2 * HRTF utility for producing and demonstrating the process of creating an
3 * OpenAL Soft compatible HRIR data set.
5 * Copyright (C) 2011-2017 Christopher Fitzgerald
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21 * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
23 * --------------------------------------------------------------------------
25 * A big thanks goes out to all those whose work done in the field of
26 * binaural sound synthesis using measured HRTFs makes this utility and the
27 * OpenAL Soft implementation possible.
29 * The algorithm for diffuse-field equalization was adapted from the work
30 * done by Rio Emmanuel and Larcher Veronique of IRCAM and Bill Gardner of
31 * MIT Media Laboratory. It operates as follows:
33 * 1. Take the FFT of each HRIR and only keep the magnitude responses.
34 * 2. Calculate the diffuse-field power-average of all HRIRs weighted by
35 * their contribution to the total surface area covered by their
37 * 3. Take the diffuse-field average and limit its magnitude range.
38 * 4. Equalize the responses by using the inverse of the diffuse-field
40 * 5. Reconstruct the minimum-phase responses.
41 * 5. Zero the DC component.
42 * 6. IFFT the result and truncate to the desired-length minimum-phase FIR.
44 * The spherical head algorithm for calculating propagation delay was adapted
47 * Modeling Interaural Time Difference Assuming a Spherical Head
49 * Music 150, Musical Acoustics, Stanford University
52 * The formulae for calculating the Kaiser window metrics are from the
55 * Discrete-Time Signal Processing
56 * Alan V. Oppenheim and Ronald W. Schafer
57 * Prentice-Hall Signal Processing Series
81 #include "win_main_utf8.h"
83 /* Define int64_t and uint64_t types */
84 #if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
86 #elif defined(_WIN32) && defined(__GNUC__)
89 typedef __int64
int64_t;
90 typedef unsigned __int64
uint64_t;
92 /* Fallback if nothing above works */
97 #define M_PI (3.14159265358979323846)
101 #define HUGE_VAL (1.0 / 0.0)
105 // The epsilon used to maintain signal stability.
106 #define EPSILON (1e-9)
108 // Constants for accessing the token reader's ring buffer.
109 #define TR_RING_BITS (16)
110 #define TR_RING_SIZE (1 << TR_RING_BITS)
111 #define TR_RING_MASK (TR_RING_SIZE - 1)
113 // The token reader's load interval in bytes.
114 #define TR_LOAD_SIZE (TR_RING_SIZE >> 2)
116 // The maximum identifier length used when processing the data set
118 #define MAX_IDENT_LEN (16)
120 // The maximum path length used when processing filenames.
121 #define MAX_PATH_LEN (256)
123 // The limits for the sample 'rate' metric in the data set definition and for
125 #define MIN_RATE (32000)
126 #define MAX_RATE (96000)
128 // The limits for the HRIR 'points' metric in the data set definition.
129 #define MIN_POINTS (16)
130 #define MAX_POINTS (8192)
132 // The limit to the number of 'distances' listed in the data set definition.
133 #define MAX_FD_COUNT (16)
135 // The limits to the number of 'azimuths' listed in the data set definition.
136 #define MIN_EV_COUNT (5)
137 #define MAX_EV_COUNT (128)
139 // The limits for each of the 'azimuths' listed in the data set definition.
140 #define MIN_AZ_COUNT (1)
141 #define MAX_AZ_COUNT (128)
143 // The limits for the listener's head 'radius' in the data set definition.
144 #define MIN_RADIUS (0.05)
145 #define MAX_RADIUS (0.15)
147 // The limits for the 'distance' from source to listener for each field in
148 // the definition file.
149 #define MIN_DISTANCE (0.05)
150 #define MAX_DISTANCE (2.50)
152 // The maximum number of channels that can be addressed for a WAVE file
153 // source listed in the data set definition.
154 #define MAX_WAVE_CHANNELS (65535)
156 // The limits to the byte size for a binary source listed in the definition
158 #define MIN_BIN_SIZE (2)
159 #define MAX_BIN_SIZE (4)
161 // The minimum number of significant bits for binary sources listed in the
162 // data set definition. The maximum is calculated from the byte size.
163 #define MIN_BIN_BITS (16)
165 // The limits to the number of significant bits for an ASCII source listed in
166 // the data set definition.
167 #define MIN_ASCII_BITS (16)
168 #define MAX_ASCII_BITS (32)
170 // The limits to the FFT window size override on the command line.
171 #define MIN_FFTSIZE (65536)
172 #define MAX_FFTSIZE (131072)
174 // The limits to the equalization range limit on the command line.
175 #define MIN_LIMIT (2.0)
176 #define MAX_LIMIT (120.0)
178 // The limits to the truncation window size on the command line.
179 #define MIN_TRUNCSIZE (16)
180 #define MAX_TRUNCSIZE (512)
182 // The limits to the custom head radius on the command line.
183 #define MIN_CUSTOM_RADIUS (0.05)
184 #define MAX_CUSTOM_RADIUS (0.15)
186 // The truncation window size must be a multiple of the below value to allow
187 // for vectorized convolution.
188 #define MOD_TRUNCSIZE (8)
190 // The defaults for the command line options.
191 #define DEFAULT_FFTSIZE (65536)
192 #define DEFAULT_EQUALIZE (1)
193 #define DEFAULT_SURFACE (1)
194 #define DEFAULT_LIMIT (24.0)
195 #define DEFAULT_TRUNCSIZE (32)
196 #define DEFAULT_HEAD_MODEL (HM_DATASET)
197 #define DEFAULT_CUSTOM_RADIUS (0.0)
199 // The four-character-codes for RIFF/RIFX WAVE file chunks.
200 #define FOURCC_RIFF (0x46464952) // 'RIFF'
201 #define FOURCC_RIFX (0x58464952) // 'RIFX'
202 #define FOURCC_WAVE (0x45564157) // 'WAVE'
203 #define FOURCC_FMT (0x20746D66) // 'fmt '
204 #define FOURCC_DATA (0x61746164) // 'data'
205 #define FOURCC_LIST (0x5453494C) // 'LIST'
206 #define FOURCC_WAVL (0x6C766177) // 'wavl'
207 #define FOURCC_SLNT (0x746E6C73) // 'slnt'
209 // The supported wave formats.
210 #define WAVE_FORMAT_PCM (0x0001)
211 #define WAVE_FORMAT_IEEE_FLOAT (0x0003)
212 #define WAVE_FORMAT_EXTENSIBLE (0xFFFE)
214 // The maximum propagation delay value supported by OpenAL Soft.
215 #define MAX_HRTD (63.0)
217 // The OpenAL Soft HRTF format marker. It stands for minimum-phase head
218 // response protocol 02.
219 #define MHR_FORMAT ("MinPHR02")
221 // Sample and channel type enum values.
222 typedef enum SampleTypeT
{
227 // Certain iterations rely on these integer enum values.
228 typedef enum ChannelTypeT
{
234 // Byte order for the serialization routines.
235 typedef enum ByteOrderT
{
241 // Source format for the references listed in the data set definition.
242 typedef enum SourceFormatT
{
244 SF_WAVE
, // RIFF/RIFX WAVE file.
245 SF_BIN_LE
, // Little-endian binary file.
246 SF_BIN_BE
, // Big-endian binary file.
247 SF_ASCII
// ASCII text file.
250 // Element types for the references listed in the data set definition.
251 typedef enum ElementTypeT
{
253 ET_INT
, // Integer elements.
254 ET_FP
// Floating-point elements.
257 // Head model used for calculating the impulse delays.
258 typedef enum HeadModelT
{
260 HM_DATASET
, // Measure the onset from the dataset.
261 HM_SPHERE
// Calculate the onset using a spherical head model.
264 // Unsigned integer type.
265 typedef unsigned int uint
;
267 // Serialization types. The trailing digit indicates the number of bits.
268 typedef unsigned char uint8
;
270 typedef unsigned int uint32
;
271 typedef uint64_t uint64
;
273 // Token reader state for parsing the data set definition.
274 typedef struct TokenReaderT
{
279 char mRing
[TR_RING_SIZE
];
284 // Source reference state used when loading sources.
285 typedef struct SourceRefT
{
286 SourceFormatT mFormat
;
293 char mPath
[MAX_PATH_LEN
+1];
296 // Structured HRIR storage for stereo azimuth pairs, elevations, and fields.
297 typedef struct HrirAzT
{
304 typedef struct HrirEvT
{
311 typedef struct HrirFdT
{
319 // The HRIR metrics and data set used when loading, processing, and storing
320 // the resulting HRTF.
321 typedef struct HrirDataT
{
323 SampleTypeT mSampleType
;
324 ChannelTypeT mChannelType
;
334 // The resampler metrics and FIR filter.
335 typedef struct ResamplerT
{
341 /****************************************
342 *** Complex number type and routines ***
343 ****************************************/
349 static Complex
MakeComplex(double r
, double i
)
351 Complex c
= { r
, i
};
355 static Complex
c_add(Complex a
, Complex b
)
358 r
.Real
= a
.Real
+ b
.Real
;
359 r
.Imag
= a
.Imag
+ b
.Imag
;
363 static Complex
c_sub(Complex a
, Complex b
)
366 r
.Real
= a
.Real
- b
.Real
;
367 r
.Imag
= a
.Imag
- b
.Imag
;
371 static Complex
c_mul(Complex a
, Complex b
)
374 r
.Real
= a
.Real
*b
.Real
- a
.Imag
*b
.Imag
;
375 r
.Imag
= a
.Imag
*b
.Real
+ a
.Real
*b
.Imag
;
379 static Complex
c_muls(Complex a
, double s
)
387 static double c_abs(Complex a
)
389 return sqrt(a
.Real
*a
.Real
+ a
.Imag
*a
.Imag
);
392 static Complex
c_exp(Complex a
)
395 double e
= exp(a
.Real
);
396 r
.Real
= e
* cos(a
.Imag
);
397 r
.Imag
= e
* sin(a
.Imag
);
401 /*****************************
402 *** Token reader routines ***
403 *****************************/
405 /* Whitespace is not significant. It can process tokens as identifiers, numbers
406 * (integer and floating-point), strings, and operators. Strings must be
407 * encapsulated by double-quotes and cannot span multiple lines.
410 // Setup the reader on the given file. The filename can be NULL if no error
411 // output is desired.
412 static void TrSetup(FILE *fp
, const char *filename
, TokenReaderT
*tr
)
414 const char *name
= NULL
;
418 const char *slash
= strrchr(filename
, '/');
421 const char *bslash
= strrchr(slash
+1, '\\');
422 if(bslash
) name
= bslash
+1;
427 const char *bslash
= strrchr(filename
, '\\');
428 if(bslash
) name
= bslash
+1;
429 else name
= filename
;
441 // Prime the reader's ring buffer, and return a result indicating that there
442 // is text to process.
443 static int TrLoad(TokenReaderT
*tr
)
445 size_t toLoad
, in
, count
;
447 toLoad
= TR_RING_SIZE
- (tr
->mIn
- tr
->mOut
);
448 if(toLoad
>= TR_LOAD_SIZE
&& !feof(tr
->mFile
))
450 // Load TR_LOAD_SIZE (or less if at the end of the file) per read.
451 toLoad
= TR_LOAD_SIZE
;
452 in
= tr
->mIn
&TR_RING_MASK
;
453 count
= TR_RING_SIZE
- in
;
456 tr
->mIn
+= fread(&tr
->mRing
[in
], 1, count
, tr
->mFile
);
457 tr
->mIn
+= fread(&tr
->mRing
[0], 1, toLoad
-count
, tr
->mFile
);
460 tr
->mIn
+= fread(&tr
->mRing
[in
], 1, toLoad
, tr
->mFile
);
462 if(tr
->mOut
>= TR_RING_SIZE
)
464 tr
->mOut
-= TR_RING_SIZE
;
465 tr
->mIn
-= TR_RING_SIZE
;
468 if(tr
->mIn
> tr
->mOut
)
473 // Error display routine. Only displays when the base name is not NULL.
474 static void TrErrorVA(const TokenReaderT
*tr
, uint line
, uint column
, const char *format
, va_list argPtr
)
478 fprintf(stderr
, "Error (%s:%u:%u): ", tr
->mName
, line
, column
);
479 vfprintf(stderr
, format
, argPtr
);
482 // Used to display an error at a saved line/column.
483 static void TrErrorAt(const TokenReaderT
*tr
, uint line
, uint column
, const char *format
, ...)
487 va_start(argPtr
, format
);
488 TrErrorVA(tr
, line
, column
, format
, argPtr
);
492 // Used to display an error at the current line/column.
493 static void TrError(const TokenReaderT
*tr
, const char *format
, ...)
497 va_start(argPtr
, format
);
498 TrErrorVA(tr
, tr
->mLine
, tr
->mColumn
, format
, argPtr
);
502 // Skips to the next line.
503 static void TrSkipLine(TokenReaderT
*tr
)
509 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
521 // Skips to the next token.
522 static int TrSkipWhitespace(TokenReaderT
*tr
)
528 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
548 // Get the line and/or column of the next token (or the end of input).
