2 * HRTF utility for producing and demonstrating the process of creating an
3 * OpenAL Soft compatible HRIR data set.
5 * Copyright (C) 2011-2017 Christopher Fitzgerald
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21 * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
23 * --------------------------------------------------------------------------
25 * A big thanks goes out to all those whose work done in the field of
26 * binaural sound synthesis using measured HRTFs makes this utility and the
27 * OpenAL Soft implementation possible.
29 * The algorithm for diffuse-field equalization was adapted from the work
30 * done by Rio Emmanuel and Larcher Veronique of IRCAM and Bill Gardner of
31 * MIT Media Laboratory. It operates as follows:
33 * 1. Take the FFT of each HRIR and only keep the magnitude responses.
34 * 2. Calculate the diffuse-field power-average of all HRIRs weighted by
35 * their contribution to the total surface area covered by their
37 * 3. Take the diffuse-field average and limit its magnitude range.
38 * 4. Equalize the responses by using the inverse of the diffuse-field
40 * 5. Reconstruct the minimum-phase responses.
41 * 5. Zero the DC component.
42 * 6. IFFT the result and truncate to the desired-length minimum-phase FIR.
44 * The spherical head algorithm for calculating propagation delay was adapted
47 * Modeling Interaural Time Difference Assuming a Spherical Head
49 * Music 150, Musical Acoustics, Stanford University
52 * The formulae for calculating the Kaiser window metrics are from the
55 * Discrete-Time Signal Processing
56 * Alan V. Oppenheim and Ronald W. Schafer
57 * Prentice-Hall Signal Processing Series
74 // Rely (if naively) on OpenAL's header for the types used for serialization.
79 #define M_PI (3.14159265358979323846)
83 #define HUGE_VAL (1.0 / 0.0)
86 // The epsilon used to maintain signal stability.
87 #define EPSILON (1e-9)
89 // Constants for accessing the token reader's ring buffer.
90 #define TR_RING_BITS (16)
91 #define TR_RING_SIZE (1 << TR_RING_BITS)
92 #define TR_RING_MASK (TR_RING_SIZE - 1)
94 // The token reader's load interval in bytes.
95 #define TR_LOAD_SIZE (TR_RING_SIZE >> 2)
97 // The maximum identifier length used when processing the data set
99 #define MAX_IDENT_LEN (16)
101 // The maximum path length used when processing filenames.
102 #define MAX_PATH_LEN (256)
104 // The limits for the sample 'rate' metric in the data set definition and for
106 #define MIN_RATE (32000)
107 #define MAX_RATE (96000)
109 // The limits for the HRIR 'points' metric in the data set definition.
110 #define MIN_POINTS (16)
111 #define MAX_POINTS (8192)
113 // The limits to the number of 'azimuths' listed in the data set definition.
114 #define MIN_EV_COUNT (5)
115 #define MAX_EV_COUNT (128)
117 // The limits for each of the 'azimuths' listed in the data set definition.
118 #define MIN_AZ_COUNT (1)
119 #define MAX_AZ_COUNT (128)
121 // The limits for the listener's head 'radius' in the data set definition.
122 #define MIN_RADIUS (0.05)
123 #define MAX_RADIUS (0.15)
125 // The limits for the 'distance' from source to listener in the definition
127 #define MIN_DISTANCE (0.5)
128 #define MAX_DISTANCE (2.5)
130 // The maximum number of channels that can be addressed for a WAVE file
131 // source listed in the data set definition.
132 #define MAX_WAVE_CHANNELS (65535)
134 // The limits to the byte size for a binary source listed in the definition
136 #define MIN_BIN_SIZE (2)
137 #define MAX_BIN_SIZE (4)
139 // The minimum number of significant bits for binary sources listed in the
140 // data set definition. The maximum is calculated from the byte size.
141 #define MIN_BIN_BITS (16)
143 // The limits to the number of significant bits for an ASCII source listed in
144 // the data set definition.
145 #define MIN_ASCII_BITS (16)
146 #define MAX_ASCII_BITS (32)
148 // The limits to the FFT window size override on the command line.
149 #define MIN_FFTSIZE (65536)
150 #define MAX_FFTSIZE (131072)
152 // The limits to the equalization range limit on the command line.
153 #define MIN_LIMIT (2.0)
154 #define MAX_LIMIT (120.0)
156 // The limits to the truncation window size on the command line.
157 #define MIN_TRUNCSIZE (16)
158 #define MAX_TRUNCSIZE (512)
160 // The limits to the custom head radius on the command line.
161 #define MIN_CUSTOM_RADIUS (0.05)
162 #define MAX_CUSTOM_RADIUS (0.15)
164 // The truncation window size must be a multiple of the below value to allow
165 // for vectorized convolution.
166 #define MOD_TRUNCSIZE (8)
168 // The defaults for the command line options.
169 #define DEFAULT_FFTSIZE (65536)
170 #define DEFAULT_EQUALIZE (1)
171 #define DEFAULT_SURFACE (1)
172 #define DEFAULT_LIMIT (24.0)
173 #define DEFAULT_TRUNCSIZE (32)
174 #define DEFAULT_HEAD_MODEL (HM_DATASET)
175 #define DEFAULT_CUSTOM_RADIUS (0.0)
177 // The four-character-codes for RIFF/RIFX WAVE file chunks.
178 #define FOURCC_RIFF (0x46464952) // 'RIFF'
179 #define FOURCC_RIFX (0x58464952) // 'RIFX'
180 #define FOURCC_WAVE (0x45564157) // 'WAVE'
181 #define FOURCC_FMT (0x20746D66) // 'fmt '
182 #define FOURCC_DATA (0x61746164) // 'data'
183 #define FOURCC_LIST (0x5453494C) // 'LIST'
184 #define FOURCC_WAVL (0x6C766177) // 'wavl'
185 #define FOURCC_SLNT (0x746E6C73) // 'slnt'
187 // The supported wave formats.
188 #define WAVE_FORMAT_PCM (0x0001)
189 #define WAVE_FORMAT_IEEE_FLOAT (0x0003)
190 #define WAVE_FORMAT_EXTENSIBLE (0xFFFE)
192 // The maximum propagation delay value supported by OpenAL Soft.
193 #define MAX_HRTD (63.0)
195 // The OpenAL Soft HRTF format marker. It stands for minimum-phase head
196 // response protocol 01.
197 #define MHR_FORMAT ("MinPHR01")
199 // Byte order for the serialization routines.
200 typedef enum ByteOrderT
{
206 // Source format for the references listed in the data set definition.
207 typedef enum SourceFormatT
{
209 SF_WAVE
, // RIFF/RIFX WAVE file.
210 SF_BIN_LE
, // Little-endian binary file.
211 SF_BIN_BE
, // Big-endian binary file.
212 SF_ASCII
// ASCII text file.
215 // Element types for the references listed in the data set definition.
216 typedef enum ElementTypeT
{
218 ET_INT
, // Integer elements.
219 ET_FP
// Floating-point elements.
222 // Head model used for calculating the impulse delays.
223 typedef enum HeadModelT
{
225 HM_DATASET
, // Measure the onset from the dataset.
226 HM_SPHERE
// Calculate the onset using a spherical head model.
229 // Desired output format from the command line.
230 typedef enum OutputFormatT
{
232 OF_MHR
// OpenAL Soft MHR data set file.
235 // Unsigned integer type.
236 typedef unsigned int uint
;
238 // Serialization types. The trailing digit indicates the number of bits.
239 typedef ALubyte uint8
;
241 typedef ALuint uint32
;
242 typedef ALuint64SOFT uint64
;
244 // Token reader state for parsing the data set definition.
245 typedef struct TokenReaderT
{
250 char mRing
[TR_RING_SIZE
];
255 // Source reference state used when loading sources.
256 typedef struct SourceRefT
{
257 SourceFormatT mFormat
;
264 char mPath
[MAX_PATH_LEN
+1];
267 // The HRIR metrics and data set used when loading, processing, and storing
268 // the resulting HRTF.
269 typedef struct HrirDataT
{
277 uint mAzCount
[MAX_EV_COUNT
];
278 uint mEvOffset
[MAX_EV_COUNT
];
286 // The resampler metrics and FIR filter.
287 typedef struct ResamplerT
{
293 /*****************************
294 *** Token reader routines ***
295 *****************************/
297 /* Whitespace is not significant. It can process tokens as identifiers, numbers
298 * (integer and floating-point), strings, and operators. Strings must be
299 * encapsulated by double-quotes and cannot span multiple lines.
302 // Setup the reader on the given file. The filename can be NULL if no error
303 // output is desired.
304 static void TrSetup(FILE *fp
, const char *filename
, TokenReaderT
*tr
)
306 const char *name
= NULL
;
310 const char *slash
= strrchr(filename
, '/');
313 const char *bslash
= strrchr(slash
+1, '\\');
314 if(bslash
) name
= bslash
+1;
319 const char *bslash
= strrchr(filename
, '\\');
320 if(bslash
) name
= bslash
+1;
321 else name
= filename
;
333 // Prime the reader's ring buffer, and return a result indicating that there
334 // is text to process.
335 static int TrLoad(TokenReaderT
*tr
)
337 size_t toLoad
, in
, count
;
339 toLoad
= TR_RING_SIZE
- (tr
->mIn
- tr
->mOut
);
340 if(toLoad
>= TR_LOAD_SIZE
&& !feof(tr
->mFile
))
342 // Load TR_LOAD_SIZE (or less if at the end of the file) per read.
343 toLoad
= TR_LOAD_SIZE
;
344 in
= tr
->mIn
&TR_RING_MASK
;
345 count
= TR_RING_SIZE
- in
;
348 tr
->mIn
+= fread(&tr
->mRing
[in
], 1, count
, tr
->mFile
);
349 tr
->mIn
+= fread(&tr
->mRing
[0], 1, toLoad
-count
, tr
->mFile
);
352 tr
->mIn
+= fread(&tr
->mRing
[in
], 1, toLoad
, tr
->mFile
);
354 if(tr
->mOut
>= TR_RING_SIZE
)
356 tr
->mOut
-= TR_RING_SIZE
;
357 tr
->mIn
-= TR_RING_SIZE
;
360 if(tr
->mIn
> tr
->mOut
)
365 // Error display routine. Only displays when the base name is not NULL.
366 static void TrErrorVA(const TokenReaderT
*tr
, uint line
, uint column
, const char *format
, va_list argPtr
)
370 fprintf(stderr
, "Error (%s:%u:%u): ", tr
->mName
, line
, column
);
371 vfprintf(stderr
, format
, argPtr
);
374 // Used to display an error at a saved line/column.
375 static void TrErrorAt(const TokenReaderT
*tr
, uint line
, uint column
, const char *format
, ...)
379 va_start(argPtr
, format
);
380 TrErrorVA(tr
, line
, column
, format
, argPtr
);
384 // Used to display an error at the current line/column.
