2 * Reverb for the OpenAL cross platform audio library
3 * Copyright (C) 2008-2009 by Christopher Fitzgerald.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
29 #include "alAuxEffectSlot.h"
34 typedef struct DelayLine
36 // The delay lines use sample lengths that are powers of 2 to allow the
37 // use of bit-masking instead of a modulus for wrapping.
42 typedef struct ALverbState
{
43 // Must be first in all effects!
46 // All delay lines are allocated as a single buffer to reduce memory
47 // fragmentation and management code.
48 ALfloat
*SampleBuffer
;
51 // Master effect low-pass filter (2 chained 1-pole filters).
56 // Modulator delay line.
59 // The vibrato time is tracked with an index over a modulus-wrapped
60 // range (in samples).
64 // The depth of frequency change (also in samples) and its filter.
70 // Initial effect delay.
72 // The tap points for the initial delay. First tap goes to early
73 // reflections, the last to late reverb.
77 // Output gain for early reflections.
80 // Early reflections are done with 4 delay lines.
85 // The gain for each output channel based on 3D panning (only for the
87 ALfloat PanGain
[MaxChannels
];
90 // Decorrelator delay line.
91 DelayLine Decorrelator
;
92 // There are actually 4 decorrelator taps, but the first occurs at the
97 // Output gain for late reverb.
100 // Attenuation to compensate for the modal density and decay rate of
104 // The feed-back and feed-forward all-pass coefficient.
107 // Mixing matrix coefficient.
110 // Late reverb has 4 parallel all-pass filters.
112 DelayLine ApDelay
[4];
115 // In addition to 4 cyclical delay lines.
120 // The cyclical delay lines are 1-pole low-pass filtered.
124 // The gain for each output channel based on 3D panning (only for the
126 ALfloat PanGain
[MaxChannels
];
130 // Attenuation to compensate for the modal density and decay rate of
134 // Echo delay and all-pass lines.
145 // The echo line is 1-pole low-pass filtered.
149 // Echo mixing coefficients.
153 // The current read offset for all delay lines.
156 // The gain for each output channel (non-EAX path only; aliased from
160 /* Temporary storage used when processing, before deinterlacing. */
161 ALfloat ReverbSamples
[BUFFERSIZE
][4];
162 ALfloat EarlySamples
[BUFFERSIZE
][4];
165 /* This is a user config option for modifying the overall output of the reverb
168 ALfloat ReverbBoost
= 1.0f
;
170 /* Specifies whether to use a standard reverb effect in place of EAX reverb */
171 ALboolean EmulateEAXReverb
= AL_FALSE
;
173 /* This coefficient is used to define the maximum frequency range controlled
174 * by the modulation depth. The current value of 0.1 will allow it to swing
175 * from 0.9x to 1.1x. This value must be below 1. At 1 it will cause the
176 * sampler to stall on the downswing, and above 1 it will cause it to sample
179 static const ALfloat MODULATION_DEPTH_COEFF
= 0.1f
;
181 /* A filter is used to avoid the terrible distortion caused by changing
182 * modulation time and/or depth. To be consistent across different sample
183 * rates, the coefficient must be raised to a constant divided by the sample
184 * rate: coeff^(constant / rate).
186 static const ALfloat MODULATION_FILTER_COEFF
= 0.048f
;
187 static const ALfloat MODULATION_FILTER_CONST
= 100000.0f
;
189 // When diffusion is above 0, an all-pass filter is used to take the edge off
190 // the echo effect. It uses the following line length (in seconds).
191 static const ALfloat ECHO_ALLPASS_LENGTH
= 0.0133f
;
193 // Input into the late reverb is decorrelated between four channels. Their
194 // timings are dependent on a fraction and multiplier. See the
195 // UpdateDecorrelator() routine for the calculations involved.
196 static const ALfloat DECO_FRACTION
= 0.15f
;
197 static const ALfloat DECO_MULTIPLIER
= 2.0f
;
199 // All delay line lengths are specified in seconds.
201 // The lengths of the early delay lines.
202 static const ALfloat EARLY_LINE_LENGTH
[4] =
204 0.0015f
, 0.0045f
, 0.0135f
, 0.0405f
207 // The lengths of the late all-pass delay lines.
208 static const ALfloat ALLPASS_LINE_LENGTH
[4] =
210 0.0151f
, 0.0167f
, 0.0183f
, 0.0200f
,
213 // The lengths of the late cyclical delay lines.