549 static void TrIndication(TokenReaderT
*tr
, uint
*line
, uint
*column
)
551 TrSkipWhitespace(tr
);
552 if(line
) *line
= tr
->mLine
;
553 if(column
) *column
= tr
->mColumn
;
556 // Checks to see if a token is (likely to be) an identifier. It does not
557 // display any errors and will not proceed to the next token.
558 static int TrIsIdent(TokenReaderT
*tr
)
562 if(!TrSkipWhitespace(tr
))
564 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
565 return ch
== '_' || isalpha(ch
);
569 // Checks to see if a token is the given operator. It does not display any
570 // errors and will not proceed to the next token.
571 static int TrIsOperator(TokenReaderT
*tr
, const char *op
)
576 if(!TrSkipWhitespace(tr
))
580 while(op
[len
] != '\0' && out
< tr
->mIn
)
582 ch
= tr
->mRing
[out
&TR_RING_MASK
];
583 if(ch
!= op
[len
]) break;
592 /* The TrRead*() routines obtain the value of a matching token type. They
593 * display type, form, and boundary errors and will proceed to the next
597 // Reads and validates an identifier token.
598 static int TrReadIdent(TokenReaderT
*tr
, const uint maxLen
, char *ident
)
604 if(TrSkipWhitespace(tr
))
607 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
608 if(ch
== '_' || isalpha(ch
))
618 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
619 } while(ch
== '_' || isdigit(ch
) || isalpha(ch
));
627 TrErrorAt(tr
, tr
->mLine
, col
, "Identifier is too long.\n");
631 TrErrorAt(tr
, tr
->mLine
, col
, "Expected an identifier.\n");
635 // Reads and validates (including bounds) an integer token.
636 static int TrReadInt(TokenReaderT
*tr
, const int loBound
, const int hiBound
, int *value
)
638 uint col
, digis
, len
;
642 if(TrSkipWhitespace(tr
))
646 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
647 if(ch
== '+' || ch
== '-')
656 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
657 if(!isdigit(ch
)) break;
665 if(digis
> 0 && ch
!= '.' && !isalpha(ch
))
669 TrErrorAt(tr
, tr
->mLine
, col
, "Integer is too long.");
673 *value
= strtol(temp
, NULL
, 10);
674 if(*value
< loBound
|| *value
> hiBound
)
676 TrErrorAt(tr
, tr
->mLine
, col
, "Expected a value from %d to %d.\n", loBound
, hiBound
);
682 TrErrorAt(tr
, tr
->mLine
, col
, "Expected an integer.\n");
686 // Reads and validates (including bounds) a float token.
687 static int TrReadFloat(TokenReaderT
*tr
, const double loBound
, const double hiBound
, double *value
)
689 uint col
, digis
, len
;
693 if(TrSkipWhitespace(tr
))
697 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
698 if(ch
== '+' || ch
== '-')
708 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
709 if(!isdigit(ch
)) break;
725 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
726 if(!isdigit(ch
)) break;
735 if(ch
== 'E' || ch
== 'e')
742 if(ch
== '+' || ch
== '-')
751 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
752 if(!isdigit(ch
)) break;
761 if(digis
> 0 && ch
!= '.' && !isalpha(ch
))
765 TrErrorAt(tr
, tr
->mLine
, col
, "Float is too long.");
769 *value
= strtod(temp
, NULL
);
770 if(*value
< loBound
|| *value
> hiBound
)
772 TrErrorAt(tr
, tr
->mLine
, col
, "Expected a value from %f to %f.\n", loBound
, hiBound
);
781 TrErrorAt(tr
, tr
->mLine
, col
, "Expected a float.\n");
785 // Reads and validates a string token.
786 static int TrReadString(TokenReaderT
*tr
, const uint maxLen
, char *text
)
792 if(TrSkipWhitespace(tr
))
795 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
802 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
808 TrErrorAt(tr
, tr
->mLine
, col
, "Unterminated string at end of line.\n");
817 tr
->mColumn
+= 1 + len
;
818 TrErrorAt(tr
, tr
->mLine
, col
, "Unterminated string at end of input.\n");
821 tr
->mColumn
+= 2 + len
;
824 TrErrorAt(tr
, tr
->mLine
, col
, "String is too long.\n");
831 TrErrorAt(tr
, tr
->mLine
, col
, "Expected a string.\n");
835 // Reads and validates the given operator.
836 static int TrReadOperator(TokenReaderT
*tr
, const char *op
)
842 if(TrSkipWhitespace(tr
))
846 while(op
[len
] != '\0' && TrLoad(tr
))
848 ch
= tr
->mRing
[tr
->mOut
&TR_RING_MASK
];
849 if(ch
!= op
[len
]) break;
857 TrErrorAt(tr
, tr
->mLine
, col
, "Expected '%s' operator.\n", op
);
861 /* Performs a string substitution. Any case-insensitive occurrences of the
862 * pattern string are replaced with the replacement string. The result is
863 * truncated if necessary.
865 static int StrSubst(const char *in
, const char *pat
, const char *rep
, const size_t maxLen
, char *out
)
867 size_t inLen
, patLen
, repLen
;
872 patLen
= strlen(pat
);
873 repLen
= strlen(rep
);
877 while(si
< inLen
&& di
< maxLen
)
879 if(patLen
<= inLen
-si
)
881 if(strncasecmp(&in
[si
], pat
, patLen
) == 0)
883 if(repLen
> maxLen
-di
)
885 repLen
= maxLen
- di
;
888 strncpy(&out
[di
], rep
, repLen
);
904 /*********************
905 *** Math routines ***
906 *********************/
908 // Provide missing math routines for MSVC versions < 1800 (Visual Studio 2013).
909 #if defined(_MSC_VER) && _MSC_VER < 1800
910 static double round(double val
)
913 return ceil(val
-0.5);
914 return floor(val
+0.5);
917 static double fmin(double a
, double b
)
919 return (a
<b
) ? a
: b
;
922 static double fmax(double a
, double b
)
924 return (a
>b
) ? a
: b
;
928 // Simple clamp routine.
929 static double Clamp(const double val
, const double lower
, const double upper
)
931 return fmin(fmax(val
, lower
), upper
);
934 // Performs linear interpolation.
935 static double Lerp(const double a
, const double b
, const double f
)
937 return a
+ f
* (b
- a
);
940 static inline uint
dither_rng(uint
*seed
)
942 *seed
= *seed
* 96314165 + 907633515;
946 // Performs a triangular probability density function dither. The input samples
947 // should be normalized (-1 to +1).
948 static void TpdfDither(double *restrict out
, const double *restrict in
, const double scale
,
949 const int count
, const int step
, uint
*seed
)
951 static const double PRNG_SCALE
= 1.0 / UINT_MAX
;
955 for(i
= 0;i
< count
;i
++)
957 prn0
= dither_rng(seed
);
958 prn1
= dither_rng(seed
);
959 out
[i
*step
] = round(in
[i
]*scale
+ (prn0
*PRNG_SCALE
- prn1
*PRNG_SCALE
));
963 // Allocates an array of doubles.
964 static double *CreateDoubles(size_t n
)
968 a
= calloc(n
?n
:1, sizeof(*a
));
971 fprintf(stderr
, "Error: Out of memory.\n");
977 // Allocates an array of complex numbers.
978 static Complex
*CreateComplexes(size_t n
)
982 a
= calloc(n
?n
:1, sizeof(*a
));
985 fprintf(stderr
, "Error: Out of memory.\n");
991 /* Fast Fourier transform routines. The number of points must be a power of
992 * two. In-place operation is possible only if both the real and imaginary
993 * parts are in-place together.
996 // Performs bit-reversal ordering.
997 static void FftArrange(const uint n
, const Complex
*in
, Complex
*out
)
1003 // Handle in-place arrangement.
1005 for(k
= 0;k
< n
;k
++)
1009 Complex temp
= in
[rk
];
1021 // Handle copy arrangement.
1023 for(k
= 0;k
< n
;k
++)
1034 // Performs the summation.
1035 static void FftSummation(const int n
, const double s
, Complex
*cplx
)
1042 for(m
= 1, m2
= 2;m
< n
; m
<<= 1, m2
<<= 1)
1044 // v = Complex (-2.0 * sin (0.5 * pi / m) * sin (0.5 * pi / m), -sin (pi / m))
1045 double sm
= sin(0.5 * pi
/ m
);
1046 Complex v
= MakeComplex(-2.0*sm
*sm
, -sin(pi
/ m
));
1047 Complex w
= MakeComplex(1.0, 0.0);
1048 for(i
= 0;i
< m
;i
++)
1050 for(k
= i
;k
< n
;k
+= m2
)
1054 t
= c_mul(w
, cplx
[mk
]);
1055 cplx
[mk
] = c_sub(cplx
[k
], t
);
1056 cplx
[k
] = c_add(cplx
[k
], t
);
1058 w
= c_add(w
, c_mul(v
, w
));
1063 // Performs a forward FFT.
1064 static void FftForward(const uint n
, const Complex
*in
, Complex
*out
)
1066 FftArrange(n
, in
, out
);
1067 FftSummation(n
, 1.0, out
);
1070 // Performs an inverse FFT.
1071 static void FftInverse(const uint n
, const Complex
*in
, Complex
*out
)
1076 FftArrange(n
, in
, out
);
1077 FftSummation(n
, -1.0, out
);
1079 for(i
= 0;i
< n
;i
++)
1080 out
[i
] = c_muls(out
[i
], f
);
1083 /* Calculate the complex helical sequence (or discrete-time analytical signal)
1084 * of the given input using the Hilbert transform. Given the natural logarithm
1085 * of a signal's magnitude response, the imaginary components can be used as
1086 * the angles for minimum-phase reconstruction.
1088 static void Hilbert(const uint n
, const Complex
*in
, Complex
*out
)
1094 // Handle in-place operation.
1095 for(i
= 0;i
< n
;i
++)
1100 // Handle copy operation.
1101 for(i
= 0;i
< n
;i
++)
1102 out
[i
] = MakeComplex(in
[i
].Real
, 0.0);
1104 FftInverse(n
, out
, out
);
1105 for(i
= 1;i
< (n
+1)/2;i
++)
1106 out
[i
] = c_muls(out
[i
], 2.0);
1107 /* Increment i if n is even. */
1110 out
[i
] = MakeComplex(0.0, 0.0);
1111 FftForward(n
, out
, out
);
1114 /* Calculate the magnitude response of the given input. This is used in
1115 * place of phase decomposition, since the phase residuals are discarded for
1116 * minimum phase reconstruction. The mirrored half of the response is also
1119 static void MagnitudeResponse(const uint n
, const Complex
*in
, double *out
)
1121 const uint m
= 1 + (n
/ 2);
1123 for(i
= 0;i
< m
;i
++)
1124 out
[i
] = fmax(c_abs(in
[i
]), EPSILON
);
1127 /* Apply a range limit (in dB) to the given magnitude response. This is used
1128 * to adjust the effects of the diffuse-field average on the equalization
1131 static void LimitMagnitudeResponse(const uint n
, const uint m
, const double limit
, const double *in
, double *out
)
1134 uint i
, lower
, upper
;
1137 halfLim
= limit
/ 2.0;
1138 // Convert the response to dB.
1139 for(i
= 0;i
< m
;i
++)
1140 out
[i
] = 20.0 * log10(in
[i
]);
1141 // Use six octaves to calculate the average magnitude of the signal.
1142 lower
= ((uint
)ceil(n
/ pow(2.0, 8.0))) - 1;
1143 upper
= ((uint
)floor(n
/ pow(2.0, 2.0))) - 1;
1145 for(i
= lower
;i
<= upper
;i
++)
1147 ave
/= upper
- lower
+ 1;
1148 // Keep the response within range of the average magnitude.
1149 for(i
= 0;i
< m
;i
++)
1150 out
[i
] = Clamp(out
[i
], ave
- halfLim
, ave
+ halfLim
);
1151 // Convert the response back to linear magnitude.
1152 for(i
= 0;i
< m
;i
++)
1153 out
[i
] = pow(10.0, out
[i
] / 20.0);
1156 /* Reconstructs the minimum-phase component for the given magnitude response
1157 * of a signal. This is equivalent to phase recomposition, sans the missing
1158 * residuals (which were discarded). The mirrored half of the response is
1161 static void MinimumPhase(const uint n
, const double *in
, Complex
*out
)
1163 const uint m
= 1 + (n
/ 2);
1167 mags
= CreateDoubles(n
);
1168 for(i
= 0;i
< m
;i
++)
1170 mags
[i
] = fmax(EPSILON
, in
[i
]);
1171 out
[i
] = MakeComplex(log(mags
[i
]), 0.0);
1175 mags
[i
] = mags
[n
- i
];
1176 out
[i
] = out
[n
- i
];
1178 Hilbert(n
, out
, out
);
1179 // Remove any DC offset the filter has.
1181 for(i
= 0;i
< n
;i
++)
1183 Complex a
= c_exp(MakeComplex(0.0, out
[i
].Imag
));
1184 out
[i
] = c_mul(MakeComplex(mags
[i
], 0.0), a
);
1190 /***************************
1191 *** Resampler functions ***
1192 ***************************/
1194 /* This is the normalized cardinal sine (sinc) function.