385 static void TrError(const TokenReaderT
*tr
, const char *format
, ...)
389 va_start(argPtr
, format
);
390 TrErrorVA(tr
, tr
->mLine
, tr
->mColumn
, format
, argPtr
);
394 // Skips to the next line.
395 static void TrSkipLine(TokenReaderT
*tr
)
401 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
413 // Skips to the next token.
414 static int TrSkipWhitespace(TokenReaderT
*tr
)
420 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
440 // Get the line and/or column of the next token (or the end of input).
441 static void TrIndication(TokenReaderT
*tr
, uint
*line
, uint
*column
)
443 TrSkipWhitespace(tr
);
444 if(line
) *line
= tr
->mLine
;
445 if(column
) *column
= tr
->mColumn
;
448 // Checks to see if a token is the given operator. It does not display any
449 // errors and will not proceed to the next token.
450 static int TrIsOperator(TokenReaderT
*tr
, const char *op
)
455 if(!TrSkipWhitespace(tr
))
459 while(op
[len
] != '\0' && out
< tr
->mIn
)
461 ch
= tr
->mRing
[out
&TR_RING_MASK
];
462 if(ch
!= op
[len
]) break;
471 /* The TrRead*() routines obtain the value of a matching token type. They
472 * display type, form, and boundary errors and will proceed to the next
476 // Reads and validates an identifier token.
477 static int TrReadIdent(TokenReaderT
*tr
, const uint maxLen
, char *ident
)
483 if(TrSkipWhitespace(tr
))
486 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
487 if(ch
== '_' || isalpha(ch
))
497 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
498 } while(ch
== '_' || isdigit(ch
) || isalpha(ch
));
506 TrErrorAt(tr
, tr
->mLine
, col
, "Identifier is too long.\n");
510 TrErrorAt(tr
, tr
->mLine
, col
, "Expected an identifier.\n");
514 // Reads and validates (including bounds) an integer token.
515 static int TrReadInt(TokenReaderT
*tr
, const int loBound
, const int hiBound
, int *value
)
517 uint col
, digis
, len
;
521 if(TrSkipWhitespace(tr
))
525 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
526 if(ch
== '+' || ch
== '-')
535 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
536 if(!isdigit(ch
)) break;
544 if(digis
> 0 && ch
!= '.' && !isalpha(ch
))
548 TrErrorAt(tr
, tr
->mLine
, col
, "Integer is too long.");
552 *value
= strtol(temp
, NULL
, 10);
553 if(*value
< loBound
|| *value
> hiBound
)
555 TrErrorAt(tr
, tr
->mLine
, col
, "Expected a value from %d to %d.\n", loBound
, hiBound
);
561 TrErrorAt(tr
, tr
->mLine
, col
, "Expected an integer.\n");
565 // Reads and validates (including bounds) a float token.
566 static int TrReadFloat(TokenReaderT
*tr
, const double loBound
, const double hiBound
, double *value
)
568 uint col
, digis
, len
;
572 if(TrSkipWhitespace(tr
))
576 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
577 if(ch
== '+' || ch
== '-')
587 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
588 if(!isdigit(ch
)) break;
604 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
605 if(!isdigit(ch
)) break;
614 if(ch
== 'E' || ch
== 'e')
621 if(ch
== '+' || ch
== '-')
630 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
631 if(!isdigit(ch
)) break;
640 if(digis
> 0 && ch
!= '.' && !isalpha(ch
))
644 TrErrorAt(tr
, tr
->mLine
, col
, "Float is too long.");
648 *value
= strtod(temp
, NULL
);
649 if(*value
< loBound
|| *value
> hiBound
)
651 TrErrorAt (tr
, tr
->mLine
, col
, "Expected a value from %f to %f.\n", loBound
, hiBound
);
660 TrErrorAt(tr
, tr
->mLine
, col
, "Expected a float.\n");
664 // Reads and validates a string token.
665 static int TrReadString(TokenReaderT
*tr
, const uint maxLen
, char *text
)
671 if(TrSkipWhitespace(tr
))
674 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
681 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
687 TrErrorAt (tr
, tr
->mLine
, col
, "Unterminated string at end of line.\n");
696 tr
->mColumn
+= 1 + len
;
697 TrErrorAt(tr
, tr
->mLine
, col
, "Unterminated string at end of input.\n");
700 tr
->mColumn
+= 2 + len
;
703 TrErrorAt (tr
, tr
->mLine
, col
, "String is too long.\n");
710 TrErrorAt(tr
, tr
->mLine
, col
, "Expected a string.\n");
714 // Reads and validates the given operator.
715 static int TrReadOperator(TokenReaderT
*tr
, const char *op
)
721 if(TrSkipWhitespace(tr
))
725 while(op
[len
] != '\0' && TrLoad(tr
))
727 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
728 if(ch
!= op
[len
]) break;
736 TrErrorAt(tr
, tr
->mLine
, col
, "Expected '%s' operator.\n", op
);
740 /* Performs a string substitution. Any case-insensitive occurrences of the
741 * pattern string are replaced with the replacement string. The result is
742 * truncated if necessary.
744 static int StrSubst(const char *in
, const char *pat
, const char *rep
, const size_t maxLen
, char *out
)
746 size_t inLen
, patLen
, repLen
;
751 patLen
= strlen(pat
);
752 repLen
= strlen(rep
);
756 while(si
< inLen
&& di
< maxLen
)
758 if(patLen
<= inLen
-si
)
760 if(strncasecmp(&in
[si
], pat
, patLen
) == 0)
762 if(repLen
> maxLen
-di
)
764 repLen
= maxLen
- di
;
767 strncpy(&out
[di
], rep
, repLen
);
783 /*********************
784 *** Math routines ***
785 *********************/
787 // Provide missing math routines for MSVC versions < 1800 (Visual Studio 2013).
788 #if defined(_MSC_VER) && _MSC_VER < 1800
789 static double round(double val
)
792 return ceil(val
-0.5);
793 return floor(val
+0.5);
796 static double fmin(double a
, double b
)
798 return (a
<b
) ? a
: b
;
801 static double fmax(double a
, double b
)
803 return (a
>b
) ? a
: b
;
807 // Simple clamp routine.
808 static double Clamp(const double val
, const double lower
, const double upper
)
810 return fmin(fmax(val
, lower
), upper
);
813 // Performs linear interpolation.
814 static double Lerp(const double a
, const double b
, const double f
)
816 return a
+ (f
* (b
- a
));
819 static inline uint
dither_rng(uint
*seed
)
821 *seed
= (*seed
* 96314165) + 907633515;
825 // Performs a triangular probability density function dither. It assumes the
826 // input sample is already scaled.
827 static inline double TpdfDither(const double in
, uint
*seed
)
829 static const double PRNG_SCALE
= 1.0 / UINT_MAX
;
832 prn0
= dither_rng(seed
);
833 prn1
= dither_rng(seed
);
834 return round(in
+ (prn0
*PRNG_SCALE
- prn1
*PRNG_SCALE
));
837 // Allocates an array of doubles.
838 static double *CreateArray(size_t n
)
843 a
= calloc(n
, sizeof(double));
846 fprintf(stderr
, "Error: Out of memory.\n");
852 // Frees an array of doubles.
853 static void DestroyArray(double *a
)
856 // Complex number routines. All outputs must be non-NULL.
858 // Magnitude/absolute value.
859 static double ComplexAbs(const double r
, const double i
)
861 return sqrt(r
*r
+ i
*i
);
865 static void ComplexMul(const double aR
, const double aI
, const double bR
, const double bI
, double *outR
, double *outI
)
867 *outR
= (aR
* bR
) - (aI
* bI
);
868 *outI
= (aI
* bR
) + (aR
* bI
);
872 static void ComplexExp(const double inR
, const double inI
, double *outR
, double *outI
)
875 *outR
= e
* cos(inI
);
876 *outI
= e
* sin(inI
);
879 /* Fast Fourier transform routines. The number of points must be a power of
880 * two. In-place operation is possible only if both the real and imaginary
881 * parts are in-place together.
884 // Performs bit-reversal ordering.
885 static void FftArrange(const uint n
, const double *inR
, const double *inI
, double *outR
, double *outI
)
890 if(inR
== outR
&& inI
== outI
)
892 // Handle in-place arrangement.
913 // Handle copy arrangement.
927 // Performs the summation.
928 static void FftSummation(const uint n
, const double s
, double *re
, double *im
)
932 double vR
, vI
, wR
, wI
;
937 for(m
= 1, m2
= 2;m
< n
; m
<<= 1, m2
<<= 1)
939 // v = Complex (-2.0 * sin (0.5 * pi / m) * sin (0.5 * pi / m), -sin (pi / m))
940 vR
= sin(0.5 * pi
/ m
);
943 // w = Complex (1.0, 0.0)
948 for(k
= i
;k
< n
;k
+= m2
)
951 // t = ComplexMul(w, out[km2])
952 tR
= (wR
* re
[mk
]) - (wI
* im
[mk
]);
953 tI
= (wR
* im
[mk
]) + (wI
* re
[mk
]);
954 // out[mk] = ComplexSub (out [k], t)
957 // out[k] = ComplexAdd (out [k], t)
961 // t = ComplexMul (v, w)
962 tR
= (vR
* wR
) - (vI
* wI
);
963 tI
= (vR
* wI
) + (vI
* wR
);
964 // w = ComplexAdd (w, t)
971 // Performs a forward FFT.
972 static void FftForward(const uint n
, const double *inR
, const double *inI
, double *outR
, double *outI
)
974 FftArrange(n
, inR
, inI
, outR
, outI
);
975 FftSummation(n
, 1.0, outR
, outI
);
978 // Performs an inverse FFT.
979 static void FftInverse(const uint n
, const double *inR
, const double *inI
, double *outR
, double *outI
)
984 FftArrange(n
, inR
, inI
, outR
, outI
);
985 FftSummation(n
, -1.0, outR
, outI
);
994 /* Calculate the complex helical sequence (or discrete-time analytical signal)
995 * of the given input using the Hilbert transform. Given the natural logarithm
996 * of a signal's magnitude response, the imaginary components can be used as
997 * the angles for minimum-phase reconstruction.
999 static void Hilbert(const uint n
, const double *in
, double *outR
, double *outI
)
1005 // Handle in-place operation.
1006 for(i
= 0;i
< n
;i
++)
1011 // Handle copy operation.