214 static const ALfloat LATE_LINE_LENGTH
[4] =
216 0.0211f
, 0.0311f
, 0.0461f
, 0.0680f
219 // The late cyclical delay lines have a variable length dependent on the
220 // effect's density parameter (inverted for some reason) and this multiplier.
221 static const ALfloat LATE_LINE_MULTIPLIER
= 4.0f
;
224 // Basic delay line input/output routines.
225 static __inline ALfloat
DelayLineOut(DelayLine
*Delay
, ALuint offset
)
227 return Delay
->Line
[offset
&Delay
->Mask
];
230 static __inline ALvoid
DelayLineIn(DelayLine
*Delay
, ALuint offset
, ALfloat in
)
232 Delay
->Line
[offset
&Delay
->Mask
] = in
;
235 // Attenuated delay line output routine.
236 static __inline ALfloat
AttenuatedDelayLineOut(DelayLine
*Delay
, ALuint offset
, ALfloat coeff
)
238 return coeff
* Delay
->Line
[offset
&Delay
->Mask
];
241 // Basic attenuated all-pass input/output routine.
242 static __inline ALfloat
AllpassInOut(DelayLine
*Delay
, ALuint outOffset
, ALuint inOffset
, ALfloat in
, ALfloat feedCoeff
, ALfloat coeff
)
246 out
= DelayLineOut(Delay
, outOffset
);
247 feed
= feedCoeff
* in
;
248 DelayLineIn(Delay
, inOffset
, (feedCoeff
* (out
- feed
)) + in
);
250 // The time-based attenuation is only applied to the delay output to
251 // keep it from affecting the feed-back path (which is already controlled
252 // by the all-pass feed coefficient).
253 return (coeff
* out
) - feed
;
256 // Given an input sample, this function produces modulation for the late
258 static __inline ALfloat
EAXModulation(ALverbState
*State
, ALfloat in
)
264 // Calculate the sinus rythm (dependent on modulation time and the
265 // sampling rate). The center of the sinus is moved to reduce the delay
266 // of the effect when the time or depth are low.
267 sinus
= 1.0f
- cosf(F_PI
*2.0f
* State
->Mod
.Index
/ State
->Mod
.Range
);
269 // The depth determines the range over which to read the input samples
270 // from, so it must be filtered to reduce the distortion caused by even
271 // small parameter changes.
272 State
->Mod
.Filter
= lerp(State
->Mod
.Filter
, State
->Mod
.Depth
,
275 // Calculate the read offset and fraction between it and the next sample.
276 frac
= (1.0f
+ (State
->Mod
.Filter
* sinus
));
277 offset
= fastf2u(frac
);
280 // Get the two samples crossed by the offset, and feed the delay line
281 // with the next input sample.
282 out0
= DelayLineOut(&State
->Mod
.Delay
, State
->Offset
- offset
);
283 out1
= DelayLineOut(&State
->Mod
.Delay
, State
->Offset
- offset
- 1);
284 DelayLineIn(&State
->Mod
.Delay
, State
->Offset
, in
);
286 // Step the modulation index forward, keeping it bound to its range.
287 State
->Mod
.Index
= (State
->Mod
.Index
+ 1) % State
->Mod
.Range
;
289 // The output is obtained by linearly interpolating the two samples that
290 // were acquired above.
291 return lerp(out0
, out1
, frac
);
294 // Delay line output routine for early reflections.
295 static __inline ALfloat
EarlyDelayLineOut(ALverbState
*State
, ALuint index
)
297 return AttenuatedDelayLineOut(&State
->Early
.Delay
[index
],
298 State
->Offset
- State
->Early
.Offset
[index
],
299 State
->Early
.Coeff
[index
]);
302 // Given an input sample, this function produces four-channel output for the
303 // early reflections.
304 static __inline ALvoid
EarlyReflection(ALverbState
*State
, ALfloat in
, ALfloat
*RESTRICT out
)
306 ALfloat d
[4], v
, f
[4];
308 // Obtain the decayed results of each early delay line.
309 d
[0] = EarlyDelayLineOut(State
, 0);
310 d
[1] = EarlyDelayLineOut(State
, 1);
311 d
[2] = EarlyDelayLineOut(State
, 2);
312 d
[3] = EarlyDelayLineOut(State
, 3);
314 /* The following uses a lossless scattering junction from waveguide
315 * theory. It actually amounts to a householder mixing matrix, which
316 * will produce a maximally diffuse response, and means this can probably
317 * be considered a simple feed-back delay network (FDN).
