Add an option for a simpler virtual channel setup
[openal-soft.git] / Alc / ALu.c
blobc4292833a38405b4656cb71c7d9fa14f2b588c13
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <math.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <ctype.h>
27 #include <assert.h>
29 #include "alMain.h"
30 #include "alSource.h"
31 #include "alBuffer.h"
32 #include "alListener.h"
33 #include "alAuxEffectSlot.h"
34 #include "alu.h"
35 #include "bs2b.h"
36 #include "hrtf.h"
37 #include "static_assert.h"
39 #include "mixer_defs.h"
41 #include "backends/base.h"
42 #include "midi/base.h"
45 static_assert((INT_MAX>>FRACTIONBITS)/MAX_PITCH > BUFFERSIZE,
46 "MAX_PITCH and/or BUFFERSIZE are too large for FRACTIONBITS!");
48 struct ChanMap {
49 enum Channel channel;
50 ALfloat angle;
51 ALfloat elevation;
54 /* Cone scalar */
55 ALfloat ConeScale = 1.0f;
57 /* Localized Z scalar for mono sources */
58 ALfloat ZScale = 1.0f;
60 extern inline ALfloat minf(ALfloat a, ALfloat b);
61 extern inline ALfloat maxf(ALfloat a, ALfloat b);
62 extern inline ALfloat clampf(ALfloat val, ALfloat min, ALfloat max);
64 extern inline ALdouble mind(ALdouble a, ALdouble b);
65 extern inline ALdouble maxd(ALdouble a, ALdouble b);
66 extern inline ALdouble clampd(ALdouble val, ALdouble min, ALdouble max);
68 extern inline ALuint minu(ALuint a, ALuint b);
69 extern inline ALuint maxu(ALuint a, ALuint b);
70 extern inline ALuint clampu(ALuint val, ALuint min, ALuint max);
72 extern inline ALint mini(ALint a, ALint b);
73 extern inline ALint maxi(ALint a, ALint b);
74 extern inline ALint clampi(ALint val, ALint min, ALint max);
76 extern inline ALint64 mini64(ALint64 a, ALint64 b);
77 extern inline ALint64 maxi64(ALint64 a, ALint64 b);
78 extern inline ALint64 clampi64(ALint64 val, ALint64 min, ALint64 max);
80 extern inline ALuint64 minu64(ALuint64 a, ALuint64 b);
81 extern inline ALuint64 maxu64(ALuint64 a, ALuint64 b);
82 extern inline ALuint64 clampu64(ALuint64 val, ALuint64 min, ALuint64 max);
84 extern inline ALfloat lerp(ALfloat val1, ALfloat val2, ALfloat mu);
85 extern inline ALfloat cubic(ALfloat val0, ALfloat val1, ALfloat val2, ALfloat val3, ALfloat mu);
88 static inline HrtfMixerFunc SelectHrtfMixer(void)
90 #ifdef HAVE_SSE
91 if((CPUCapFlags&CPU_CAP_SSE))
92 return MixHrtf_SSE;
93 #endif
94 #ifdef HAVE_NEON
95 if((CPUCapFlags&CPU_CAP_NEON))
96 return MixHrtf_Neon;
97 #endif
99 return MixHrtf_C;
103 static inline void aluCrossproduct(const ALfloat *inVector1, const ALfloat *inVector2, ALfloat *outVector)
105 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
106 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
107 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
110 static inline ALfloat aluDotproduct(const ALfloat *inVector1, const ALfloat *inVector2)
112 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
113 inVector1[2]*inVector2[2];
116 static inline void aluNormalize(ALfloat *inVector)
118 ALfloat lengthsqr = aluDotproduct(inVector, inVector);
119 if(lengthsqr > 0.0f)
121 ALfloat inv_length = 1.0f/sqrtf(lengthsqr);
122 inVector[0] *= inv_length;
123 inVector[1] *= inv_length;
124 inVector[2] *= inv_length;
128 static inline ALvoid aluMatrixVector(ALfloat *vector, ALfloat w, ALfloat (*restrict matrix)[4])
130 ALfloat temp[4] = {
131 vector[0], vector[1], vector[2], w
134 vector[0] = temp[0]*matrix[0][0] + temp[1]*matrix[1][0] + temp[2]*matrix[2][0] + temp[3]*matrix[3][0];
135 vector[1] = temp[0]*matrix[0][1] + temp[1]*matrix[1][1] + temp[2]*matrix[2][1] + temp[3]*matrix[3][1];
136 vector[2] = temp[0]*matrix[0][2] + temp[1]*matrix[1][2] + temp[2]*matrix[2][2] + temp[3]*matrix[3][2];
140 static void UpdateDryStepping(DirectParams *params, ALuint num_chans)
142 ALuint i, j;
144 if(!params->Moving)
146 for(i = 0;i < num_chans;i++)
148 MixGains *gains = params->Gains[i];
149 for(j = 0;j < params->OutChannels;j++)
151 gains[j].Current = gains[j].Target;
152 gains[j].Step = 1.0f;
155 params->Moving = AL_TRUE;
156 params->Counter = 0;
157 return;
160 for(i = 0;i < num_chans;i++)
162 MixGains *gains = params->Gains[i];
163 for(j = 0;j < params->OutChannels;j++)
165 ALfloat cur = maxf(gains[j].Current, FLT_EPSILON);
166 ALfloat trg = maxf(gains[j].Target, FLT_EPSILON);
167 if(fabs(trg - cur) >= GAIN_SILENCE_THRESHOLD)
168 gains[j].Step = powf(trg/cur, 1.0f/64.0f);
169 else
170 gains[j].Step = 1.0f;
171 gains[j].Current = cur;
174 params->Counter = 64;
177 static void UpdateWetStepping(SendParams *params)
179 ALfloat cur, trg;
181 if(!params->Moving)
183 params->Gain.Current = params->Gain.Target;
184 params->Gain.Step = 1.0f;
186 params->Moving = AL_TRUE;
187 params->Counter = 0;
188 return;
191 cur = maxf(params->Gain.Current, FLT_EPSILON);
192 trg = maxf(params->Gain.Target, FLT_EPSILON);
193 if(fabs(trg - cur) >= GAIN_SILENCE_THRESHOLD)
194 params->Gain.Step = powf(trg/cur, 1.0f/64.0f);
195 else
196 params->Gain.Step = 1.0f;
197 params->Gain.Current = cur;
199 params->Counter = 64;