1012 for(i
= 0;i
< n
;i
++)
1018 FftInverse(n
, outR
, outI
, outR
, outI
);
1019 for(i
= 1;i
< (n
+1)/2;i
++)
1024 /* Increment i if n is even. */
1031 FftForward(n
, outR
, outI
, outR
, outI
);
1034 /* Calculate the magnitude response of the given input. This is used in
1035 * place of phase decomposition, since the phase residuals are discarded for
1036 * minimum phase reconstruction. The mirrored half of the response is also
1039 static void MagnitudeResponse(const uint n
, const double *inR
, const double *inI
, double *out
)
1041 const uint m
= 1 + (n
/ 2);
1043 for(i
= 0;i
< m
;i
++)
1044 out
[i
] = fmax(ComplexAbs(inR
[i
], inI
[i
]), EPSILON
);
1047 /* Apply a range limit (in dB) to the given magnitude response. This is used
1048 * to adjust the effects of the diffuse-field average on the equalization
1051 static void LimitMagnitudeResponse(const uint n
, const double limit
, const double *in
, double *out
)
1053 const uint m
= 1 + (n
/ 2);
1055 uint i
, lower
, upper
;
1058 halfLim
= limit
/ 2.0;
1059 // Convert the response to dB.
1060 for(i
= 0;i
< m
;i
++)
1061 out
[i
] = 20.0 * log10(in
[i
]);
1062 // Use six octaves to calculate the average magnitude of the signal.
1063 lower
= ((uint
)ceil(n
/ pow(2.0, 8.0))) - 1;
1064 upper
= ((uint
)floor(n
/ pow(2.0, 2.0))) - 1;
1066 for(i
= lower
;i
<= upper
;i
++)
1068 ave
/= upper
- lower
+ 1;
1069 // Keep the response within range of the average magnitude.
1070 for(i
= 0;i
< m
;i
++)
1071 out
[i
] = Clamp(out
[i
], ave
- halfLim
, ave
+ halfLim
);
1072 // Convert the response back to linear magnitude.
1073 for(i
= 0;i
< m
;i
++)
1074 out
[i
] = pow(10.0, out
[i
] / 20.0);
1077 /* Reconstructs the minimum-phase component for the given magnitude response
1078 * of a signal. This is equivalent to phase recomposition, sans the missing
1079 * residuals (which were discarded). The mirrored half of the response is
1082 static void MinimumPhase(const uint n
, const double *in
, double *outR
, double *outI
)
1084 const uint m
= 1 + (n
/ 2);
1089 mags
= CreateArray(n
);
1090 for(i
= 0;i
< m
;i
++)
1092 mags
[i
] = fmax(EPSILON
, in
[i
]);
1093 outR
[i
] = log(mags
[i
]);
1097 mags
[i
] = mags
[n
- i
];
1098 outR
[i
] = outR
[n
- i
];
1100 Hilbert(n
, outR
, outR
, outI
);
1101 // Remove any DC offset the filter has.
1103 for(i
= 0;i
< n
;i
++)
1105 ComplexExp(0.0, outI
[i
], &aR
, &aI
);
1106 ComplexMul(mags
[i
], 0.0, aR
, aI
, &outR
[i
], &outI
[i
]);
1112 /***************************
1113 *** Resampler functions ***
1114 ***************************/
1116 /* This is the normalized cardinal sine (sinc) function.
1118 * sinc(x) = { 1, x = 0
1119 * { sin(pi x) / (pi x), otherwise.
1121 static double Sinc(const double x
)
1123 if(fabs(x
) < EPSILON
)
1125 return sin(M_PI
* x
) / (M_PI
* x
);
1128 /* The zero-order modified Bessel function of the first kind, used for the
1131 * I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k)
1132 * = sum_{k=0}^inf ((x / 2)^k / k!)^2
1134 static double BesselI_0(const double x
)
1136 double term
, sum
, x2
, y
, last_sum
;
1139 // Start at k=1 since k=0 is trivial.
1145 // Let the integration converge until the term of the sum is no longer
1153 } while(sum
!= last_sum
);
1157 /* Calculate a Kaiser window from the given beta value and a normalized k
1160 * w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B), -1 <= k <= 1
1163 * Where k can be calculated as:
1165 * k = i / l, where -l <= i <= l.
1169 * k = 2 i / M - 1, where 0 <= i <= M.
1171 static double Kaiser(const double b
, const double k
)
1173 if(!(k
>= -1.0 && k
<= 1.0))
1175 return BesselI_0(b
* sqrt(1.0 - k
*k
)) / BesselI_0(b
);
1178 // Calculates the greatest common divisor of a and b.
1179 static uint
Gcd(uint x
, uint y
)
1190 /* Calculates the size (order) of the Kaiser window. Rejection is in dB and
1191 * the transition width is normalized frequency (0.5 is nyquist).
1193 * M = { ceil((r - 7.95) / (2.285 2 pi f_t)), r > 21
1194 * { ceil(5.79 / 2 pi f_t), r <= 21.
1197 static uint
CalcKaiserOrder(const double rejection
, const double transition
)
1199 double w_t
= 2.0 * M_PI
* transition
;
1200 if(rejection
> 21.0)
1201 return (uint
)ceil((rejection
- 7.95) / (2.285 * w_t
));
1202 return (uint
)ceil(5.79 / w_t
);
1205 // Calculates the beta value of the Kaiser window. Rejection is in dB.
1206 static double CalcKaiserBeta(const double rejection
)
1208 if(rejection
> 50.0)
1209 return 0.1102 * (rejection
- 8.7);
1210 if(rejection
>= 21.0)
1211 return (0.5842 * pow(rejection
- 21.0, 0.4)) +
1212 (0.07886 * (rejection
- 21.0));
1216 /* Calculates a point on the Kaiser-windowed sinc filter for the given half-
1217 * width, beta, gain, and cutoff. The point is specified in non-normalized
1218 * samples, from 0 to M, where M = (2 l + 1).
1220 * w(k) 2 p f_t sinc(2 f_t x)
1222 * x -- centered sample index (i - l)
1223 * k -- normalized and centered window index (x / l)
1224 * w(k) -- window function (Kaiser)
1225 * p -- gain compensation factor when sampling
1226 * f_t -- normalized center frequency (or cutoff; 0.5 is nyquist)
1228 static double SincFilter(const int l
, const double b
, const double gain
, const double cutoff
, const int i
)
1230 return Kaiser(b
, (double)(i
- l
) / l
) * 2.0 * gain
* cutoff
* Sinc(2.0 * cutoff
* (i
- l
));
1233 /* This is a polyphase sinc-filtered resampler.
1235 * Upsample Downsample
1237 * p/q = 3/2 p/q = 3/5
1239 * M-+-+-+-> M-+-+-+->
1240 * -------------------+ ---------------------+
1241 * p s * f f f f|f| | p s * f f f f f |
1242 * | 0 * 0 0 0|0|0 | | 0 * 0 0 0 0|0| |
1243 * v 0 * 0 0|0|0 0 | v 0 * 0 0 0|0|0 |
1244 * s * f|f|f f f | s * f f|f|f f |
1245 * 0 * |0|0 0 0 0 | 0 * 0|0|0 0 0 |
1246 * --------+=+--------+ 0 * |0|0 0 0 0 |
1247 * d . d .|d|. d . d ----------+=+--------+
1248 * d . . . .|d|. . . .
1252 * P_f(i,j) = q i mod p + pj
1253 * P_s(i,j) = floor(q i / p) - j
1254 * d[i=0..N-1] = sum_{j=0}^{floor((M - 1) / p)} {
1255 * { f[P_f(i,j)] s[P_s(i,j)], P_f(i,j) < M
1256 * { 0, P_f(i,j) >= M. }
1259 // Calculate the resampling metrics and build the Kaiser-windowed sinc filter
1260 // that's used to cut frequencies above the destination nyquist.
1261 static void ResamplerSetup(ResamplerT
*rs
, const uint srcRate
, const uint dstRate
)
1263 double cutoff
, width
, beta
;
1267 gcd
= Gcd(srcRate
, dstRate
);
1268 rs
->mP
= dstRate
/ gcd
;
1269 rs
->mQ
= srcRate
/ gcd
;
1270 /* The cutoff is adjusted by half the transition width, so the transition
1271 * ends before the nyquist (0.5). Both are scaled by the downsampling
1276 cutoff
= 0.475 / rs
->mP
;
1277 width
= 0.05 / rs
->mP
;
1281 cutoff
= 0.475 / rs
->mQ
;
1282 width
= 0.05 / rs
->mQ
;
1284 // A rejection of -180 dB is used for the stop band.
1285 l
= CalcKaiserOrder(180.0, width
) / 2;
1286 beta
= CalcKaiserBeta(180.0);
1287 rs
->mM
= (2 * l
) + 1;
1289 rs
->mF
= CreateArray(rs
->mM
);
1290 for(i
= 0;i
< ((int)rs
->mM
);i
++)
1291 rs
->mF
[i
] = SincFilter((int)l
, beta
, rs
->mP
, cutoff
, i
);
1294 // Clean up after the resampler.
1295 static void ResamplerClear(ResamplerT
*rs
)
1297 DestroyArray(rs
->mF
);
1301 // Perform the upsample-filter-downsample resampling operation using a
1302 // polyphase filter implementation.
1303 static void ResamplerRun(ResamplerT
*rs
, const uint inN
, const double *in
, const uint outN
, double *out
)
1305 const uint p
= rs
->mP
, q
= rs
->mQ
, m
= rs
->mM
, l
= rs
->mL
;
1306 const double *f
= rs
->mF
;
1314 // Handle in-place operation.
1316 work
= CreateArray(outN
);
1319 // Resample the input.
1320 for(i
= 0;i
< outN
;i
++)
1323 // Input starts at l to compensate for the filter delay. This will
1324 // drop any build-up from the first half of the filter.
1325 j_f
= (l
+ (q
* i
)) % p
;
1326 j_s
= (l
+ (q
* i
)) / p
;
1329 // Only take input when 0 <= j_s < inN. This single unsigned
1330 // comparison catches both cases.
1332 r
+= f
[j_f
] * in
[j_s
];
1338 // Clean up after in-place operation.
1341 for(i
= 0;i
< outN
;i
++)
1347 /*************************
1348 *** File source input ***
1349 *************************/
1351 // Read a binary value of the specified byte order and byte size from a file,
1352 // storing it as a 32-bit unsigned integer.
1353 static int ReadBin4(FILE *fp
, const char *filename
, const ByteOrderT order
, const uint bytes
, uint32
*out
)
1359 if(fread(in
, 1, bytes
, fp
) != bytes
)
1361 fprintf(stderr
, "Error: Bad read from file '%s'.\n", filename
);
1368 for(i
= 0;i
< bytes
;i
++)
1369 accum
= (accum
<<8) | in
[bytes
- i
- 1];
1372 for(i
= 0;i
< bytes
;i
++)
1373 accum
= (accum
<<8) | in
[i
];
1382 // Read a binary value of the specified byte order from a file, storing it as
1383 // a 64-bit unsigned integer.
