2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
32 #include "alListener.h"
33 #include "alAuxEffectSlot.h"
37 #include "uhjfilter.h"
38 #include "bformatdec.h"
39 #include "static_assert.h"
41 #include "mixer_defs.h"
43 #include "backends/base.h"
53 ALfloat ConeScale
= 1.0f
;
55 /* Localized Z scalar for mono sources */
56 ALfloat ZScale
= 1.0f
;
58 extern inline ALfloat
minf(ALfloat a
, ALfloat b
);
59 extern inline ALfloat
maxf(ALfloat a
, ALfloat b
);
60 extern inline ALfloat
clampf(ALfloat val
, ALfloat min
, ALfloat max
);
62 extern inline ALdouble
mind(ALdouble a
, ALdouble b
);
63 extern inline ALdouble
maxd(ALdouble a
, ALdouble b
);
64 extern inline ALdouble
clampd(ALdouble val
, ALdouble min
, ALdouble max
);
66 extern inline ALuint
minu(ALuint a
, ALuint b
);
67 extern inline ALuint
maxu(ALuint a
, ALuint b
);
68 extern inline ALuint
clampu(ALuint val
, ALuint min
, ALuint max
);
70 extern inline ALint
mini(ALint a
, ALint b
);
71 extern inline ALint
maxi(ALint a
, ALint b
);
72 extern inline ALint
clampi(ALint val
, ALint min
, ALint max
);
74 extern inline ALint64
mini64(ALint64 a
, ALint64 b
);
75 extern inline ALint64
maxi64(ALint64 a
, ALint64 b
);
76 extern inline ALint64
clampi64(ALint64 val
, ALint64 min
, ALint64 max
);
78 extern inline ALuint64
minu64(ALuint64 a
, ALuint64 b
);
79 extern inline ALuint64
maxu64(ALuint64 a
, ALuint64 b
);
80 extern inline ALuint64
clampu64(ALuint64 val
, ALuint64 min
, ALuint64 max
);
82 extern inline ALfloat
lerp(ALfloat val1
, ALfloat val2
, ALfloat mu
);
83 extern inline ALfloat
resample_fir4(ALfloat val0
, ALfloat val1
, ALfloat val2
, ALfloat val3
, ALuint frac
);
84 extern inline ALfloat
resample_fir8(ALfloat val0
, ALfloat val1
, ALfloat val2
, ALfloat val3
, ALfloat val4
, ALfloat val5
, ALfloat val6
, ALfloat val7
, ALuint frac
);
86 extern inline void aluVectorSet(aluVector
*restrict vector
, ALfloat x
, ALfloat y
, ALfloat z
, ALfloat w
);
88 extern inline void aluMatrixfSetRow(aluMatrixf
*matrix
, ALuint row
,
89 ALfloat m0
, ALfloat m1
, ALfloat m2
, ALfloat m3
);
90 extern inline void aluMatrixfSet(aluMatrixf
*matrix
,
91 ALfloat m00
, ALfloat m01
, ALfloat m02
, ALfloat m03
,
92 ALfloat m10
, ALfloat m11
, ALfloat m12
, ALfloat m13
,
93 ALfloat m20
, ALfloat m21
, ALfloat m22
, ALfloat m23
,
94 ALfloat m30
, ALfloat m31
, ALfloat m32
, ALfloat m33
);
97 static inline HrtfMixerFunc
SelectHrtfMixer(void)
100 if((CPUCapFlags
&CPU_CAP_SSE
))
104 if((CPUCapFlags
&CPU_CAP_NEON
))
112 static inline void aluCrossproduct(const ALfloat
*inVector1
, const ALfloat
*inVector2
, ALfloat
*outVector
)
114 outVector
[0] = inVector1
[1]*inVector2
[2] - inVector1
[2]*inVector2
[1];
115 outVector
[1] = inVector1
[2]*inVector2
[0] - inVector1
[0]*inVector2
[2];
116 outVector
[2] = inVector1
[0]*inVector2
[1] - inVector1
[1]*inVector2
[0];
119 static inline ALfloat
aluDotproduct(const aluVector
*vec1
, const aluVector
*vec2
)
121 return vec1
->v
[0]*vec2
->v
[0] + vec1
->v
[1]*vec2
->v
[1] + vec1
->v
[2]*vec2
->v
[2];
124 static ALfloat
aluNormalize(ALfloat
*vec
)
126 ALfloat length
= sqrtf(vec
[0]*vec
[0] + vec
[1]*vec
[1] + vec
[2]*vec
[2]);
129 ALfloat inv_length
= 1.0f
/length
;
130 vec
[0] *= inv_length
;
131 vec
[1] *= inv_length
;
132 vec
[2] *= inv_length
;
137 static void aluMatrixfFloat3(ALfloat
*vec
, ALfloat w
, const aluMatrixf
*mtx
)
139 ALfloat v
[4] = { vec
[0], vec
[1], vec
[2], w
};
141 vec
[0] = v
[0]*mtx
->m
[0][0] + v
[1]*mtx
->m
[1][0] + v
[2]*mtx
->m
[2][0] + v
[3]*mtx
->m
[3][0];
142 vec
[1] = v
[0]*mtx
->m
[0][1] + v
[1]*mtx
->m
[1][1] + v
[2]*mtx
->m
[2][1] + v
[3]*mtx
->m
[3][1];
143 vec
[2] = v
[0]*mtx
->m
[0][2] + v
[1]*mtx
->m
[1][2] + v
[2]*mtx
->m
[2][2] + v
[3]*mtx
->m
[3][2];
146 static aluVector
aluMatrixfVector(const aluMatrixf
*mtx
, const aluVector
*vec
)
149 v
.v
[0] = vec
->v
[0]*mtx
->m
[0][0] + vec
->v
[1]*mtx
->m
[1][0] + vec
->v
[2]*mtx
->m
[2][0] + vec
->v
[3]*mtx
->m
[3][0];
150 v
.v
[1] = vec
->v
[0]*mtx
->m
[0][1] + vec
->v
[1]*mtx
->m
[1][1] + vec
->v
[2]*mtx
->m
[2][1] + vec
->v
[3]*mtx
->m
[3][1];
151 v
.v
[2] = vec
->v
[0]*mtx
->m
[0][2] + vec
->v
[1]*mtx
->m
[1][2] + vec
->v
[2]*mtx
->m
[2][2] + vec
->v
[3]*mtx
->m
[3][2];
152 v
.v
[3] = vec
->v
[0]*mtx
->m
[0][3] + vec
->v
[1]*mtx
->m
[1][3] + vec
->v
[2]*mtx
->m
[2][3] + vec
->v
[3]*mtx
->m
[3][3];
157 /* Prepares the interpolator for a given rate (determined by increment). A
158 * result of AL_FALSE indicates that the filter output will completely cut
161 * With a bit of work, and a trade of memory for CPU cost, this could be
162 * modified for use with an interpolated increment for buttery-smooth pitch
165 static ALboolean
BsincPrepare(const ALuint increment
, BsincState
*state
)
167 static const ALfloat scaleBase
= 1.510578918e-01f
, scaleRange
= 1.177936623e+00f
;
168 static const ALuint m
[BSINC_SCALE_COUNT
] = { 24, 24, 24, 24, 24, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 12 };
169 static const ALuint to
[4][BSINC_SCALE_COUNT
] =
171 { 0, 24, 408, 792, 1176, 1560, 1944, 2328, 2648, 2968, 3288, 3544, 3800, 4056, 4248, 4440 },
172 { 4632, 5016, 5400, 5784, 6168, 6552, 6936, 7320, 7640, 7960, 8280, 8536, 8792, 9048, 9240, 0 },
173 { 0, 9432, 9816, 10200, 10584, 10968, 11352, 11736, 12056, 12376, 12696, 12952, 13208, 13464, 13656, 13848 },
174 { 14040, 14424, 14808, 15192, 15576, 15960, 16344, 16728, 17048, 17368, 17688, 17944, 18200, 18456, 18648, 0 }
176 static const ALuint tm
[2][BSINC_SCALE_COUNT
] =
178 { 0, 24, 24, 24, 24, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 12 },
179 { 24, 24, 24, 24, 24, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 0 }
183 ALboolean uncut
= AL_TRUE
;
185 if(increment
> FRACTIONONE
)
187 sf
= (ALfloat
)FRACTIONONE
/ increment
;
190 /* Signal has been completely cut. The return result can be used
191 * to skip the filter (and output zeros) as an optimization.
199 sf
= (BSINC_SCALE_COUNT
- 1) * (sf
- scaleBase
) * scaleRange
;
201 /* The interpolation factor is fit to this diagonally-symmetric
202 * curve to reduce the transition ripple caused by interpolating
203 * different scales of the sinc function.
205 sf
= 1.0f
- cosf(asinf(sf
- si
));
211 si
= BSINC_SCALE_COUNT
- 1;
216 state
->l
= -(ALint
)((m
[si
] / 2) - 1);
217 /* The CPU cost of this table re-mapping could be traded for the memory
218 * cost of a complete table map (1024 elements large).