203 static ALvoid CalcListenerParams(ALlistener *Listener)
205 ALfloat N[3], V[3], U[3], P[3];
207 /* AT then UP */
208 N[0] = Listener->Forward[0];
209 N[1] = Listener->Forward[1];
210 N[2] = Listener->Forward[2];
211 aluNormalize(N);
212 V[0] = Listener->Up[0];
213 V[1] = Listener->Up[1];
214 V[2] = Listener->Up[2];
215 aluNormalize(V);
216 /* Build and normalize right-vector */
217 aluCrossproduct(N, V, U);
218 aluNormalize(U);
220 Listener->Params.Matrix[0][0] = U[0];
221 Listener->Params.Matrix[0][1] = V[0];
222 Listener->Params.Matrix[0][2] = -N[0];
223 Listener->Params.Matrix[0][3] = 0.0f;
224 Listener->Params.Matrix[1][0] = U[1];
225 Listener->Params.Matrix[1][1] = V[1];
226 Listener->Params.Matrix[1][2] = -N[1];
227 Listener->Params.Matrix[1][3] = 0.0f;
228 Listener->Params.Matrix[2][0] = U[2];
229 Listener->Params.Matrix[2][1] = V[2];
230 Listener->Params.Matrix[2][2] = -N[2];
231 Listener->Params.Matrix[2][3] = 0.0f;
232 Listener->Params.Matrix[3][0] = 0.0f;
233 Listener->Params.Matrix[3][1] = 0.0f;
234 Listener->Params.Matrix[3][2] = 0.0f;
235 Listener->Params.Matrix[3][3] = 1.0f;
237 P[0] = Listener->Position[0];
238 P[1] = Listener->Position[1];
239 P[2] = Listener->Position[2];
240 aluMatrixVector(P, 1.0f, Listener->Params.Matrix);
241 Listener->Params.Matrix[3][0] = -P[0];
242 Listener->Params.Matrix[3][1] = -P[1];
243 Listener->Params.Matrix[3][2] = -P[2];
245 Listener->Params.Velocity[0] = Listener->Velocity[0];
246 Listener->Params.Velocity[1] = Listener->Velocity[1];
247 Listener->Params.Velocity[2] = Listener->Velocity[2];
248 aluMatrixVector(Listener->Params.Velocity, 0.0f, Listener->Params.Matrix);
251 ALvoid CalcNonAttnSourceParams(ALvoice *voice, const ALsource *ALSource, const ALCcontext *ALContext)
253 static const struct ChanMap MonoMap[1] = { { FrontCenter, 0.0f, 0.0f } };
254 static const struct ChanMap StereoMap[2] = {
255 { FrontLeft, DEG2RAD(-30.0f), DEG2RAD(0.0f) },
256 { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) }
258 static const struct ChanMap StereoWideMap[2] = {
259 { FrontLeft, DEG2RAD(-90.0f), DEG2RAD(0.0f) },
260 { FrontRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
262 static const struct ChanMap RearMap[2] = {
263 { BackLeft, DEG2RAD(-150.0f), DEG2RAD(0.0f) },
264 { BackRight, DEG2RAD( 150.0f), DEG2RAD(0.0f) }
266 static const struct ChanMap QuadMap[4] = {
267 { FrontLeft, DEG2RAD( -45.0f), DEG2RAD(0.0f) },
268 { FrontRight, DEG2RAD( 45.0f), DEG2RAD(0.0f) },
269 { BackLeft, DEG2RAD(-135.0f), DEG2RAD(0.0f) },
270 { BackRight, DEG2RAD( 135.0f), DEG2RAD(0.0f) }
272 static const struct ChanMap X51Map[6] = {
273 { FrontLeft, DEG2RAD( -30.0f), DEG2RAD(0.0f) },
274 { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
275 { FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
276 { LFE, 0.0f, 0.0f },
277 { SideLeft, DEG2RAD(-110.0f), DEG2RAD(0.0f) },
278 { SideRight, DEG2RAD( 110.0f), DEG2RAD(0.0f) }
280 static const struct ChanMap X61Map[7] = {
281 { FrontLeft, DEG2RAD(-30.0f), DEG2RAD(0.0f) },
282 { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
283 { FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
284 { LFE, 0.0f, 0.0f },
285 { BackCenter, DEG2RAD(180.0f), DEG2RAD(0.0f) },
286 { SideLeft, DEG2RAD(-90.0f), DEG2RAD(0.0f) },
287 { SideRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
289 static const struct ChanMap X71Map[8] = {
290 { FrontLeft, DEG2RAD( -30.0f), DEG2RAD(0.0f) },
291 { FrontRight, DEG2RAD( 30.0f), DEG2RAD(0.0f) },
292 { FrontCenter, DEG2RAD( 0.0f), DEG2RAD(0.0f) },
293 { LFE, 0.0f, 0.0f },
294 { BackLeft, DEG2RAD(-150.0f), DEG2RAD(0.0f) },
295 { BackRight, DEG2RAD( 150.0f), DEG2RAD(0.0f) },
296 { SideLeft, DEG2RAD( -90.0f), DEG2RAD(0.0f) },
297 { SideRight, DEG2RAD( 90.0f), DEG2RAD(0.0f) }
300 ALCdevice *Device = ALContext->Device;
301 ALfloat SourceVolume,ListenerGain,MinVolume,MaxVolume;
302 ALbufferlistitem *BufferListItem;
303 enum FmtChannels Channels;
304 ALfloat DryGain, DryGainHF, DryGainLF;
305 ALfloat WetGain[MAX_SENDS];
306 ALfloat WetGainHF[MAX_SENDS];
307 ALfloat WetGainLF[MAX_SENDS];
308 ALuint NumSends, Frequency;
309 ALboolean Relative;
310 const struct ChanMap *chans = NULL;
311 ALuint num_channels = 0;
312 ALboolean DirectChannels;
313 ALboolean isbformat = AL_FALSE;
314 ALfloat Pitch;
315 ALuint i, j, c;
317 /* Get device properties */
318 NumSends = Device->NumAuxSends;
319 Frequency = Device->Frequency;
321 /* Get listener properties */
322 ListenerGain = ALContext->Listener->Gain;
324 /* Get source properties */
325 SourceVolume = ALSource->Gain;
326 MinVolume = ALSource->MinGain;
327 MaxVolume = ALSource->MaxGain;
328 Pitch = ALSource->Pitch;
329 Relative = ALSource->HeadRelative;
330 DirectChannels = ALSource->DirectChannels;
332 voice->Direct.OutBuffer = Device->DryBuffer;
333 voice->Direct.OutChannels = Device->NumChannels;
334 for(i = 0;i < NumSends;i++)
336 ALeffectslot *Slot = ALSource->Send[i].Slot;
337 if(!Slot && i == 0)
338 Slot = Device->DefaultSlot;
339 if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