1384 static int ReadBin8(FILE *fp
, const char *filename
, const ByteOrderT order
, uint64
*out
)
1390 if(fread(in
, 1, 8, fp
) != 8)
1392 fprintf(stderr
, "Error: Bad read from file '%s'.\n", filename
);
1399 for(i
= 0;i
< 8;i
++)
1400 accum
= (accum
<<8) | in
[8 - i
- 1];
1403 for(i
= 0;i
< 8;i
++)
1404 accum
= (accum
<<8) | in
[i
];
1413 /* Read a binary value of the specified type, byte order, and byte size from
1414 * a file, converting it to a double. For integer types, the significant
1415 * bits are used to normalize the result. The sign of bits determines
1416 * whether they are padded toward the MSB (negative) or LSB (positive).
1417 * Floating-point types are not normalized.
1419 static int ReadBinAsDouble(FILE *fp
, const char *filename
, const ByteOrderT order
, const ElementTypeT type
, const uint bytes
, const int bits
, double *out
)
1434 if(!ReadBin8(fp
, filename
, order
, &v8
.ui
))
1441 if(!ReadBin4(fp
, filename
, order
, bytes
, &v4
.ui
))
1448 v4
.ui
>>= (8*bytes
) - ((uint
)bits
);
1450 v4
.ui
&= (0xFFFFFFFF >> (32+bits
));
1452 if(v4
.ui
&(uint
)(1<<(abs(bits
)-1)))
1453 v4
.ui
|= (0xFFFFFFFF << abs (bits
));
1454 *out
= v4
.i
/ (double)(1<<(abs(bits
)-1));
1460 /* Read an ascii value of the specified type from a file, converting it to a
1461 * double. For integer types, the significant bits are used to normalize the
1462 * result. The sign of the bits should always be positive. This also skips
1463 * up to one separator character before the element itself.
1465 static int ReadAsciiAsDouble(TokenReaderT
*tr
, const char *filename
, const ElementTypeT type
, const uint bits
, double *out
)
1467 if(TrIsOperator(tr
, ","))
1468 TrReadOperator(tr
, ",");
1469 else if(TrIsOperator(tr
, ":"))
1470 TrReadOperator(tr
, ":");
1471 else if(TrIsOperator(tr
, ";"))
1472 TrReadOperator(tr
, ";");
1473 else if(TrIsOperator(tr
, "|"))
1474 TrReadOperator(tr
, "|");
1478 if(!TrReadFloat(tr
, -HUGE_VAL
, HUGE_VAL
, out
))
1480 fprintf(stderr
, "Error: Bad read from file '%s'.\n", filename
);
1487 if(!TrReadInt(tr
, -(1<<(bits
-1)), (1<<(bits
-1))-1, &v
))
1489 fprintf(stderr
, "Error: Bad read from file '%s'.\n", filename
);
1492 *out
= v
/ (double)((1<<(bits
-1))-1);
1497 // Read the RIFF/RIFX WAVE format chunk from a file, validating it against
1498 // the source parameters and data set metrics.
1499 static int ReadWaveFormat(FILE *fp
, const ByteOrderT order
, const uint hrirRate
, SourceRefT
*src
)
1501 uint32 fourCC
, chunkSize
;
1502 uint32 format
, channels
, rate
, dummy
, block
, size
, bits
;
1507 fseek (fp
, (long) chunkSize
, SEEK_CUR
);
1508 if(!ReadBin4(fp
, src
->mPath
, BO_LITTLE
, 4, &fourCC
) ||
1509 !ReadBin4(fp
, src
->mPath
, order
, 4, &chunkSize
))
1511 } while(fourCC
!= FOURCC_FMT
);
1512 if(!ReadBin4(fp
, src
->mPath
, order
, 2, & format
) ||
1513 !ReadBin4(fp
, src
->mPath
, order
, 2, & channels
) ||
1514 !ReadBin4(fp
, src
->mPath
, order
, 4, & rate
) ||
1515 !ReadBin4(fp
, src
->mPath
, order
, 4, & dummy
) ||
1516 !ReadBin4(fp
, src
->mPath
, order
, 2, & block
))
1521 if(!ReadBin4(fp
, src
->mPath
, order
, 2, &size
))
1529 if(format
== WAVE_FORMAT_EXTENSIBLE
)
1531 fseek(fp
, 2, SEEK_CUR
);
1532 if(!ReadBin4(fp
, src
->mPath
, order
, 2, &bits
))
1536 fseek(fp
, 4, SEEK_CUR
);
1537 if(!ReadBin4(fp
, src
->mPath
, order
, 2, &format
))
1539 fseek(fp
, (long)(chunkSize
- 26), SEEK_CUR
);
1545 fseek(fp
, (long)(chunkSize
- 16), SEEK_CUR
);
1547 fseek(fp
, (long)(chunkSize
- 14), SEEK_CUR
);
1549 if(format
!= WAVE_FORMAT_PCM
&& format
!= WAVE_FORMAT_IEEE_FLOAT
)
1551 fprintf(stderr
, "Error: Unsupported WAVE format in file '%s'.\n", src
->mPath
);
1554 if(src
->mChannel
>= channels
)
1556 fprintf(stderr
, "Error: Missing source channel in WAVE file '%s'.\n", src
->mPath
);
1559 if(rate
!= hrirRate
)
1561 fprintf(stderr
, "Error: Mismatched source sample rate in WAVE file '%s'.\n", src
->mPath
);
1564 if(format
== WAVE_FORMAT_PCM
)
1566 if(size
< 2 || size
> 4)
1568 fprintf(stderr
, "Error: Unsupported sample size in WAVE file '%s'.\n", src
->mPath
);
1571 if(bits
< 16 || bits
> (8*size
))
1573 fprintf (stderr
, "Error: Bad significant bits in WAVE file '%s'.\n", src
->mPath
);
1576 src
->mType
= ET_INT
;
1580 if(size
!= 4 && size
!= 8)
1582 fprintf(stderr
, "Error: Unsupported sample size in WAVE file '%s'.\n", src
->mPath
);
1588 src
->mBits
= (int)bits
;
1589 src
->mSkip
= channels
;
1593 // Read a RIFF/RIFX WAVE data chunk, converting all elements to doubles.
1594 static int ReadWaveData(FILE *fp
, const SourceRefT
*src
, const ByteOrderT order
, const uint n
, double *hrir
)
1596 int pre
, post
, skip
;
1599 pre
= (int)(src
->mSize
* src
->mChannel
);
1600 post
= (int)(src
->mSize
* (src
->mSkip
- src
->mChannel
- 1));
1602 for(i
= 0;i
< n
;i
++)
1606 fseek(fp
, skip
, SEEK_CUR
);
1607 if(!ReadBinAsDouble(fp
, src
->mPath
, order
, src
->mType
, src
->mSize
, src
->mBits
, &hrir
[i
]))
1612 fseek(fp
, skip
, SEEK_CUR
);
1616 // Read the RIFF/RIFX WAVE list or data chunk, converting all elements to
1618 static int ReadWaveList(FILE *fp
, const SourceRefT
*src
, const ByteOrderT order
, const uint n
, double *hrir
)
1620 uint32 fourCC
, chunkSize
, listSize
, count
;
1621 uint block
, skip
, offset
, i
;
1625 if(!ReadBin4(fp
, src
->mPath
, BO_LITTLE
, 4, & fourCC
) ||
1626 !ReadBin4(fp
, src
->mPath
, order
, 4, & chunkSize
))
1629 if(fourCC
== FOURCC_DATA
)
1631 block
= src
->mSize
* src
->mSkip
;
1632 count
= chunkSize
/ block
;
1633 if(count
< (src
->mOffset
+ n
))
1635 fprintf(stderr
, "Error: Bad read from file '%s'.\n", src
->mPath
);
1638 fseek(fp
, (long)(src
->mOffset
* block
), SEEK_CUR
);
1639 if(!ReadWaveData(fp
, src
, order
, n
, &hrir
[0]))
1643 else if(fourCC
== FOURCC_LIST
)
1645 if(!ReadBin4(fp
, src
->mPath
, BO_LITTLE
, 4, &fourCC
))
1648 if(fourCC
== FOURCC_WAVL
)
1652 fseek(fp
, (long)chunkSize
, SEEK_CUR
);
1654 listSize
= chunkSize
;
1655 block
= src
->mSize
* src
->mSkip
;
1656 skip
= src
->mOffset
;
1659 while(offset
< n
&& listSize
> 8)
1661 if(!ReadBin4(fp
, src
->mPath
, BO_LITTLE
, 4, &fourCC
) ||
1662 !ReadBin4(fp
, src
->mPath
, order
, 4, &chunkSize
))
1664 listSize
-= 8 + chunkSize
;
1665 if(fourCC
== FOURCC_DATA
)
1667 count
= chunkSize
/ block
;
1670 fseek(fp
, (long)(skip
* block
), SEEK_CUR
);
1671 chunkSize
-= skip
* block
;
1674 if(count
> (n
- offset
))
1676 if(!ReadWaveData(fp
, src
, order
, count
, &hrir
[offset
]))
1678 chunkSize
-= count
* block
;
1680 lastSample
= hrir
[offset
- 1];
1688 else if(fourCC
== FOURCC_SLNT
)
1690 if(!ReadBin4(fp
, src
->mPath
, order
, 4, &count
))
1697 if(count
> (n
- offset
))
1699 for(i
= 0; i
< count
; i
++)
1700 hrir
[offset
+ i
] = lastSample
;
1710 fseek(fp
, (long)chunkSize
, SEEK_CUR
);
1714 fprintf(stderr
, "Error: Bad read from file '%s'.\n", src
->mPath
);
1720 // Load a source HRIR from a RIFF/RIFX WAVE file.
1721 static int LoadWaveSource(FILE *fp
, SourceRefT
*src
, const uint hrirRate
, const uint n
, double *hrir
)
1723 uint32 fourCC
, dummy
;
1726 if(!ReadBin4(fp
, src
->mPath
, BO_LITTLE
, 4, &fourCC
) ||
1727 !ReadBin4(fp
, src
->mPath
, BO_LITTLE
, 4, &dummy
))
1729 if(fourCC
== FOURCC_RIFF
)
1731 else if(fourCC
== FOURCC_RIFX
)
1735 fprintf(stderr
, "Error: No RIFF/RIFX chunk in file '%s'.\n", src
->mPath
);
1739 if(!ReadBin4(fp
, src
->mPath
, BO_LITTLE
, 4, &fourCC
))
1741 if(fourCC
!= FOURCC_WAVE
)
1743 fprintf(stderr
, "Error: Not a RIFF/RIFX WAVE file '%s'.\n", src
->mPath
);
1746 if(!ReadWaveFormat(fp
, order
, hrirRate
, src
))
1748 if(!ReadWaveList(fp
, src
, order
, n
, hrir
))
1753 // Load a source HRIR from a binary file.
