelayBuffer[Pos] = WetBuffer[i];
971 sample = DelayBuffer[ReflectPos] * ReflectGain;
973 DelayBuffer[LatePos] *= LateReverbGain;
975 Pos = (Pos+1) % Length;
976 lowsample = lpFilter(WetFilter, DelayBuffer[Pos]);
977 lowsample += (DelayBuffer[Pos]-lowsample) * DecayHFRatio;
979 DelayBuffer[LatePos] += lowsample * DecayGain;
981 sample += DelayBuffer[LatePos];
983 DryBuffer[i][FRONT_LEFT] += sample;
984 DryBuffer[i][FRONT_RIGHT] += sample;
985 DryBuffer[i][SIDE_LEFT] += sample;
986 DryBuffer[i][SIDE_RIGHT] += sample;
987 DryBuffer[i][BACK_LEFT] += sample;
988 DryBuffer[i][BACK_RIGHT] += sample;
990 LatePos = (LatePos+1) % Length;
991 ReflectPos = (ReflectPos+1) % Length;
994 ALEffectSlot->ReverbPos = Pos;
995 ALEffectSlot->ReverbLatePos = LatePos;
996 ALEffectSlot->ReverbReflectPos = ReflectPos;
999 ALEffectSlot = ALEffectSlot->next;
1002 //Post processing loop
1003 switch(format)
1005 case AL_FORMAT_MONO8:
1006 for(i = 0;i < SamplesToDo;i++)
1008 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT])>>8)+128);
1009 buffer = ((ALubyte*)buffer) + 1;
1011 break;
1012 case AL_FORMAT_STEREO8:
1013 if(ALContext && ALContext->bs2b)
1015 for(i = 0;i < SamplesToDo;i++)
1017 float samples[2];
1018 samples[0] = DryBuffer[i][FRONT_LEFT];
1019 samples[1] = DryBuffer[i][FRONT_RIGHT];
1020 bs2b_cross_feed(ALContext->bs2b, samples);
1021 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(samples[0])>>8)+128);
1022 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(samples[1])>>8)+128);
1023 buffer = ((ALubyte*)buffer) + 2;
1026 else
1028 for(i = 0;i < SamplesToDo;i++)
1030 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT])>>8)+128);
1031 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT])>>8)+128);
1032 buffer = ((ALubyte*)buffer) + 2;
1035 break;
1036 case AL_FORMAT_QUAD8:
1037 for(i = 0;i < SamplesToDo;i++)
1039 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT])>>8)+128);
1040 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT])>>8)+128);
1041 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT])>>8)+128);
1042 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT])>>8)+128);
1043 buffer = ((ALubyte*)buffer) + 4;
1045 break;
1046 case AL_FORMAT_51CHN8:
1047 for(i = 0;i < SamplesToDo;i++)
1049 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT])>>8)+128);
1050 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT])>>8)+128);
1051 #ifdef _WIN32 /* Of course, Windows can't use the same ordering... */
1052 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][CENTER])>>8)+128);
1053 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][LFE])>>8)+128);
1054 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT])>>8)+128);
1055 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT])>>8)+128);
1056 #else
1057 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT])>>8)+128);
1058 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT])>>8)+128);
1059 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][CENTER])>>8)+128);
1060 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][LFE])>>8)+128);
1061 #endif
1062 buffer = ((ALubyte*)buffer) + 6;
1064 break;
1065 case AL_FORMAT_61CHN8:
1066 for(i = 0;i < SamplesToDo;i++)
1068 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT])>>8)+128);
1069 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT])>>8)+128);
1070 #ifdef _WIN32
1071 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][LFE])>>8)+128);
1072 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT])>>8)+128);
1073 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT])>>8)+128);
1074 #else
1075 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT])>>8)+128);
1076 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT])>>8)+128);
1077 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][LFE])>>8)+128);
1078 #endif
1079 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT])>>8)+128);
1080 ((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT])>>8)+128);
1081 buffer = ((ALubyte*)buffer) + 7;
1083 break;
1084 case AL_FORMAT_71CHN8:
1085 for(i = 0;i < SamplesToDo;i++)
1087 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT])>>8)+128);
1088 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT])>>8)+128);
1089 #ifdef _WIN32
1090 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][CENTER])>>8)+128);
1091 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][LFE])>>8)+128);
1092 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT])>>8)+128);
1093 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT])>>8)+128);