340 voice->Send[i].OutBuffer = NULL;
341 else
342 voice->Send[i].OutBuffer = Slot->WetBuffer;
345 /* Calculate the stepping value */
346 Channels = FmtMono;
347 BufferListItem = ATOMIC_LOAD(&ALSource->queue);
348 while(BufferListItem != NULL)
350 ALbuffer *ALBuffer;
351 if((ALBuffer=BufferListItem->buffer) != NULL)
353 Pitch = Pitch * ALBuffer->Frequency / Frequency;
354 if(Pitch > (ALfloat)MAX_PITCH)
355 voice->Step = MAX_PITCH<<FRACTIONBITS;
356 else
358 voice->Step = fastf2i(Pitch*FRACTIONONE);
359 if(voice->Step == 0)
360 voice->Step = 1;
363 Channels = ALBuffer->FmtChannels;
364 break;
366 BufferListItem = BufferListItem->next;
369 /* Calculate gains */
370 DryGain = clampf(SourceVolume, MinVolume, MaxVolume);
371 DryGain *= ALSource->Direct.Gain * ListenerGain;
372 DryGainHF = ALSource->Direct.GainHF;
373 DryGainLF = ALSource->Direct.GainLF;
374 for(i = 0;i < NumSends;i++)
376 WetGain[i] = clampf(SourceVolume, MinVolume, MaxVolume);
377 WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
378 WetGainHF[i] = ALSource->Send[i].GainHF;
379 WetGainLF[i] = ALSource->Send[i].GainLF;
382 switch(Channels)
384 case FmtMono:
385 chans = MonoMap;
386 num_channels = 1;
387 break;
389 case FmtStereo:
390 /* HACK: Place the stereo channels at +/-90 degrees when using non-
391 * HRTF stereo output. This helps reduce the "monoization" caused
392 * by them panning towards the center. */
393 if(Device->FmtChans == DevFmtStereo && !Device->Hrtf)
394 chans = StereoWideMap;
395 else
396 chans = StereoMap;
397 num_channels = 2;
398 break;
400 case FmtRear:
401 chans = RearMap;
402 num_channels = 2;
403 break;
405 case FmtQuad:
406 chans = QuadMap;
407 num_channels = 4;
408 break;
410 case FmtX51:
411 chans = X51Map;
412 num_channels = 6;
413 break;
415 case FmtX61:
416 chans = X61Map;
417 num_channels = 7;
418 break;
420 case FmtX71:
421 chans = X71Map;
422 num_channels = 8;
423 break;
425 case FmtBFormat2D:
426 num_channels = 3;
427 isbformat = AL_TRUE;
428 DirectChannels = AL_FALSE;
429 break;
431 case FmtBFormat3D:
432 num_channels = 4;
433 isbformat = AL_TRUE;
434 DirectChannels = AL_FALSE;
435 break;
438 if(isbformat)
440 ALfloat N[3], V[3], U[3];
441 ALfloat matrix[4][4];
443 /* AT then UP */
444 N[0] = ALSource->Orientation[0][0];
445 N[1] = ALSource->Orientation[0][1];
446 N[2] = ALSource->Orientation[0][2];
447 aluNormalize(N);
448 V[0] = ALSource->Orientation[1][0];
449 V[1] = ALSource->Orientation[1][1];
450 V[2] = ALSource->Orientation[1][2];
451 aluNormalize(V);
452 if(!Relative)
454 ALfloat (*restrict lmatrix)[4] = ALContext->Listener->Params.Matrix;
455 aluMatrixVector(N, 0.0f, lmatrix);
456 aluMatrixVector(V, 0.0f, lmatrix);
458 /* Build and normalize right-vector */
459 aluCrossproduct(N, V, U);
460 aluNormalize(U);
462 matrix[0][0] = 1.0f;
463 matrix[0][1] = 0.0f;
464 matrix[0][2] = 0.0f;
465 matrix[0][3] = 0.0f;
466 matrix[1][0] = 0.0f;
467 matrix[1][1] = -N[2];
468 matrix[1][2] = -N[0];
469 matrix[1][3] = N[1];
470 matrix[2][0] = 0.0f;
471 matrix[2][1] = U[2];
472 matrix[2][2] = U[0];
473 matrix[2][3] = -U[1];
474 matrix[3][0] = 0.0f;
475 matrix[3][1] = -V[2];
476 matrix[3][2] = -V[0];
477 matrix[3][3] = V[1];
479 for(c = 0;c < num_channels;c++)
481 MixGains *gains = voice->Direct.Gains[c];
482 ALfloat Target[MAX_OUTPUT_CHANNELS];
484 ComputeBFormatGains(Device, matrix[c], DryGain, Target);
485 for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
486 gains[i].Target = Target[i];
488 /* B-Format cannot handle logarithmic gain stepping, since the gain can
489 * switch between positive and negative values. */
490 voice->Direct.Moving = AL_FALSE;
491 UpdateDryStepping(&voice->Direct, num_channels);
493 voice->IsHrtf = AL_FALSE;
494 for(i = 0;i < NumSends;i++)
495 WetGain[i] *= 1.4142f;
497 else if(DirectChannels != AL_FALSE)
499 if(Device->Hrtf)
501 voice->Direct.OutBuffer = &voice->Direct.OutBuffer[voice->Direct.OutChannels];
502 voice->Direct.OutChannels = 2;
503 for(c = 0;c < num_channels;c++)
505 MixGains *gains = voice->Direct.Gains[c];
507 for(j = 0;j < MAX_OUTPUT_CHANNELS;j++)
508 gains[j].Target = 0.0f;
510 if(chans[c].channel == FrontLeft)
511 gains[0].Target = DryGain;
512 else if(chans[c].channel == FrontRight)
513 gains[1].Target = DryGain;
516 else for(c = 0;c < num_channels;c++)
518 MixGains *gains = voice->Direct.Gains[c];
519 int idx;
521 for(j = 0;j < MAX_OUTPUT_CHANNELS;j++)
522 gains[j].Target = 0.0f;
523 if((idx=GetChannelIdxByName(Device, chans[c].channel)) != -1)
524 gains[idx].Target = DryGain;
526 UpdateDryStepping(&voice->Direct, num_channels);
528 voice->IsHrtf = AL_FALSE;
530 else if(Device->Hrtf)
532 voice->Direct.OutBuffer = &voice->Direct.OutBuffer[voice->Direct.OutChannels];
533 voice->Direct.OutChannels = 2;
534 for(c = 0;c < num_channels;c++)
536 if(chans[c].channel == LFE)
538 /* Skip LFE */
539 voice->Direct.Hrtf.Params[c].Delay[0] = 0;
540 voice->Direct.Hrtf.Params[c].Delay[1] = 0;
541 for(i = 0;i < HRIR_LENGTH;i++)