1754 static int LoadBinarySource(FILE *fp
, const SourceRefT
*src
, const ByteOrderT order
, const uint n
, double *hrir
)
1758 fseek(fp
, (long)src
->mOffset
, SEEK_SET
);
1759 for(i
= 0;i
< n
;i
++)
1761 if(!ReadBinAsDouble(fp
, src
->mPath
, order
, src
->mType
, src
->mSize
, src
->mBits
, &hrir
[i
]))
1764 fseek(fp
, (long)src
->mSkip
, SEEK_CUR
);
1769 // Load a source HRIR from an ASCII text file containing a list of elements
1770 // separated by whitespace or common list operators (',', ';', ':', '|').
1771 static int LoadAsciiSource(FILE *fp
, const SourceRefT
*src
, const uint n
, double *hrir
)
1777 TrSetup(fp
, NULL
, &tr
);
1778 for(i
= 0;i
< src
->mOffset
;i
++)
1780 if(!ReadAsciiAsDouble(&tr
, src
->mPath
, src
->mType
, (uint
)src
->mBits
, &dummy
))
1783 for(i
= 0;i
< n
;i
++)
1785 if(!ReadAsciiAsDouble(&tr
, src
->mPath
, src
->mType
, (uint
)src
->mBits
, &hrir
[i
]))
1787 for(j
= 0;j
< src
->mSkip
;j
++)
1789 if(!ReadAsciiAsDouble(&tr
, src
->mPath
, src
->mType
, (uint
)src
->mBits
, &dummy
))
1796 // Load a source HRIR from a supported file type.
1797 static int LoadSource(SourceRefT
*src
, const uint hrirRate
, const uint n
, double *hrir
)
1802 if (src
->mFormat
== SF_ASCII
)
1803 fp
= fopen(src
->mPath
, "r");
1805 fp
= fopen(src
->mPath
, "rb");
1808 fprintf(stderr
, "Error: Could not open source file '%s'.\n", src
->mPath
);
1811 if(src
->mFormat
== SF_WAVE
)
1812 result
= LoadWaveSource(fp
, src
, hrirRate
, n
, hrir
);
1813 else if(src
->mFormat
== SF_BIN_LE
)
1814 result
= LoadBinarySource(fp
, src
, BO_LITTLE
, n
, hrir
);
1815 else if(src
->mFormat
== SF_BIN_BE
)
1816 result
= LoadBinarySource(fp
, src
, BO_BIG
, n
, hrir
);
1818 result
= LoadAsciiSource(fp
, src
, n
, hrir
);
1824 /***************************
1825 *** File storage output ***
1826 ***************************/
1828 // Write an ASCII string to a file.
1829 static int WriteAscii(const char *out
, FILE *fp
, const char *filename
)
1834 if(fwrite(out
, 1, len
, fp
) != len
)
1837 fprintf(stderr
, "Error: Bad write to file '%s'.\n", filename
);
1843 // Write a binary value of the given byte order and byte size to a file,
1844 // loading it from a 32-bit unsigned integer.
1845 static int WriteBin4(const ByteOrderT order
, const uint bytes
, const uint32 in
, FILE *fp
, const char *filename
)
1853 for(i
= 0;i
< bytes
;i
++)
1854 out
[i
] = (in
>>(i
*8)) & 0x000000FF;
1857 for(i
= 0;i
< bytes
;i
++)
1858 out
[bytes
- i
- 1] = (in
>>(i
*8)) & 0x000000FF;
1863 if(fwrite(out
, 1, bytes
, fp
) != bytes
)
1865 fprintf(stderr
, "Error: Bad write to file '%s'.\n", filename
);
1871 // Store the OpenAL Soft HRTF data set.
1872 static int StoreMhr(const HrirDataT
*hData
, const char *filename
)
1874 uint e
, step
, end
, n
, j
, i
;
1879 if((fp
=fopen(filename
, "wb")) == NULL
)
1881 fprintf(stderr
, "Error: Could not open MHR file '%s'.\n", filename
);
1884 if(!WriteAscii(MHR_FORMAT
, fp
, filename
))
1886 if(!WriteBin4(BO_LITTLE
, 4, (uint32
)hData
->mIrRate
, fp
, filename
))
1888 if(!WriteBin4(BO_LITTLE
, 1, (uint32
)hData
->mIrPoints
, fp
, filename
))
1890 if(!WriteBin4(BO_LITTLE
, 1, (uint32
)hData
->mEvCount
, fp
, filename
))
1892 for(e
= 0;e
< hData
->mEvCount
;e
++)
1894 if(!WriteBin4(BO_LITTLE
, 1, (uint32
)hData
->mAzCount
[e
], fp
, filename
))
1897 step
= hData
->mIrSize
;
1898 end
= hData
->mIrCount
* step
;
1899 n
= hData
->mIrPoints
;
1900 dither_seed
= 22222;
1901 for(j
= 0;j
< end
;j
+= step
)
1903 double out
[MAX_TRUNCSIZE
];
1904 for(i
= 0;i
< n
;i
++)
1905 out
[i
] = TpdfDither(32767.0 * hData
->mHrirs
[j
+i
], &dither_seed
);
1906 for(i
= 0;i
< n
;i
++)
1908 v
= (int)Clamp(out
[i
], -32768.0, 32767.0);
1909 if(!WriteBin4(BO_LITTLE
, 2, (uint32
)v
, fp
, filename
))
1913 for(j
= 0;j
< hData
->mIrCount
;j
++)
1915 v
= (int)fmin(round(hData
->mIrRate
* hData
->mHrtds
[j
]), MAX_HRTD
);
1916 if(!WriteBin4(BO_LITTLE
, 1, (uint32
)v
, fp
, filename
))
1924 /***********************
1925 *** HRTF processing ***
1926 ***********************/
1928 // Calculate the onset time of an HRIR and average it with any existing
1929 // timing for its elevation and azimuth.
1930 static void AverageHrirOnset(const double *hrir
, const double f
, const uint ei
, const uint ai
, const HrirDataT
*hData
)
1936 n
= hData
->mIrPoints
;
1937 for(i
= 0;i
< n
;i
++)
1938 mag
= fmax(fabs(hrir
[i
]), mag
);
1940 for(i
= 0;i
< n
;i
++)
1942 if(fabs(hrir
[i
]) >= mag
)
1945 j
= hData
->mEvOffset
[ei
] + ai
;
1946 hData
->mHrtds
[j
] = Lerp(hData
->mHrtds
[j
], ((double)i
) / hData
->mIrRate
, f
);
1949 // Calculate the magnitude response of an HRIR and average it with any
1950 // existing responses for its elevation and azimuth.
1951 static void AverageHrirMagnitude(const double *hrir
, const double f
, const uint ei
, const uint ai
, const HrirDataT
*hData
)
1956 n
= hData
->mFftSize
;
1957 re
= CreateArray(n
);
1958 im
= CreateArray(n
);
1959 for(i
= 0;i
< hData
->mIrPoints
;i
++)
1969 FftForward(n
, re
, im
, re
, im
);
1970 MagnitudeResponse(n
, re
, im
, re
);
1972 j
= (hData
->mEvOffset
[ei
] + ai
) * hData
->mIrSize
;
1973 for(i
= 0;i
< m
;i
++)
1974 hData
->mHrirs
[j
+i
] = Lerp(hData
->mHrirs
[j
+i
], re
[i
], f
);
1979 /* Calculate the contribution of each HRIR to the diffuse-field average based
1980 * on the area of its surface patch. All patches are centered at the HRIR
1981 * coordinates on the unit sphere and are measured by solid angle.
1983 static void CalculateDfWeights(const HrirDataT
*hData
, double *weights
)
1985 double evs
, sum
, ev
, up_ev
, down_ev
, solidAngle
;
1988 evs
= 90.0 / (hData
->mEvCount
- 1);
1990 for(ei
= hData
->mEvStart
;ei
< hData
->mEvCount
;ei
++)
1992 // For each elevation, calculate the upper and lower limits of the
1994 ev
= -90.0 + (ei
* 2.0 * evs
);
1995 if(ei
< (hData
->mEvCount
- 1))
1996 up_ev
= (ev
+ evs
) * M_PI
/ 180.0;
2000 down_ev
= (ev
- evs
) * M_PI
/ 180.0;
2002 down_ev
= -M_PI
/ 2.0;
2003 // Calculate the area of the patch band.
2004 solidAngle
= 2.0 * M_PI
* (sin(up_ev
) - sin(down_ev
));
2005 // Each weight is the area of one patch.
2006 weights
[ei
] = solidAngle
/ hData
->mAzCount
[ei
];
2007 // Sum the total surface area covered by the HRIRs.
2010 // Normalize the weights given the total surface coverage.
2011 for(ei
= hData
->mEvStart
;ei
< hData
->mEvCount
;ei
++)
2015 /* Calculate the diffuse-field average from the given magnitude responses of
2016 * the HRIR set. Weighting can be applied to compensate for the varying
2017 * surface area covered by each HRIR. The final average can then be limited
2018 * by the specified magnitude range (in positive dB; 0.0 to skip).
2020 static void CalculateDiffuseFieldAverage(const HrirDataT
*hData
, const int weighted
, const double limit
, double *dfa
)
2022 uint ei
, ai
, count
, step
, start
, end
, m
, j
, i
;
2025 weights
= CreateArray(hData
->mEvCount
);
2028 // Use coverage weighting to calculate the average.
2029 CalculateDfWeights(hData
, weights
);
2033 // If coverage weighting is not used, the weights still need to be
2034 // averaged by the number of HRIRs.
2036 for(ei
= hData
->mEvStart
;ei
< hData
->mEvCount
;ei
++)
2037 count
+= hData
->mAzCount
[ei
];
2038 for(ei
= hData
->mEvStart
;ei
< hData
->mEvCount
;ei
++)
2039 weights
[ei
] = 1.0 / count
;
2041 ei
= hData
->mEvStart
;
2043 step
= hData
->mIrSize
;
2044 start
= hData
->mEvOffset
[ei
] * step
;
2045 end
= hData
->mIrCount
* step
;
2046 m
= 1 + (hData
->mFftSize
/ 2);
2047 for(i
= 0;i
< m
;i
++)
2049 for(j
= start
;j
< end
;j
+= step
)
2051 // Get the weight for this HRIR's contribution.
2052 double weight
= weights
[ei
];
2053 // Add this HRIR's weighted power average to the total.
2054 for(i
= 0;i
< m
;i
++)
2055 dfa
[i
] += weight
* hData
->mHrirs
[j
+i
] * hData
->mHrirs
[j
+i
];
2056 // Determine the next weight to use.
2058 if(ai
>= hData
->mAzCount
[ei
])
2064 // Finish the average calculation and keep it from being too small.