325 v
= (d
[0] + d
[1] + d
[2] + d
[3]) * 0.5f
;
326 // The junction is loaded with the input here.
329 // Calculate the feed values for the delay lines.
335 // Re-feed the delay lines.
336 DelayLineIn(&State
->Early
.Delay
[0], State
->Offset
, f
[0]);
337 DelayLineIn(&State
->Early
.Delay
[1], State
->Offset
, f
[1]);
338 DelayLineIn(&State
->Early
.Delay
[2], State
->Offset
, f
[2]);
339 DelayLineIn(&State
->Early
.Delay
[3], State
->Offset
, f
[3]);
341 // Output the results of the junction for all four channels.
342 out
[0] = State
->Early
.Gain
* f
[0];
343 out
[1] = State
->Early
.Gain
* f
[1];
344 out
[2] = State
->Early
.Gain
* f
[2];
345 out
[3] = State
->Early
.Gain
* f
[3];
348 // All-pass input/output routine for late reverb.
349 static __inline ALfloat
LateAllPassInOut(ALverbState
*State
, ALuint index
, ALfloat in
)
351 return AllpassInOut(&State
->Late
.ApDelay
[index
],
352 State
->Offset
- State
->Late
.ApOffset
[index
],
353 State
->Offset
, in
, State
->Late
.ApFeedCoeff
,
354 State
->Late
.ApCoeff
[index
]);
357 // Delay line output routine for late reverb.
358 static __inline ALfloat
LateDelayLineOut(ALverbState
*State
, ALuint index
)
360 return AttenuatedDelayLineOut(&State
->Late
.Delay
[index
],
361 State
->Offset
- State
->Late
.Offset
[index
],
362 State
->Late
.Coeff
[index
]);
365 // Low-pass filter input/output routine for late reverb.
366 static __inline ALfloat
LateLowPassInOut(ALverbState
*State
, ALuint index
, ALfloat in
)
368 in
= lerp(in
, State
->Late
.LpSample
[index
], State
->Late
.LpCoeff
[index
]);
369 State
->Late
.LpSample
[index
] = in
;
373 // Given four decorrelated input samples, this function produces four-channel
374 // output for the late reverb.
375 static __inline ALvoid
LateReverb(ALverbState
*State
, const ALfloat
*RESTRICT in
, ALfloat
*RESTRICT out
)
379 // Obtain the decayed results of the cyclical delay lines, and add the
380 // corresponding input channels. Then pass the results through the
383 // This is where the feed-back cycles from line 0 to 1 to 3 to 2 and back
385 d
[0] = LateLowPassInOut(State
, 2, in
[2] + LateDelayLineOut(State
, 2));
386 d
[1] = LateLowPassInOut(State
, 0, in
[0] + LateDelayLineOut(State
, 0));
387 d
[2] = LateLowPassInOut(State
, 3, in
[3] + LateDelayLineOut(State
, 3));
388 d
[3] = LateLowPassInOut(State
, 1, in
[1] + LateDelayLineOut(State
, 1));
390 // To help increase diffusion, run each line through an all-pass filter.
391 // When there is no diffusion, the shortest all-pass filter will feed the
392 // shortest delay line.
393 d
[0] = LateAllPassInOut(State
, 0, d
[0]);
394 d
[1] = LateAllPassInOut(State
, 1, d
[1]);
395 d
[2] = LateAllPassInOut(State
, 2, d
[2]);
396 d
[3] = LateAllPassInOut(State
, 3, d
[3]);
398 /* Late reverb is done with a modified feed-back delay network (FDN)
399 * topology. Four input lines are each fed through their own all-pass
400 * filter and then into the mixing matrix. The four outputs of the
401 * mixing matrix are then cycled back to the inputs. Each output feeds
402 * a different input to form a circlular feed cycle.
404 * The mixing matrix used is a 4D skew-symmetric rotation matrix derived
405 * using a single unitary rotational parameter:
407 * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
412 * The rotation is constructed from the effect's diffusion parameter,
413 * yielding: 1 = x^2 + 3 y^2; where a, b, and c are the coefficient y
414 * with differing signs, and d is the coefficient x. The matrix is thus:
416 * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
417 * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
418 * [ y, -y, x, y ] x = cos(t)
419 * [ -y, -y, -y, x ] y = sin(t) / n
421 * To reduce the number of multiplies, the x coefficient is applied with
422 * the cyclical delay line coefficients. Thus only the y coefficient is
423 * applied when mixing, and is modified to be: y / x.