543 voice->Direct.Hrtf.Params[c].Coeffs[i][0] = 0.0f;
544 voice->Direct.Hrtf.Params[c].Coeffs[i][1] = 0.0f;
547 else
549 /* Get the static HRIR coefficients and delays for this
550 * channel. */
551 GetLerpedHrtfCoeffs(Device->Hrtf,
552 chans[c].elevation, chans[c].angle, 1.0f, DryGain,
553 voice->Direct.Hrtf.Params[c].Coeffs,
554 voice->Direct.Hrtf.Params[c].Delay);
557 voice->Direct.Counter = 0;
558 voice->Direct.Moving = AL_TRUE;
559 voice->Direct.Hrtf.IrSize = GetHrtfIrSize(Device->Hrtf);
561 voice->IsHrtf = AL_TRUE;
563 else
565 for(c = 0;c < num_channels;c++)
567 MixGains *gains = voice->Direct.Gains[c];
568 ALfloat Target[MAX_OUTPUT_CHANNELS];
570 /* Special-case LFE */
571 if(chans[c].channel == LFE)
573 int idx;
574 for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
575 gains[i].Target = 0.0f;
576 if((idx=GetChannelIdxByName(Device, chans[c].channel)) != -1)
577 gains[idx].Target = DryGain;
578 continue;
581 ComputeAngleGains(Device, chans[c].angle, chans[c].elevation, DryGain, Target);
582 for(i = 0;i < MAX_OUTPUT_CHANNELS;i++)
583 gains[i].Target = Target[i];
585 UpdateDryStepping(&voice->Direct, num_channels);
587 voice->IsHrtf = AL_FALSE;
589 for(i = 0;i < NumSends;i++)
591 voice->Send[i].Gain.Target = WetGain[i];
592 UpdateWetStepping(&voice->Send[i]);
596 ALfloat gainhf = maxf(0.01f, DryGainHF);
597 ALfloat gainlf = maxf(0.01f, DryGainLF);
598 ALfloat hfscale = ALSource->Direct.HFReference / Frequency;
599 ALfloat lfscale = ALSource->Direct.LFReference / Frequency;
600 for(c = 0;c < num_channels;c++)
602 voice->Direct.Filters[c].ActiveType = AF_None;
603 if(gainhf != 1.0f) voice->Direct.Filters[c].ActiveType |= AF_LowPass;
604 if(gainlf != 1.0f) voice->Direct.Filters[c].ActiveType |= AF_HighPass;
605 ALfilterState_setParams(
606 &voice->Direct.Filters[c].LowPass, ALfilterType_HighShelf, gainhf,
607 hfscale, 0.0f
609 ALfilterState_setParams(
610 &voice->Direct.Filters[c].HighPass, ALfilterType_LowShelf, gainlf,
611 lfscale, 0.0f
615 for(i = 0;i < NumSends;i++)
617 ALfloat gainhf = maxf(0.01f, WetGainHF[i]);
618 ALfloat gainlf = maxf(0.01f, WetGainLF[i]);
619 ALfloat hfscale = ALSource->Send[i].HFReference / Frequency;
620 ALfloat lfscale = ALSource->Send[i].LFReference / Frequency;
621 for(c = 0;c < num_channels;c++)
623 voice->Send[i].Filters[c].ActiveType = AF_None;
624 if(gainhf != 1.0f) voice->Send[i].Filters[c].ActiveType |= AF_LowPass;
625 if(gainlf != 1.0f) voice->Send[i].Filters[c].ActiveType |= AF_HighPass;
626 ALfilterState_setParams(
627 &voice->Send[i].Filters[c].LowPass, ALfilterType_HighShelf, gainhf,
628 hfscale, 0.0f
630 ALfilterState_setParams(
631 &voice->Send[i].Filters[c].HighPass, ALfilterType_LowShelf, gainlf,
632 lfscale, 0.0f
638 ALvoid CalcSourceParams(ALvoice *voice, const ALsource *ALSource, const ALCcontext *ALContext)
640 ALCdevice *Device = ALContext->Device;
641 ALfloat Velocity[3],Direction[3],Position[3],SourceToListener[3];
642 ALfloat InnerAngle,OuterAngle,Angle,Distance,ClampedDist;
643 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff;
644 ALfloat ConeVolume,ConeHF,SourceVolume,ListenerGain;
645 ALfloat DopplerFactor, SpeedOfSound;
646 ALfloat AirAbsorptionFactor;
647 ALfloat RoomAirAbsorption[MAX_SENDS];
648 ALbufferlistitem *BufferListItem;
649 ALfloat Attenuation;
650 ALfloat RoomAttenuation[MAX_SENDS];
651 ALfloat MetersPerUnit;
652 ALfloat RoomRolloffBase;
653 ALfloat RoomRolloff[MAX_SENDS];
654 ALfloat DecayDistance[MAX_SENDS];
655 ALfloat DryGain;
656 ALfloat DryGainHF;
657 ALfloat DryGainLF;
658 ALboolean DryGainHFAuto;
659 ALfloat WetGain[MAX_SENDS];
660 ALfloat WetGainHF[MAX_SENDS];
661 ALfloat WetGainLF[MAX_SENDS];
662 ALboolean WetGainAuto;
663 ALboolean WetGainHFAuto;
664 ALfloat Pitch;
665 ALuint Frequency;
666 ALint NumSends;
667 ALint i, j;
669 DryGainHF = 1.0f;
670 DryGainLF = 1.0f;
671 for(i = 0;i < MAX_SENDS;i++)
673 WetGainHF[i] = 1.0f;
674 WetGainLF[i] = 1.0f;
677 /* Get context/device properties */
678 DopplerFactor = ALContext->DopplerFactor * ALSource->DopplerFactor;
679 SpeedOfSound = ALContext->SpeedOfSound * ALContext->DopplerVelocity;
680 NumSends = Device->NumAuxSends;
681 Frequency = Device->Frequency;
683 /* Get listener properties */
684 ListenerGain = ALContext->Listener->Gain;
685 MetersPerUnit = ALContext->Listener->MetersPerUnit;
687 /* Get source properties */
688 SourceVolume = ALSource->Gain;
689 MinVolume = ALSource->MinGain;
690 MaxVolume = ALSource->MaxGain;
691 Pitch = ALSource->Pitch;
692 Position[0] = ALSource->Position[0];
693 Position[1] = ALSource->Position[1];
694 Position[2] = ALSource->Position[2];
695 Direction[0] = ALSource->Direction[0];
696 Direction[1] = ALSource->Direction[1];
697 Direction[2] = ALSource->Direction[2];
698 Velocity[0] = ALSource->Velocity[0];
699 Velocity[1] = ALSource->Velocity[1];
700 Velocity[2] = ALSource->Velocity[2];
701 MinDist = ALSource->RefDistance;
702 MaxDist = ALSource->MaxDistance;
703 Rolloff = ALSource->RollOffFactor;
704 InnerAngle = ALSource->InnerAngle;