2065 for(i
= 0;i
< m
;i
++)
2066 dfa
[i
] = fmax(sqrt(dfa
[i
]), EPSILON
);
2067 // Apply a limit to the magnitude range of the diffuse-field average if
2070 LimitMagnitudeResponse(hData
->mFftSize
, limit
, dfa
, dfa
);
2071 DestroyArray(weights
);
2074 // Perform diffuse-field equalization on the magnitude responses of the HRIR
2075 // set using the given average response.
2076 static void DiffuseFieldEqualize(const double *dfa
, const HrirDataT
*hData
)
2078 uint step
, start
, end
, m
, j
, i
;
2080 step
= hData
->mIrSize
;
2081 start
= hData
->mEvOffset
[hData
->mEvStart
] * step
;
2082 end
= hData
->mIrCount
* step
;
2083 m
= 1 + (hData
->mFftSize
/ 2);
2084 for(j
= start
;j
< end
;j
+= step
)
2086 for(i
= 0;i
< m
;i
++)
2087 hData
->mHrirs
[j
+i
] /= dfa
[i
];
2091 // Perform minimum-phase reconstruction using the magnitude responses of the
2093 static void ReconstructHrirs(const HrirDataT
*hData
)
2095 uint step
, start
, end
, n
, j
, i
;
2098 step
= hData
->mIrSize
;
2099 start
= hData
->mEvOffset
[hData
->mEvStart
] * step
;
2100 end
= hData
->mIrCount
* step
;
2101 n
= hData
->mFftSize
;
2102 re
= CreateArray(n
);
2103 im
= CreateArray(n
);
2104 for(j
= start
;j
< end
;j
+= step
)
2106 MinimumPhase(n
, &hData
->mHrirs
[j
], re
, im
);
2107 FftInverse(n
, re
, im
, re
, im
);
2108 for(i
= 0;i
< hData
->mIrPoints
;i
++)
2109 hData
->mHrirs
[j
+i
] = re
[i
];
2115 // Resamples the HRIRs for use at the given sampling rate.
2116 static void ResampleHrirs(const uint rate
, HrirDataT
*hData
)
2118 uint n
, step
, start
, end
, j
;
2121 ResamplerSetup(&rs
, hData
->mIrRate
, rate
);
2122 n
= hData
->mIrPoints
;
2123 step
= hData
->mIrSize
;
2124 start
= hData
->mEvOffset
[hData
->mEvStart
] * step
;
2125 end
= hData
->mIrCount
* step
;
2126 for(j
= start
;j
< end
;j
+= step
)
2127 ResamplerRun(&rs
, n
, &hData
->mHrirs
[j
], n
, &hData
->mHrirs
[j
]);
2128 ResamplerClear(&rs
);
2129 hData
->mIrRate
= rate
;
2132 /* Given an elevation index and an azimuth, calculate the indices of the two
2133 * HRIRs that bound the coordinate along with a factor for calculating the
2134 * continous HRIR using interpolation.
2136 static void CalcAzIndices(const HrirDataT
*hData
, const uint ei
, const double az
, uint
*j0
, uint
*j1
, double *jf
)
2141 af
= ((2.0*M_PI
) + az
) * hData
->mAzCount
[ei
] / (2.0*M_PI
);
2142 ai
= ((uint
)af
) % hData
->mAzCount
[ei
];
2145 *j0
= hData
->mEvOffset
[ei
] + ai
;
2146 *j1
= hData
->mEvOffset
[ei
] + ((ai
+1) % hData
->mAzCount
[ei
]);
2150 // Synthesize any missing onset timings at the bottom elevations. This just
2151 // blends between slightly exaggerated known onsets. Not an accurate model.
2152 static void SynthesizeOnsets(HrirDataT
*hData
)
2154 uint oi
, e
, a
, j0
, j1
;
2157 oi
= hData
->mEvStart
;
2159 for(a
= 0;a
< hData
->mAzCount
[oi
];a
++)
2160 t
+= hData
->mHrtds
[hData
->mEvOffset
[oi
] + a
];
2161 hData
->mHrtds
[0] = 1.32e-4 + (t
/ hData
->mAzCount
[oi
]);
2162 for(e
= 1;e
< hData
->mEvStart
;e
++)
2164 of
= ((double)e
) / hData
->mEvStart
;
2165 for(a
= 0;a
< hData
->mAzCount
[e
];a
++)
2167 CalcAzIndices(hData
, oi
, a
* 2.0 * M_PI
/ hData
->mAzCount
[e
], &j0
, &j1
, &jf
);
2168 hData
->mHrtds
[hData
->mEvOffset
[e
] + a
] = Lerp(hData
->mHrtds
[0], Lerp(hData
->mHrtds
[j0
], hData
->mHrtds
[j1
], jf
), of
);
2173 /* Attempt to synthesize any missing HRIRs at the bottom elevations. Right
2174 * now this just blends the lowest elevation HRIRs together and applies some
2175 * attenuation and high frequency damping. It is a simple, if inaccurate
2178 static void SynthesizeHrirs (HrirDataT
*hData
)
2180 uint oi
, a
, e
, step
, n
, i
, j
;
2181 double lp
[4], s0
, s1
;
2186 if(hData
->mEvStart
<= 0)
2188 step
= hData
->mIrSize
;
2189 oi
= hData
->mEvStart
;
2190 n
= hData
->mIrPoints
;
2191 for(i
= 0;i
< n
;i
++)
2192 hData
->mHrirs
[i
] = 0.0;
2193 for(a
= 0;a
< hData
->mAzCount
[oi
];a
++)
2195 j
= (hData
->mEvOffset
[oi
] + a
) * step
;
2196 for(i
= 0;i
< n
;i
++)
2197 hData
->mHrirs
[i
] += hData
->mHrirs
[j
+i
] / hData
->mAzCount
[oi
];
2199 for(e
= 1;e
< hData
->mEvStart
;e
++)
2201 of
= ((double)e
) / hData
->mEvStart
;
2202 b
= (1.0 - of
) * (3.5e-6 * hData
->mIrRate
);
2203 for(a
= 0;a
< hData
->mAzCount
[e
];a
++)
2205 j
= (hData
->mEvOffset
[e
] + a
) * step
;
2206 CalcAzIndices(hData
, oi
, a
* 2.0 * M_PI
/ hData
->mAzCount
[e
], &j0
, &j1
, &jf
);
2213 for(i
= 0;i
< n
;i
++)
2215 s0
= hData
->mHrirs
[i
];
2216 s1
= Lerp(hData
->mHrirs
[j0
+i
], hData
->mHrirs
[j1
+i
], jf
);
2217 s0
= Lerp(s0
, s1
, of
);
2218 lp
[0] = Lerp(s0
, lp
[0], b
);
2219 lp
[1] = Lerp(lp
[0], lp
[1], b
);
2220 lp
[2] = Lerp(lp
[1], lp
[2], b
);
2221 lp
[3] = Lerp(lp
[2], lp
[3], b
);
2222 hData
->mHrirs
[j
+i
] = lp
[3];
2226 b
= 3.5e-6 * hData
->mIrRate
;
2231 for(i
= 0;i
< n
;i
++)
2233 s0
= hData
->mHrirs
[i
];
2234 lp
[0] = Lerp(s0
, lp
[0], b
);
2235 lp
[1] = Lerp(lp
[0], lp
[1], b
);
2236 lp
[2] = Lerp(lp
[1], lp
[2], b
);
2237 lp
[3] = Lerp(lp
[2], lp
[3], b
);
2238 hData
->mHrirs
[i
] = lp
[3];
2240 hData
->mEvStart
= 0;
2243 // The following routines assume a full set of HRIRs for all elevations.
2245 // Normalize the HRIR set and slightly attenuate the result.
2246 static void NormalizeHrirs (const HrirDataT
*hData
)
2248 uint step
, end
, n
, j
, i
;
2251 step
= hData
->mIrSize
;
2252 end
= hData
->mIrCount
* step
;
2253 n
= hData
->mIrPoints
;
2255 for(j
= 0;j
< end
;j
+= step
)
2257 for(i
= 0;i
< n
;i
++)
2258 maxLevel
= fmax(fabs(hData
->mHrirs
[j
+i
]), maxLevel
);
2260 maxLevel
= 1.01 * maxLevel
;
2261 for(j
= 0;j
< end
;j
+= step
)
2263 for(i
= 0;i
< n
;i
++)
2264 hData
->mHrirs
[j
+i
] /= maxLevel
;
2268 // Calculate the left-ear time delay using a spherical head model.
2269 static double CalcLTD(const double ev
, const double az
, const double rad
, const double dist
)
2271 double azp
, dlp
, l
, al
;
2273 azp
= asin(cos(ev
) * sin(az
));
2274 dlp
= sqrt((dist
*dist
) + (rad
*rad
) + (2.0*dist
*rad
*sin(azp
)));
2275 l
= sqrt((dist
*dist
) - (rad
*rad
));
2276 al
= (0.5 * M_PI
) + azp
;
2278 dlp
= l
+ (rad
* (al
- acos(rad
/ dist
)));
2279 return (dlp
/ 343.3);
2282 // Calculate the effective head-related time delays for each minimum-phase
2284 static void CalculateHrtds (const HeadModelT model
, const double radius
, HrirDataT
*hData
)
2286 double minHrtd
, maxHrtd
;
2292 for(e
= 0;e
< hData
->mEvCount
;e
++)
2294 for(a
= 0;a
< hData
->mAzCount
[e
];a
++)
2296 j
= hData
->mEvOffset
[e
] + a
;
2297 if(model
== HM_DATASET
)
2298 t
= hData
->mHrtds
[j
] * radius
/ hData
->mRadius
;
2300 t
= CalcLTD((-90.0 + (e
* 180.0 / (hData
->mEvCount
- 1))) * M_PI
/ 180.0,
2301 (a
* 360.0 / hData
->mAzCount
[e
]) * M_PI
/ 180.0,
2302 radius
, hData
->mDistance
);
2303 hData
->mHrtds
[j
] = t
;
2304 maxHrtd
= fmax(t
, maxHrtd
);
2305 minHrtd
= fmin(t
, minHrtd
);
2309 for(j
= 0;j
< hData
->mIrCount
;j
++)
2310 hData
->mHrtds
[j
] -= minHrtd
;
2311 hData
->mMaxHrtd
= maxHrtd
;
2315 // Process the data set definition to read and validate the data set metrics.