425 f
[0] = d
[0] + (State
->Late
.MixCoeff
* ( d
[1] + -d
[2] + d
[3]));
426 f
[1] = d
[1] + (State
->Late
.MixCoeff
* (-d
[0] + d
[2] + d
[3]));
427 f
[2] = d
[2] + (State
->Late
.MixCoeff
* ( d
[0] + -d
[1] + d
[3]));
428 f
[3] = d
[3] + (State
->Late
.MixCoeff
* (-d
[0] + -d
[1] + -d
[2] ));
430 // Output the results of the matrix for all four channels, attenuated by
431 // the late reverb gain (which is attenuated by the 'x' mix coefficient).
432 out
[0] = State
->Late
.Gain
* f
[0];
433 out
[1] = State
->Late
.Gain
* f
[1];
434 out
[2] = State
->Late
.Gain
* f
[2];
435 out
[3] = State
->Late
.Gain
* f
[3];
437 // Re-feed the cyclical delay lines.
438 DelayLineIn(&State
->Late
.Delay
[0], State
->Offset
, f
[0]);
439 DelayLineIn(&State
->Late
.Delay
[1], State
->Offset
, f
[1]);
440 DelayLineIn(&State
->Late
.Delay
[2], State
->Offset
, f
[2]);
441 DelayLineIn(&State
->Late
.Delay
[3], State
->Offset
, f
[3]);
444 // Given an input sample, this function mixes echo into the four-channel late
446 static __inline ALvoid
EAXEcho(ALverbState
*State
, ALfloat in
, ALfloat
*RESTRICT late
)
450 // Get the latest attenuated echo sample for output.
451 feed
= AttenuatedDelayLineOut(&State
->Echo
.Delay
,
452 State
->Offset
- State
->Echo
.Offset
,
455 // Mix the output into the late reverb channels.
456 out
= State
->Echo
.MixCoeff
[0] * feed
;
457 late
[0] = (State
->Echo
.MixCoeff
[1] * late
[0]) + out
;
458 late
[1] = (State
->Echo
.MixCoeff
[1] * late
[1]) + out
;
459 late
[2] = (State
->Echo
.MixCoeff
[1] * late
[2]) + out
;
460 late
[3] = (State
->Echo
.MixCoeff
[1] * late
[3]) + out
;
462 // Mix the energy-attenuated input with the output and pass it through
463 // the echo low-pass filter.
464 feed
+= State
->Echo
.DensityGain
* in
;
465 feed
= lerp(feed
, State
->Echo
.LpSample
, State
->Echo
.LpCoeff
);
466 State
->Echo
.LpSample
= feed
;
468 // Then the echo all-pass filter.
469 feed
= AllpassInOut(&State
->Echo
.ApDelay
,
470 State
->Offset
- State
->Echo
.ApOffset
,
471 State
->Offset
, feed
, State
->Echo
.ApFeedCoeff
,
472 State
->Echo
.ApCoeff
);
474 // Feed the delay with the mixed and filtered sample.
475 DelayLineIn(&State
->Echo
.Delay
, State
->Offset
, feed
);
478 // Perform the non-EAX reverb pass on a given input sample, resulting in
479 // four-channel output.
480 static __inline ALvoid
VerbPass(ALverbState
*State
, ALfloat in
, ALfloat
*RESTRICT out
)
482 ALfloat feed
, late
[4], taps
[4];
484 // Low-pass filter the incoming sample.
485 in
= lpFilter2P(&State
->LpFilter
, 0, in
);
487 // Feed the initial delay line.
488 DelayLineIn(&State
->Delay
, State
->Offset
, in
);
490 // Calculate the early reflection from the first delay tap.
491 in
= DelayLineOut(&State
->Delay
, State
->Offset
- State
->DelayTap
[0]);
492 EarlyReflection(State
, in
, out
);
494 // Feed the decorrelator from the energy-attenuated output of the second
496 in
= DelayLineOut(&State
->Delay
, State
->Offset
- State
->DelayTap
[1]);
497 feed
= in
* State
->Late
.DensityGain
;
498 DelayLineIn(&State
->Decorrelator
, State
->Offset
, feed
);
500 // Calculate the late reverb from the decorrelator taps.
502 taps
[1] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[0]);
503 taps
[2] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[1]);
504 taps
[3] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[2]);
505 LateReverb(State
, taps
, late
);
507 // Mix early reflections and late reverb.
513 // Step all delays forward one sample.