1196 * sinc(x) = { 1, x = 0
1197 * { sin(pi x) / (pi x), otherwise.
1199 static double Sinc(const double x
)
1201 if(fabs(x
) < EPSILON
)
1203 return sin(M_PI
* x
) / (M_PI
* x
);
1206 /* The zero-order modified Bessel function of the first kind, used for the
1209 * I_0(x) = sum_{k=0}^inf (1 / k!)^2 (x / 2)^(2 k)
1210 * = sum_{k=0}^inf ((x / 2)^k / k!)^2
1212 static double BesselI_0(const double x
)
1214 double term
, sum
, x2
, y
, last_sum
;
1217 // Start at k=1 since k=0 is trivial.
1223 // Let the integration converge until the term of the sum is no longer
1231 } while(sum
!= last_sum
);
1235 /* Calculate a Kaiser window from the given beta value and a normalized k
1238 * w(k) = { I_0(B sqrt(1 - k^2)) / I_0(B), -1 <= k <= 1
1241 * Where k can be calculated as:
1243 * k = i / l, where -l <= i <= l.
1247 * k = 2 i / M - 1, where 0 <= i <= M.
1249 static double Kaiser(const double b
, const double k
)
1251 if(!(k
>= -1.0 && k
<= 1.0))
1253 return BesselI_0(b
* sqrt(1.0 - k
*k
)) / BesselI_0(b
);
1256 // Calculates the greatest common divisor of a and b.
1257 static uint
Gcd(uint x
, uint y
)
1268 /* Calculates the size (order) of the Kaiser window. Rejection is in dB and
1269 * the transition width is normalized frequency (0.5 is nyquist).
1271 * M = { ceil((r - 7.95) / (2.285 2 pi f_t)), r > 21
1272 * { ceil(5.79 / 2 pi f_t), r <= 21.
1275 static uint
CalcKaiserOrder(const double rejection
, const double transition
)
1277 double w_t
= 2.0 * M_PI
* transition
;
1278 if(rejection
> 21.0)
1279 return (uint
)ceil((rejection
- 7.95) / (2.285 * w_t
));
1280 return (uint
)ceil(5.79 / w_t
);
1283 // Calculates the beta value of the Kaiser window. Rejection is in dB.
1284 static double CalcKaiserBeta(const double rejection
)
1286 if(rejection
> 50.0)
1287 return 0.1102 * (rejection
- 8.7);
1288 if(rejection
>= 21.0)
1289 return (0.5842 * pow(rejection
- 21.0, 0.4)) +
1290 (0.07886 * (rejection
- 21.0));
1294 /* Calculates a point on the Kaiser-windowed sinc filter for the given half-
1295 * width, beta, gain, and cutoff. The point is specified in non-normalized
1296 * samples, from 0 to M, where M = (2 l + 1).
1298 * w(k) 2 p f_t sinc(2 f_t x)
1300 * x -- centered sample index (i - l)
1301 * k -- normalized and centered window index (x / l)
1302 * w(k) -- window function (Kaiser)
1303 * p -- gain compensation factor when sampling
1304 * f_t -- normalized center frequency (or cutoff; 0.5 is nyquist)
1306 static double SincFilter(const int l
, const double b
, const double gain
, const double cutoff
, const int i
)
1308 return Kaiser(b
, (double)(i
- l
) / l
) * 2.0 * gain
* cutoff
* Sinc(2.0 * cutoff
* (i
- l
));
1311 /* This is a polyphase sinc-filtered resampler.
1313 * Upsample Downsample
1315 * p/q = 3/2 p/q = 3/5
1317 * M-+-+-+-> M-+-+-+->
1318 * -------------------+ ---------------------+
1319 * p s * f f f f|f| | p s * f f f f f |
1320 * | 0 * 0 0 0|0|0 | | 0 * 0 0 0 0|0| |
1321 * v 0 * 0 0|0|0 0 | v 0 * 0 0 0|0|0 |
1322 * s * f|f|f f f | s * f f|f|f f |
1323 * 0 * |0|0 0 0 0 | 0 * 0|0|0 0 0 |
1324 * --------+=+--------+ 0 * |0|0 0 0 0 |
1325 * d . d .|d|. d . d ----------+=+--------+
1326 * d . . . .|d|. . . .
1330 * P_f(i,j) = q i mod p + pj
1331 * P_s(i,j) = floor(q i / p) - j
1332 * d[i=0..N-1] = sum_{j=0}^{floor((M - 1) / p)} {
1333 * { f[P_f(i,j)] s[P_s(i,j)], P_f(i,j) < M
1334 * { 0, P_f(i,j) >= M. }
1337 // Calculate the resampling metrics and build the Kaiser-windowed sinc filter
1338 // that's used to cut frequencies above the destination nyquist.
1339 static void ResamplerSetup(ResamplerT
*rs
, const uint srcRate
, const uint dstRate
)
1341 double cutoff
, width
, beta
;
1345 gcd
= Gcd(srcRate
, dstRate
);
1346 rs
->mP
= dstRate
/ gcd
;
1347 rs
->mQ
= srcRate
/ gcd
;
1348 /* The cutoff is adjusted by half the transition width, so the transition
1349 * ends before the nyquist (0.5). Both are scaled by the downsampling
1354 cutoff
= 0.475 / rs
->mP
;
1355 width
= 0.05 / rs
->mP
;
1359 cutoff
= 0.475 / rs
->mQ
;
1360 width
= 0.05 / rs
->mQ
;
1362 // A rejection of -180 dB is used for the stop band. Round up when
1363 // calculating the left offset to avoid increasing the transition width.
1364 l
= (CalcKaiserOrder(180.0, width
)+1) / 2;
1365 beta
= CalcKaiserBeta(180.0);
1368 rs
->mF
= CreateDoubles(rs
->mM
);
1369 for(i
= 0;i
< ((int)rs
->mM
);i
++)
1370 rs
->mF
[i
] = SincFilter((int)l
, beta
, rs
->mP
, cutoff
, i
);
1373 // Clean up after the resampler.
1374 static void ResamplerClear(ResamplerT
*rs
)
1380 // Perform the upsample-filter-downsample resampling operation using a
1381 // polyphase filter implementation.
1382 static void ResamplerRun(ResamplerT
*rs
, const uint inN
, const double *in
, const uint outN
, double *out
)
1384 const uint p
= rs
->mP
, q
= rs
->mQ
, m
= rs
->mM
, l
= rs
->mL
;
1385 const double *f
= rs
->mF
;
1393 // Handle in-place operation.
1395 work
= CreateDoubles(outN
);
1398 // Resample the input.
1399 for(i
= 0;i
< outN
;i
++)
1402 // Input starts at l to compensate for the filter delay. This will
1403 // drop any build-up from the first half of the filter.
1404 j_f
= (l
+ (q
* i
)) % p
;
1405 j_s
= (l
+ (q
* i
)) / p
;
1408 // Only take input when 0 <= j_s < inN. This single unsigned
1409 // comparison catches both cases.
1411 r
+= f
[j_f
] * in
[j_s
];
1417 // Clean up after in-place operation.
1420 for(i
= 0;i
< outN
;i
++)
1426 /*************************
1427 *** File source input ***
1428 *************************/
1430 // Read a binary value of the specified byte order and byte size from a file,
1431 // storing it as a 32-bit unsigned integer.
1432 static int ReadBin4(FILE *fp
, const char *filename
, const ByteOrderT order
, const uint bytes
, uint32
*out
)
1438 if(fread(in
, 1, bytes
, fp
) != bytes
)
1440 fprintf(stderr
, "Error: Bad read from file '%s'.\n", filename
);
1447 for(i
= 0;i
< bytes
;i
++)
1448 accum
= (accum
<<8) | in
[bytes
- i
- 1];
1451 for(i
= 0;i
< bytes
;i
++)
1452 accum
= (accum
<<8) | in
[i
];
1461 // Read a binary value of the specified byte order from a file, storing it as
1462 // a 64-bit unsigned integer.
1463 static int ReadBin8(FILE *fp
, const char *filename
, const ByteOrderT order
, uint64
*out
)
1469 if(fread(in
, 1, 8, fp
) != 8)
1471 fprintf(stderr
, "Error: Bad read from file '%s'.\n", filename
);
1478 for(i
= 0;i
< 8;i
++)
1479 accum
= (accum
<<8) | in
[8 - i
- 1];
1482 for(i
= 0;i
< 8;i
++)
1483 accum
= (accum
<<8) | in
[i
];
1492 /* Read a binary value of the specified type, byte order, and byte size from
1493 * a file, converting it to a double. For integer types, the significant
1494 * bits are used to normalize the result. The sign of bits determines
1495 * whether they are padded toward the MSB (negative) or LSB (positive).
1496 * Floating-point types are not normalized.
1498 static int ReadBinAsDouble(FILE *fp
, const char *filename
, const ByteOrderT order
, const ElementTypeT type
, const uint bytes
, const int bits
, double *out
)
1513 if(!ReadBin8(fp
, filename
, order
, &v8
.ui
))
1520 if(!ReadBin4(fp
, filename
, order
, bytes
, &v4
.ui
))
1527 v4
.ui
>>= (8*bytes
) - ((uint
)bits
);
1529 v4
.ui
&= (0xFFFFFFFF >> (32+bits
));
1531 if(v4
.ui
&(uint
)(1<<(abs(bits
)-1)))
1532 v4
.ui
|= (0xFFFFFFFF << abs (bits
));
1533 *out
= v4
.i
/ (double)(1<<(abs(bits
)-1));
1539 /* Read an ascii value of the specified type from a file, converting it to a
1540 * double. For integer types, the significant bits are used to normalize the
1541 * result. The sign of the bits should always be positive. This also skips
1542 * up to one separator character before the element itself.
1544 static int ReadAsciiAsDouble(TokenReaderT
*tr
, const char *filename
, const ElementTypeT type
, const uint bits
, double *out
)
1546 if(TrIsOperator(tr
, ","))
1547 TrReadOperator(tr
, ",");
1548 else if(TrIsOperator(tr
, ":"))
1549 TrReadOperator(tr
, ":");
1550 else if(TrIsOperator(tr
, ";"))
1551 TrReadOperator(tr
, ";");
1552 else if(TrIsOperator(tr
, "|"))
1553 TrReadOperator(tr
, "|");
1557 if(!TrReadFloat(tr
, -HUGE_VAL
, HUGE_VAL
, out
))
1559 fprintf(stderr
, "Error: Bad read from file '%s'.\n", filename
);
1566 if(!TrReadInt(tr
, -(1<<(bits
-1)), (1<<(bits
-1))-1, &v
))
1568 fprintf(stderr
, "Error: Bad read from file '%s'.\n", filename
);
1571 *out
= v
/ (double)((1<<(bits
-1))-1);
1576 // Read the RIFF/RIFX WAVE format chunk from a file, validating it against
1577 // the source parameters and data set metrics.
1578 static int ReadWaveFormat(FILE *fp
, const ByteOrderT order
, const uint hrirRate
, SourceRefT
*src
)
1580 uint32 fourCC
, chunkSize
;
1581 uint32 format
, channels
, rate
, dummy
, block
, size
, bits
;
1586 fseek (fp
, (long) chunkSize
, SEEK_CUR
);
1587 if(!ReadBin4(fp
, src
->mPath
, BO_LITTLE
, 4, &fourCC
) ||
1588 !ReadBin4(fp
, src
->mPath
, order
, 4, &chunkSize
))
1590 } while(fourCC
!= FOURCC_FMT
);
1591 if(!ReadBin4(fp
, src
->mPath
, order
, 2, &format
) ||
1592 !ReadBin4(fp
, src
->mPath
, order
, 2, &channels
) ||
1593 !ReadBin4(fp
, src
->mPath
, order
, 4, &rate
) ||
1594 !ReadBin4(fp
, src
->mPath
, order
, 4, &dummy
) ||
1595 !ReadBin4(fp
, src
->mPath
, order
, 2, &block
))
1600 if(!ReadBin4(fp
, src
->mPath
, order
, 2, &size
))
1608 if(format
== WAVE_FORMAT_EXTENSIBLE
)
1610 fseek(fp
, 2, SEEK_CUR
);
1611 if(!ReadBin4(fp
, src
->mPath
, order
, 2, &bits
))
1615 fseek(fp
, 4, SEEK_CUR
);
1616 if(!ReadBin4(fp
, src
->mPath
, order
, 2, &format
))
1618 fseek(fp
, (long)(chunkSize
- 26), SEEK_CUR
);
1624 fseek(fp
, (long)(chunkSize
- 16), SEEK_CUR
);
1626 fseek(fp
, (long)(chunkSize
- 14), SEEK_CUR
);
1628 if(format
!= WAVE_FORMAT_PCM
&& format
!= WAVE_FORMAT_IEEE_FLOAT
)
1630 fprintf(stderr
, "Error: Unsupported WAVE format in file '%s'.\n", src
->mPath
);
1633 if(src
->mChannel
>= channels
)
1635 fprintf(stderr
, "Error: Missing source channel in WAVE file '%s'.\n", src
->mPath
);
1638 if(rate
!= hrirRate
)
1640 fprintf(stderr
, "Error: Mismatched source sample rate in WAVE file '%s'.\n", src
->mPath
);
1643 if(format
== WAVE_FORMAT_PCM
)
1645 if(size
< 2 || size
> 4)
1647 fprintf(stderr
, "Error: Unsupported sample size in WAVE file '%s'.\n", src
->mPath
);
1650 if(bits
< 16 || bits
> (8*size
))
1652 fprintf (stderr
, "Error: Bad significant bits in WAVE file '%s'.\n", src
->mPath
);
1655 src
->mType
= ET_INT
;
1659 if(size
!= 4 && size
!= 8)
1661 fprintf(stderr
, "Error: Unsupported sample size in WAVE file '%s'.\n", src
->mPath
);
1667 src
->mBits
= (int)bits
;
1668 src
->mSkip
= channels
;
1672 // Read a RIFF/RIFX WAVE data chunk, converting all elements to doubles.