2316 static int ProcessMetrics(TokenReaderT
*tr
, const uint fftSize
, const uint truncSize
, HrirDataT
*hData
)
2318 int hasRate
= 0, hasPoints
= 0, hasAzimuths
= 0;
2319 int hasRadius
= 0, hasDistance
= 0;
2320 char ident
[MAX_IDENT_LEN
+1];
2326 while(!(hasRate
&& hasPoints
&& hasAzimuths
&& hasRadius
&& hasDistance
))
2328 TrIndication(tr
, & line
, & col
);
2329 if(!TrReadIdent(tr
, MAX_IDENT_LEN
, ident
))
2331 if(strcasecmp(ident
, "rate") == 0)
2335 TrErrorAt(tr
, line
, col
, "Redefinition of 'rate'.\n");
2338 if(!TrReadOperator(tr
, "="))
2340 if(!TrReadInt(tr
, MIN_RATE
, MAX_RATE
, &intVal
))
2342 hData
->mIrRate
= (uint
)intVal
;
2345 else if(strcasecmp(ident
, "points") == 0)
2348 TrErrorAt(tr
, line
, col
, "Redefinition of 'points'.\n");
2351 if(!TrReadOperator(tr
, "="))
2353 TrIndication(tr
, &line
, &col
);
2354 if(!TrReadInt(tr
, MIN_POINTS
, MAX_POINTS
, &intVal
))
2356 points
= (uint
)intVal
;
2357 if(fftSize
> 0 && points
> fftSize
)
2359 TrErrorAt(tr
, line
, col
, "Value exceeds the overridden FFT size.\n");
2362 if(points
< truncSize
)
2364 TrErrorAt(tr
, line
, col
, "Value is below the truncation size.\n");
2367 hData
->mIrPoints
= points
;
2370 hData
->mFftSize
= DEFAULT_FFTSIZE
;
2371 hData
->mIrSize
= 1 + (DEFAULT_FFTSIZE
/ 2);
2375 hData
->mFftSize
= fftSize
;
2376 hData
->mIrSize
= 1 + (fftSize
/ 2);
2377 if(points
> hData
->mIrSize
)
2378 hData
->mIrSize
= points
;
2382 else if(strcasecmp(ident
, "azimuths") == 0)
2386 TrErrorAt(tr
, line
, col
, "Redefinition of 'azimuths'.\n");
2389 if(!TrReadOperator(tr
, "="))
2391 hData
->mIrCount
= 0;
2392 hData
->mEvCount
= 0;
2393 hData
->mEvOffset
[0] = 0;
2396 if(!TrReadInt(tr
, MIN_AZ_COUNT
, MAX_AZ_COUNT
, &intVal
))
2398 hData
->mAzCount
[hData
->mEvCount
] = (uint
)intVal
;
2399 hData
->mIrCount
+= (uint
)intVal
;
2401 if(!TrIsOperator(tr
, ","))
2403 if(hData
->mEvCount
>= MAX_EV_COUNT
)
2405 TrError(tr
, "Exceeded the maximum of %d elevations.\n", MAX_EV_COUNT
);
2408 hData
->mEvOffset
[hData
->mEvCount
] = hData
->mEvOffset
[hData
->mEvCount
- 1] + ((uint
)intVal
);
2409 TrReadOperator(tr
, ",");
2411 if(hData
->mEvCount
< MIN_EV_COUNT
)
2413 TrErrorAt(tr
, line
, col
, "Did not reach the minimum of %d azimuth counts.\n", MIN_EV_COUNT
);
2418 else if(strcasecmp(ident
, "radius") == 0)
2422 TrErrorAt(tr
, line
, col
, "Redefinition of 'radius'.\n");
2425 if(!TrReadOperator(tr
, "="))
2427 if(!TrReadFloat(tr
, MIN_RADIUS
, MAX_RADIUS
, &fpVal
))
2429 hData
->mRadius
= fpVal
;
2432 else if(strcasecmp(ident
, "distance") == 0)
2436 TrErrorAt(tr
, line
, col
, "Redefinition of 'distance'.\n");
2439 if(!TrReadOperator(tr
, "="))
2441 if(!TrReadFloat(tr
, MIN_DISTANCE
, MAX_DISTANCE
, & fpVal
))
2443 hData
->mDistance
= fpVal
;
2448 TrErrorAt(tr
, line
, col
, "Expected a metric name.\n");
2451 TrSkipWhitespace (tr
);
2456 // Parse an index pair from the data set definition.
2457 static int ReadIndexPair(TokenReaderT
*tr
, const HrirDataT
*hData
, uint
*ei
, uint
*ai
)
2460 if(!TrReadInt(tr
, 0, (int)hData
->mEvCount
, &intVal
))
2463 if(!TrReadOperator(tr
, ","))
2465 if(!TrReadInt(tr
, 0, (int)hData
->mAzCount
[*ei
], &intVal
))
2471 // Match the source format from a given identifier.
2472 static SourceFormatT
MatchSourceFormat(const char *ident
)
2474 if(strcasecmp(ident
, "wave") == 0)
2476 if(strcasecmp(ident
, "bin_le") == 0)
2478 if(strcasecmp(ident
, "bin_be") == 0)
2480 if(strcasecmp(ident
, "ascii") == 0)
2485 // Match the source element type from a given identifier.
2486 static ElementTypeT
MatchElementType(const char *ident
)
2488 if(strcasecmp(ident
, "int") == 0)
2490 if(strcasecmp(ident
, "fp") == 0)
2495 // Parse and validate a source reference from the data set definition.
2496 static int ReadSourceRef(TokenReaderT
*tr
, SourceRefT
*src
)
2498 char ident
[MAX_IDENT_LEN
+1];
2502 TrIndication(tr
, &line
, &col
);
2503 if(!TrReadIdent(tr
, MAX_IDENT_LEN
, ident
))
2505 src
->mFormat
= MatchSourceFormat(ident
);
2506 if(src
->mFormat
== SF_NONE
)
2508 TrErrorAt(tr
, line
, col
, "Expected a source format.\n");
2511 if(!TrReadOperator(tr
, "("))
2513 if(src
->mFormat
== SF_WAVE
)
2515 if(!TrReadInt(tr
, 0, MAX_WAVE_CHANNELS
, &intVal
))
2517 src
->mType
= ET_NONE
;
2520 src
->mChannel
= (uint
)intVal
;
2525 TrIndication(tr
, &line
, &col
);
2526 if(!TrReadIdent(tr
, MAX_IDENT_LEN
, ident
))
2528 src
->mType
= MatchElementType(ident
);
2529 if(src
->mType
== ET_NONE
)
2531 TrErrorAt(tr
, line
, col
, "Expected a source element type.\n");
2534 if(src
->mFormat
== SF_BIN_LE
|| src
->mFormat
== SF_BIN_BE
)
2536 if(!TrReadOperator(tr
, ","))
2538 if(src
->mType
== ET_INT
)
2540 if(!TrReadInt(tr
, MIN_BIN_SIZE
, MAX_BIN_SIZE
, &intVal
))
2542 src
->mSize
= (uint
)intVal
;
2543 if(!TrIsOperator(tr
, ","))
2544 src
->mBits
= (int)(8*src
->mSize
);
2547 TrReadOperator(tr
, ",");
2548 TrIndication(tr
, &line
, &col
);
2549 if(!TrReadInt(tr
, -2147483647-1, 2147483647, &intVal
))
2551 if(abs(intVal
) < MIN_BIN_BITS
|| ((uint
)abs(intVal
)) > (8*src
->mSize
))
2553 TrErrorAt(tr
, line
, col
, "Expected a value of (+/-) %d to %d.\n", MIN_BIN_BITS
, 8*src
->mSize
);
2556 src
->mBits
= intVal
;
2561 TrIndication(tr
, &line
, &col
);
2562 if(!TrReadInt(tr
, -2147483647-1, 2147483647, &intVal
))
2564 if(intVal
!= 4 && intVal
!= 8)
2566 TrErrorAt(tr
, line
, col
, "Expected a value of 4 or 8.\n");
2569 src
->mSize
= (uint
)intVal
;
2573 else if(src
->mFormat
== SF_ASCII
&& src
->mType
== ET_INT
)
2575 if(!TrReadOperator(tr
, ","))
2577 if(!TrReadInt(tr
, MIN_ASCII_BITS
, MAX_ASCII_BITS
, &intVal
))
2580 src
->mBits
= intVal
;
2588 if(!TrIsOperator(tr
, ";"))
2592 TrReadOperator(tr
, ";");
2593 if(!TrReadInt (tr
, 0, 0x7FFFFFFF, &intVal
))
2595 src
->mSkip
= (uint
)intVal
;
2598 if(!TrReadOperator(tr
, ")"))
2600 if(TrIsOperator(tr
, "@"))
2602 TrReadOperator(tr
, "@");
2603 if(!TrReadInt(tr
, 0, 0x7FFFFFFF, &intVal
))
2605 src
->mOffset
= (uint
)intVal
;
2609 if(!TrReadOperator(tr
, ":"))
2611 if(!TrReadString(tr
, MAX_PATH_LEN
, src
->mPath
))
2616 // Process the list of sources in the data set definition.
2617 static int ProcessSources(const HeadModelT model
, TokenReaderT
*tr
, HrirDataT
*hData
)
2619 uint
*setCount
, *setFlag
;
2620 uint line
, col
, ei
, ai
;
2625 setCount
= (uint
*)calloc(hData
->mEvCount
, sizeof(uint
));
2626 setFlag
= (uint
*)calloc(hData
->mIrCount
, sizeof(uint
));
2627 hrir
= CreateArray(hData
->mIrPoints
);
2628 while(TrIsOperator(tr
, "["))
2630 TrIndication(tr
, & line
, & col
);
2631 TrReadOperator(tr
, "[");
2632 if(!ReadIndexPair(tr
, hData
, &ei
, &ai
))
2634 if(!TrReadOperator(tr
, "]"))
2636 if(setFlag
[hData
->mEvOffset
[ei
] + ai
])
2638 TrErrorAt(tr
, line
, col
, "Redefinition of source.\n");
2641 if(!TrReadOperator(tr
, "="))
2647 if(!ReadSourceRef(tr
, &src
))
2649 if(!LoadSource(&src
, hData
->mIrRate
, hData
->mIrPoints
, hrir
))
2652 if(model
== HM_DATASET
)
2653 AverageHrirOnset(hrir
, 1.0 / factor
, ei
, ai
, hData
);
2654 AverageHrirMagnitude(hrir
, 1.0 / factor
, ei
, ai
, hData
);
2656 if(!TrIsOperator(tr
, "+"))
2658 TrReadOperator(tr
, "+");
2660 setFlag
[hData
->mEvOffset
[ei
] + ai
] = 1;
2665 while(ei
< hData
->mEvCount
&& setCount
[ei
] < 1)
2667 if(ei
< hData
->mEvCount
)
2669 hData
->mEvStart
= ei
;
2670 while(ei
< hData
->mEvCount
&& setCount
[ei
] == hData
->mAzCount
[ei
])
2672 if(ei
>= hData
->mEvCount
)
2681 TrError(tr
, "Errant data at end of source list.\n");
2684 TrError(tr
, "Missing sources for elevation index %d.\n", ei
);
2687 TrError(tr
, "Missing source references.\n");
2696 /* Parse the data set definition and process the source data, storing the
2697 * resulting data set as desired. If the input name is NULL it will read
2698 * from standard input.