517 // Perform the EAX reverb pass on a given input sample, resulting in four-
519 static __inline ALvoid
EAXVerbPass(ALverbState
*State
, ALfloat in
, ALfloat
*RESTRICT early
, ALfloat
*RESTRICT late
)
521 ALfloat feed
, taps
[4];
523 // Low-pass filter the incoming sample.
524 in
= lpFilter2P(&State
->LpFilter
, 0, in
);
526 // Perform any modulation on the input.
527 in
= EAXModulation(State
, in
);
529 // Feed the initial delay line.
530 DelayLineIn(&State
->Delay
, State
->Offset
, in
);
532 // Calculate the early reflection from the first delay tap.
533 in
= DelayLineOut(&State
->Delay
, State
->Offset
- State
->DelayTap
[0]);
534 EarlyReflection(State
, in
, early
);
536 // Feed the decorrelator from the energy-attenuated output of the second
538 in
= DelayLineOut(&State
->Delay
, State
->Offset
- State
->DelayTap
[1]);
539 feed
= in
* State
->Late
.DensityGain
;
540 DelayLineIn(&State
->Decorrelator
, State
->Offset
, feed
);
542 // Calculate the late reverb from the decorrelator taps.
544 taps
[1] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[0]);
545 taps
[2] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[1]);
546 taps
[3] = DelayLineOut(&State
->Decorrelator
, State
->Offset
- State
->DecoTap
[2]);
547 LateReverb(State
, taps
, late
);
549 // Calculate and mix in any echo.
550 EAXEcho(State
, in
, late
);
552 // Step all delays forward one sample.
556 // This processes the reverb state, given the input samples and an output
558 static ALvoid
VerbProcess(ALeffectState
*effect
, ALuint SamplesToDo
, const ALfloat
*RESTRICT SamplesIn
, ALfloat (*RESTRICT SamplesOut
)[BUFFERSIZE
])
560 ALverbState
*State
= (ALverbState
*)effect
;
561 ALfloat (*RESTRICT out
)[4] = State
->ReverbSamples
;
564 /* Process reverb for these samples. */
565 for(index
= 0;index
< SamplesToDo
;index
++)
566 VerbPass(State
, SamplesIn
[index
], out
[index
]);
568 for(c
= 0;c
< MaxChannels
;c
++)
570 ALfloat gain
= State
->Gain
[c
];
573 for(index
= 0;index
< SamplesToDo
;index
++)
574 SamplesOut
[c
][index
] += gain
* out
[index
][c
&3];
579 // This processes the EAX reverb state, given the input samples and an output
581 static ALvoid
EAXVerbProcess(ALeffectState
*effect
, ALuint SamplesToDo
, const ALfloat
*RESTRICT SamplesIn
, ALfloat (*RESTRICT SamplesOut
)[BUFFERSIZE
])
583 ALverbState
*State
= (ALverbState
*)effect
;
584 ALfloat (*RESTRICT early
)[4] = State
->EarlySamples
;
585 ALfloat (*RESTRICT late
)[4] = State
->ReverbSamples
;
588 /* Process reverb for these samples. */
589 for(index
= 0;index
< SamplesToDo
;index
++)
590 EAXVerbPass(State
, SamplesIn
[index
], early
[index
], late
[index
]);
592 for(c
= 0;c
< MaxChannels
;c
++)
594 ALfloat earlyGain
= State
->Early
.PanGain
[c
];
595 ALfloat lateGain
= State
->Late
.PanGain
[c
];
597 if(earlyGain
> 0.00001f
)
599 for(index
= 0;index
< SamplesToDo
;index
++)
600 SamplesOut
[c
][index
] += earlyGain
*early
[index
][c
&3];
602 if(lateGain
> 0.00001f
)
604 for(index
= 0;index
< SamplesToDo
;index
++)
605 SamplesOut
[c
][index
] += lateGain
*late
[index
][c
&3];
611 // Given the allocated sample buffer, this function updates each delay line
613 static __inline ALvoid
RealizeLineOffset(ALfloat
*sampleBuffer
, DelayLine
*Delay
)
615 Delay
->Line
= &sampleBuffer
[(ALintptrEXT
)Delay
->Line
];
618 // Calculate the length of a delay line and store its mask and offset.
619 static ALuint
CalcLineLength(ALfloat length
, ALintptrEXT offset
, ALuint frequency
, DelayLine
*Delay
)
623 // All line lengths are powers of 2, calculated from their lengths, with
624 // an additional sample in case of rounding errors.