1094 #else
1095 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT])>>8)+128);
1096 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT])>>8)+128);
1097 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][CENTER])>>8)+128);
1098 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][LFE])>>8)+128);
1099 #endif
1100 ((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT])>>8)+128);
1101 ((ALubyte*)buffer)[7] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT])>>8)+128);
1102 buffer = ((ALubyte*)buffer) + 8;
1104 break;
1106 case AL_FORMAT_MONO16:
1107 for(i = 0;i < SamplesToDo;i++)
1109 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT]);
1110 buffer = ((ALshort*)buffer) + 1;
1112 break;
1113 case AL_FORMAT_STEREO16:
1114 if(ALContext && ALContext->bs2b)
1116 for(i = 0;i < SamplesToDo;i++)
1118 float samples[2];
1119 samples[0] = DryBuffer[i][FRONT_LEFT];
1120 samples[1] = DryBuffer[i][FRONT_RIGHT];
1121 bs2b_cross_feed(ALContext->bs2b, samples);
1122 ((ALshort*)buffer)[0] = aluF2S(samples[0]);
1123 ((ALshort*)buffer)[1] = aluF2S(samples[1]);
1124 buffer = ((ALshort*)buffer) + 2;
1127 else
1129 for(i = 0;i < SamplesToDo;i++)
1131 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT]);
1132 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]);
1133 buffer = ((ALshort*)buffer) + 2;
1136 break;
1137 case AL_FORMAT_QUAD16:
1138 for(i = 0;i < SamplesToDo;i++)
1140 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT]);
1141 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]);
1142 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT]);
1143 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT]);
1144 buffer = ((ALshort*)buffer) + 4;
1146 break;
1147 case AL_FORMAT_51CHN16:
1148 for(i = 0;i < SamplesToDo;i++)
1150 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT]);
1151 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]);
1152 #ifdef _WIN32
1153 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][CENTER]);
1154 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][LFE]);
1155 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT]);
1156 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT]);
1157 #else
1158 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT]);
1159 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT]);
1160 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][CENTER]);
1161 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][LFE]);
1162 #endif
1163 buffer = ((ALshort*)buffer) + 6;
1165 break;
1166 case AL_FORMAT_61CHN16:
1167 for(i = 0;i < SamplesToDo;i++)
1169 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT]);
1170 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]);
1171 #ifdef _WIN32
1172 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][LFE]);
1173 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_LEFT]);
1174 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_RIGHT]);
1175 #else
1176 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT]);
1177 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT]);
1178 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][LFE]);
1179 #endif
1180 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][SIDE_LEFT]);
1181 ((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][SIDE_RIGHT]);
1182 buffer = ((ALshort*)buffer) + 7;
1184 break;
1185 case AL_FORMAT_71CHN16:
1186 for(i = 0;i < SamplesToDo;i++)
1188 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT]);
1189 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]);
1190 #ifdef _WIN32
1191 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][CENTER]);
1192 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][LFE]);
1193 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT]);
1194 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT]);
1195 #else
1196 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT]);
1197 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT]);
1198 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][CENTER]);
1199 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][LFE]);
1200 #endif
1201 ((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][SIDE_LEFT]);
1202 ((ALshort*)buffer)[7] = aluF2S(DryBuffer[i][SIDE_RIGHT]);
1203 buffer = ((ALshort*)buffer) + 8;
1205 break;
1207 default:
1208 break;
1211 size -= SamplesToDo;
1214 #if defined(HAVE_FESETROUND)
1215 fesetround(fpuState);
1216 #elif defined(HAVE__CONTROLFP)
1217 _controlfp(fpuState, 0xfffff);
1218 #endif
1220 ProcessContext(ALContext);