705 OuterAngle = ALSource->OuterAngle;
706 AirAbsorptionFactor = ALSource->AirAbsorptionFactor;
707 DryGainHFAuto = ALSource->DryGainHFAuto;
708 WetGainAuto = ALSource->WetGainAuto;
709 WetGainHFAuto = ALSource->WetGainHFAuto;
710 RoomRolloffBase = ALSource->RoomRolloffFactor;
712 voice->Direct.OutBuffer = Device->DryBuffer;
713 voice->Direct.OutChannels = Device->NumChannels;
714 for(i = 0;i < NumSends;i++)
716 ALeffectslot *Slot = ALSource->Send[i].Slot;
718 if(!Slot && i == 0)
719 Slot = Device->DefaultSlot;
720 if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
722 Slot = NULL;
723 RoomRolloff[i] = 0.0f;
724 DecayDistance[i] = 0.0f;
725 RoomAirAbsorption[i] = 1.0f;
727 else if(Slot->AuxSendAuto)
729 RoomRolloff[i] = RoomRolloffBase;
730 if(IsReverbEffect(Slot->EffectType))
732 RoomRolloff[i] += Slot->EffectProps.Reverb.RoomRolloffFactor;
733 DecayDistance[i] = Slot->EffectProps.Reverb.DecayTime *
734 SPEEDOFSOUNDMETRESPERSEC;
735 RoomAirAbsorption[i] = Slot->EffectProps.Reverb.AirAbsorptionGainHF;
737 else
739 DecayDistance[i] = 0.0f;
740 RoomAirAbsorption[i] = 1.0f;
743 else
745 /* If the slot's auxiliary send auto is off, the data sent to the
746 * effect slot is the same as the dry path, sans filter effects */
747 RoomRolloff[i] = Rolloff;
748 DecayDistance[i] = 0.0f;
749 RoomAirAbsorption[i] = AIRABSORBGAINHF;
752 if(!Slot || Slot->EffectType == AL_EFFECT_NULL)
753 voice->Send[i].OutBuffer = NULL;
754 else
755 voice->Send[i].OutBuffer = Slot->WetBuffer;
758 /* Transform source to listener space (convert to head relative) */
759 if(ALSource->HeadRelative == AL_FALSE)
761 ALfloat (*restrict Matrix)[4] = ALContext->Listener->Params.Matrix;
762 /* Transform source vectors */
763 aluMatrixVector(Position, 1.0f, Matrix);
764 aluMatrixVector(Direction, 0.0f, Matrix);
765 aluMatrixVector(Velocity, 0.0f, Matrix);
767 else
769 const ALfloat *ListenerVel = ALContext->Listener->Params.Velocity;
770 /* Offset the source velocity to be relative of the listener velocity */
771 Velocity[0] += ListenerVel[0];
772 Velocity[1] += ListenerVel[1];
773 Velocity[2] += ListenerVel[2];
776 SourceToListener[0] = -Position[0];
777 SourceToListener[1] = -Position[1];
778 SourceToListener[2] = -Position[2];
779 aluNormalize(SourceToListener);
780 aluNormalize(Direction);
782 /* Calculate distance attenuation */
783 Distance = sqrtf(aluDotproduct(Position, Position));
784 ClampedDist = Distance;
786 Attenuation = 1.0f;
787 for(i = 0;i < NumSends;i++)
788 RoomAttenuation[i] = 1.0f;
789 switch(ALContext->SourceDistanceModel ? ALSource->DistanceModel :
790 ALContext->DistanceModel)
792 case InverseDistanceClamped:
793 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
794 if(MaxDist < MinDist)
795 break;
796 /*fall-through*/
797 case InverseDistance:
798 if(MinDist > 0.0f)
800 if((MinDist + (Rolloff * (ClampedDist - MinDist))) > 0.0f)
801 Attenuation = MinDist / (MinDist + (Rolloff * (ClampedDist - MinDist)));
802 for(i = 0;i < NumSends;i++)
804 if((MinDist + (RoomRolloff[i] * (ClampedDist - MinDist))) > 0.0f)
805 RoomAttenuation[i] = MinDist / (MinDist + (RoomRolloff[i] * (ClampedDist - MinDist)));
808 break;
810 case LinearDistanceClamped:
811 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
812 if(MaxDist < MinDist)
813 break;
814 /*fall-through*/
815 case LinearDistance:
816 if(MaxDist != MinDist)
818 Attenuation = 1.0f - (Rolloff*(ClampedDist-MinDist)/(MaxDist - MinDist));
819 Attenuation = maxf(Attenuation, 0.0f);
820 for(i = 0;i < NumSends;i++)
822 RoomAttenuation[i] = 1.0f - (RoomRolloff[i]*(ClampedDist-MinDist)/(MaxDist - MinDist));
823 RoomAttenuation[i] = maxf(RoomAttenuation[i], 0.0f);
826 break;
828 case ExponentDistanceClamped:
829 ClampedDist = clampf(ClampedDist, MinDist, MaxDist);
830 if(MaxDist < MinDist)
831 break;
832 /*fall-through*/
833 case ExponentDistance:
834 if(ClampedDist > 0.0f && MinDist > 0.0f)
836 Attenuation = powf(ClampedDist/MinDist, -Rolloff);
837 for(i = 0;i < NumSends;i++)
838 RoomAttenuation[i] = powf(ClampedDist/MinDist, -RoomRolloff[i]);
840 break;
842 case DisableDistance:
843 ClampedDist = MinDist;
844 break;
847 /* Source Gain + Attenuation */
848 DryGain = SourceVolume * Attenuation;
849 for(i = 0;i < NumSends;i++)
850 WetGain[i] = SourceVolume * RoomAttenuation[i];
852 /* Distance-based air absorption */
853 if(AirAbsorptionFactor > 0.0f && ClampedDist > MinDist)
855 ALfloat meters = maxf(ClampedDist-MinDist, 0.0f) * MetersPerUnit;
856 DryGainHF *= powf(AIRABSORBGAINHF, AirAbsorptionFactor*meters);
857 for(i = 0;i < NumSends;i++)
858 WetGainHF[i] *= powf(RoomAirAbsorption[i], AirAbsorptionFactor*meters);
861 if(WetGainAuto)
863 ALfloat ApparentDist = 1.0f/maxf(Attenuation, 0.00001f) - 1.0f;
865 /* Apply a decay-time transformation to the wet path, based on the
866 * attenuation of the dry path.
868 * Using the apparent distance, based on the distance attenuation, the
869 * initial decay of the reverb effect is calculated and applied to the
870 * wet path.