625 samples
= NextPowerOf2(fastf2u(length
* frequency
) + 1);
626 // All lines share a single sample buffer.
627 Delay
->Mask
= samples
- 1;
628 Delay
->Line
= (ALfloat
*)offset
;
629 // Return the sample count for accumulation.
633 /* Calculates the delay line metrics and allocates the shared sample buffer
634 * for all lines given the sample rate (frequency). If an allocation failure
635 * occurs, it returns AL_FALSE.
637 static ALboolean
AllocLines(ALuint frequency
, ALverbState
*State
)
639 ALuint totalSamples
, index
;
641 ALfloat
*newBuffer
= NULL
;
643 // All delay line lengths are calculated to accomodate the full range of
644 // lengths given their respective paramters.
647 /* The modulator's line length is calculated from the maximum modulation
648 * time and depth coefficient, and halfed for the low-to-high frequency
649 * swing. An additional sample is added to keep it stable when there is no
652 length
= (AL_EAXREVERB_MAX_MODULATION_TIME
*MODULATION_DEPTH_COEFF
/2.0f
) +
654 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
,
657 // The initial delay is the sum of the reflections and late reverb
659 length
= AL_EAXREVERB_MAX_REFLECTIONS_DELAY
+
660 AL_EAXREVERB_MAX_LATE_REVERB_DELAY
;
661 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
,
664 // The early reflection lines.
665 for(index
= 0;index
< 4;index
++)
666 totalSamples
+= CalcLineLength(EARLY_LINE_LENGTH
[index
], totalSamples
,
667 frequency
, &State
->Early
.Delay
[index
]);
669 // The decorrelator line is calculated from the lowest reverb density (a
670 // parameter value of 1).
671 length
= (DECO_FRACTION
* DECO_MULTIPLIER
* DECO_MULTIPLIER
) *
672 LATE_LINE_LENGTH
[0] * (1.0f
+ LATE_LINE_MULTIPLIER
);
673 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
,
674 &State
->Decorrelator
);
676 // The late all-pass lines.
677 for(index
= 0;index
< 4;index
++)
678 totalSamples
+= CalcLineLength(ALLPASS_LINE_LENGTH
[index
], totalSamples
,
679 frequency
, &State
->Late
.ApDelay
[index
]);
681 // The late delay lines are calculated from the lowest reverb density.
682 for(index
= 0;index
< 4;index
++)
684 length
= LATE_LINE_LENGTH
[index
] * (1.0f
+ LATE_LINE_MULTIPLIER
);
685 totalSamples
+= CalcLineLength(length
, totalSamples
, frequency
,
686 &State
->Late
.Delay
[index
]);
689 // The echo all-pass and delay lines.
690 totalSamples
+= CalcLineLength(ECHO_ALLPASS_LENGTH
, totalSamples
,
691 frequency
, &State
->Echo
.ApDelay
);
692 totalSamples
+= CalcLineLength(AL_EAXREVERB_MAX_ECHO_TIME
, totalSamples
,
693 frequency
, &State
->Echo
.Delay
);
695 if(totalSamples
!= State
->TotalSamples
)
697 TRACE("New reverb buffer length: %u samples (%f sec)\n", totalSamples
, totalSamples
/(float)frequency
);
698 newBuffer
= realloc(State
->SampleBuffer
, sizeof(ALfloat
) * totalSamples
);
699 if(newBuffer
== NULL
)
701 State
->SampleBuffer
= newBuffer
;
702 State
->TotalSamples
= totalSamples
;
705 // Update all delays to reflect the new sample buffer.
706 RealizeLineOffset(State
->SampleBuffer
, &State
->Delay
);
707 RealizeLineOffset(State
->SampleBuffer
, &State
->Decorrelator
);
708 for(index
= 0;index
< 4;index
++)
710 RealizeLineOffset(State
->SampleBuffer
, &State
->Early
.Delay
[index
]);
711 RealizeLineOffset(State
->SampleBuffer
, &State
->Late
.ApDelay
[index
]);
712 RealizeLineOffset(State
->SampleBuffer
, &State
->Late
.Delay
[index
]);
714 RealizeLineOffset(State
->SampleBuffer
, &State
->Mod
.Delay
);
715 RealizeLineOffset(State
->SampleBuffer
, &State
->Echo
.ApDelay
);
716 RealizeLineOffset(State
->SampleBuffer
, &State
->Echo
.Delay
);
718 // Clear the sample buffer.