1673 static int ReadWaveData(FILE *fp
, const SourceRefT
*src
, const ByteOrderT order
, const uint n
, double *hrir
)
1675 int pre
, post
, skip
;
1678 pre
= (int)(src
->mSize
* src
->mChannel
);
1679 post
= (int)(src
->mSize
* (src
->mSkip
- src
->mChannel
- 1));
1681 for(i
= 0;i
< n
;i
++)
1685 fseek(fp
, skip
, SEEK_CUR
);
1686 if(!ReadBinAsDouble(fp
, src
->mPath
, order
, src
->mType
, src
->mSize
, src
->mBits
, &hrir
[i
]))
1691 fseek(fp
, skip
, SEEK_CUR
);
1695 // Read the RIFF/RIFX WAVE list or data chunk, converting all elements to
1697 static int ReadWaveList(FILE *fp
, const SourceRefT
*src
, const ByteOrderT order
, const uint n
, double *hrir
)
1699 uint32 fourCC
, chunkSize
, listSize
, count
;
1700 uint block
, skip
, offset
, i
;
1705 if(!ReadBin4(fp
, src
->mPath
, BO_LITTLE
, 4, &fourCC
) ||
1706 !ReadBin4(fp
, src
->mPath
, order
, 4, &chunkSize
))
1709 if(fourCC
== FOURCC_DATA
)
1711 block
= src
->mSize
* src
->mSkip
;
1712 count
= chunkSize
/ block
;
1713 if(count
< (src
->mOffset
+ n
))
1715 fprintf(stderr
, "Error: Bad read from file '%s'.\n", src
->mPath
);
1718 fseek(fp
, (long)(src
->mOffset
* block
), SEEK_CUR
);
1719 if(!ReadWaveData(fp
, src
, order
, n
, &hrir
[0]))
1723 else if(fourCC
== FOURCC_LIST
)
1725 if(!ReadBin4(fp
, src
->mPath
, BO_LITTLE
, 4, &fourCC
))
1728 if(fourCC
== FOURCC_WAVL
)
1732 fseek(fp
, (long)chunkSize
, SEEK_CUR
);
1734 listSize
= chunkSize
;
1735 block
= src
->mSize
* src
->mSkip
;
1736 skip
= src
->mOffset
;
1739 while(offset
< n
&& listSize
> 8)
1741 if(!ReadBin4(fp
, src
->mPath
, BO_LITTLE
, 4, &fourCC
) ||
1742 !ReadBin4(fp
, src
->mPath
, order
, 4, &chunkSize
))
1744 listSize
-= 8 + chunkSize
;
1745 if(fourCC
== FOURCC_DATA
)
1747 count
= chunkSize
/ block
;
1750 fseek(fp
, (long)(skip
* block
), SEEK_CUR
);
1751 chunkSize
-= skip
* block
;
1754 if(count
> (n
- offset
))
1756 if(!ReadWaveData(fp
, src
, order
, count
, &hrir
[offset
]))
1758 chunkSize
-= count
* block
;
1760 lastSample
= hrir
[offset
- 1];
1768 else if(fourCC
== FOURCC_SLNT
)
1770 if(!ReadBin4(fp
, src
->mPath
, order
, 4, &count
))
1777 if(count
> (n
- offset
))
1779 for(i
= 0; i
< count
; i
++)
1780 hrir
[offset
+ i
] = lastSample
;
1790 fseek(fp
, (long)chunkSize
, SEEK_CUR
);
1794 fprintf(stderr
, "Error: Bad read from file '%s'.\n", src
->mPath
);
1800 // Load a source HRIR from a RIFF/RIFX WAVE file.
1801 static int LoadWaveSource(FILE *fp
, SourceRefT
*src
, const uint hrirRate
, const uint n
, double *hrir
)
1803 uint32 fourCC
, dummy
;
1806 if(!ReadBin4(fp
, src
->mPath
, BO_LITTLE
, 4, &fourCC
) ||
1807 !ReadBin4(fp
, src
->mPath
, BO_LITTLE
, 4, &dummy
))
1809 if(fourCC
== FOURCC_RIFF
)
1811 else if(fourCC
== FOURCC_RIFX
)
1815 fprintf(stderr
, "Error: No RIFF/RIFX chunk in file '%s'.\n", src
->mPath
);
1819 if(!ReadBin4(fp
, src
->mPath
, BO_LITTLE
, 4, &fourCC
))
1821 if(fourCC
!= FOURCC_WAVE
)
1823 fprintf(stderr
, "Error: Not a RIFF/RIFX WAVE file '%s'.\n", src
->mPath
);
1826 if(!ReadWaveFormat(fp
, order
, hrirRate
, src
))
1828 if(!ReadWaveList(fp
, src
, order
, n
, hrir
))
1833 // Load a source HRIR from a binary file.
1834 static int LoadBinarySource(FILE *fp
, const SourceRefT
*src
, const ByteOrderT order
, const uint n
, double *hrir
)
1838 fseek(fp
, (long)src
->mOffset
, SEEK_SET
);
1839 for(i
= 0;i
< n
;i
++)
1841 if(!ReadBinAsDouble(fp
, src
->mPath
, order
, src
->mType
, src
->mSize
, src
->mBits
, &hrir
[i
]))
1844 fseek(fp
, (long)src
->mSkip
, SEEK_CUR
);
1849 // Load a source HRIR from an ASCII text file containing a list of elements
1850 // separated by whitespace or common list operators (',', ';', ':', '|').
1851 static int LoadAsciiSource(FILE *fp
, const SourceRefT
*src
, const uint n
, double *hrir
)
1857 TrSetup(fp
, NULL
, &tr
);
1858 for(i
= 0;i
< src
->mOffset
;i
++)
1860 if(!ReadAsciiAsDouble(&tr
, src
->mPath
, src
->mType
, (uint
)src
->mBits
, &dummy
))
1863 for(i
= 0;i
< n
;i
++)
1865 if(!ReadAsciiAsDouble(&tr
, src
->mPath
, src
->mType
, (uint
)src
->mBits
, &hrir
[i
]))
1867 for(j
= 0;j
< src
->mSkip
;j
++)
1869 if(!ReadAsciiAsDouble(&tr
, src
->mPath
, src
->mType
, (uint
)src
->mBits
, &dummy
))
1876 // Load a source HRIR from a supported file type.
1877 static int LoadSource(SourceRefT
*src
, const uint hrirRate
, const uint n
, double *hrir
)
1882 if(src
->mFormat
== SF_ASCII
)
1883 fp
= fopen(src
->mPath
, "r");
1885 fp
= fopen(src
->mPath
, "rb");
1888 fprintf(stderr
, "Error: Could not open source file '%s'.\n", src
->mPath
);
1891 if(src
->mFormat
== SF_WAVE
)
1892 result
= LoadWaveSource(fp
, src
, hrirRate
, n
, hrir
);
1893 else if(src
->mFormat
== SF_BIN_LE
)
1894 result
= LoadBinarySource(fp
, src
, BO_LITTLE
, n
, hrir
);
1895 else if(src
->mFormat
== SF_BIN_BE
)
1896 result
= LoadBinarySource(fp
, src
, BO_BIG
, n
, hrir
);
1898 result
= LoadAsciiSource(fp
, src
, n
, hrir
);
1904 /***************************
1905 *** File storage output ***
1906 ***************************/
1908 // Write an ASCII string to a file.
1909 static int WriteAscii(const char *out
, FILE *fp
, const char *filename
)
1914 if(fwrite(out
, 1, len
, fp
) != len
)
1917 fprintf(stderr
, "Error: Bad write to file '%s'.\n", filename
);
1923 // Write a binary value of the given byte order and byte size to a file,
1924 // loading it from a 32-bit unsigned integer.
1925 static int WriteBin4(const ByteOrderT order
, const uint bytes
, const uint32 in
, FILE *fp
, const char *filename
)
1933 for(i
= 0;i
< bytes
;i
++)
1934 out
[i
] = (in
>>(i
*8)) & 0x000000FF;
1937 for(i
= 0;i
< bytes
;i
++)
1938 out
[bytes
- i
- 1] = (in
>>(i
*8)) & 0x000000FF;
1943 if(fwrite(out
, 1, bytes
, fp
) != bytes
)
1945 fprintf(stderr
, "Error: Bad write to file '%s'.\n", filename
);
1951 // Store the OpenAL Soft HRTF data set.
1952 static int StoreMhr(const HrirDataT
*hData
, const char *filename
)
1954 uint channels
= (hData
->mChannelType
== CT_STEREO
) ? 2 : 1;
1955 uint n
= hData
->mIrPoints
;
1958 uint dither_seed
= 22222;
1960 if((fp
=fopen(filename
, "wb")) == NULL
)
1962 fprintf(stderr
, "Error: Could not open MHR file '%s'.\n", filename
);
1965 if(!WriteAscii(MHR_FORMAT
, fp
, filename
))
1967 if(!WriteBin4(BO_LITTLE
, 4, (uint32
)hData
->mIrRate
, fp
, filename
))
1969 if(!WriteBin4(BO_LITTLE
, 1, (uint32
)hData
->mSampleType
, fp
, filename
))
1971 if(!WriteBin4(BO_LITTLE
, 1, (uint32
)hData
->mChannelType
, fp
, filename
))
1973 if(!WriteBin4(BO_LITTLE
, 1, (uint32
)hData
->mIrPoints
, fp
, filename
))
1975 if(!WriteBin4(BO_LITTLE
, 1, (uint32
)hData
->mFdCount
, fp
, filename
))
1977 for(fi
= 0;fi
< hData
->mFdCount
;fi
++)
1979 if(!WriteBin4(BO_LITTLE
, 2, (uint32
)(1000.0 * hData
->mFds
[fi
].mDistance
), fp
, filename
))
1981 if(!WriteBin4(BO_LITTLE
, 1, (uint32
)hData
->mFds
[fi
].mEvCount
, fp
, filename
))
1983 for(ei
= 0;ei
< hData
->mFds
[fi
].mEvCount
;ei
++)
1985 if(!WriteBin4(BO_LITTLE
, 1, (uint32
)hData
->mFds
[fi
].mEvs
[ei
].mAzCount
, fp
, filename
))
1990 for(fi
= 0;fi
< hData
->mFdCount
;fi
++)
1992 const double scale
= (hData
->mSampleType
== ST_S16
) ? 32767.0 :
1993 ((hData
->mSampleType
== ST_S24
) ? 8388607.0 : 0.0);
1994 const int bps
= (hData
->mSampleType
== ST_S16
) ? 2 :
1995 ((hData
->mSampleType
== ST_S24
) ? 3 : 0);
1997 for(ei
= 0;ei
< hData
->mFds
[fi
].mEvCount
;ei
++)
1999 for(ai
= 0;ai
< hData
->mFds
[fi
].mEvs
[ei
].mAzCount
;ai
++)
2001 HrirAzT
*azd
= &hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
];
2002 double out
[2 * MAX_TRUNCSIZE
];
2004 TpdfDither(out
, azd
->mIrs
[0], scale
, n
, channels
, &dither_seed
);
2005 if(hData
->mChannelType
== CT_STEREO
)
2006 TpdfDither(out
+1, azd
->mIrs
[1], scale
, n
, channels
, &dither_seed
);
2007 for(i
= 0;i
< (channels
* n
);i
++)
2009 int v
= (int)Clamp(out
[i
], -scale
-1.0, scale
);
2010 if(!WriteBin4(BO_LITTLE
, bps
, (uint32
)v
, fp
, filename
))
2016 for(fi
= 0;fi
< hData
->mFdCount
;fi
++)
2018 for(ei
= 0;ei
< hData
->mFds
[fi
].mEvCount
;ei
++)
2020 for(ai
= 0;ai
< hData
->mFds
[fi
].mEvs
[ei
].mAzCount
;ai
++)
2022 HrirAzT
*azd
= &hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
];
2023 int v
= (int)fmin(round(hData
->mIrRate
* azd
->mDelays
[0]), MAX_HRTD
);
2025 if(!WriteBin4(BO_LITTLE
, 1, (uint32
)v
, fp
, filename
))
2027 if(hData
->mChannelType
== CT_STEREO
)
2029 v
= (int)fmin(round(hData
->mIrRate
* azd
->mDelays
[1]), MAX_HRTD
);
2031 if(!WriteBin4(BO_LITTLE
, 1, (uint32
)v
, fp
, filename
))
2042 /***********************
2043 *** HRTF processing ***
2044 ***********************/
2046 // Calculate the onset time of an HRIR and average it with any existing
2047 // timing for its field, elevation, azimuth, and ear.
