2 * OpenAL cross platform audio library
3 * Copyright (C) 2014 by Timothy Arceri <t_arceri@yahoo.com.au>.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
23 #include <xmmintrin.h>
24 #include <emmintrin.h>
25 #include <smmintrin.h>
28 #include "mixer_defs.h"
31 const ALfloat
*Resample_lerp_SSE41(const InterpState
* UNUSED(state
),
32 const ALfloat
*restrict src
, ALsizei frac
, ALint increment
,
33 ALfloat
*restrict dst
, ALsizei numsamples
)
35 const __m128i increment4
= _mm_set1_epi32(increment
*4);
36 const __m128 fracOne4
= _mm_set1_ps(1.0f
/FRACTIONONE
);
37 const __m128i fracMask4
= _mm_set1_epi32(FRACTIONMASK
);
38 union { alignas(16) ALint i
[4]; float f
[4]; } pos_
;
39 union { alignas(16) ALsizei i
[4]; float f
[4]; } frac_
;
44 InitiatePositionArrays(frac
, increment
, frac_
.i
, pos_
.i
, 4);
46 frac4
= _mm_castps_si128(_mm_load_ps(frac_
.f
));
47 pos4
= _mm_castps_si128(_mm_load_ps(pos_
.f
));
49 for(i
= 0;numsamples
-i
> 3;i
+= 4)
51 const __m128 val1
= _mm_setr_ps(src
[pos_
.i
[0]], src
[pos_
.i
[1]], src
[pos_
.i
[2]], src
[pos_
.i
[3]]);
52 const __m128 val2
= _mm_setr_ps(src
[pos_
.i
[0]+1], src
[pos_
.i
[1]+1], src
[pos_
.i
[2]+1], src
[pos_
.i
[3]+1]);
54 /* val1 + (val2-val1)*mu */
55 const __m128 r0
= _mm_sub_ps(val2
, val1
);
56 const __m128 mu
= _mm_mul_ps(_mm_cvtepi32_ps(frac4
), fracOne4
);
57 const __m128 out
= _mm_add_ps(val1
, _mm_mul_ps(mu
, r0
));
59 _mm_store_ps(&dst
[i
], out
);
61 frac4
= _mm_add_epi32(frac4
, increment4
);
62 pos4
= _mm_add_epi32(pos4
, _mm_srli_epi32(frac4
, FRACTIONBITS
));
63 frac4
= _mm_and_si128(frac4
, fracMask4
);
65 pos_
.i
[0] = _mm_extract_epi32(pos4
, 0);
66 pos_
.i
[1] = _mm_extract_epi32(pos4
, 1);
67 pos_
.i
[2] = _mm_extract_epi32(pos4
, 2);
68 pos_
.i
[3] = _mm_extract_epi32(pos4
, 3);
71 /* NOTE: These four elements represent the position *after* the last four
72 * samples, so the lowest element is the next position to resample.
75 frac
= _mm_cvtsi128_si32(frac4
);
77 for(;i
< numsamples
;i
++)
79 dst
[i
] = lerp(src
[pos
], src
[pos
+1], frac
* (1.0f
/FRACTIONONE
));
82 pos
+= frac
>>FRACTIONBITS
;
88 const ALfloat
*Resample_fir4_SSE41(const InterpState
*state
,
89 const ALfloat
*restrict src
, ALsizei frac
, ALint increment
,
90 ALfloat
*restrict dst
, ALsizei numsamples
)
92 const ALfloat (*restrict filter
)[4] = ASSUME_ALIGNED(state
->sinc4
.filter
, 16);
93 const __m128i increment4
= _mm_set1_epi32(increment
*4);
94 const __m128i fracMask4
= _mm_set1_epi32(FRACTIONMASK
);
95 union { alignas(16) ALint i
[4]; float f
[4]; } pos_
;
96 union { alignas(16) ALsizei i
[4]; float f
[4]; } frac_
;
101 InitiatePositionArrays(frac
, increment
, frac_
.i
, pos_
.i
, 4);
103 frac4
= _mm_castps_si128(_mm_load_ps(frac_
.f
));
104 pos4
= _mm_castps_si128(_mm_load_ps(pos_
.f
));
107 for(i
= 0;numsamples
-i
> 3;i
+= 4)
109 const __m128 val0
= _mm_loadu_ps(&src
[pos_
.i
[0]]);
110 const __m128 val1
= _mm_loadu_ps(&src
[pos_
.i
[1]]);
111 const __m128 val2
= _mm_loadu_ps(&src
[pos_
.i
[2]]);
112 const __m128 val3
= _mm_loadu_ps(&src
[pos_
.i
[3]]);
113 __m128 k0
= _mm_load_ps(filter
[frac_
.i
[0]]);
114 __m128 k1
= _mm_load_ps(filter
[frac_
.i
[1]]);
115 __m128 k2
= _mm_load_ps(filter
[frac_
.i
[2]]);
116 __m128 k3
= _mm_load_ps(filter
[frac_
.i
[3]]);
119 k0
= _mm_mul_ps(k0
, val0
);
120 k1
= _mm_mul_ps(k1
, val1
);
121 k2
= _mm_mul_ps(k2
, val2
);
122 k3
= _mm_mul_ps(k3
, val3
);
123 k0
= _mm_hadd_ps(k0
, k1
);
124 k2
= _mm_hadd_ps(k2
, k3
);
125 out
= _mm_hadd_ps(k0
, k2
);
127 _mm_store_ps(&dst
[i
], out
);
129 frac4
= _mm_add_epi32(frac4
, increment4
);
130 pos4
= _mm_add_epi32(pos4
, _mm_srli_epi32(frac4
, FRACTIONBITS
));
131 frac4
= _mm_and_si128(frac4
, fracMask4
);
133 pos_
.i
[0] = _mm_extract_epi32(pos4
, 0);
134 pos_
.i
[1] = _mm_extract_epi32(pos4
, 1);
135 pos_
.i
[2] = _mm_extract_epi32(pos4
, 2);
136 pos_
.i
[3] = _mm_extract_epi32(pos4
, 3);
137 frac_
.i
[0] = _mm_extract_epi32(frac4
, 0);
138 frac_
.i
[1] = _mm_extract_epi32(frac4
, 1);
139 frac_
.i
[2] = _mm_extract_epi32(frac4
, 2);
140 frac_
.i
[3] = _mm_extract_epi32(frac4
, 3);
146 for(;i
< numsamples
;i
++)
148 dst
[i
] = resample_fir4(src
[pos
], src
[pos
+1], src
[pos
+2], src
[pos
+3], filter
[frac
]);
151 pos
+= frac
>>FRACTIONBITS
;
152 frac
&= FRACTIONMASK
;