719 for(index
= 0;index
< State
->TotalSamples
;index
++)
720 State
->SampleBuffer
[index
] = 0.0f
;
725 // This updates the device-dependant EAX reverb state. This is called on
726 // initialization and any time the device parameters (eg. playback frequency,
727 // format) have been changed.
728 static ALboolean
ReverbDeviceUpdate(ALeffectState
*effect
, ALCdevice
*Device
)
730 ALverbState
*State
= (ALverbState
*)effect
;
731 ALuint frequency
= Device
->Frequency
, index
;
733 // Allocate the delay lines.
734 if(!AllocLines(frequency
, State
))
737 // Calculate the modulation filter coefficient. Notice that the exponent
738 // is calculated given the current sample rate. This ensures that the
739 // resulting filter response over time is consistent across all sample
741 State
->Mod
.Coeff
= powf(MODULATION_FILTER_COEFF
,
742 MODULATION_FILTER_CONST
/ frequency
);
744 // The early reflection and late all-pass filter line lengths are static,
745 // so their offsets only need to be calculated once.
746 for(index
= 0;index
< 4;index
++)
748 State
->Early
.Offset
[index
] = fastf2u(EARLY_LINE_LENGTH
[index
] *
750 State
->Late
.ApOffset
[index
] = fastf2u(ALLPASS_LINE_LENGTH
[index
] *
754 // The echo all-pass filter line length is static, so its offset only
755 // needs to be calculated once.
756 State
->Echo
.ApOffset
= fastf2u(ECHO_ALLPASS_LENGTH
* frequency
);
761 // Calculate a decay coefficient given the length of each cycle and the time
762 // until the decay reaches -60 dB.
763 static __inline ALfloat
CalcDecayCoeff(ALfloat length
, ALfloat decayTime
)
765 return powf(0.001f
/*-60 dB*/, length
/decayTime
);
768 // Calculate a decay length from a coefficient and the time until the decay
770 static __inline ALfloat
CalcDecayLength(ALfloat coeff
, ALfloat decayTime
)
772 return log10f(coeff
) * decayTime
/ log10f(0.001f
)/*-60 dB*/;
775 // Calculate the high frequency parameter for the I3DL2 coefficient
777 static __inline ALfloat
CalcI3DL2HFreq(ALfloat hfRef
, ALuint frequency
)
779 return cosf(F_PI
*2.0f
* hfRef
/ frequency
);
782 // Calculate an attenuation to be applied to the input of any echo models to
783 // compensate for modal density and decay time.
784 static __inline ALfloat
CalcDensityGain(ALfloat a
)
786 /* The energy of a signal can be obtained by finding the area under the
787 * squared signal. This takes the form of Sum(x_n^2), where x is the
788 * amplitude for the sample n.
790 * Decaying feedback matches exponential decay of the form Sum(a^n),
791 * where a is the attenuation coefficient, and n is the sample. The area
792 * under this decay curve can be calculated as: 1 / (1 - a).
794 * Modifying the above equation to find the squared area under the curve
795 * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
796 * calculated by inverting the square root of this approximation,
797 * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
799 return sqrtf(1.0f
- (a
* a
));
802 // Calculate the mixing matrix coefficients given a diffusion factor.
803 static __inline ALvoid
CalcMatrixCoeffs(ALfloat diffusion
, ALfloat
*x
, ALfloat
*y
)
807 // The matrix is of order 4, so n is sqrt (4 - 1).
809 t
= diffusion
* atanf(n
);
811 // Calculate the first mixing matrix coefficient.
813 // Calculate the second mixing matrix coefficient.
817 // Calculate the limited HF ratio for use with the late reverb low-pass
819 static ALfloat
CalcLimitedHfRatio(ALfloat hfRatio
, ALfloat airAbsorptionGainHF
, ALfloat decayTime
)
823 /* Find the attenuation due to air absorption in dB (converting delay
824 * time to meters using the speed of sound). Then reversing the decay
825 * equation, solve for HF ratio. The delay length is cancelled out of
826 * the equation, so it can be calculated once for all lines.