2048 static double AverageHrirOnset(const uint rate
, const uint n
, const double *hrir
, const double f
, const double onset
)
2053 for(i
= 0;i
< n
;i
++)
2054 mag
= fmax(fabs(hrir
[i
]), mag
);
2056 for(i
= 0;i
< n
;i
++)
2058 if(fabs(hrir
[i
]) >= mag
)
2061 return Lerp(onset
, (double)i
/ rate
, f
);
2064 // Calculate the magnitude response of an HRIR and average it with any
2065 // existing responses for its field, elevation, azimuth, and ear.
2066 static void AverageHrirMagnitude(const uint points
, const uint n
, const double *hrir
, const double f
, double *mag
)
2068 uint m
= 1 + (n
/ 2), i
;
2069 Complex
*h
= CreateComplexes(n
);
2070 double *r
= CreateDoubles(n
);
2072 for(i
= 0;i
< points
;i
++)
2073 h
[i
] = MakeComplex(hrir
[i
], 0.0);
2075 h
[i
] = MakeComplex(0.0, 0.0);
2076 FftForward(n
, h
, h
);
2077 MagnitudeResponse(n
, h
, r
);
2078 for(i
= 0;i
< m
;i
++)
2079 mag
[i
] = Lerp(mag
[i
], r
[i
], f
);
2084 /* Calculate the contribution of each HRIR to the diffuse-field average based
2085 * on the area of its surface patch. All patches are centered at the HRIR
2086 * coordinates on the unit sphere and are measured by solid angle.
2088 static void CalculateDfWeights(const HrirDataT
*hData
, double *weights
)
2090 double sum
, evs
, ev
, upperEv
, lowerEv
, solidAngle
;
2094 for(fi
= 0;fi
< hData
->mFdCount
;fi
++)
2096 evs
= M_PI
/ 2.0 / (hData
->mFds
[fi
].mEvCount
- 1);
2097 for(ei
= hData
->mFds
[fi
].mEvStart
;ei
< hData
->mFds
[fi
].mEvCount
;ei
++)
2099 // For each elevation, calculate the upper and lower limits of
2101 ev
= hData
->mFds
[fi
].mEvs
[ei
].mElevation
;
2102 lowerEv
= fmax(-M_PI
/ 2.0, ev
- evs
);
2103 upperEv
= fmin(M_PI
/ 2.0, ev
+ evs
);
2104 // Calculate the area of the patch band.
2105 solidAngle
= 2.0 * M_PI
* (sin(upperEv
) - sin(lowerEv
));
2106 // Each weight is the area of one patch.
2107 weights
[(fi
* MAX_EV_COUNT
) + ei
] = solidAngle
/ hData
->mFds
[fi
].mEvs
[ei
].mAzCount
;
2108 // Sum the total surface area covered by the HRIRs of all fields.
2112 /* TODO: It may be interesting to experiment with how a volume-based
2113 weighting performs compared to the existing distance-indepenent
2116 for(fi
= 0;fi
< hData
->mFdCount
;fi
++)
2118 // Normalize the weights given the total surface coverage for all
2120 for(ei
= hData
->mFds
[fi
].mEvStart
;ei
< hData
->mFds
[fi
].mEvCount
;ei
++)
2121 weights
[(fi
* MAX_EV_COUNT
) + ei
] /= sum
;
2125 /* Calculate the diffuse-field average from the given magnitude responses of
2126 * the HRIR set. Weighting can be applied to compensate for the varying
2127 * surface area covered by each HRIR. The final average can then be limited
2128 * by the specified magnitude range (in positive dB; 0.0 to skip).
2130 static void CalculateDiffuseFieldAverage(const HrirDataT
*hData
, const uint channels
, const uint m
, const int weighted
, const double limit
, double *dfa
)
2132 double *weights
= CreateDoubles(hData
->mFdCount
* MAX_EV_COUNT
);
2133 uint count
, ti
, fi
, ei
, i
, ai
;
2137 // Use coverage weighting to calculate the average.
2138 CalculateDfWeights(hData
, weights
);
2144 // If coverage weighting is not used, the weights still need to be
2145 // averaged by the number of existing HRIRs.
2146 count
= hData
->mIrCount
;
2147 for(fi
= 0;fi
< hData
->mFdCount
;fi
++)
2149 for(ei
= 0;ei
< hData
->mFds
[fi
].mEvStart
;ei
++)
2150 count
-= hData
->mFds
[fi
].mEvs
[ei
].mAzCount
;
2152 weight
= 1.0 / count
;
2154 for(fi
= 0;fi
< hData
->mFdCount
;fi
++)
2156 for(ei
= hData
->mFds
[fi
].mEvStart
;ei
< hData
->mFds
[fi
].mEvCount
;ei
++)
2157 weights
[(fi
* MAX_EV_COUNT
) + ei
] = weight
;
2160 for(ti
= 0;ti
< channels
;ti
++)
2162 for(i
= 0;i
< m
;i
++)
2163 dfa
[(ti
* m
) + i
] = 0.0;
2164 for(fi
= 0;fi
< hData
->mFdCount
;fi
++)
2166 for(ei
= hData
->mFds
[fi
].mEvStart
;ei
< hData
->mFds
[fi
].mEvCount
;ei
++)
2168 for(ai
= 0;ai
< hData
->mFds
[fi
].mEvs
[ei
].mAzCount
;ai
++)
2170 HrirAzT
*azd
= &hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
];
2171 // Get the weight for this HRIR's contribution.
2172 double weight
= weights
[(fi
* MAX_EV_COUNT
) + ei
];
2174 // Add this HRIR's weighted power average to the total.
2175 for(i
= 0;i
< m
;i
++)
2176 dfa
[(ti
* m
) + i
] += weight
* azd
->mIrs
[ti
][i
] * azd
->mIrs
[ti
][i
];
2180 // Finish the average calculation and keep it from being too small.
2181 for(i
= 0;i
< m
;i
++)
2182 dfa
[(ti
* m
) + i
] = fmax(sqrt(dfa
[(ti
* m
) + i
]), EPSILON
);
2183 // Apply a limit to the magnitude range of the diffuse-field average
2186 LimitMagnitudeResponse(hData
->mFftSize
, m
, limit
, &dfa
[ti
* m
], &dfa
[ti
* m
]);
2191 // Perform diffuse-field equalization on the magnitude responses of the HRIR
2192 // set using the given average response.
2193 static void DiffuseFieldEqualize(const uint channels
, const uint m
, const double *dfa
, const HrirDataT
*hData
)
2195 uint ti
, fi
, ei
, ai
, i
;
2197 for(ti
= 0;ti
< channels
;ti
++)
2199 for(fi
= 0;fi
< hData
->mFdCount
;fi
++)
2201 for(ei
= hData
->mFds
[fi
].mEvStart
;ei
< hData
->mFds
[fi
].mEvCount
;ei
++)
2203 for(ai
= 0;ai
< hData
->mFds
[fi
].mEvs
[ei
].mAzCount
;ai
++)
2205 HrirAzT
*azd
= &hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
];
2207 for(i
= 0;i
< m
;i
++)
2208 azd
->mIrs
[ti
][i
] /= dfa
[(ti
* m
) + i
];
2215 // Perform minimum-phase reconstruction using the magnitude responses of the
2217 static void ReconstructHrirs(const HrirDataT
*hData
)
2219 uint channels
= (hData
->mChannelType
== CT_STEREO
) ? 2 : 1;
2220 uint n
= hData
->mFftSize
;
2221 uint ti
, fi
, ei
, ai
, i
;
2222 Complex
*h
= CreateComplexes(n
);
2223 uint total
, count
, pcdone
, lastpc
;
2225 total
= hData
->mIrCount
;
2226 for(fi
= 0;fi
< hData
->mFdCount
;fi
++)
2228 for(ei
= 0;ei
< hData
->mFds
[fi
].mEvStart
;ei
++)
2229 total
-= hData
->mFds
[fi
].mEvs
[ei
].mAzCount
;
2232 count
= pcdone
= lastpc
= 0;
2233 printf("%3d%% done.", pcdone
);
2235 for(ti
= 0;ti
< channels
;ti
++)
2237 for(fi
= 0;fi
< hData
->mFdCount
;fi
++)
2239 for(ei
= hData
->mFds
[fi
].mEvStart
;ei
< hData
->mFds
[fi
].mEvCount
;ei
++)
2241 for(ai
= 0;ai
< hData
->mFds
[fi
].mEvs
[ei
].mAzCount
;ai
++)
2243 HrirAzT
*azd
= &hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
];
2245 MinimumPhase(n
, azd
->mIrs
[ti
], h
);
2246 FftInverse(n
, h
, h
);
2247 for(i
= 0;i
< hData
->mIrPoints
;i
++)
2248 azd
->mIrs
[ti
][i
] = h
[i
].Real
;
2249 pcdone
= ++count
* 100 / total
;
2250 if(pcdone
!= lastpc
)
2253 printf("\r%3d%% done.", pcdone
);
2264 // Resamples the HRIRs for use at the given sampling rate.
2265 static void ResampleHrirs(const uint rate
, HrirDataT
*hData
)
2267 uint channels
= (hData
->mChannelType
== CT_STEREO
) ? 2 : 1;
2268 uint n
= hData
->mIrPoints
;
2269 uint ti
, fi
, ei
, ai
;
2272 ResamplerSetup(&rs
, hData
->mIrRate
, rate
);
2273 for(ti
= 0;ti
< channels
;ti
++)
2275 for(fi
= 0;fi
< hData
->mFdCount
;fi
++)
2277 for(ei
= hData
->mFds
[fi
].mEvStart
;ei
< hData
->mFds
[fi
].mEvCount
;ei
++)
2279 for(ai
= 0;ai
< hData
->mFds
[fi
].mEvs
[ei
].mAzCount
;ai
++)
2281 HrirAzT
*azd
= &hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
];
2283 ResamplerRun(&rs
, n
, azd
->mIrs
[ti
], n
, azd
->mIrs
[ti
]);
2288 hData
->mIrRate
= rate
;
2289 ResamplerClear(&rs
);
2292 /* Given field and elevation indices and an azimuth, calculate the indices of
2293 * the two HRIRs that bound the coordinate along with a factor for
2294 * calculating the continuous HRIR using interpolation.
2296 static void CalcAzIndices(const HrirDataT
*hData
, const uint fi
, const uint ei
, const double az
, uint
*a0
, uint
*a1
, double *af
)
2298 double f
= (2.0*M_PI
+ az
) * hData
->mFds
[fi
].mEvs
[ei
].mAzCount
/ (2.0*M_PI
);
2299 uint i
= (uint
)f
% hData
->mFds
[fi
].mEvs
[ei
].mAzCount
;
2303 *a1
= (i
+ 1) % hData
->mFds
[fi
].mEvs
[ei
].mAzCount
;
2307 // Synthesize any missing onset timings at the bottom elevations of each
2308 // field. This just blends between slightly exaggerated known onsets (not
2309 // an accurate model).