220 for(pi
= 0;pi
< BSINC_PHASE_COUNT
;pi
++)
222 state
->coeffs
[pi
].filter
= &bsincTab
[to
[0][si
] + tm
[0][si
]*pi
];
223 state
->coeffs
[pi
].scDelta
= &bsincTab
[to
[1][si
] + tm
[1][si
]*pi
];
224 state
->coeffs
[pi
].phDelta
= &bsincTab
[to
[2][si
] + tm
[0][si
]*pi
];
225 state
->coeffs
[pi
].spDelta
= &bsincTab
[to
[3][si
] + tm
[1][si
]*pi
];
231 static void CalcListenerParams(ALCcontext
*Context
)
233 ALlistener
*Listener
= Context
->Listener
;
234 ALfloat N
[3], V
[3], U
[3], P
[3];
235 struct ALlistenerProps
*first
;
236 struct ALlistenerProps
*props
;
239 props
= ATOMIC_EXCHANGE(struct ALlistenerProps
*, &Listener
->Update
, NULL
, almemory_order_acq_rel
);
243 N
[0] = ATOMIC_LOAD(&props
->Forward
[0], almemory_order_relaxed
);
244 N
[1] = ATOMIC_LOAD(&props
->Forward
[1], almemory_order_relaxed
);
245 N
[2] = ATOMIC_LOAD(&props
->Forward
[2], almemory_order_relaxed
);
247 V
[0] = ATOMIC_LOAD(&props
->Up
[0], almemory_order_relaxed
);
248 V
[1] = ATOMIC_LOAD(&props
->Up
[1], almemory_order_relaxed
);
249 V
[2] = ATOMIC_LOAD(&props
->Up
[2], almemory_order_relaxed
);
251 /* Build and normalize right-vector */
252 aluCrossproduct(N
, V
, U
);
255 aluMatrixfSet(&Listener
->Params
.Matrix
,
256 U
[0], V
[0], -N
[0], 0.0,
257 U
[1], V
[1], -N
[1], 0.0,
258 U
[2], V
[2], -N
[2], 0.0,
262 P
[0] = ATOMIC_LOAD(&props
->Position
[0], almemory_order_relaxed
);
263 P
[1] = ATOMIC_LOAD(&props
->Position
[1], almemory_order_relaxed
);
264 P
[2] = ATOMIC_LOAD(&props
->Position
[2], almemory_order_relaxed
);
265 aluMatrixfFloat3(P
, 1.0, &Listener
->Params
.Matrix
);
266 aluMatrixfSetRow(&Listener
->Params
.Matrix
, 3, -P
[0], -P
[1], -P
[2], 1.0f
);
268 aluVectorSet(&vel
, ATOMIC_LOAD(&props
->Velocity
[0], almemory_order_relaxed
),
269 ATOMIC_LOAD(&props
->Velocity
[1], almemory_order_relaxed
),
270 ATOMIC_LOAD(&props
->Velocity
[2], almemory_order_relaxed
),
272 Listener
->Params
.Velocity
= aluMatrixfVector(&Listener
->Params
.Matrix
, &vel
);
274 Listener
->Params
.Gain
= ATOMIC_LOAD(&props
->Gain
, almemory_order_relaxed
);
275 Listener
->Params
.MetersPerUnit
= ATOMIC_LOAD(&props
->MetersPerUnit
, almemory_order_relaxed
);
277 Listener
->Params
.DopplerFactor
= ATOMIC_LOAD(&props
->DopplerFactor
, almemory_order_relaxed
);
278 Listener
->Params
.SpeedOfSound
= ATOMIC_LOAD(&props
->SpeedOfSound
, almemory_order_relaxed
) *
279 ATOMIC_LOAD(&props
->DopplerVelocity
, almemory_order_relaxed
);
281 /* WARNING: A livelock is theoretically possible if another thread keeps
282 * changing the freelist head without giving this a chance to actually swap
283 * in the old container (practically impossible with this little code,
286 first
= ATOMIC_LOAD(&Listener
->FreeList
);
288 ATOMIC_STORE(&props
->next
, first
, almemory_order_relaxed
);
289 } while(ATOMIC_COMPARE_EXCHANGE_WEAK(struct ALlistenerProps
*,
290 &Listener
->FreeList
, &first
, props
) == 0);
293 static void CalcEffectSlotParams(ALeffectslot
*slot
, ALCdevice
*device
)
295 struct ALeffectslotProps
*first
;
296 struct ALeffectslotProps
*props
;
297 ALeffectState
*state
;
299 props
= ATOMIC_EXCHANGE(struct ALeffectslotProps
*, &slot
->Update
, NULL
, almemory_order_acq_rel
);
302 slot
->Params
.Gain
= ATOMIC_LOAD(&props
->Gain
, almemory_order_relaxed
);
303 slot
->Params
.AuxSendAuto
= ATOMIC_LOAD(&props
->AuxSendAuto
, almemory_order_relaxed
);
304 slot
->Params
.EffectType
= ATOMIC_LOAD(&props
->Type
, almemory_order_relaxed
);
305 if(IsReverbEffect(slot
->Params
.EffectType
))
307 slot
->Params
.RoomRolloff
= props
->Props
.Reverb
.RoomRolloffFactor
;
308 slot
->Params
.DecayTime
= props
->Props
.Reverb
.DecayTime
;
309 slot
->Params
.AirAbsorptionGainHF
= props
->Props
.Reverb
.AirAbsorptionGainHF
;
313 slot
->Params
.RoomRolloff
= 0.0f
;
314 slot
->Params
.DecayTime
= 0.0f
;
315 slot
->Params
.AirAbsorptionGainHF
= 1.0f
;
317 state
= ATOMIC_EXCHANGE(ALeffectState
*, &props
->State
, NULL
, almemory_order_relaxed
);
319 /* If the state object is changed, exchange it with the current one so it
320 * remains in the freelist and isn't leaked.
322 if(state
!= slot
->Params
.EffectState
)
324 ATOMIC_STORE(&props
->State
, slot
->Params
.EffectState
, almemory_order_relaxed
);
325 slot
->Params
.EffectState
= state
;
328 V(slot
->Params
.EffectState
,update
)(device
, slot
, &props
->Props
);
330 /* WARNING: A livelock is theoretically possible if another thread keeps
331 * changing the freelist head without giving this a chance to actually swap
332 * in the old container (practically impossible with this little code,
335 first
= ATOMIC_LOAD(&slot
->FreeList
);
337 ATOMIC_STORE(&props
->next
, first
, almemory_order_relaxed
);
338 } while(ATOMIC_COMPARE_EXCHANGE_WEAK(struct ALeffectslotProps
*,
339 &slot
->FreeList
, &first
, props
) == 0);
343 static void CalcNonAttnSourceParams(ALvoice
*voice
, const struct ALsourceProps
*props
, const ALbuffer
*ALBuffer
, const ALCcontext
*ALContext
)
345 static const struct ChanMap MonoMap
[1] = {
346 { FrontCenter
, 0.0f
, 0.0f
}
348 { BackLeft
, DEG2RAD(-150.0f
), DEG2RAD(0.0f
) },
349 { BackRight
, DEG2RAD( 150.0f
), DEG2RAD(0.0f
) }
351 { FrontLeft
, DEG2RAD( -45.0f
), DEG2RAD(0.0f
) },
352 { FrontRight
, DEG2RAD( 45.0f
), DEG2RAD(0.0f
) },
353 { BackLeft
, DEG2RAD(-135.0f
), DEG2RAD(0.0f
) },
354 { BackRight
, DEG2RAD( 135.0f
), DEG2RAD(0.0f
) }
356 { FrontLeft
, DEG2RAD( -30.0f
), DEG2RAD(0.0f
) },
357 { FrontRight
, DEG2RAD( 30.0f
), DEG2RAD(0.0f
) },
358 { FrontCenter
, DEG2RAD( 0.0f
), DEG2RAD(0.0f
) },
360 { SideLeft
, DEG2RAD(-110.0f
), DEG2RAD(0.0f
) },
361 { SideRight
, DEG2RAD( 110.0f
), DEG2RAD(0.0f
) }
363 { FrontLeft
, DEG2RAD(-30.0f
), DEG2RAD(0.0f
) },
364 { FrontRight
, DEG2RAD( 30.0f
), DEG2RAD(0.0f
) },
365 { FrontCenter
, DEG2RAD( 0.0f
), DEG2RAD(0.0f
) },
367 { BackCenter
, DEG2RAD(180.0f
), DEG2RAD(0.0f
) },
368 { SideLeft
, DEG2RAD(-90.0f
), DEG2RAD(0.0f
) },
369 { SideRight
, DEG2RAD( 90.0f
), DEG2RAD(0.0f
) }
371 { FrontLeft
, DEG2RAD( -30.0f
), DEG2RAD(0.0f
) },
372 { FrontRight
, DEG2RAD( 30.0f
), DEG2RAD(0.0f
) },
373 { FrontCenter
, DEG2RAD( 0.0f
), DEG2RAD(0.0f
) },
375 { BackLeft
, DEG2RAD(-150.0f
), DEG2RAD(0.0f
) },
376 { BackRight
, DEG2RAD( 150.0f
), DEG2RAD(0.0f
) },
377 { SideLeft
, DEG2RAD( -90.0f
), DEG2RAD(0.0f
) },
378 { SideRight
, DEG2RAD( 90.0f
), DEG2RAD(0.0f
) }
381 const ALCdevice
*Device
= ALContext