2700 static int ProcessDefinition(const char *inName
, const uint outRate
, const uint fftSize
, const int equalize
, const int surface
, const double limit
, const uint truncSize
, const HeadModelT model
, const double radius
, const OutputFormatT outFormat
, const char *outName
)
2702 char rateStr
[8+1], expName
[MAX_PATH_LEN
];
2709 hData
.mIrPoints
= 0;
2715 hData
.mDistance
= 0;
2716 fprintf(stdout
, "Reading HRIR definition...\n");
2719 fp
= fopen(inName
, "r");
2722 fprintf(stderr
, "Error: Could not open definition file '%s'\n", inName
);
2725 TrSetup(fp
, inName
, &tr
);
2730 TrSetup(fp
, "<stdin>", &tr
);
2732 if(!ProcessMetrics(&tr
, fftSize
, truncSize
, &hData
))
2738 hData
.mHrirs
= CreateArray(hData
.mIrCount
* hData
.mIrSize
);
2739 hData
.mHrtds
= CreateArray(hData
.mIrCount
);
2740 if(!ProcessSources(model
, &tr
, &hData
))
2742 DestroyArray(hData
.mHrtds
);
2743 DestroyArray(hData
.mHrirs
);
2752 dfa
= CreateArray(1 + (hData
.mFftSize
/2));
2753 fprintf(stdout
, "Calculating diffuse-field average...\n");
2754 CalculateDiffuseFieldAverage(&hData
, surface
, limit
, dfa
);
2755 fprintf(stdout
, "Performing diffuse-field equalization...\n");
2756 DiffuseFieldEqualize(dfa
, &hData
);
2759 fprintf(stdout
, "Performing minimum phase reconstruction...\n");
2760 ReconstructHrirs(&hData
);
2761 if(outRate
!= 0 && outRate
!= hData
.mIrRate
)
2763 fprintf(stdout
, "Resampling HRIRs...\n");
2764 ResampleHrirs(outRate
, &hData
);
2766 fprintf(stdout
, "Truncating minimum-phase HRIRs...\n");
2767 hData
.mIrPoints
= truncSize
;
2768 fprintf(stdout
, "Synthesizing missing elevations...\n");
2769 if(model
== HM_DATASET
)
2770 SynthesizeOnsets(&hData
);
2771 SynthesizeHrirs(&hData
);
2772 fprintf(stdout
, "Normalizing final HRIRs...\n");
2773 NormalizeHrirs(&hData
);
2774 fprintf(stdout
, "Calculating impulse delays...\n");
2775 CalculateHrtds(model
, (radius
> DEFAULT_CUSTOM_RADIUS
) ? radius
: hData
.mRadius
, &hData
);
2776 snprintf(rateStr
, 8, "%u", hData
.mIrRate
);
2777 StrSubst(outName
, "%r", rateStr
, MAX_PATH_LEN
, expName
);
2781 fprintf(stdout
, "Creating MHR data set file...\n");
2782 if(!StoreMhr(&hData
, expName
))
2784 DestroyArray(hData
.mHrtds
);
2785 DestroyArray(hData
.mHrirs
);
2792 DestroyArray(hData
.mHrtds
);
2793 DestroyArray(hData
.mHrirs
);
2797 static void PrintHelp(const char *argv0
, FILE *ofile
)
2799 fprintf(ofile
, "Usage: %s <command> [<option>...]\n\n", argv0
);
2800 fprintf(ofile
, "Commands:\n");
2801 fprintf(ofile
, " -m, --make-mhr Makes an OpenAL Soft compatible HRTF data set.\n");
2802 fprintf(ofile
, " Defaults output to: ./oalsoft_hrtf_%%r.mhr\n");
2803 fprintf(ofile
, " -h, --help Displays this help information.\n\n");
2804 fprintf(ofile
, "Options:\n");
2805 fprintf(ofile
, " -r=<rate> Change the data set sample rate to the specified value and\n");
2806 fprintf(ofile
, " resample the HRIRs accordingly.\n");
2807 fprintf(ofile
, " -f=<points> Override the FFT window size (default: %u).\n", DEFAULT_FFTSIZE
);
2808 fprintf(ofile
, " -e={on|off} Toggle diffuse-field equalization (default: %s).\n", (DEFAULT_EQUALIZE
? "on" : "off"));
2809 fprintf(ofile
, " -s={on|off} Toggle surface-weighted diffuse-field average (default: %s).\n", (DEFAULT_SURFACE
? "on" : "off"));
2810 fprintf(ofile
, " -l={<dB>|none} Specify a limit to the magnitude range of the diffuse-field\n");
2811 fprintf(ofile
, " average (default: %.2f).\n", DEFAULT_LIMIT
);
2812 fprintf(ofile
, " -w=<points> Specify the size of the truncation window that's applied\n");
2813 fprintf(ofile
, " after minimum-phase reconstruction (default: %u).\n", DEFAULT_TRUNCSIZE
);
2814 fprintf(ofile
, " -d={dataset| Specify the model used for calculating the head-delay timing\n");
2815 fprintf(ofile
, " sphere} values (default: %s).\n", ((DEFAULT_HEAD_MODEL
== HM_DATASET
) ? "dataset" : "sphere"));
2816 fprintf(ofile
, " -c=<size> Use a customized head radius measured ear-to-ear in meters.\n");
2817 fprintf(ofile
, " -i=<filename> Specify an HRIR definition file to use (defaults to stdin).\n");
2818 fprintf(ofile
, " -o=<filename> Specify an output file. Overrides command-selected default.\n");
2819 fprintf(ofile
, " Use of '%%r' will be substituted with the data set sample rate.\n");
2822 // Standard command line dispatch.
2823 int main(const int argc
, const char *argv
[])
2825 const char *inName
= NULL
, *outName
= NULL
;
2826 OutputFormatT outFormat
;
2827 uint outRate
, fftSize
;
2828 int equalize
, surface
;
2836 if(argc
< 2 || strcmp(argv
[1], "--help") == 0 || strcmp(argv
[1], "-h") == 0)
2838 fprintf(stdout
, "HRTF Processing and Composition Utility\n\n");
2839 PrintHelp(argv
[0], stdout
);
2843 if(strcmp(argv
[1], "--make-mhr") == 0 || strcmp(argv
[1], "-m") == 0)
2845 outName
= "./oalsoft_hrtf_%r.mhr";
2850 fprintf(stderr
, "Error: Invalid command '%s'.\n\n", argv
[1]);
2851 PrintHelp(argv
[0], stderr
);
2857 equalize
= DEFAULT_EQUALIZE
;
2858 surface
= DEFAULT_SURFACE
;
2859 limit
= DEFAULT_LIMIT
;
2860 truncSize
= DEFAULT_TRUNCSIZE
;
2861 model
= DEFAULT_HEAD_MODEL
;
2862 radius
= DEFAULT_CUSTOM_RADIUS
;
2867 if(strncmp(argv
[argi
], "-r=", 3) == 0)
2869 outRate
= strtoul(&argv
[argi
][3], &end
, 10);
2870 if(end
[0] != '\0' || outRate
< MIN_RATE
|| outRate
> MAX_RATE
)
2872 fprintf(stderr
, "Error: Expected a value from %u to %u for '-r'.\n", MIN_RATE
, MAX_RATE
);
2876 else if(strncmp(argv
[argi
], "-f=", 3) == 0)
2878 fftSize
= strtoul(&argv
[argi
][3], &end
, 10);
2879 if(end
[0] != '\0' || (fftSize
&(fftSize
-1)) || fftSize
< MIN_FFTSIZE
|| fftSize
> MAX_FFTSIZE
)
2881 fprintf(stderr
, "Error: Expected a power-of-two value from %u to %u for '-f'.\n", MIN_FFTSIZE
, MAX_FFTSIZE
);
2885 else if(strncmp(argv
[argi
], "-e=", 3) == 0)
2887 if(strcmp(&argv
[argi
][3], "on") == 0)
2889 else if(strcmp(&argv
[argi
][3], "off") == 0)
2893 fprintf(stderr
, "Error: Expected 'on' or 'off' for '-e'.\n");
2897 else if(strncmp(argv
[argi
], "-s=", 3) == 0)
2899 if(strcmp(&argv
[argi
][3], "on") == 0)
2901 else if(strcmp(&argv
[argi
][3], "off") == 0)
2905 fprintf(stderr
, "Error: Expected 'on' or 'off' for '-s'.\n");
2909 else if(strncmp(argv
[argi
], "-l=", 3) == 0)
2911 if(strcmp(&argv
[argi
][3], "none") == 0)
2915 limit
= strtod(&argv
[argi
] [3], &end
);
2916 if(end
[0] != '\0' || limit
< MIN_LIMIT
|| limit
> MAX_LIMIT
)
2918 fprintf(stderr
, "Error: Expected 'none' or a value from %.2f to %.2f for '-l'.\n", MIN_LIMIT
, MAX_LIMIT
);
2923 else if(strncmp(argv
[argi
], "-w=", 3) == 0)
2925 truncSize
= strtoul(&argv
[argi
][3], &end
, 10);
2926 if(end
[0] != '\0' || truncSize
< MIN_TRUNCSIZE
|| truncSize
> MAX_TRUNCSIZE
|| (truncSize
%MOD_TRUNCSIZE
))
2928 fprintf(stderr
, "Error: Expected a value from %u to %u in multiples of %u for '-w'.\n", MIN_TRUNCSIZE
, MAX_TRUNCSIZE
, MOD_TRUNCSIZE
);
2932 else if(strncmp(argv
[argi
], "-d=", 3) == 0)
2934 if(strcmp(&argv
[argi
][3], "dataset") == 0)
2936 else if(strcmp(&argv
[argi
][3], "sphere") == 0)
2940 fprintf(stderr
, "Error: Expected 'dataset' or 'sphere' for '-d'.\n");
2944 else if(strncmp(argv
[argi
], "-c=", 3) == 0)
2946 radius
= strtod(&argv
[argi
][3], &end
);
2947 if(end
[0] != '\0' || radius
< MIN_CUSTOM_RADIUS
|| radius
> MAX_CUSTOM_RADIUS
)
2949 fprintf(stderr
, "Error: Expected a value from %.2f to %.2f for '-c'.\n", MIN_CUSTOM_RADIUS
, MAX_CUSTOM_RADIUS
);
2953 else if(strncmp(argv
[argi
], "-i=", 3) == 0)
2954 inName
= &argv
[argi
][3];
2955 else if(strncmp(argv
[argi
], "-o=", 3) == 0)
2956 outName
= &argv
[argi
][3];
2959 fprintf(stderr
, "Error: Invalid option '%s'.\n", argv
[argi
]);
2964 if(!ProcessDefinition(inName
, outRate
, fftSize
, equalize
, surface
, limit
, truncSize
, model
, radius
, outFormat
, outName
))
2966 fprintf(stdout
, "Operation completed.\n");