2310 static void SynthesizeOnsets(HrirDataT
*hData
)
2312 uint channels
= (hData
->mChannelType
== CT_STEREO
) ? 2 : 1;
2313 uint ti
, fi
, oi
, ai
, ei
, a0
, a1
;
2316 for(ti
= 0;ti
< channels
;ti
++)
2318 for(fi
= 0;fi
< hData
->mFdCount
;fi
++)
2320 if(hData
->mFds
[fi
].mEvStart
<= 0)
2322 oi
= hData
->mFds
[fi
].mEvStart
;
2324 for(ai
= 0;ai
< hData
->mFds
[fi
].mEvs
[oi
].mAzCount
;ai
++)
2325 t
+= hData
->mFds
[fi
].mEvs
[oi
].mAzs
[ai
].mDelays
[ti
];
2326 hData
->mFds
[fi
].mEvs
[0].mAzs
[0].mDelays
[ti
] = 1.32e-4 + (t
/ hData
->mFds
[fi
].mEvs
[oi
].mAzCount
);
2327 for(ei
= 1;ei
< hData
->mFds
[fi
].mEvStart
;ei
++)
2329 of
= (double)ei
/ hData
->mFds
[fi
].mEvStart
;
2330 for(ai
= 0;ai
< hData
->mFds
[fi
].mEvs
[ei
].mAzCount
;ai
++)
2332 CalcAzIndices(hData
, fi
, oi
, hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
].mAzimuth
, &a0
, &a1
, &af
);
2333 hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
].mDelays
[ti
] = Lerp(hData
->mFds
[fi
].mEvs
[0].mAzs
[0].mDelays
[ti
], Lerp(hData
->mFds
[fi
].mEvs
[oi
].mAzs
[a0
].mDelays
[ti
], hData
->mFds
[fi
].mEvs
[oi
].mAzs
[a1
].mDelays
[ti
], af
), of
);
2340 /* Attempt to synthesize any missing HRIRs at the bottom elevations of each
2341 * field. Right now this just blends the lowest elevation HRIRs together and
2342 * applies some attenuation and high frequency damping. It is a simple, if
2345 static void SynthesizeHrirs(HrirDataT
*hData
)
2347 uint channels
= (hData
->mChannelType
== CT_STEREO
) ? 2 : 1;
2348 uint n
= hData
->mIrPoints
;
2349 uint ti
, fi
, oi
, ai
, ei
, i
;
2350 double lp
[4], s0
, s1
;
2355 for(ti
= 0;ti
< channels
;ti
++)
2357 for(fi
= 0;fi
< hData
->mFdCount
;fi
++)
2359 if(hData
->mFds
[fi
].mEvStart
<= 0)
2361 oi
= hData
->mFds
[fi
].mEvStart
;
2362 for(i
= 0;i
< n
;i
++)
2363 hData
->mFds
[fi
].mEvs
[0].mAzs
[0].mIrs
[ti
][i
] = 0.0;
2364 for(ai
= 0;ai
< hData
->mFds
[fi
].mEvs
[oi
].mAzCount
;ai
++)
2366 for(i
= 0;i
< n
;i
++)
2367 hData
->mFds
[fi
].mEvs
[0].mAzs
[0].mIrs
[ti
][i
] += hData
->mFds
[fi
].mEvs
[oi
].mAzs
[ai
].mIrs
[ti
][i
] / hData
->mFds
[fi
].mEvs
[oi
].mAzCount
;
2369 for(ei
= 1;ei
< hData
->mFds
[fi
].mEvStart
;ei
++)
2371 of
= (double)ei
/ hData
->mFds
[fi
].mEvStart
;
2372 b
= (1.0 - of
) * (3.5e-6 * hData
->mIrRate
);
2373 for(ai
= 0;ai
< hData
->mFds
[fi
].mEvs
[ei
].mAzCount
;ai
++)
2375 CalcAzIndices(hData
, fi
, oi
, hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
].mAzimuth
, &a0
, &a1
, &af
);
2380 for(i
= 0;i
< n
;i
++)
2382 s0
= hData
->mFds
[fi
].mEvs
[0].mAzs
[0].mIrs
[ti
][i
];
2383 s1
= Lerp(hData
->mFds
[fi
].mEvs
[oi
].mAzs
[a0
].mIrs
[ti
][i
], hData
->mFds
[fi
].mEvs
[oi
].mAzs
[a1
].mIrs
[ti
][i
], af
);
2384 s0
= Lerp(s0
, s1
, of
);
2385 lp
[0] = Lerp(s0
, lp
[0], b
);
2386 lp
[1] = Lerp(lp
[0], lp
[1], b
);
2387 lp
[2] = Lerp(lp
[1], lp
[2], b
);
2388 lp
[3] = Lerp(lp
[2], lp
[3], b
);
2389 hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
].mIrs
[ti
][i
] = lp
[3];
2393 b
= 3.5e-6 * hData
->mIrRate
;
2398 for(i
= 0;i
< n
;i
++)
2400 s0
= hData
->mFds
[fi
].mEvs
[0].mAzs
[0].mIrs
[ti
][i
];
2401 lp
[0] = Lerp(s0
, lp
[0], b
);
2402 lp
[1] = Lerp(lp
[0], lp
[1], b
);
2403 lp
[2] = Lerp(lp
[1], lp
[2], b
);
2404 lp
[3] = Lerp(lp
[2], lp
[3], b
);
2405 hData
->mFds
[fi
].mEvs
[0].mAzs
[0].mIrs
[ti
][i
] = lp
[3];
2407 hData
->mFds
[fi
].mEvStart
= 0;
2412 // The following routines assume a full set of HRIRs for all elevations.
2414 // Normalize the HRIR set and slightly attenuate the result.
2415 static void NormalizeHrirs(const HrirDataT
*hData
)
2417 uint channels
= (hData
->mChannelType
== CT_STEREO
) ? 2 : 1;
2418 uint n
= hData
->mIrPoints
;
2419 uint ti
, fi
, ei
, ai
, i
;
2420 double maxLevel
= 0.0;
2422 for(ti
= 0;ti
< channels
;ti
++)
2424 for(fi
= 0;fi
< hData
->mFdCount
;fi
++)
2426 for(ei
= 0;ei
< hData
->mFds
[fi
].mEvCount
;ei
++)
2428 for(ai
= 0;ai
< hData
->mFds
[fi
].mEvs
[ei
].mAzCount
;ai
++)
2430 HrirAzT
*azd
= &hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
];
2432 for(i
= 0;i
< n
;i
++)
2433 maxLevel
= fmax(fabs(azd
->mIrs
[ti
][i
]), maxLevel
);
2438 maxLevel
= 1.01 * maxLevel
;
2439 for(ti
= 0;ti
< channels
;ti
++)
2441 for(fi
= 0;fi
< hData
->mFdCount
;fi
++)
2443 for(ei
= 0;ei
< hData
->mFds
[fi
].mEvCount
;ei
++)
2445 for(ai
= 0;ai
< hData
->mFds
[fi
].mEvs
[ei
].mAzCount
;ai
++)
2447 HrirAzT
*azd
= &hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
];
2449 for(i
= 0;i
< n
;i
++)
2450 azd
->mIrs
[ti
][i
] /= maxLevel
;
2457 // Calculate the left-ear time delay using a spherical head model.
2458 static double CalcLTD(const double ev
, const double az
, const double rad
, const double dist
)
2460 double azp
, dlp
, l
, al
;
2462 azp
= asin(cos(ev
) * sin(az
));
2463 dlp
= sqrt((dist
*dist
) + (rad
*rad
) + (2.0*dist
*rad
*sin(azp
)));
2464 l
= sqrt((dist
*dist
) - (rad
*rad
));
2465 al
= (0.5 * M_PI
) + azp
;
2467 dlp
= l
+ (rad
* (al
- acos(rad
/ dist
)));
2471 // Calculate the effective head-related time delays for each minimum-phase
2473 static void CalculateHrtds(const HeadModelT model
, const double radius
, HrirDataT
*hData
)
2475 uint channels
= (hData
->mChannelType
== CT_STEREO
) ? 2 : 1;
2476 double minHrtd
= INFINITY
, maxHrtd
= -INFINITY
;
2477 uint ti
, fi
, ei
, ai
;
2480 if(model
== HM_DATASET
)
2482 for(ti
= 0;ti
< channels
;ti
++)
2484 for(fi
= 0;fi
< hData
->mFdCount
;fi
++)
2486 for(ei
= 0;ei
< hData
->mFds
[fi
].mEvCount
;ei
++)
2488 for(ai
= 0;ai
< hData
->mFds
[fi
].mEvs
[ei
].mAzCount
;ai
++)
2490 HrirAzT
*azd
= &hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
];
2492 t
= azd
->mDelays
[ti
] * radius
/ hData
->mRadius
;
2493 azd
->mDelays
[ti
] = t
;
2494 maxHrtd
= fmax(t
, maxHrtd
);
2495 minHrtd
= fmin(t
, minHrtd
);
2503 for(ti
= 0;ti
< channels
;ti
++)
2505 for(fi
= 0;fi
< hData
->mFdCount
;fi
++)
2507 for(ei
= 0;ei
< hData
->mFds
[fi
].mEvCount
;ei
++)
2509 HrirEvT
*evd
= &hData
->mFds
[fi
].mEvs
[ei
];
2511 for(ai
= 0;ai
< evd
->mAzCount
;ai
++)
2513 HrirAzT
*azd
= &evd
->mAzs
[ai
];
2515 t
= CalcLTD(evd
->mElevation
, azd
->mAzimuth
, radius
, hData
->mFds
[fi
].mDistance
);
2516 azd
->mDelays
[ti
] = t
;
2517 maxHrtd
= fmax(t
, maxHrtd
);
2518 minHrtd
= fmin(t
, minHrtd
);
2524 for(ti
= 0;ti
< channels
;ti
++)
2526 for(fi
= 0;fi
< hData
->mFdCount
;fi
++)
2528 for(ei
= 0;ei
< hData
->mFds
[fi
].mEvCount
;ei
++)
2530 for(ai
= 0;ai
< hData
->mFds
[fi
].mEvs
[ei
].mAzCount
;ai
++)
2531 hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
].mDelays
[ti
] -= minHrtd
;
2537 // Clear the initial HRIR data state.
2538 static void ResetHrirData(HrirDataT
*hData
)
2541 hData
->mSampleType
= ST_S24
;
2542 hData
->mChannelType
= CT_NONE
;
2543 hData
->mIrPoints
= 0;
2544 hData
->mFftSize
= 0;
2546 hData
->mRadius
= 0.0;
2547 hData
->mIrCount
= 0;
2548 hData
->mFdCount
= 0;
2552 // Allocate and configure dynamic HRIR structures.
2553 static int PrepareHrirData(const uint fdCount
, const double distances
[MAX_FD_COUNT
], const uint evCounts
[MAX_FD_COUNT
], const uint azCounts
[MAX_FD_COUNT
* MAX_EV_COUNT
], HrirDataT
*hData
)
2555 uint evTotal
= 0, azTotal
= 0, fi
, ei
, ai
;
2557 for(fi
= 0;fi
< fdCount
;fi
++)
2559 evTotal
+= evCounts
[fi
];
2560 for(ei
= 0;ei
< evCounts
[fi
];ei
++)
2561 azTotal
+= azCounts
[(fi
* MAX_EV_COUNT
) + ei
];
2563 if(!fdCount
|| !evTotal
|| !azTotal
)
2566 hData
->mFds
= calloc(fdCount
, sizeof(*hData
->mFds
));
2567 if(hData
->mFds
== NULL
)
2569 hData
->mFds
[0].mEvs
= calloc(evTotal
, sizeof(*hData
->mFds
[0].mEvs
));
2570 if(hData
->mFds
[0].mEvs
== NULL
)
2572 hData
->mFds
[0].mEvs
[0].mAzs
= calloc(azTotal
, sizeof(*hData
->mFds
[0].mEvs
[0].mAzs
));
2573 if(hData
->mFds
[0].mEvs
[0].mAzs
== NULL
)
2575 hData
->mIrCount
= azTotal
;
2576 hData
->mFdCount
= fdCount
;
2579 for(fi
= 0;fi
< fdCount
;fi
++)
2581 hData
->mFds
[fi
].mDistance
= distances
[fi
];
2582 hData
->mFds
[fi
].mEvCount
= evCounts
[fi
];
2583 hData
->mFds
[fi
].mEvStart
= 0;
2584 hData
->mFds
[fi
].mEvs
= &hData
->mFds
[0].mEvs
[evTotal
];
2585 evTotal
+= evCounts
[fi
];
2586 for(ei
= 0;ei
< evCounts
[fi
];ei
++)
2588 uint azCount
= azCounts
[(fi
* MAX_EV_COUNT
) + ei
];
2590 hData
->mFds
[fi
].mIrCount
+= azCount
;
2591 hData
->mFds
[fi
].mEvs
[ei
].mElevation
= -M_PI
/ 2.0 + M_PI
* ei
/ (evCounts
[fi
] - 1);
2592 hData
->mFds
[fi
].mEvs
[ei
].mIrCount
+= azCount
;
2593 hData
->mFds
[fi
].mEvs
[ei
].mAzCount
= azCount
;
2594 hData
->mFds
[fi
].mEvs
[ei
].mAzs
= &hData
->mFds
[0].mEvs
[0].mAzs
[azTotal
];
2595 for(ai
= 0;ai
< azCount
;ai
++)
2597 hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
].mAzimuth
= 2.0 * M_PI
* ai
/ azCount
;
2598 hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
].mIndex
= azTotal
+ ai
;
2599 hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
].mDelays
[0] = 0.0;
2600 hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
].mDelays
[1] = 0.0;
2601 hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
].mIrs
[0] = NULL
;
2602 hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
].mIrs
[1] = NULL
;
2610 // Clean up HRIR data.
2611 static void FreeHrirData(HrirDataT
*hData
)
2613 if(hData
->mFds
!= NULL
)
2615 if(hData
->mFds
[0].mEvs
!= NULL
)
2617 if(hData
->mFds
[0].mEvs
[0].mAzs
)
2619 if(hData
->mFds
[0].mEvs
[0].mAzs
[0].mIrs
[0] != NULL
)
2620 free(hData
->mFds
[0].mEvs
[0].mAzs
[0].mIrs
[0]);
2621 free(hData
->mFds
[0].mEvs
[0].mAzs
);
2623 free(hData
->mFds
[0].mEvs
);
2630 // Match the channel type from a given identifier.
2631 static ChannelTypeT
MatchChannelType(const char *ident
)
2633 if(strcasecmp(ident
, "mono") == 0)
2635 if(strcasecmp(ident
, "stereo") == 0)
2640 // Process the data set definition to read and validate the data set metrics.