->Device
;
382 const ALlistener
*Listener
= ALContext
->Listener
;
383 ALfloat SourceVolume
,ListenerGain
,MinVolume
,MaxVolume
;
384 ALfloat DryGain
, DryGainHF
, DryGainLF
;
385 ALfloat WetGain
[MAX_SENDS
];
386 ALfloat WetGainHF
[MAX_SENDS
];
387 ALfloat WetGainLF
[MAX_SENDS
];
388 ALeffectslot
*SendSlots
[MAX_SENDS
];
389 ALuint NumSends
, Frequency
;
391 const struct ChanMap
*chans
= NULL
;
392 struct ChanMap StereoMap
[2] = {
393 { FrontLeft
, DEG2RAD(-30.0f
), DEG2RAD(0.0f
) },
394 { FrontRight
, DEG2RAD( 30.0f
), DEG2RAD(0.0f
) }
396 ALuint num_channels
= 0;
397 ALboolean DirectChannels
;
398 ALboolean isbformat
= AL_FALSE
;
402 /* Get device properties */
403 NumSends
= Device
->NumAuxSends
;
404 Frequency
= Device
->Frequency
;
406 /* Get listener properties */
407 ListenerGain
= Listener
->Params
.Gain
;
409 /* Get source properties */
410 SourceVolume
= ATOMIC_LOAD(&props
->Gain
, almemory_order_relaxed
);
411 MinVolume
= ATOMIC_LOAD(&props
->MinGain
, almemory_order_relaxed
);
412 MaxVolume
= ATOMIC_LOAD(&props
->MaxGain
, almemory_order_relaxed
);
413 Pitch
= ATOMIC_LOAD(&props
->Pitch
, almemory_order_relaxed
);
414 Relative
= ATOMIC_LOAD(&props
->HeadRelative
, almemory_order_relaxed
);
415 DirectChannels
= ATOMIC_LOAD(&props
->DirectChannels
, almemory_order_relaxed
);
417 /* Convert counter-clockwise to clockwise. */
418 StereoMap
[0].angle
= -ATOMIC_LOAD(&props
->StereoPan
[0], almemory_order_relaxed
);
419 StereoMap
[1].angle
= -ATOMIC_LOAD(&props
->StereoPan
[1], almemory_order_relaxed
);
421 voice
->DirectOut
.Buffer
= Device
->Dry
.Buffer
;
422 voice
->DirectOut
.Channels
= Device
->Dry
.NumChannels
;
423 for(i
= 0;i
< NumSends
;i
++)
425 SendSlots
[i
] = ATOMIC_LOAD(&props
->Send
[i
].Slot
, almemory_order_relaxed
);
426 if(!SendSlots
[i
] && i
== 0)
427 SendSlots
[i
] = Device
->DefaultSlot
;
428 if(!SendSlots
[i
] || SendSlots
[i
]->Params
.EffectType
== AL_EFFECT_NULL
)
431 voice
->SendOut
[i
].Buffer
= NULL
;
432 voice
->SendOut
[i
].Channels
= 0;
436 voice
->SendOut
[i
].Buffer
= SendSlots
[i
]->WetBuffer
;
437 voice
->SendOut
[i
].Channels
= SendSlots
[i
]->NumChannels
;
440 voice
->Looping
= ATOMIC_LOAD(&props
->Looping
, almemory_order_relaxed
);
442 /* Calculate the stepping value */
443 Pitch
*= (ALfloat
)ALBuffer
->Frequency
/ Frequency
;
444 if(Pitch
> (ALfloat
)MAX_PITCH
)
445 voice
->Step
= MAX_PITCH
<<FRACTIONBITS
;
447 voice
->Step
= maxi(fastf2i(Pitch
*FRACTIONONE
+ 0.5f
), 1);
448 BsincPrepare(voice
->Step
, &voice
->SincState
);
450 /* Calculate gains */
451 DryGain
= clampf(SourceVolume
, MinVolume
, MaxVolume
);
452 DryGain
*= ATOMIC_LOAD(&props
->Direct
.Gain
, almemory_order_relaxed
) * ListenerGain
;
453 DryGainHF
= ATOMIC_LOAD(&props
->Direct
.GainHF
, almemory_order_relaxed
);
454 DryGainLF
= ATOMIC_LOAD(&props
->Direct
.GainLF
, almemory_order_relaxed
);
455 for(i
= 0;i
< NumSends
;i
++)
457 WetGain
[i
] = clampf(SourceVolume
, MinVolume
, MaxVolume
);
458 WetGain
[i
] *= ATOMIC_LOAD(&props
->Send
[i
].Gain
, almemory_order_relaxed
) * ListenerGain
;
459 WetGainHF
[i
] = ATOMIC_LOAD(&props
->Send
[i
].GainHF
, almemory_order_relaxed
);
460 WetGainLF
[i
] = ATOMIC_LOAD(&props
->Send
[i
].GainLF
, almemory_order_relaxed
);
463 switch(ALBuffer
->FmtChannels
)
503 DirectChannels
= AL_FALSE
;
509 DirectChannels
= AL_FALSE
;
515 ALfloat N
[3], V
[3], U
[3];
520 N
[0] = ATOMIC_LOAD(&props
->Orientation
[0][0], almemory_order_relaxed
);
521 N
[1] = ATOMIC_LOAD(&props
->Orientation
[0][1], almemory_order_relaxed
);
522 N
[2] = ATOMIC_LOAD(&props
->Orientation
[0][2], almemory_order_relaxed
);
524 V
[0] = ATOMIC_LOAD(&props
->Orientation
[1][0], almemory_order_relaxed
);
525 V
[1] = ATOMIC_LOAD(&props
->Orientation
[1][1], almemory_order_relaxed
);
526 V
[2] = ATOMIC_LOAD(&props
->Orientation
[1][2], almemory_order_relaxed
);
530 const aluMatrixf
*lmatrix
= &Listener
->Params
.Matrix
;
531 aluMatrixfFloat3(N
, 0.0f
, lmatrix
);
532 aluMatrixfFloat3(V
, 0.0f
, lmatrix
);
534 /* Build and normalize right-vector */
535 aluCrossproduct(N
, V
, U
);
538 /* Build a rotate + conversion matrix (B-Format -> N3D). */
539 scale
= 1.732050808f
;
540 aluMatrixfSet(&matrix
,
541 1.414213562f
, 0.0f
, 0.0f
, 0.0f
,
542 0.0f
, -N
[0]*scale
, N
[1]*scale
, -N
[2]*scale
,
543 0.0f
, U
[0]*scale
, -U
[1]*scale
, U
[2]*scale
,
544 0.0f
, -V
[0]*scale
, V
[1]*scale
, -V
[2]*scale
547 voice
->DirectOut
.Buffer
= Device
->FOAOut
.Buffer
;
548 voice
->DirectOut
.Channels
= Device
->FOAOut
.NumChannels
;
549 for(c
= 0;c
< num_channels
;c
++)
550 ComputeFirstOrderGains(Device
->FOAOut
, matrix
.m
[c
], DryGain
,
551 voice
->Chan
[c
].Direct
.Gains
.Target
);
553 for(i
= 0;i
< NumSends
;i
++)
557 for(c
= 0;c
< num_channels
;c
++)
559 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
560 voice
->Chan
[c
].Send
[i
].Gains
.Target
[j
] = 0.0f
;
565 for(c
= 0;c
< num_channels
;c
++)
567 const ALeffectslot
*Slot
= SendSlots
[i
];
568 ComputeFirstOrderGainsBF(Slot
->ChanMap
, Slot
->NumChannels
, matrix
.m
[c
],
569 WetGain
[i
], voice
->Chan
[c
].Send
[i
].Gains
.Target
);
574 voice
->IsHrtf
= AL_FALSE
;
578 ALfloat coeffs
[MAX_AMBI_COEFFS
];
582 /* Skip the virtual channels and write inputs to the real output. */
583 voice
->DirectOut
.Buffer
= Device
->RealOut
.Buffer
;
584 voice
->DirectOut
.Channels
= Device
->RealOut
.NumChannels
;
585 for(c
= 0;c
< num_channels
;c
++)
588 for(j
= 0;j
< MAX_OUTPUT_CHANNELS
;j
++)
589 voice
->Chan
[c
].Direct
.Gains
.Target
[j
] = 0.0f
;
590 if((idx
=GetChannelIdxByName(Device
->RealOut
, chans
[c
].channel
)) != -1)
591 voice
->Chan
[c
].Direct
.Gains
.Target
[idx
] = DryGain
;
594 /* Auxiliary sends still use normal panning since they mix to B-Format, which can't
596 for(c
= 0;c
< num_channels
;c
++)
598 CalcAngleCoeffs(chans
[c
].angle
, chans
[c
].elevation
, 0.0f
, coeffs
);
600 for(i
= 0;i
< NumSends
;i
++)
604 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
605 voice
->Chan
[c
].Send
[i
].Gains
.Target
[j
] = 0.0f
;
609 const ALeffectslot
*Slot
= SendSlots
[i
];
610 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
, coeffs
,
611 WetGain
[i
], voice
->Chan
[c
].Send
[i
].Gains
.Target
);
616 voice
->IsHrtf
= AL_FALSE
;
618 else if(Device
->Render_Mode
== HrtfRender
)
620 /* Full HRTF rendering. Skip the virtual channels and render each
621 * input channel to the real outputs.