872 for(i = 0;i < NumSends;i++)
874 if(DecayDistance[i] > 0.0f)
875 WetGain[i] *= powf(0.001f/*-60dB*/, ApparentDist/DecayDistance[i]);
879 /* Calculate directional soundcones */
880 Angle = RAD2DEG(acosf(aluDotproduct(Direction,SourceToListener)) * ConeScale) * 2.0f;
881 if(Angle > InnerAngle && Angle <= OuterAngle)
883 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
884 ConeVolume = lerp(1.0f, ALSource->OuterGain, scale);
885 ConeHF = lerp(1.0f, ALSource->OuterGainHF, scale);
887 else if(Angle > OuterAngle)
889 ConeVolume = ALSource->OuterGain;
890 ConeHF = ALSource->OuterGainHF;
892 else
894 ConeVolume = 1.0f;
895 ConeHF = 1.0f;
898 DryGain *= ConeVolume;
899 if(WetGainAuto)
901 for(i = 0;i < NumSends;i++)
902 WetGain[i] *= ConeVolume;
904 if(DryGainHFAuto)
905 DryGainHF *= ConeHF;
906 if(WetGainHFAuto)
908 for(i = 0;i < NumSends;i++)
909 WetGainHF[i] *= ConeHF;
912 /* Clamp to Min/Max Gain */
913 DryGain = clampf(DryGain, MinVolume, MaxVolume);
914 for(i = 0;i < NumSends;i++)
915 WetGain[i] = clampf(WetGain[i], MinVolume, MaxVolume);
917 /* Apply gain and frequency filters */
918 DryGain *= ALSource->Direct.Gain * ListenerGain;
919 DryGainHF *= ALSource->Direct.GainHF;
920 DryGainLF *= ALSource->Direct.GainLF;
921 for(i = 0;i < NumSends;i++)
923 WetGain[i] *= ALSource->Send[i].Gain * ListenerGain;
924 WetGainHF[i] *= ALSource->Send[i].GainHF;
925 WetGainLF[i] *= ALSource->Send[i].GainLF;
928 /* Calculate velocity-based doppler effect */
929 if(DopplerFactor > 0.0f)
931 const ALfloat *ListenerVel = ALContext->Listener->Params.Velocity;
932 ALfloat VSS, VLS;
934 if(SpeedOfSound < 1.0f)
936 DopplerFactor *= 1.0f/SpeedOfSound;
937 SpeedOfSound = 1.0f;
940 VSS = aluDotproduct(Velocity, SourceToListener) * DopplerFactor;
941 VLS = aluDotproduct(ListenerVel, SourceToListener) * DopplerFactor;
943 Pitch *= clampf(SpeedOfSound-VLS, 1.0f, SpeedOfSound*2.0f - 1.0f) /
944 clampf(SpeedOfSound-VSS, 1.0f, SpeedOfSound*2.0f - 1.0f);
947 BufferListItem = ATOMIC_LOAD(&ALSource->queue);
948 while(BufferListItem != NULL)
950 ALbuffer *ALBuffer;
951 if((ALBuffer=BufferListItem->buffer) != NULL)
953 /* Calculate fixed-point stepping value, based on the pitch, buffer
954 * frequency, and output frequency. */
955 Pitch = Pitch * ALBuffer->Frequency / Frequency;
956 if(Pitch > (ALfloat)MAX_PITCH)
957 voice->Step = MAX_PITCH<<FRACTIONBITS;
958 else
960 voice->Step = fastf2i(Pitch*FRACTIONONE);
961 if(voice->Step == 0)
962 voice->Step = 1;
965 break;
967 BufferListItem = BufferListItem->next;
970 if(Device->Hrtf)
972 /* Use a binaural HRTF algorithm for stereo headphone playback */
973 ALfloat delta, ev = 0.0f, az = 0.0f;
974 ALfloat radius = ALSource->Radius;
975 ALfloat dirfact = 1.0f;
977 voice->Direct.OutBuffer = &voice->Direct.OutBuffer[voice->Direct.OutChannels];
978 voice->Direct.OutChannels = 2;
980 if(Distance > FLT_EPSILON)
982 ALfloat invlen = 1.0f/Distance;
983 Position[0] *= invlen;
984 Position[1] *= invlen;
985 Position[2] *= invlen;
987 /* Calculate elevation and azimuth only when the source is not at
988 * the listener. This prevents +0 and -0 Z from producing
989 * inconsistent panning. Also, clamp Y in case FP precision errors
990 * cause it to land outside of -1..+1. */
991 ev = asinf(clampf(Position[1], -1.0f, 1.0f));
992 az = atan2f(Position[0], -Position[2]*ZScale);
994 if(radius > Distance)
995 dirfact *= Distance / radius;
997 /* Check to see if the HRIR is already moving. */
998 if(voice->Direct.Moving)
1000 /* Calculate the normalized HRTF transition factor (delta). */
1001 delta = CalcHrtfDelta(voice->Direct.Hrtf.Gain, DryGain,
1002 voice->Direct.Hrtf.Dir, Position);
1003 /* If the delta is large enough, get the moving HRIR target
1004 * coefficients, target delays, steppping values, and counter. */
1005 if(delta > 0.001f)
1007 ALuint counter = GetMovingHrtfCoeffs(Device->Hrtf,
1008 ev, az, dirfact, DryGain, delta, voice->Direct.Counter,
1009 voice->Direct.Hrtf.Params[0].Coeffs, voice->Direct.Hrtf.Params[0].Delay,
1010 voice->Direct.Hrtf.Params[0].CoeffStep, voice->Direct.Hrtf.Params[0].DelayStep
1012 voice->Direct.Counter = counter;
1013 voice->Direct.Hrtf.Gain = DryGain;
1014 voice->Direct.Hrtf.Dir[0] = Position[0];
1015 voice->Direct.Hrtf.Dir[1] = Position[1];
1016 voice->Direct.Hrtf.Dir[2] = Position[2];
1019 else
1021 /* Get the initial (static) HRIR coefficients and delays. */
1022 GetLerpedHrtfCoeffs(Device->Hrtf, ev, az, dirfact, DryGain,
1023 voice->Direct.Hrtf.Params[0].Coeffs,
1024 voice->Direct.Hrtf.Params[0].Delay);
1025 voice->Direct.Counter = 0;
1026 voice->Direct.Moving = AL_TRUE;
1027 voice->Direct.Hrtf.Gain = DryGain;
1028 voice->Direct.Hrtf.Dir[0] = Position[0];
1029 voice->Direct.Hrtf.Dir[1] = Position[1];
1030 voice->Direct.Hrtf.Dir[2] = Position[2];
1032 voice->Direct.Hrtf.IrSize = GetHrtfIrSize(Device->Hrtf);
1034 voice->IsHrtf = AL_TRUE;
1036 else