2641 static int ProcessMetrics(TokenReaderT
*tr
, const uint fftSize
, const uint truncSize
, HrirDataT
*hData
)
2643 int hasRate
= 0, hasType
= 0, hasPoints
= 0, hasRadius
= 0;
2644 int hasDistance
= 0, hasAzimuths
= 0;
2645 char ident
[MAX_IDENT_LEN
+1];
2650 double distances
[MAX_FD_COUNT
];
2652 uint evCounts
[MAX_FD_COUNT
];
2653 uint
*azCounts
= calloc(MAX_FD_COUNT
* MAX_EV_COUNT
, sizeof(*azCounts
));
2655 if(azCounts
== NULL
)
2657 fprintf(stderr
, "Error: Out of memory.\n");
2660 TrIndication(tr
, &line
, &col
);
2661 while(TrIsIdent(tr
))
2663 TrIndication(tr
, &line
, &col
);
2664 if(!TrReadIdent(tr
, MAX_IDENT_LEN
, ident
))
2666 if(strcasecmp(ident
, "rate") == 0)
2670 TrErrorAt(tr
, line
, col
, "Redefinition of 'rate'.\n");
2673 if(!TrReadOperator(tr
, "="))
2675 if(!TrReadInt(tr
, MIN_RATE
, MAX_RATE
, &intVal
))
2677 hData
->mIrRate
= (uint
)intVal
;
2680 else if(strcasecmp(ident
, "type") == 0)
2682 char type
[MAX_IDENT_LEN
+1];
2686 TrErrorAt(tr
, line
, col
, "Redefinition of 'type'.\n");
2689 if(!TrReadOperator(tr
, "="))
2692 if(!TrReadIdent(tr
, MAX_IDENT_LEN
, type
))
2694 hData
->mChannelType
= MatchChannelType(type
);
2695 if(hData
->mChannelType
== CT_NONE
)
2697 TrErrorAt(tr
, line
, col
, "Expected a channel type.\n");
2702 else if(strcasecmp(ident
, "points") == 0)
2706 TrErrorAt(tr
, line
, col
, "Redefinition of 'points'.\n");
2709 if(!TrReadOperator(tr
, "="))
2711 TrIndication(tr
, &line
, &col
);
2712 if(!TrReadInt(tr
, MIN_POINTS
, MAX_POINTS
, &intVal
))
2714 points
= (uint
)intVal
;
2715 if(fftSize
> 0 && points
> fftSize
)
2717 TrErrorAt(tr
, line
, col
, "Value exceeds the overridden FFT size.\n");
2720 if(points
< truncSize
)
2722 TrErrorAt(tr
, line
, col
, "Value is below the truncation size.\n");
2725 hData
->mIrPoints
= points
;
2728 hData
->mFftSize
= DEFAULT_FFTSIZE
;
2729 hData
->mIrSize
= 1 + (DEFAULT_FFTSIZE
/ 2);
2733 hData
->mFftSize
= fftSize
;
2734 hData
->mIrSize
= 1 + (fftSize
/ 2);
2735 if(points
> hData
->mIrSize
)
2736 hData
->mIrSize
= points
;
2740 else if(strcasecmp(ident
, "radius") == 0)
2744 TrErrorAt(tr
, line
, col
, "Redefinition of 'radius'.\n");
2747 if(!TrReadOperator(tr
, "="))
2749 if(!TrReadFloat(tr
, MIN_RADIUS
, MAX_RADIUS
, &fpVal
))
2751 hData
->mRadius
= fpVal
;
2754 else if(strcasecmp(ident
, "distance") == 0)
2760 TrErrorAt(tr
, line
, col
, "Redefinition of 'distance'.\n");
2763 if(!TrReadOperator(tr
, "="))
2768 if(!TrReadFloat(tr
, MIN_DISTANCE
, MAX_DISTANCE
, &fpVal
))
2770 if(count
> 0 && fpVal
<= distances
[count
- 1])
2772 TrError(tr
, "Distances are not ascending.\n");
2775 distances
[count
++] = fpVal
;
2776 if(!TrIsOperator(tr
, ","))
2778 if(count
>= MAX_FD_COUNT
)
2780 TrError(tr
, "Exceeded the maximum of %d fields.\n", MAX_FD_COUNT
);
2783 TrReadOperator(tr
, ",");
2785 if(fdCount
!= 0 && count
!= fdCount
)
2787 TrError(tr
, "Did not match the specified number of %d fields.\n", fdCount
);
2793 else if(strcasecmp(ident
, "azimuths") == 0)
2799 TrErrorAt(tr
, line
, col
, "Redefinition of 'azimuths'.\n");
2802 if(!TrReadOperator(tr
, "="))
2808 if(!TrReadInt(tr
, MIN_AZ_COUNT
, MAX_AZ_COUNT
, &intVal
))
2810 azCounts
[(count
* MAX_EV_COUNT
) + evCounts
[count
]++] = (uint
)intVal
;
2811 if(TrIsOperator(tr
, ","))
2813 if(evCounts
[count
] >= MAX_EV_COUNT
)
2815 TrError(tr
, "Exceeded the maximum of %d elevations.\n", MAX_EV_COUNT
);
2818 TrReadOperator(tr
, ",");
2822 if(evCounts
[count
] < MIN_EV_COUNT
)
2824 TrErrorAt(tr
, line
, col
, "Did not reach the minimum of %d azimuth counts.\n", MIN_EV_COUNT
);
2827 if(azCounts
[count
* MAX_EV_COUNT
] != 1 || azCounts
[(count
* MAX_EV_COUNT
) + evCounts
[count
] - 1] != 1)
2829 TrError(tr
, "Poles are not singular for field %d.\n", count
- 1);
2833 if(TrIsOperator(tr
, ";"))
2835 if(count
>= MAX_FD_COUNT
)
2837 TrError(tr
, "Exceeded the maximum number of %d fields.\n", MAX_FD_COUNT
);
2840 evCounts
[count
] = 0;
2841 TrReadOperator(tr
, ";");
2849 if(fdCount
!= 0 && count
!= fdCount
)
2851 TrError(tr
, "Did not match the specified number of %d fields.\n", fdCount
);
2859 TrErrorAt(tr
, line
, col
, "Expected a metric name.\n");
2862 TrSkipWhitespace(tr
);
2864 if(!(hasRate
&& hasPoints
&& hasRadius
&& hasDistance
&& hasAzimuths
))
2866 TrErrorAt(tr
, line
, col
, "Expected a metric name.\n");
2869 if(distances
[0] < hData
->mRadius
)
2871 TrError(tr
, "Distance cannot start below head radius.\n");
2874 if(hData
->mChannelType
== CT_NONE
)
2875 hData
->mChannelType
= CT_MONO
;
2876 if(!PrepareHrirData(fdCount
, distances
, evCounts
, azCounts
, hData
))
2878 fprintf(stderr
, "Error: Out of memory.\n");
2889 // Parse an index triplet from the data set definition.
2890 static int ReadIndexTriplet(TokenReaderT
*tr
, const HrirDataT
*hData
, uint
*fi
, uint
*ei
, uint
*ai
)
2894 if(hData
->mFdCount
> 1)
2896 if(!TrReadInt(tr
, 0, (int)hData
->mFdCount
- 1, &intVal
))
2899 if(!TrReadOperator(tr
, ","))
2906 if(!TrReadInt(tr
, 0, (int)hData
->mFds
[*fi
].mEvCount
- 1, &intVal
))
2909 if(!TrReadOperator(tr
, ","))
2911 if(!TrReadInt(tr
, 0, (int)hData
->mFds
[*fi
].mEvs
[*ei
].mAzCount
- 1, &intVal
))
2917 // Match the source format from a given identifier.
2918 static SourceFormatT
MatchSourceFormat(const char *ident
)
2920 if(strcasecmp(ident
, "wave") == 0)
2922 if(strcasecmp(ident
, "bin_le") == 0)
2924 if(strcasecmp(ident
, "bin_be") == 0)
2926 if(strcasecmp(ident
, "ascii") == 0)
2931 // Match the source element type from a given identifier.
2932 static ElementTypeT
MatchElementType(const char *ident
)
2934 if(strcasecmp(ident
, "int") == 0)
2936 if(strcasecmp(ident
, "fp") == 0)
2941 // Parse and validate a source reference from the data set definition.
2942 static int ReadSourceRef(TokenReaderT
*tr
, SourceRefT
*src
)
2944 char ident
[MAX_IDENT_LEN
+1];
2948 TrIndication(tr
, &line
, &col
);
2949 if(!TrReadIdent(tr
, MAX_IDENT_LEN
, ident
))
2951 src
->mFormat
= MatchSourceFormat(ident
);
2952 if(src
->mFormat
== SF_NONE
)
2954 TrErrorAt(tr
, line
, col
, "Expected a source format.\n");
2957 if(!TrReadOperator(tr
, "("))
2959 if(src
->mFormat
== SF_WAVE
)
2961 if(!TrReadInt(tr
, 0, MAX_WAVE_CHANNELS
, &intVal
))
2963 src
->mType
= ET_NONE
;
2966 src
->mChannel
= (uint
)intVal
;
2971 TrIndication(tr
, &line
, &col
);
2972 if(!TrReadIdent(tr
, MAX_IDENT_LEN
, ident
))
2974 src
->mType
= MatchElementType(ident
);
2975 if(src
->mType
== ET_NONE
)
2977 TrErrorAt(tr
, line
, col
, "Expected a source element type.\n");
2980 if(src
->mFormat
== SF_BIN_LE
|| src
->mFormat
== SF_BIN_BE
)
2982 if(!TrReadOperator(tr
, ","))
2984 if(src
->mType
== ET_INT
)
2986 if(!TrReadInt(tr
, MIN_BIN_SIZE
, MAX_BIN_SIZE
, &intVal
))
2988 src
->mSize
= (uint
)intVal
;
2989 if(!TrIsOperator(tr
, ","))
2990 src
->mBits
= (int)(8*src
->mSize
);
2993 TrReadOperator(tr
, ",");
2994 TrIndication(tr
, &line
, &col
);
2995 if(!TrReadInt(tr
, -2147483647-1, 2147483647, &intVal
))
2997 if(abs(intVal
) < MIN_BIN_BITS
|| (uint
)abs(intVal
) > (8*src
->mSize
))
2999 TrErrorAt(tr
, line
, col
, "Expected a value of (+/-) %d to %d.\n", MIN_BIN_BITS
, 8*src
->mSize
);
3002 src
->mBits
= intVal
;
3007 TrIndication(tr
, &line
, &col
);
3008 if(!TrReadInt(tr
, -2147483647-1, 2147483647, &intVal
))
3010 if(intVal
!= 4 && intVal
!= 8)
3012 TrErrorAt(tr
, line
, col
, "Expected a value of 4 or 8.\n");
3015 src
->mSize
= (uint
)intVal
;
3019 else if(src
->mFormat
== SF_ASCII
&& src
->mType
== ET_INT
)
3021 if(!TrReadOperator(tr
, ","))
3023 if(!TrReadInt(tr
, MIN_ASCII_BITS
, MAX_ASCII_BITS
, &intVal
))
3026 src
->mBits
= intVal
;
3034 if(!TrIsOperator(tr
, ";"))
3038 TrReadOperator(tr
, ";");
3039 if(!TrReadInt(tr
, 0, 0x7FFFFFFF, &intVal
))
3041 src
->mSkip
= (uint
)intVal
;
3044 if(!TrReadOperator(tr
, ")"))
3046 if(TrIsOperator(tr
, "@"))
3048 TrReadOperator(tr
, "@");
3049 if(!TrReadInt(tr
, 0, 0x7FFFFFFF, &intVal
))
3051 src
->mOffset
= (uint
)intVal
;
3055 if(!TrReadOperator(tr
, ":"))
3057 if(!TrReadString(tr
, MAX_PATH_LEN
, src
->mPath
))
3062 // Match the target ear (index) from a given identifier.
3063 static int MatchTargetEar(const char *ident
)
3065 if(strcasecmp(ident
, "left") == 0)
3067 if(strcasecmp(ident
, "right") == 0)
3072 // Process the list of sources in the data set definition.
3073 static int ProcessSources(const HeadModelT model
, TokenReaderT
*tr
, HrirDataT
*hData
)
3075 uint channels
= (hData
->mChannelType
== CT_STEREO
) ? 2 : 1;
3076 double *hrirs
= CreateDoubles(channels
* hData
->mIrCount
* hData
->mIrSize
);
3077 double *hrir
= CreateDoubles(hData
->mIrPoints
);
3078 uint line
, col
, fi
, ei
, ai
, ti
;
3081 printf("Loading sources...");
3084 while(TrIsOperator(tr
, "["))
3086 double factor
[2] = { 1.0, 1.0 };
3088 TrIndication(tr
, &line
, &col
);
3089 TrReadOperator(tr
, "[");
3090 if(!ReadIndexTriplet(tr
, hData
, &fi
, &ei
, &ai
))
3092 if(!TrReadOperator(tr
, "]"))
3094 HrirAzT
*azd
= &hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
];
3096 if(azd
->mIrs
[0] != NULL
)
3098 TrErrorAt(tr
, line
, col
, "Redefinition of source.\n");
3101 if(!TrReadOperator(tr
, "="))
3109 if(!ReadSourceRef(tr
, &src
))
3112 // TODO: Would be nice to display 'x of y files', but that would
3113 // require preparing the source refs first to get a total count
3114 // before loading them.