623 voice
->DirectOut
.Buffer
= Device
->RealOut
.Buffer
;
624 voice
->DirectOut
.Channels
= Device
->RealOut
.NumChannels
;
625 for(c
= 0;c
< num_channels
;c
++)
627 if(chans
[c
].channel
== LFE
)
630 voice
->Chan
[c
].Direct
.Hrtf
.Target
.Delay
[0] = 0;
631 voice
->Chan
[c
].Direct
.Hrtf
.Target
.Delay
[1] = 0;
632 for(i
= 0;i
< HRIR_LENGTH
;i
++)
634 voice
->Chan
[c
].Direct
.Hrtf
.Target
.Coeffs
[i
][0] = 0.0f
;
635 voice
->Chan
[c
].Direct
.Hrtf
.Target
.Coeffs
[i
][1] = 0.0f
;
638 for(i
= 0;i
< NumSends
;i
++)
640 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
641 voice
->Chan
[c
].Send
[i
].Gains
.Target
[j
] = 0.0f
;
647 /* Get the static HRIR coefficients and delays for this channel. */
648 GetLerpedHrtfCoeffs(Device
->Hrtf
,
649 chans
[c
].elevation
, chans
[c
].angle
, 0.0f
, DryGain
,
650 voice
->Chan
[c
].Direct
.Hrtf
.Target
.Coeffs
,
651 voice
->Chan
[c
].Direct
.Hrtf
.Target
.Delay
654 /* Normal panning for auxiliary sends. */
655 CalcAngleCoeffs(chans
[c
].angle
, chans
[c
].elevation
, 0.0f
, coeffs
);
657 for(i
= 0;i
< NumSends
;i
++)
661 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
662 voice
->Chan
[c
].Send
[i
].Gains
.Target
[j
] = 0.0f
;
666 const ALeffectslot
*Slot
= SendSlots
[i
];
667 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
, coeffs
,
668 WetGain
[i
], voice
->Chan
[c
].Send
[i
].Gains
.Target
);
673 voice
->IsHrtf
= AL_TRUE
;
677 /* Non-HRTF rendering. Use normal panning to the output. */
678 for(c
= 0;c
< num_channels
;c
++)
680 /* Special-case LFE */
681 if(chans
[c
].channel
== LFE
)
683 for(j
= 0;j
< MAX_OUTPUT_CHANNELS
;j
++)
684 voice
->Chan
[c
].Direct
.Gains
.Target
[j
] = 0.0f
;
685 if(Device
->Dry
.Buffer
== Device
->RealOut
.Buffer
)
688 if((idx
=GetChannelIdxByName(Device
->RealOut
, chans
[c
].channel
)) != -1)
689 voice
->Chan
[c
].Direct
.Gains
.Target
[idx
] = DryGain
;
692 for(i
= 0;i
< NumSends
;i
++)
695 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
696 voice
->Chan
[c
].Send
[i
].Gains
.Target
[j
] = 0.0f
;
701 if(Device
->Render_Mode
== StereoPair
)
703 /* Clamp X so it remains within 30 degrees of 0 or 180 degree azimuth. */
704 ALfloat x
= sinf(chans
[c
].angle
) * cosf(chans
[c
].elevation
);
705 coeffs
[0] = clampf(-x
, -0.5f
, 0.5f
) + 0.5f
;
706 voice
->Chan
[c
].Direct
.Gains
.Target
[0] = coeffs
[0] * DryGain
;
707 voice
->Chan
[c
].Direct
.Gains
.Target
[1] = (1.0f
-coeffs
[0]) * DryGain
;
708 for(j
= 2;j
< MAX_OUTPUT_CHANNELS
;j
++)
709 voice
->Chan
[c
].Direct
.Gains
.Target
[j
] = 0.0f
;
711 CalcAngleCoeffs(chans
[c
].angle
, chans
[c
].elevation
, 0.0f
, coeffs
);
715 CalcAngleCoeffs(chans
[c
].angle
, chans
[c
].elevation
, 0.0f
, coeffs
);
716 ComputePanningGains(Device
->Dry
, coeffs
, DryGain
,
717 voice
->Chan
[c
].Direct
.Gains
.Target
);
720 for(i
= 0;i
< NumSends
;i
++)
725 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
726 voice
->Chan
[c
].Send
[i
].Gains
.Target
[j
] = 0.0f
;
730 const ALeffectslot
*Slot
= SendSlots
[i
];
731 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
, coeffs
,
732 WetGain
[i
], voice
->Chan
[c
].Send
[i
].Gains
.Target
);
737 voice
->IsHrtf
= AL_FALSE
;
742 ALfloat hfscale
= ATOMIC_LOAD(&props
->Direct
.HFReference
, almemory_order_relaxed
) /
744 ALfloat lfscale
= ATOMIC_LOAD(&props
->Direct
.LFReference
, almemory_order_relaxed
) /
746 DryGainHF
= maxf(DryGainHF
, 0.0001f
);
747 DryGainLF
= maxf(DryGainLF
, 0.0001f
);
748 for(c
= 0;c
< num_channels
;c
++)
750 voice
->Chan
[c
].Direct
.FilterType
= AF_None
;
751 if(DryGainHF
!= 1.0f
) voice
->Chan
[c
].Direct
.FilterType
|= AF_LowPass
;
752 if(DryGainLF
!= 1.0f
) voice
->Chan
[c
].Direct
.FilterType
|= AF_HighPass
;
753 ALfilterState_setParams(
754 &voice
->Chan
[c
].Direct
.LowPass
, ALfilterType_HighShelf
,
755 DryGainHF
, hfscale
, calc_rcpQ_from_slope(DryGainHF
, 0.75f
)
757 ALfilterState_setParams(
758 &voice
->Chan
[c
].Direct
.HighPass
, ALfilterType_LowShelf
,
759 DryGainLF
, lfscale
, calc_rcpQ_from_slope(DryGainLF
, 0.75f
)
763 for(i
= 0;i
< NumSends
;i
++)
765 ALfloat hfscale
= ATOMIC_LOAD(&props
->Send
[i
].HFReference
, almemory_order_relaxed
) /
767 ALfloat lfscale
= ATOMIC_LOAD(&props
->Send
[i
].LFReference
, almemory_order_relaxed
) /
769 WetGainHF
[i
] = maxf(WetGainHF
[i
], 0.0001f
);
770 WetGainLF
[i
] = maxf(WetGainLF
[i
], 0.0001f
);
771 for(c
= 0;c
< num_channels
;c
++)
773 voice
->Chan
[c
].Send
[i
].FilterType
= AF_None
;
774 if(WetGainHF
[i
] != 1.0f
) voice
->Chan
[c
].Send
[i
].FilterType
|= AF_LowPass
;
775 if(WetGainLF
[i
] != 1.0f
) voice
->Chan
[c
].Send
[i
].FilterType
|= AF_HighPass
;
776 ALfilterState_setParams(
777 &voice
->Chan
[c
].Send
[i
].LowPass
, ALfilterType_HighShelf
,
778 WetGainHF
[i
], hfscale
, calc_rcpQ_from_slope(WetGainHF
[i
], 0.75f
)
780 ALfilterState_setParams(
781 &voice
->Chan
[c
].Send
[i
].HighPass
, ALfilterType_LowShelf
,
782 WetGainLF
[i
], lfscale
, calc_rcpQ_from_slope(WetGainLF
[i
], 0.75f
)
788 static void CalcAttnSourceParams(ALvoice
*voice
, const struct ALsourceProps
*props
, const ALbuffer
*ALBuffer
, const ALCcontext
*ALContext
)
790 const ALCdevice
*Device
= ALContext
->Device
;
791 const ALlistener
*Listener
= ALContext
->Listener
;
792 aluVector Position
, Velocity
, Direction
, SourceToListener
;
793 ALfloat InnerAngle
,OuterAngle
,Distance
,ClampedDist
;
794 ALfloat MinVolume
,MaxVolume
,MinDist
,MaxDist
,Rolloff
;
795 ALfloat SourceVolume
,ListenerGain
;
796 ALfloat DopplerFactor
, SpeedOfSound
;
797 ALfloat AirAbsorptionFactor
;
798 ALfloat RoomAirAbsorption
[MAX_SENDS
];
799 ALeffectslot
*SendSlots
[MAX_SENDS
];
801 ALfloat RoomAttenuation
[MAX_SENDS
];
802 ALfloat MetersPerUnit
;
803 ALfloat RoomRolloffBase
;
804 ALfloat RoomRolloff
[MAX_SENDS
];
805 ALfloat DecayDistance
[MAX_SENDS
];
809 ALboolean DryGainHFAuto
;
810 ALfloat WetGain
[MAX_SENDS
];
811 ALfloat WetGainHF
[MAX_SENDS
];
812 ALfloat WetGainLF
[MAX_SENDS
];
813 ALboolean WetGainAuto
;
814 ALboolean WetGainHFAuto
;
822 for(i
= 0;i
< MAX_SENDS
;i
++)
828 /* Get context/device properties */
829 DopplerFactor
= Listener
->Params
.DopplerFactor
;
830 SpeedOfSound
= Listener
->Params
.SpeedOfSound
;
831 NumSends
= Device
->NumAuxSends
;
832 Frequency
= Device
->Frequency
;
834 /* Get listener properties */
835 ListenerGain
= Listener
->Params
.Gain
;
836 MetersPerUnit
= Listener
->Params
.MetersPerUnit
;