1038 MixGains *gains = voice->Direct.Gains[0];
1039 ALfloat radius = ALSource->Radius;
1040 ALfloat Target[MAX_OUTPUT_CHANNELS];
1042 /* Normalize the length, and compute panned gains. */
1043 if(!(Distance > FLT_EPSILON) && !(radius > FLT_EPSILON))
1045 const ALfloat front[3] = { 0.0f, 0.0f, -1.0f };
1046 ComputeDirectionalGains(Device, front, DryGain, Target);
1048 else
1050 ALfloat invlen = 1.0f/maxf(Distance, radius);
1051 Position[0] *= invlen;
1052 Position[1] *= invlen;
1053 Position[2] *= invlen;
1054 ComputeDirectionalGains(Device, Position, DryGain, Target);
1057 for(j = 0;j < MAX_OUTPUT_CHANNELS;j++)
1058 gains[j].Target = Target[j];
1059 UpdateDryStepping(&voice->Direct, 1);
1061 voice->IsHrtf = AL_FALSE;
1063 for(i = 0;i < NumSends;i++)
1065 voice->Send[i].Gain.Target = WetGain[i];
1066 UpdateWetStepping(&voice->Send[i]);
1070 ALfloat gainhf = maxf(0.01f, DryGainHF);
1071 ALfloat gainlf = maxf(0.01f, DryGainLF);
1072 ALfloat hfscale = ALSource->Direct.HFReference / Frequency;
1073 ALfloat lfscale = ALSource->Direct.LFReference / Frequency;
1074 voice->Direct.Filters[0].ActiveType = AF_None;
1075 if(gainhf != 1.0f) voice->Direct.Filters[0].ActiveType |= AF_LowPass;
1076 if(gainlf != 1.0f) voice->Direct.Filters[0].ActiveType |= AF_HighPass;
1077 ALfilterState_setParams(
1078 &voice->Direct.Filters[0].LowPass, ALfilterType_HighShelf, gainhf,
1079 hfscale, 0.0f
1081 ALfilterState_setParams(
1082 &voice->Direct.Filters[0].HighPass, ALfilterType_LowShelf, gainlf,
1083 lfscale, 0.0f
1086 for(i = 0;i < NumSends;i++)
1088 ALfloat gainhf = maxf(0.01f, WetGainHF[i]);
1089 ALfloat gainlf = maxf(0.01f, WetGainLF[i]);
1090 ALfloat hfscale = ALSource->Send[i].HFReference / Frequency;
1091 ALfloat lfscale = ALSource->Send[i].LFReference / Frequency;
1092 voice->Send[i].Filters[0].ActiveType = AF_None;
1093 if(gainhf != 1.0f) voice->Send[i].Filters[0].ActiveType |= AF_LowPass;
1094 if(gainlf != 1.0f) voice->Send[i].Filters[0].ActiveType |= AF_HighPass;
1095 ALfilterState_setParams(
1096 &voice->Send[i].Filters[0].LowPass, ALfilterType_HighShelf, gainhf,
1097 hfscale, 0.0f
1099 ALfilterState_setParams(
1100 &voice->Send[i].Filters[0].HighPass, ALfilterType_LowShelf, gainlf,
1101 lfscale, 0.0f
1107 static inline ALint aluF2I25(ALfloat val)
1109 /* Clamp the value between -1 and +1. This handles that with only a single branch. */
1110 if(fabsf(val) > 1.0f)
1111 val = (ALfloat)((0.0f < val) - (val < 0.0f));
1112 /* Convert to a signed integer, between -16777215 and +16777215. */
1113 return fastf2i(val*16777215.0f);
1116 static inline ALfloat aluF2F(ALfloat val)
1117 { return val; }
1118 static inline ALint aluF2I(ALfloat val)
1119 { return aluF2I25(val)<<7; }
1120 static inline ALuint aluF2UI(ALfloat val)
1121 { return aluF2I(val)+2147483648u; }
1122 static inline ALshort aluF2S(ALfloat val)
1123 { return aluF2I25(val)>>9; }
1124 static inline ALushort aluF2US(ALfloat val)
1125 { return aluF2S(val)+32768; }
1126 static inline ALbyte aluF2B(ALfloat val)
1127 { return aluF2I25(val)>>17; }
1128 static inline ALubyte aluF2UB(ALfloat val)
1129 { return aluF2B(val)+128; }
1131 #define DECL_TEMPLATE(T, func) \
1132 static void Write_##T(const ALfloatBUFFERSIZE *InBuffer, ALvoid *OutBuffer, \
1133 ALuint SamplesToDo, ALuint numchans) \
1135 ALuint i, j; \
1136 for(j = 0;j < numchans;j++) \
1138 const ALfloat *in = InBuffer[j]; \
1139 T *restrict out = (T*)OutBuffer + j; \
1140 for(i = 0;i < SamplesToDo;i++) \
1141 out[i*numchans] = func(in[i]); \
1145 DECL_TEMPLATE(ALfloat, aluF2F)
1146 DECL_TEMPLATE(ALuint, aluF2UI)
1147 DECL_TEMPLATE(ALint, aluF2I)
1148 DECL_TEMPLATE(ALushort, aluF2US)
1149 DECL_TEMPLATE(ALshort, aluF2S)
1150 DECL_TEMPLATE(ALubyte, aluF2UB)
1151 DECL_TEMPLATE(ALbyte, aluF2B)
1153 #undef DECL_TEMPLATE
1156 ALvoid aluMixData(ALCdevice *device, ALvoid *buffer, ALsizei size)
1158 ALuint SamplesToDo;
1159 ALeffectslot **slot, **slot_end;
1160 ALvoice *voice, *voice_end;
1161 ALCcontext *ctx;
1162 FPUCtl oldMode;
1163 ALuint i, c;
1165 SetMixerFPUMode(&oldMode);
1167 while(size > 0)
1169 ALuint outchanoffset = 0;
1170 ALuint outchancount = device->NumChannels;
1172 IncrementRef(&device->MixCount);
1174 SamplesToDo = minu(size, BUFFERSIZE);
1175 for(c = 0;c < device->NumChannels;c++)
1176 memset(device->DryBuffer[c], 0, SamplesToDo*sizeof(ALfloat));
1177 if(device->Hrtf)
1179 outchanoffset = device->NumChannels;
1180 outchancount = 2;
1181 for(c = 0;c < outchancount;c++)
1182 memset(device->DryBuffer[outchanoffset+c], 0, SamplesToDo*sizeof(ALfloat));
1185 V0(device->Backend,lock)();
1186 V(device->Synth,process)(SamplesToDo, &device->DryBuffer[outchanoffset]);
1188 ctx = ATOMIC_LOAD(&device->ContextList);
1189 while(ctx)
1191 ALenum DeferUpdates = ctx->DeferUpdates;
1192 ALenum UpdateSources = AL_FALSE;
1194 if(!DeferUpdates)
1195 UpdateSources = ATOMIC_EXCHANGE(ALenum, &ctx->UpdateSources, AL_FALSE);