3116 printf("\rLoading sources... %d file%s", count
, (count
==1)?"":"s");
3119 if(!LoadSource(&src
, hData
->mIrRate
, hData
->mIrPoints
, hrir
))
3122 if(hData
->mChannelType
== CT_STEREO
)
3124 char ident
[MAX_IDENT_LEN
+1];
3126 if(!TrReadIdent(tr
, MAX_IDENT_LEN
, ident
))
3128 ti
= MatchTargetEar(ident
);
3131 TrErrorAt(tr
, line
, col
, "Expected a target ear.\n");
3135 azd
->mIrs
[ti
] = &hrirs
[hData
->mIrSize
* (ti
* hData
->mIrCount
+ azd
->mIndex
)];
3136 if(model
== HM_DATASET
)
3137 azd
->mDelays
[ti
] = AverageHrirOnset(hData
->mIrRate
, hData
->mIrPoints
, hrir
, 1.0 / factor
[ti
], azd
->mDelays
[ti
]);
3138 AverageHrirMagnitude(hData
->mIrPoints
, hData
->mFftSize
, hrir
, 1.0 / factor
[ti
], azd
->mIrs
[ti
]);
3140 if(!TrIsOperator(tr
, "+"))
3142 TrReadOperator(tr
, "+");
3144 if(hData
->mChannelType
== CT_STEREO
)
3146 if(azd
->mIrs
[0] == NULL
)
3148 TrErrorAt(tr
, line
, col
, "Missing left ear source reference(s).\n");
3151 else if(azd
->mIrs
[1] == NULL
)
3153 TrErrorAt(tr
, line
, col
, "Missing right ear source reference(s).\n");
3159 for(fi
= 0;fi
< hData
->mFdCount
;fi
++)
3161 for(ei
= 0;ei
< hData
->mFds
[fi
].mEvCount
;ei
++)
3163 for(ai
= 0;ai
< hData
->mFds
[fi
].mEvs
[ei
].mAzCount
;ai
++)
3165 HrirAzT
*azd
= &hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
];
3167 if(azd
->mIrs
[0] != NULL
)
3170 if(ai
< hData
->mFds
[fi
].mEvs
[ei
].mAzCount
)
3173 if(ei
>= hData
->mFds
[fi
].mEvCount
)
3175 TrError(tr
, "Missing source references [ %d, *, * ].\n", fi
);
3178 hData
->mFds
[fi
].mEvStart
= ei
;
3179 for(;ei
< hData
->mFds
[fi
].mEvCount
;ei
++)
3181 for(ai
= 0;ai
< hData
->mFds
[fi
].mEvs
[ei
].mAzCount
;ai
++)
3183 HrirAzT
*azd
= &hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
];
3185 if(azd
->mIrs
[0] == NULL
)
3187 TrError(tr
, "Missing source reference [ %d, %d, %d ].\n", fi
, ei
, ai
);
3193 for(ti
= 0;ti
< channels
;ti
++)
3195 for(fi
= 0;fi
< hData
->mFdCount
;fi
++)
3197 for(ei
= 0;ei
< hData
->mFds
[fi
].mEvCount
;ei
++)
3199 for(ai
= 0;ai
< hData
->mFds
[fi
].mEvs
[ei
].mAzCount
;ai
++)
3201 HrirAzT
*azd
= &hData
->mFds
[fi
].mEvs
[ei
].mAzs
[ai
];
3203 azd
->mIrs
[ti
] = &hrirs
[hData
->mIrSize
* (ti
* hData
->mIrCount
+ azd
->mIndex
)];
3213 TrError(tr
, "Errant data at end of source list.\n");
3220 /* Parse the data set definition and process the source data, storing the
3221 * resulting data set as desired. If the input name is NULL it will read
3222 * from standard input.
3224 static int ProcessDefinition(const char *inName
, const uint outRate
, const uint fftSize
, const int equalize
, const int surface
, const double limit
, const uint truncSize
, const HeadModelT model
, const double radius
, const char *outName
)
3226 char rateStr
[8+1], expName
[MAX_PATH_LEN
];
3232 ResetHrirData(&hData
);
3233 fprintf(stdout
, "Reading HRIR definition from %s...\n", inName
?inName
:"stdin");
3236 fp
= fopen(inName
, "r");
3239 fprintf(stderr
, "Error: Could not open definition file '%s'\n", inName
);
3242 TrSetup(fp
, inName
, &tr
);
3247 TrSetup(fp
, "<stdin>", &tr
);
3249 if(!ProcessMetrics(&tr
, fftSize
, truncSize
, &hData
))
3255 if(!ProcessSources(model
, &tr
, &hData
))
3257 FreeHrirData(&hData
);
3266 uint c
= (hData
.mChannelType
== CT_STEREO
) ? 2 : 1;
3267 uint m
= 1 + hData
.mFftSize
/ 2;
3268 double *dfa
= CreateDoubles(c
* m
);
3270 fprintf(stdout
, "Calculating diffuse-field average...\n");
3271 CalculateDiffuseFieldAverage(&hData
, c
, m
, surface
, limit
, dfa
);
3272 fprintf(stdout
, "Performing diffuse-field equalization...\n");
3273 DiffuseFieldEqualize(c
, m
, dfa
, &hData
);
3276 fprintf(stdout
, "Performing minimum phase reconstruction...\n");
3277 ReconstructHrirs(&hData
);
3278 if(outRate
!= 0 && outRate
!= hData
.mIrRate
)
3280 fprintf(stdout
, "Resampling HRIRs...\n");
3281 ResampleHrirs(outRate
, &hData
);
3283 fprintf(stdout
, "Truncating minimum-phase HRIRs...\n");
3284 hData
.mIrPoints
= truncSize
;
3285 fprintf(stdout
, "Synthesizing missing elevations...\n");
3286 if(model
== HM_DATASET
)
3287 SynthesizeOnsets(&hData
);
3288 SynthesizeHrirs(&hData
);
3289 fprintf(stdout
, "Normalizing final HRIRs...\n");
3290 NormalizeHrirs(&hData
);
3291 fprintf(stdout
, "Calculating impulse delays...\n");
3292 CalculateHrtds(model
, (radius
> DEFAULT_CUSTOM_RADIUS
) ? radius
: hData
.mRadius
, &hData
);
3293 snprintf(rateStr
, 8, "%u", hData
.mIrRate
);
3294 StrSubst(outName
, "%r", rateStr
, MAX_PATH_LEN
, expName
);
3295 fprintf(stdout
, "Creating MHR data set %s...\n", expName
);
3296 ret
= StoreMhr(&hData
, expName
);
3298 FreeHrirData(&hData
);
3302 static void PrintHelp(const char *argv0
, FILE *ofile
)
3304 fprintf(ofile
, "Usage: %s [<option>...]\n\n", argv0
);
3305 fprintf(ofile
, "Options:\n");
3306 fprintf(ofile
, " -m Ignored for compatibility.\n");
3307 fprintf(ofile
, " -r <rate> Change the data set sample rate to the specified value and\n");
3308 fprintf(ofile
, " resample the HRIRs accordingly.\n");
3309 fprintf(ofile
, " -f <points> Override the FFT window size (default: %u).\n", DEFAULT_FFTSIZE
);
3310 fprintf(ofile
, " -e {on|off} Toggle diffuse-field equalization (default: %s).\n", (DEFAULT_EQUALIZE
? "on" : "off"));
3311 fprintf(ofile
, " -s {on|off} Toggle surface-weighted diffuse-field average (default: %s).\n", (DEFAULT_SURFACE
? "on" : "off"));
3312 fprintf(ofile
, " -l {<dB>|none} Specify a limit to the magnitude range of the diffuse-field\n");
3313 fprintf(ofile
, " average (default: %.2f).\n", DEFAULT_LIMIT
);
3314 fprintf(ofile
, " -w <points> Specify the size of the truncation window that's applied\n");
3315 fprintf(ofile
, " after minimum-phase reconstruction (default: %u).\n", DEFAULT_TRUNCSIZE
);
3316 fprintf(ofile
, " -d {dataset| Specify the model used for calculating the head-delay timing\n");
3317 fprintf(ofile
, " sphere} values (default: %s).\n", ((DEFAULT_HEAD_MODEL
== HM_DATASET
) ? "dataset" : "sphere"));
3318 fprintf(ofile
, " -c <size> Use a customized head radius measured ear-to-ear in meters.\n");
3319 fprintf(ofile
, " -i <filename> Specify an HRIR definition file to use (defaults to stdin).\n");
3320 fprintf(ofile
, " -o <filename> Specify an output file. Use of '%%r' will be substituted with\n");
3321 fprintf(ofile
, " the data set sample rate.\n");
3324 // Standard command line dispatch.
3325 int main(int argc
, char *argv
[])
3327 const char *inName
= NULL
, *outName
= NULL
;
3328 uint outRate
, fftSize
;
3329 int equalize
, surface
;
3337 GET_UNICODE_ARGS(&argc
, &argv
);
3341 fprintf(stdout
, "HRTF Processing and Composition Utility\n\n");
3342 PrintHelp(argv
[0], stdout
);
3346 outName
= "./oalsoft_hrtf_%r.mhr";
3349 equalize
= DEFAULT_EQUALIZE
;
3350 surface
= DEFAULT_SURFACE
;
3351 limit
= DEFAULT_LIMIT
;
3352 truncSize
= DEFAULT_TRUNCSIZE
;
3353 model
= DEFAULT_HEAD_MODEL
;
3354 radius
= DEFAULT_CUSTOM_RADIUS
;
3356 while((opt
=getopt(argc
, argv
, "mr:f:e:s:l:w:d:c:e:i:o:h")) != -1)
3361 fprintf(stderr
, "Ignoring unused command '-m'.\n");
3365 outRate
= strtoul(optarg
, &end
, 10);
3366 if(end
[0] != '\0' || outRate
< MIN_RATE
|| outRate
> MAX_RATE
)
3368 fprintf(stderr
, "Error: Got unexpected value \"%s\" for option -%c, expected between %u to %u.\n", optarg
, opt
, MIN_RATE
, MAX_RATE
);
3374 fftSize
= strtoul(optarg
, &end
, 10);
3375 if(end
[0] != '\0' || (fftSize
&(fftSize
-1)) || fftSize
< MIN_FFTSIZE
|| fftSize
> MAX_FFTSIZE
)
3377 fprintf(stderr
, "Error: Got unexpected value \"%s\" for option -%c, expected a power-of-two between %u to %u.\n", optarg
, opt
, MIN_FFTSIZE
, MAX_FFTSIZE
);
3383 if(strcmp(optarg
, "on") == 0)
3385 else if(strcmp(optarg
, "off") == 0)
3389 fprintf(stderr
, "Error: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg
, opt
);
3395 if(strcmp(optarg
, "on") == 0)
3397 else if(strcmp(optarg
, "off") == 0)
3401 fprintf(stderr
, "Error: Got unexpected value \"%s\" for option -%c, expected on or off.\n", optarg
, opt
);
3407 if(strcmp(optarg
, "none") == 0)
3411 limit
= strtod(optarg
, &end
);
3412 if(end
[0] != '\0' || limit
< MIN_LIMIT
|| limit
> MAX_LIMIT
)
3414 fprintf(stderr
, "Error: Got unexpected value \"%s\" for option -%c, expected between %.0f to %.0f.\n", optarg
, opt
, MIN_LIMIT
, MAX_LIMIT
);
3421 truncSize
= strtoul(optarg
, &end
, 10);
3422 if(end
[0] != '\0' || truncSize
< MIN_TRUNCSIZE
|| truncSize
> MAX_TRUNCSIZE
|| (truncSize
%MOD_TRUNCSIZE
))
3424 fprintf(stderr
, "Error: Got unexpected value \"%s\" for option -%c, expected multiple of %u between %u to %u.\n", optarg
, opt
, MOD_TRUNCSIZE
, MIN_TRUNCSIZE
, MAX_TRUNCSIZE
);
3430 if(strcmp(optarg
, "dataset") == 0)
3432 else if(strcmp(optarg
, "sphere") == 0)
3436 fprintf(stderr
, "Error: Got unexpected value \"%s\" for option -%c, expected dataset or sphere.\n", optarg
, opt
);
3442 radius
= strtod(optarg
, &end
);
3443 if(end
[0] != '\0' || radius
< MIN_CUSTOM_RADIUS
|| radius
> MAX_CUSTOM_RADIUS
)
3445 fprintf(stderr
, "Error: Got unexpected value \"%s\" for option -%c, expected between %.2f to %.2f.\n", optarg
, opt
, MIN_CUSTOM_RADIUS
, MAX_CUSTOM_RADIUS
);
3459 PrintHelp(argv
[0], stdout
);
3463 PrintHelp(argv
[0], stderr
);
3468 if(!ProcessDefinition(inName
, outRate
, fftSize
, equalize
, surface
, limit
,
3469 truncSize
, model
, radius
, outName
))
3471 fprintf(stdout
, "Operation completed.\n");
3473 return EXIT_SUCCESS
;