838 /* Get source properties */
839 SourceVolume
= ATOMIC_LOAD(&props
->Gain
, almemory_order_relaxed
);
840 MinVolume
= ATOMIC_LOAD(&props
->MinGain
, almemory_order_relaxed
);
841 MaxVolume
= ATOMIC_LOAD(&props
->MaxGain
, almemory_order_relaxed
);
842 Pitch
= ATOMIC_LOAD(&props
->Pitch
, almemory_order_relaxed
);
843 aluVectorSet(&Position
, ATOMIC_LOAD(&props
->Position
[0], almemory_order_relaxed
),
844 ATOMIC_LOAD(&props
->Position
[1], almemory_order_relaxed
),
845 ATOMIC_LOAD(&props
->Position
[2], almemory_order_relaxed
),
847 aluVectorSet(&Direction
, ATOMIC_LOAD(&props
->Direction
[0], almemory_order_relaxed
),
848 ATOMIC_LOAD(&props
->Direction
[1], almemory_order_relaxed
),
849 ATOMIC_LOAD(&props
->Direction
[2], almemory_order_relaxed
),
851 aluVectorSet(&Velocity
, ATOMIC_LOAD(&props
->Velocity
[0], almemory_order_relaxed
),
852 ATOMIC_LOAD(&props
->Velocity
[1], almemory_order_relaxed
),
853 ATOMIC_LOAD(&props
->Velocity
[2], almemory_order_relaxed
),
855 MinDist
= ATOMIC_LOAD(&props
->RefDistance
, almemory_order_relaxed
);
856 MaxDist
= ATOMIC_LOAD(&props
->MaxDistance
, almemory_order_relaxed
);
857 Rolloff
= ATOMIC_LOAD(&props
->RollOffFactor
, almemory_order_relaxed
);
858 DopplerFactor
*= ATOMIC_LOAD(&props
->DopplerFactor
, almemory_order_relaxed
);
859 InnerAngle
= ATOMIC_LOAD(&props
->InnerAngle
, almemory_order_relaxed
);
860 OuterAngle
= ATOMIC_LOAD(&props
->OuterAngle
, almemory_order_relaxed
);
861 AirAbsorptionFactor
= ATOMIC_LOAD(&props
->AirAbsorptionFactor
, almemory_order_relaxed
);
862 DryGainHFAuto
= ATOMIC_LOAD(&props
->DryGainHFAuto
, almemory_order_relaxed
);
863 WetGainAuto
= ATOMIC_LOAD(&props
->WetGainAuto
, almemory_order_relaxed
);
864 WetGainHFAuto
= ATOMIC_LOAD(&props
->WetGainHFAuto
, almemory_order_relaxed
);
865 RoomRolloffBase
= ATOMIC_LOAD(&props
->RoomRolloffFactor
, almemory_order_relaxed
);
867 voice
->DirectOut
.Buffer
= Device
->Dry
.Buffer
;
868 voice
->DirectOut
.Channels
= Device
->Dry
.NumChannels
;
869 for(i
= 0;i
< NumSends
;i
++)
871 SendSlots
[i
] = ATOMIC_LOAD(&props
->Send
[i
].Slot
, almemory_order_relaxed
);
873 if(!SendSlots
[i
] && i
== 0)
874 SendSlots
[i
] = Device
->DefaultSlot
;
875 if(!SendSlots
[i
] || SendSlots
[i
]->Params
.EffectType
== AL_EFFECT_NULL
)
878 RoomRolloff
[i
] = 0.0f
;
879 DecayDistance
[i
] = 0.0f
;
880 RoomAirAbsorption
[i
] = 1.0f
;
882 else if(SendSlots
[i
]->Params
.AuxSendAuto
)
884 RoomRolloff
[i
] = SendSlots
[i
]->Params
.RoomRolloff
+ RoomRolloffBase
;
885 DecayDistance
[i
] = SendSlots
[i
]->Params
.DecayTime
*
886 SPEEDOFSOUNDMETRESPERSEC
;
887 RoomAirAbsorption
[i
] = SendSlots
[i
]->Params
.AirAbsorptionGainHF
;
891 /* If the slot's auxiliary send auto is off, the data sent to the
892 * effect slot is the same as the dry path, sans filter effects */
893 RoomRolloff
[i
] = Rolloff
;
894 DecayDistance
[i
] = 0.0f
;
895 RoomAirAbsorption
[i
] = AIRABSORBGAINHF
;
900 voice
->SendOut
[i
].Buffer
= NULL
;
901 voice
->SendOut
[i
].Channels
= 0;
905 voice
->SendOut
[i
].Buffer
= SendSlots
[i
]->WetBuffer
;
906 voice
->SendOut
[i
].Channels
= SendSlots
[i
]->NumChannels
;
909 voice
->Looping
= ATOMIC_LOAD(&props
->Looping
, almemory_order_relaxed
);
911 /* Transform source to listener space (convert to head relative) */
912 if(ATOMIC_LOAD(&props
->HeadRelative
, almemory_order_relaxed
) == AL_FALSE
)
914 const aluMatrixf
*Matrix
= &Listener
->Params
.Matrix
;
915 /* Transform source vectors */
916 Position
= aluMatrixfVector(Matrix
, &Position
);
917 Velocity
= aluMatrixfVector(Matrix
, &Velocity
);
918 Direction
= aluMatrixfVector(Matrix
, &Direction
);
922 const aluVector
*lvelocity
= &Listener
->Params
.Velocity
;
923 /* Offset the source velocity to be relative of the listener velocity */
924 Velocity
.v
[0] += lvelocity
->v
[0];
925 Velocity
.v
[1] += lvelocity
->v
[1];
926 Velocity
.v
[2] += lvelocity
->v
[2];
929 aluNormalize(Direction
.v
);
930 SourceToListener
.v
[0] = -Position
.v
[0];
931 SourceToListener
.v
[1] = -Position
.v
[1];
932 SourceToListener
.v
[2] = -Position
.v
[2];
933 SourceToListener
.v
[3] = 0.0f
;
934 Distance
= aluNormalize(SourceToListener
.v
);
936 /* Calculate distance attenuation */
937 ClampedDist
= Distance
;
940 for(i
= 0;i
< NumSends
;i
++)
941 RoomAttenuation
[i
] = 1.0f
;
942 switch(ATOMIC_LOAD(&props
->DistanceModel
, almemory_order_relaxed
))
944 case InverseDistanceClamped
:
945 ClampedDist
= clampf(ClampedDist
, MinDist
, MaxDist
);
946 if(MaxDist
< MinDist
)
949 case InverseDistance
:
952 ALfloat dist
= lerp(MinDist
, ClampedDist
, Rolloff
);
953 if(dist
> 0.0f
) Attenuation
= MinDist
/ dist
;
954 for(i
= 0;i
< NumSends
;i
++)
956 dist
= lerp(MinDist
, ClampedDist
, RoomRolloff
[i
]);
957 if(dist
> 0.0f
) RoomAttenuation
[i
] = MinDist
/ dist
;
962 case LinearDistanceClamped
:
963 ClampedDist
= clampf(ClampedDist
, MinDist
, MaxDist
);
964 if(MaxDist
< MinDist
)
968 if(MaxDist
!= MinDist
)
970 Attenuation
= 1.0f
- (Rolloff
*(ClampedDist
-MinDist
)/(MaxDist
- MinDist
));
971 Attenuation
= maxf(Attenuation
, 0.0f
);
972 for(i
= 0;i
< NumSends
;i
++)
974 RoomAttenuation
[i
] = 1.0f
- (RoomRolloff
[i
]*(ClampedDist
-MinDist
)/(MaxDist
- MinDist
));
975 RoomAttenuation
[i
] = maxf(RoomAttenuation
[i
], 0.0f
);
980 case ExponentDistanceClamped
:
981 ClampedDist
= clampf(ClampedDist
, MinDist
, MaxDist
);
982 if(MaxDist
< MinDist
)
985 case ExponentDistance
:
986 if(ClampedDist
> 0.0f
&& MinDist
> 0.0f
)
988 Attenuation
= powf(ClampedDist
/MinDist
, -Rolloff
);
989 for(i
= 0;i
< NumSends
;i
++)
990 RoomAttenuation
[i
] = powf(ClampedDist
/MinDist
, -RoomRolloff
[i
]);
994 case DisableDistance
:
995 ClampedDist
= MinDist
;
999 /* Source Gain + Attenuation */
1000 DryGain
= SourceVolume
* Attenuation
;
1001 for(i
= 0;i
< NumSends
;i
++)
1002 WetGain
[i
] = SourceVolume
* RoomAttenuation
[i
];
1004 /* Distance-based air absorption */
1005 if(AirAbsorptionFactor
> 0.0f
&& ClampedDist
> MinDist
)
1007 ALfloat meters
= (ClampedDist
-MinDist
) * MetersPerUnit
;
1008 DryGainHF
*= powf(AIRABSORBGAINHF
, AirAbsorptionFactor
*meters
);
1009 for(i
= 0;i
< NumSends
;i
++)
1010 WetGainHF
[i
] *= powf(RoomAirAbsorption
[i
], AirAbsorptionFactor
*meters
);
1015 ALfloat ApparentDist
= 1.0f
/maxf(Attenuation
, 0.00001f
) - 1.0f
;
1017 /* Apply a decay-time transformation to the wet path, based on the
1018 * attenuation of the dry path.