1197 if(UpdateSources)
1198 CalcListenerParams(ctx->Listener);
1200 /* source processing */
1201 voice = ctx->Voices;
1202 voice_end = voice + ctx->VoiceCount;
1203 while(voice != voice_end)
1205 ALsource *source = voice->Source;
1206 if(!source) goto next;
1208 if(source->state != AL_PLAYING && source->state != AL_PAUSED)
1210 voice->Source = NULL;
1211 goto next;
1214 if(!DeferUpdates && (ATOMIC_EXCHANGE(ALenum, &source->NeedsUpdate, AL_FALSE) ||
1215 UpdateSources))
1216 voice->Update(voice, source, ctx);
1218 if(source->state != AL_PAUSED)
1219 MixSource(voice, source, device, SamplesToDo);
1220 next:
1221 voice++;
1224 /* effect slot processing */
1225 slot = VECTOR_ITER_BEGIN(ctx->ActiveAuxSlots);
1226 slot_end = VECTOR_ITER_END(ctx->ActiveAuxSlots);
1227 while(slot != slot_end)
1229 if(!DeferUpdates && ATOMIC_EXCHANGE(ALenum, &(*slot)->NeedsUpdate, AL_FALSE))
1230 V((*slot)->EffectState,update)(device, *slot);
1232 V((*slot)->EffectState,process)(SamplesToDo, (*slot)->WetBuffer[0],
1233 device->DryBuffer, device->NumChannels);
1235 for(i = 0;i < SamplesToDo;i++)
1236 (*slot)->WetBuffer[0][i] = 0.0f;
1238 slot++;
1241 ctx = ctx->next;
1244 slot = &device->DefaultSlot;
1245 if(*slot != NULL)
1247 if(ATOMIC_EXCHANGE(ALenum, &(*slot)->NeedsUpdate, AL_FALSE))
1248 V((*slot)->EffectState,update)(device, *slot);
1250 V((*slot)->EffectState,process)(SamplesToDo, (*slot)->WetBuffer[0],
1251 device->DryBuffer, device->NumChannels);
1253 for(i = 0;i < SamplesToDo;i++)
1254 (*slot)->WetBuffer[0][i] = 0.0f;
1257 /* Increment the clock time. Every second's worth of samples is
1258 * converted and added to clock base so that large sample counts don't
1259 * overflow during conversion. This also guarantees an exact, stable
1260 * conversion. */
1261 device->SamplesDone += SamplesToDo;
1262 device->ClockBase += (device->SamplesDone/device->Frequency) * DEVICE_CLOCK_RES;
1263 device->SamplesDone %= device->Frequency;
1264 V0(device->Backend,unlock)();
1266 if(device->Hrtf)
1268 HrtfMixerFunc HrtfMix = SelectHrtfMixer();
1269 ALuint irsize = GetHrtfIrSize(device->Hrtf);
1270 for(c = 0;c < device->NumChannels;c++)
1271 HrtfMix(&device->DryBuffer[outchanoffset], device->DryBuffer[c], 0.0f,
1272 device->Hrtf_Offset, 0.0f, irsize, &device->Hrtf_Params[c],
1273 &device->Hrtf_State[c], SamplesToDo
1275 device->Hrtf_Offset += SamplesToDo;
1277 else if(device->Bs2b)
1279 /* Apply binaural/crossfeed filter */
1280 for(i = 0;i < SamplesToDo;i++)
1282 float samples[2];
1283 samples[0] = device->DryBuffer[0][i];
1284 samples[1] = device->DryBuffer[1][i];
1285 bs2b_cross_feed(device->Bs2b, samples);
1286 device->DryBuffer[0][i] = samples[0];
1287 device->DryBuffer[1][i] = samples[1];
1291 if(buffer)
1293 switch(device->FmtType)
1295 case DevFmtByte:
1296 Write_ALbyte(&device->DryBuffer[outchanoffset], buffer, SamplesToDo, outchancount);
1297 buffer = (char*)buffer + SamplesToDo*outchancount*sizeof(ALbyte);
1298 break;
1299 case DevFmtUByte:
1300 Write_ALubyte(&device->DryBuffer[outchanoffset], buffer, SamplesToDo, outchancount);
1301 buffer = (char*)buffer + SamplesToDo*outchancount*sizeof(ALubyte);
1302 break;
1303 case DevFmtShort:
1304 Write_ALshort(&device->DryBuffer[outchanoffset], buffer, SamplesToDo, outchancount);
1305 buffer = (char*)buffer + SamplesToDo*outchancount*sizeof(ALshort);
1306 break;
1307 case DevFmtUShort:
1308 Write_ALushort(&device->DryBuffer[outchanoffset], buffer, SamplesToDo, outchancount);
1309 buffer = (char*)buffer + SamplesToDo*outchancount*sizeof(ALushort);
1310 break;
1311 case DevFmtInt:
1312 Write_ALint(&device->DryBuffer[outchanoffset], buffer, SamplesToDo, outchancount);
1313 buffer = (char*)buffer + SamplesToDo*outchancount*sizeof(ALint);
1314 break;
1315 case DevFmtUInt:
1316 Write_ALuint(&device->DryBuffer[outchanoffset], buffer, SamplesToDo, outchancount);
1317 buffer = (char*)buffer + SamplesToDo*outchancount*sizeof(ALuint);
1318 break;
1319 case DevFmtFloat:
1320 Write_ALfloat(&device->DryBuffer[outchanoffset], buffer, SamplesToDo, outchancount);
1321 buffer = (char*)buffer + SamplesToDo*outchancount*sizeof(ALfloat);
1322 break;
1326 size -= SamplesToDo;
1327 IncrementRef(&device->MixCount);
1330 RestoreFPUMode(&oldMode);
1334 ALvoid aluHandleDisconnect(ALCdevice *device)
1336 ALCcontext *Context;
1338 device->Connected = ALC_FALSE;
1340 Context = ATOMIC_LOAD(&device->ContextList);
1341 while(Context)
1343 ALvoice *voice, *voice_end;
1345 voice = Context->Voices;
1346 voice_end = voice + Context->VoiceCount;
1347 while(voice != voice_end)
1349 ALsource *source = voice->Source;
1350 voice->Source = NULL;
1352 if(source && source->state == AL_PLAYING)
1354 source->state = AL_STOPPED;
1355 ATOMIC_STORE(&source->current_buffer, NULL);
1356 source->position = 0;
1357 source->position_fraction = 0;
1360 voice++;
1362 Context->VoiceCount = 0;
1364 Context = Context->next;