1020 * Using the apparent distance, based on the distance attenuation, the
1021 * initial decay of the reverb effect is calculated and applied to the
1024 for(i
= 0;i
< NumSends
;i
++)
1026 if(DecayDistance
[i
] > 0.0f
)
1027 WetGain
[i
] *= powf(0.001f
/*-60dB*/, ApparentDist
/DecayDistance
[i
]);
1031 /* Calculate directional soundcones */
1032 if(InnerAngle
< 360.0f
)
1039 Angle
= RAD2DEG(acosf(aluDotproduct(&Direction
, &SourceToListener
)) * ConeScale
) * 2.0f
;
1040 if(Angle
> InnerAngle
)
1042 if(Angle
< OuterAngle
)
1044 scale
= (Angle
-InnerAngle
) / (OuterAngle
-InnerAngle
);
1046 1.0f
, ATOMIC_LOAD(&props
->OuterGain
, almemory_order_relaxed
), scale
1049 1.0f
, ATOMIC_LOAD(&props
->OuterGainHF
, almemory_order_relaxed
), scale
1054 ConeVolume
= ATOMIC_LOAD(&props
->OuterGain
, almemory_order_relaxed
);
1055 ConeHF
= ATOMIC_LOAD(&props
->OuterGainHF
, almemory_order_relaxed
);
1057 DryGain
*= ConeVolume
;
1059 DryGainHF
*= ConeHF
;
1062 /* Wet path uses the total area of the cone emitter (the room will
1063 * receive the same amount of sound regardless of its direction).
1065 scale
= (asinf(maxf((OuterAngle
-InnerAngle
)/360.0f
, 0.0f
)) / F_PI
) +
1066 (InnerAngle
/360.0f
);
1070 1.0f
, ATOMIC_LOAD(&props
->OuterGain
, almemory_order_relaxed
), scale
1072 for(i
= 0;i
< NumSends
;i
++)
1073 WetGain
[i
] *= ConeVolume
;
1078 1.0f
, ATOMIC_LOAD(&props
->OuterGainHF
, almemory_order_relaxed
), scale
1080 for(i
= 0;i
< NumSends
;i
++)
1081 WetGainHF
[i
] *= ConeHF
;
1085 /* Clamp to Min/Max Gain */
1086 DryGain
= clampf(DryGain
, MinVolume
, MaxVolume
);
1087 for(i
= 0;i
< NumSends
;i
++)
1088 WetGain
[i
] = clampf(WetGain
[i
], MinVolume
, MaxVolume
);
1090 /* Apply gain and frequency filters */
1091 DryGain
*= ATOMIC_LOAD(&props
->Direct
.Gain
, almemory_order_relaxed
) * ListenerGain
;
1092 DryGainHF
*= ATOMIC_LOAD(&props
->Direct
.GainHF
, almemory_order_relaxed
);
1093 DryGainLF
*= ATOMIC_LOAD(&props
->Direct
.GainLF
, almemory_order_relaxed
);
1094 for(i
= 0;i
< NumSends
;i
++)
1096 WetGain
[i
] *= ATOMIC_LOAD(&props
->Send
[i
].Gain
, almemory_order_relaxed
) * ListenerGain
;
1097 WetGainHF
[i
] *= ATOMIC_LOAD(&props
->Send
[i
].GainHF
, almemory_order_relaxed
);
1098 WetGainLF
[i
] *= ATOMIC_LOAD(&props
->Send
[i
].GainLF
, almemory_order_relaxed
);
1101 /* Calculate velocity-based doppler effect */
1102 if(DopplerFactor
> 0.0f
)
1104 const aluVector
*lvelocity
= &Listener
->Params
.Velocity
;
1107 if(SpeedOfSound
< 1.0f
)
1109 DopplerFactor
*= 1.0f
/SpeedOfSound
;
1110 SpeedOfSound
= 1.0f
;
1113 VSS
= aluDotproduct(&Velocity
, &SourceToListener
) * DopplerFactor
;
1114 VLS
= aluDotproduct(lvelocity
, &SourceToListener
) * DopplerFactor
;
1116 Pitch
*= clampf(SpeedOfSound
-VLS
, 1.0f
, SpeedOfSound
*2.0f
- 1.0f
) /
1117 clampf(SpeedOfSound
-VSS
, 1.0f
, SpeedOfSound
*2.0f
- 1.0f
);
1120 /* Calculate fixed-point stepping value, based on the pitch, buffer
1121 * frequency, and output frequency.
1123 Pitch
*= (ALfloat
)ALBuffer
->Frequency
/ Frequency
;
1124 if(Pitch
> (ALfloat
)MAX_PITCH
)
1125 voice
->Step
= MAX_PITCH
<<FRACTIONBITS
;
1127 voice
->Step
= maxi(fastf2i(Pitch
*FRACTIONONE
+ 0.5f
), 1);
1128 BsincPrepare(voice
->Step
, &voice
->SincState
);
1130 if(Device
->Render_Mode
== HrtfRender
)
1132 /* Full HRTF rendering. Skip the virtual channels and render to the
1135 ALfloat dir
[3] = { 0.0f
, 0.0f
, -1.0f
};
1136 ALfloat ev
= 0.0f
, az
= 0.0f
;
1137 ALfloat radius
= ATOMIC_LOAD(&props
->Radius
, almemory_order_relaxed
);
1138 ALfloat coeffs
[MAX_AMBI_COEFFS
];
1139 ALfloat spread
= 0.0f
;
1141 voice
->DirectOut
.Buffer
= Device
->RealOut
.Buffer
;
1142 voice
->DirectOut
.Channels
= Device
->RealOut
.NumChannels
;
1144 if(Distance
> FLT_EPSILON
)
1146 dir
[0] = -SourceToListener
.v
[0];
1147 dir
[1] = -SourceToListener
.v
[1];
1148 dir
[2] = -SourceToListener
.v
[2] * ZScale
;
1150 /* Calculate elevation and azimuth only when the source is not at
1151 * the listener. This prevents +0 and -0 Z from producing
1152 * inconsistent panning. Also, clamp Y in case FP precision errors
1153 * cause it to land outside of -1..+1. */
1154 ev
= asinf(clampf(dir
[1], -1.0f
, 1.0f
));
1155 az
= atan2f(dir
[0], -dir
[2]);
1157 if(radius
> Distance
)
1158 spread
= F_TAU
- Distance
/radius
*F_PI
;
1159 else if(Distance
> FLT_EPSILON
)
1160 spread
= asinf(radius
/ Distance
) * 2.0f
;
1162 /* Get the HRIR coefficients and delays. */
1163 GetLerpedHrtfCoeffs(Device
->Hrtf
, ev
, az
, spread
, DryGain
,
1164 voice
->Chan
[0].Direct
.Hrtf
.Target
.Coeffs
,
1165 voice
->Chan
[0].Direct
.Hrtf
.Target
.Delay
);
1167 CalcDirectionCoeffs(dir
, spread
, coeffs
);
1169 for(i
= 0;i
< NumSends
;i
++)
1174 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
1175 voice
->Chan
[0].Send
[i
].Gains
.Target
[j
] = 0.0f
;
1179 const ALeffectslot
*Slot
= SendSlots
[i
];
1180 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
, coeffs
,
1181 WetGain
[i
], voice
->Chan
[0].Send
[i
].Gains
.Target
);
1185 voice
->IsHrtf
= AL_TRUE
;
1189 /* Non-HRTF rendering. */
1190 ALfloat dir
[3] = { 0.0f
, 0.0f
, -1.0f
};
1191 ALfloat radius
= ATOMIC_LOAD(&props
->Radius
, almemory_order_relaxed
);
1192 ALfloat coeffs
[MAX_AMBI_COEFFS
];
1193 ALfloat spread
= 0.0f
;
1195 /* Get the localized direction, and compute panned gains. */
1196 if(Distance
> FLT_EPSILON
)
1198 dir
[0] = -SourceToListener
.v
[0];
1199 dir
[1] = -SourceToListener
.v
[1];
1200 dir
[2] = -SourceToListener
.v
[2] * ZScale
;
1202 if(radius
> Distance
)
1203 spread
= F_TAU
- Distance
/radius
*F_PI
;
1204 else if(Distance
> FLT_EPSILON
)
1205 spread
= asinf(radius
/ Distance
) * 2.0f
;
1207 if(Device
->Render_Mode
== StereoPair
)
1209 /* Clamp X so it remains within 30 degrees of 0 or 180 degree azimuth. */
1210 ALfloat x
= -dir
[0] * (0.5f
* (cosf(spread
*0.5f
) + 1.0f
));
1211 x
= clampf(x
, -0.5f
, 0.5f
) + 0.5f
;
1212 voice
->Chan
[0].Direct
.Gains
.Target
[0] = x
* DryGain
;
1213 voice
->Chan
[0].Direct
.Gains
.Target
[1] = (1.0f
-x
) * DryGain
;
1214 for(i
= 2;i
< MAX_OUTPUT_CHANNELS
;i
++)
1215 voice
->Chan
[0].Direct
.Gains
.Target
[i
] = 0.0f
;
1217 CalcDirectionCoeffs(dir
, spread
, coeffs
);
1221 CalcDirectionCoeffs(dir
, spread
, coeffs
);
1222 ComputePanningGains(Device
->Dry
, coeffs
, DryGain
,
1223 voice
->Chan
[0].Direct
.Gains
.Target
);
1226 for(i
= 0;i
< NumSends
;i
++)
1231 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
1232 voice
->Chan
[0].Send
[i
].Gains
.Target
[j
] = 0.0f
;
1236 const ALeffectslot
*Slot
= SendSlots
[i
];
1237 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
, coeffs
,
1238 WetGain
[i
], voice
->Chan
[0].Send
[i
].Gains
.Target
);
1242 voice
->IsHrtf
= AL_FALSE
;
1246 ALfloat hfscale
= ATOMIC_LOAD(&props
->Direct
.HFReference
, almemory_order_relaxed
) /
1248 ALfloat lfscale
= ATOMIC_LOAD(&props
->Direct
.LFReference
, almemory_order_relaxed
) /
1250 DryGainHF
= maxf(DryGainHF
, 0.0001f
);
1251 DryGainLF
= maxf(DryGainLF
, 0.0001f
);
1252 voice
->Chan
[0].Direct
.FilterType
= AF_None
;
1253 if(DryGainHF
!= 1.0f
) voice
->Chan
[0].Direct
.FilterType
|= AF_LowPass
;
1254 if(DryGainLF
!= 1.0f
) voice
->Chan
[0].Direct
.FilterType
|= AF_HighPass
;
1255 ALfilterState_setParams(
1256 &voice
->Chan
[0].Direct
.LowPass
, ALfilterType_HighShelf
,
1257 DryGainHF
, hfscale
, calc_rcpQ_from_slope(DryGainHF
, 0.75f
)
1259 ALfilterState_setParams(
1260 &voice
->Chan
[0].Direct
.HighPass
, ALfilterType_LowShelf
,
1261 DryGainLF
, lfscale
, calc_rcpQ_from_slope(DryGainLF
, 0.75f
)
1264 for(i
= 0;i
< NumSends
;i
++)
1266 ALfloat hfscale
= ATOMIC_LOAD(&props
->Send
[i
].HFReference
, almemory_order_relaxed
) /
1268 ALfloat lfscale
= ATOMIC_LOAD(&props
->Send
[i
].LFReference
, almemory_order_relaxed
) /
1270 WetGainHF
[i
] = maxf(WetGainHF
[i
], 0.0001f
);
1271 WetGainLF
[i
] = maxf(WetGainLF
[i
], 0.0001f
);
1272 voice
->Chan
[0].Send
[i
].FilterType
= AF_None
;
1273 if(WetGainHF
[i
] != 1.0f
) voice
->Chan
[0].Send
[i
].FilterType
|= AF_LowPass
;
1274 if(WetGainLF
[i
] != 1.0f
) voice
->Chan
[0].Send
[i
].FilterType
|= AF_HighPass
;
1275 ALfilterState_setParams(
1276 &voice
->Chan
[0].Send
[i
].LowPass
, ALfilterType_HighShelf
,
1277 WetGainHF
[i
], hfscale
, calc_rcpQ_from_slope(WetGainHF
[i
], 0.75f
)
1279 ALfilterState_setParams(
1280 &voice
->Chan
[0].Send
[i
].HighPass
, ALfilterType_LowShelf
,
1281 WetGainLF
[i
], lfscale
, calc_rcpQ_from_slope(WetGainLF
[i
], 0.75f
)
1286 static void CalcSourceParams(ALvoice
*voice
, ALCcontext
*context
)
1288 ALsource
*source
= voice
->Source
;
1289 ALbufferlistitem
*BufferListItem
;
1290 struct ALsourceProps
*first
;
1291 struct ALsourceProps
*props
;
1293 props
= ATOMIC_EXCHANGE(struct ALsourceProps
*, &source
->Update
, NULL
, almemory_order_acq_rel
);
1296 BufferListItem
= ATOMIC_LOAD(&source
->queue
, almemory_order_relaxed
);
1297 while(BufferListItem
!= NULL
)
1300 if((buffer
=BufferListItem
->buffer
) != NULL
)
1302 if(buffer
->FmtChannels
== FmtMono
)
1303 CalcAttnSourceParams(voice
, props
, buffer
, context
);
1305 CalcNonAttnSourceParams(voice
, props
, buffer
, context
);
1308 BufferListItem
= BufferListItem
->next
;
1311 /* WARNING: A livelock is theoretically possible if another thread keeps
1312 * changing the freelist head without giving this a chance to actually swap
1313 * in the old container (practically impossible with this little code,
1316 first
= ATOMIC_LOAD(&source
->FreeList
);
1318 ATOMIC_STORE(&props
->next
, first
, almemory_order_relaxed
);
1319 } while(ATOMIC_COMPARE_EXCHANGE_WEAK(struct ALsourceProps
*,
1320 &source
->FreeList
, &first
, props
) == 0);
1324 static void UpdateContextSources(ALCcontext
*ctx
, ALeffectslot
*slot
)
1326 ALvoice
*voice
, *voice_end
;
1329 IncrementRef(&ctx
->UpdateCount
);
1330 if(!ATOMIC_LOAD(&ctx
->HoldUpdates
))
1332 CalcListenerParams(ctx
);
1335 CalcEffectSlotParams(slot
, ctx
->Device
);
1336 slot
= ATOMIC_LOAD(&slot
->next
, almemory_order_relaxed
);
1339 voice
= ctx
->Voices
;
1340 voice_end
= voice
+ ctx
->VoiceCount
;
1341 for(;voice
!= voice_end
;++voice
)
1343 if(!(source
=voice
->Source
)) continue;
1344 if(source
->state
!= AL_PLAYING
&& source
->state
!= AL_PAUSED
)
1345 voice
->Source
= NULL
;
1347 CalcSourceParams(voice
, ctx
);
1350 IncrementRef(&ctx
->UpdateCount
);
1354 /* Specialized function to clamp to [-1, +1] with only one branch. This also
1355 * converts NaN to 0. */
1356 static inline ALfloat
aluClampf(ALfloat val
)
1358 if(fabsf(val
) <= 1.0f
) return val
;
1359 return (ALfloat
)((0.0f
< val
) - (val
< 0.0f
));
1362 static inline ALfloat
aluF2F(ALfloat val
)
1365 static inline ALint
aluF2I(ALfloat val
)
1367 /* Floats only have a 24-bit mantissa, so [-16777215, +16777215] is the max
1368 * integer range normalized floats can be safely converted to.
1370 return fastf2i(aluClampf(val
)*16777215.0f
)<<7;
1372 static inline ALuint
aluF2UI(ALfloat val
)
1373 { return aluF2I(val
)+2147483648u; }
1375 static inline ALshort
aluF2S(ALfloat val
)
1376 { return fastf2i(aluClampf(val
)*32767.0f
); }
1377 static inline ALushort
aluF2US(ALfloat val
)
1378 { return aluF2S(val
)+32768; }
1380 static inline ALbyte
aluF2B(ALfloat val
)
1381 { return fastf2i(aluClampf(val
)*127.0f
); }
1382 static inline ALubyte
aluF2UB(ALfloat val
)
1383 { return aluF2B(val
)+128; }
1385 #define DECL_TEMPLATE(T, func) \
1386 static void Write_##T(ALfloatBUFFERSIZE *InBuffer, ALvoid *OutBuffer, \
1387 ALuint SamplesToDo, ALuint numchans) \
1390 for(j = 0;j < numchans;j++) \
1392 const ALfloat *in = InBuffer[j]; \
1393 T *restrict out = (T*)OutBuffer + j; \
1394 for(i = 0;i < SamplesToDo;i++) \
1395 out[i*numchans] = func(in[i]); \
1399 DECL_TEMPLATE(ALfloat
, aluF2F
)
1400 DECL_TEMPLATE(ALuint
, aluF2UI
)
1401 DECL_TEMPLATE(ALint
, aluF2I
)
1402 DECL_TEMPLATE(ALushort
, aluF2US
)
1403 DECL_TEMPLATE(ALshort
, aluF2S
)
1404 DECL_TEMPLATE(ALubyte
, aluF2UB
)
1405 DECL_TEMPLATE(ALbyte
, aluF2B
)
1407 #undef DECL_TEMPLATE
1410 ALvoid
aluMixData(ALCdevice
*device
, ALvoid
*buffer
, ALsizei size
)
1413 ALvoice
*voice
, *voice_end
;
1420 SetMixerFPUMode(&oldMode
);
1424 SamplesToDo
= minu(size
, BUFFERSIZE
);
1425 for(c
= 0;c
< device
->Dry
.NumChannels
;c
++)
1426 memset(device
->Dry
.Buffer
[c
], 0, SamplesToDo
*sizeof(ALfloat
));
1427 if(device
->Dry
.Buffer
!= device
->RealOut
.Buffer
)
1428 for(c
= 0;c
< device
->RealOut
.NumChannels
;c
++)
1429 memset(device
->RealOut
.Buffer
[c
], 0, SamplesToDo
*sizeof(ALfloat
));
1430 if(device
->Dry
.Buffer
!= device
->FOAOut
.Buffer
)
1431 for(c
= 0;c
< device
->FOAOut
.NumChannels
;c
++)
1432 memset(device
->FOAOut
.Buffer
[c
], 0, SamplesToDo
*sizeof(ALfloat
));
1434 IncrementRef(&device
->MixCount
);
1435 V0(device
->Backend
,lock
)();
1437 if((slot
=device
->DefaultSlot
) != NULL
)
1439 CalcEffectSlotParams(device
->DefaultSlot
, device
);
1440 for(i
= 0;i
< slot
->NumChannels
;i
++)
1441 memset(slot
->WetBuffer
[i
], 0, SamplesToDo
*sizeof(ALfloat
));
1444 ctx
= ATOMIC_LOAD(&device
->ContextList
);
1447 ALeffectslot
*slotroot
;
1449 slotroot
= ATOMIC_LOAD(&ctx
->ActiveAuxSlotList
);
1450 UpdateContextSources(ctx
, slotroot
);
1455 for(i
= 0;i
< slot
->NumChannels
;i
++)
1456 memset(slot
->WetBuffer
[i
], 0, SamplesToDo
*sizeof(ALfloat
));
1457 slot
= ATOMIC_LOAD(&slot
->next
, almemory_order_relaxed
);
1460 /* source processing */
1461 voice
= ctx
->Voices
;
1462 voice_end
= voice
+ ctx
->VoiceCount
;
1463 for(;voice
!= voice_end
;++voice
)
1465 ALboolean IsVoiceInit
= (voice
->Step
> 0);
1466 source
= voice
->Source
;
1467 if(source
&& source
->state
== AL_PLAYING
&& IsVoiceInit
)
1468 MixSource(voice
, source
, device
, SamplesToDo
);
1471 /* effect slot processing */
1475 const ALeffectslot
*cslot
= slot
;
1476 ALeffectState
*state
= cslot
->Params
.EffectState
;
1477 V(state
,process
)(SamplesToDo
, cslot
->WetBuffer
, state
->OutBuffer
,
1478 state
->OutChannels
);
1479 slot
= ATOMIC_LOAD(&slot
->next
, almemory_order_relaxed
);
1485 if(device
->DefaultSlot
!= NULL
)
1487 const ALeffectslot
*slot
= device
->DefaultSlot
;
1488 ALeffectState
*state
= slot
->Params
.EffectState
;
1489 V(state
,process
)(SamplesToDo
, slot
->WetBuffer
, state
->OutBuffer
,
1490 state
->OutChannels
);
1493 /* Increment the clock time. Every second's worth of samples is
1494 * converted and added to clock base so that large sample counts don't
1495 * overflow during conversion. This also guarantees an exact, stable
1497 device
->SamplesDone
+= SamplesToDo
;
1498 device
->ClockBase
+= (device
->SamplesDone
/device
->Frequency
) * DEVICE_CLOCK_RES
;
1499 device
->SamplesDone
%= device
->Frequency
;
1500 V0(device
->Backend
,unlock
)();
1501 IncrementRef(&device
->MixCount
);
1505 int lidx
= GetChannelIdxByName(device
->RealOut
, FrontLeft
);
1506 int ridx
= GetChannelIdxByName(device
->RealOut
, FrontRight
);
1507 if(lidx
!= -1 && ridx
!= -1)
1509 HrtfMixerFunc HrtfMix
= SelectHrtfMixer();
1510 ALuint irsize
= device
->Hrtf
->irSize
;
1511 MixHrtfParams hrtfparams
;
1512 memset(&hrtfparams
, 0, sizeof(hrtfparams
));
1513 for(c
= 0;c
< device
->Dry
.NumChannels
;c
++)
1515 hrtfparams
.Current
= &device
->Hrtf_Params
[c
];
1516 hrtfparams
.Target
= &device
->Hrtf_Params
[c
];
1517 HrtfMix(device
->RealOut
.Buffer
, lidx
, ridx
,
1518 device
->Dry
.Buffer
[c
], 0, device
->Hrtf_Offset
, 0,
1519 irsize
, &hrtfparams
, &device
->Hrtf_State
[c
], SamplesToDo
1522 device
->Hrtf_Offset
+= SamplesToDo
;
1525 else if(device
->AmbiDecoder
)
1527 if(device
->Dry
.Buffer
!= device
->FOAOut
.Buffer
)
1528 bformatdec_upSample(device
->AmbiDecoder
,
1529 device
->Dry
.Buffer
, device
->FOAOut
.Buffer
,
1530 device
->FOAOut
.NumChannels
, SamplesToDo
1532 bformatdec_process(device
->AmbiDecoder
,
1533 device
->RealOut
.Buffer
, device
->RealOut
.NumChannels
,
1534 device
->Dry
.Buffer
, SamplesToDo
1539 if(device
->Uhj_Encoder
)
1541 int lidx
= GetChannelIdxByName(device
->RealOut
, FrontLeft
);
1542 int ridx
= GetChannelIdxByName(device
->RealOut
, FrontRight
);
1543 if(lidx
!= -1 && ridx
!= -1)
1545 /* Encode to stereo-compatible 2-channel UHJ output. */
1546 EncodeUhj2(device
->Uhj_Encoder
,
1547 device
->RealOut
.Buffer
[lidx
], device
->RealOut
.Buffer
[ridx
],
1548 device
->Dry
.Buffer
, SamplesToDo
1554 /* Apply binaural/crossfeed filter */
1555 for(i
= 0;i
< SamplesToDo
;i
++)
1558 samples
[0] = device
->RealOut
.Buffer
[0][i
];
1559 samples
[1] = device
->RealOut
.Buffer
[1][i
];
1560 bs2b_cross_feed(device
->Bs2b
, samples
);
1561 device
->RealOut
.Buffer
[0][i
] = samples
[0];
1562 device
->RealOut
.Buffer
[1][i
] = samples
[1];
1569 ALfloat (*OutBuffer
)[BUFFERSIZE
] = device
->RealOut
.Buffer
;
1570 ALuint OutChannels
= device
->RealOut
.NumChannels
;
1572 #define WRITE(T, a, b, c, d) do { \
1573 Write_##T((a), (b), (c), (d)); \
1574 buffer = (T*)buffer + (c)*(d); \
1576 switch(device
->FmtType
)
1579 WRITE(ALbyte
, OutBuffer
, buffer
, SamplesToDo
, OutChannels
);
1582 WRITE(ALubyte
, OutBuffer
, buffer
, SamplesToDo
, OutChannels
);
1585 WRITE(ALshort
, OutBuffer
, buffer
, SamplesToDo
, OutChannels
);
1588 WRITE(ALushort
, OutBuffer
, buffer
, SamplesToDo
, OutChannels
);
1591 WRITE(ALint
, OutBuffer
, buffer
, SamplesToDo
, OutChannels
);
1594 WRITE(ALuint
, OutBuffer
, buffer
, SamplesToDo
, OutChannels
);
1597 WRITE(ALfloat
, OutBuffer
, buffer
, SamplesToDo
, OutChannels
);
1603 size
-= SamplesToDo
;
1606 RestoreFPUMode(&oldMode
);
1610 ALvoid
aluHandleDisconnect(ALCdevice
*device
)
1612 ALCcontext
*Context
;
1614 device
->Connected
= ALC_FALSE
;
1616 Context
= ATOMIC_LOAD(&device
->ContextList
);
1619 ALvoice
*voice
, *voice_end
;
1621 voice
= Context
->Voices
;
1622 voice_end
= voice
+ Context
->VoiceCount
;
1623 while(voice
!= voice_end
)
1625 ALsource
*source
= voice
->Source
;
1626 voice
->Source
= NULL
;
1628 if(source
&& source
->state
== AL_PLAYING
)
1630 source
->state
= AL_STOPPED
;
1631 ATOMIC_STORE(&source
->current_buffer
, NULL
);
1632 ATOMIC_STORE(&source
->position
, 0);
1633 ATOMIC_STORE(&source
->position_fraction
, 0);
1638 Context
->VoiceCount
= 0;
1640 Context
= Context
->next
;