828 limitRatio
= 1.0f
/ (CalcDecayLength(airAbsorptionGainHF
, decayTime
) *
829 SPEEDOFSOUNDMETRESPERSEC
);
830 /* Using the limit calculated above, apply the upper bound to the HF
831 * ratio. Also need to limit the result to a minimum of 0.1, just like the
832 * HF ratio parameter. */
833 return clampf(limitRatio
, 0.1f
, hfRatio
);
836 // Calculate the coefficient for a HF (and eventually LF) decay damping
838 static __inline ALfloat
CalcDampingCoeff(ALfloat hfRatio
, ALfloat length
, ALfloat decayTime
, ALfloat decayCoeff
, ALfloat cw
)
842 // Eventually this should boost the high frequencies when the ratio
847 // Calculate the low-pass coefficient by dividing the HF decay
848 // coefficient by the full decay coefficient.
849 g
= CalcDecayCoeff(length
, decayTime
* hfRatio
) / decayCoeff
;
851 // Damping is done with a 1-pole filter, so g needs to be squared.
853 coeff
= lpCoeffCalc(g
, cw
);
855 // Very low decay times will produce minimal output, so apply an
856 // upper bound to the coefficient.
857 coeff
= minf(coeff
, 0.98f
);
862 // Update the EAX modulation index, range, and depth. Keep in mind that this
863 // kind of vibrato is additive and not multiplicative as one may expect. The
864 // downswing will sound stronger than the upswing.
865 static ALvoid
UpdateModulator(ALfloat modTime
, ALfloat modDepth
, ALuint frequency
, ALverbState
*State
)
869 /* Modulation is calculated in two parts.
871 * The modulation time effects the sinus applied to the change in
872 * frequency. An index out of the current time range (both in samples)
873 * is incremented each sample. The range is bound to a reasonable
874 * minimum (1 sample) and when the timing changes, the index is rescaled
875 * to the new range (to keep the sinus consistent).
877 range
= maxu(fastf2u(modTime
*frequency
), 1);
878 State
->Mod
.Index
= (ALuint
)(State
->Mod
.Index
* (ALuint64
)range
/
880 State
->Mod
.Range
= range
;
882 /* The modulation depth effects the amount of frequency change over the
883 * range of the sinus. It needs to be scaled by the modulation time so
884 * that a given depth produces a consistent change in frequency over all
885 * ranges of time. Since the depth is applied to a sinus value, it needs
886 * to be halfed once for the sinus range and again for the sinus swing
887 * in time (half of it is spent decreasing the frequency, half is spent
890 State
->Mod
.Depth
= modDepth
* MODULATION_DEPTH_COEFF
* modTime
/ 2.0f
/
894 // Update the offsets for the initial effect delay line.
895 static ALvoid
UpdateDelayLine(ALfloat earlyDelay
, ALfloat lateDelay
, ALuint frequency
, ALverbState
*State
)
897 // Calculate the initial delay taps.
898 State
->DelayTap
[0] = fastf2u(earlyDelay
* frequency
);
899 State
->DelayTap
[1] = fastf2u((earlyDelay
+ lateDelay
) * frequency
);
902 // Update the early reflections gain and line coefficients.
903 static ALvoid
UpdateEarlyLines(ALfloat reverbGain
, ALfloat earlyGain
, ALfloat lateDelay
, ALverbState
*State
)
907 // Calculate the early reflections gain (from the master effect gain, and
908 // reflections gain parameters) with a constant attenuation of 0.5.
909 State
->Early
.Gain
= 0.5f
* reverbGain
* earlyGain
;
911 // Calculate the gain (coefficient) for each early delay line using the
912 // late delay time. This expands the early reflections to the start of
914 for(index
= 0;index
< 4;index
++)
915 State
->Early
.Coeff
[index
] = CalcDecayCoeff(EARLY_LINE_LENGTH
[index
],
919 // Update the offsets for the decorrelator line.
920 static ALvoid
UpdateDecorrelator(ALfloat density
, ALuint frequency
, ALverbState
*State
)
925 /* The late reverb inputs are decorrelated to smooth the reverb tail and
926 * reduce harsh echos. The first tap occurs immediately, while the
927 * remaining taps are delayed by multiples of a fraction of the smallest
928 * cyclical delay time.
930 * offset[index] = (FRACTION (MULTIPLIER^index)) smallest_delay
932 for(index
= 0;index
< 3;index
++)
934 length
= (DECO_FRACTION
* powf(DECO_MULTIPLIER
, (ALfloat
)index
)) *
935 LATE_LINE_LENGTH
[0] * (1.0f
+ (density
* LATE_LINE_MULTIPLIER
));
936 State
->DecoTap
[index
] = fastf2u(length
* frequency
);
940 // Update the late reverb gains, line lengths, and line coefficients.
941 static ALvoid
UpdateLateLines(ALfloat reverbGain
, ALfloat lateGain
, ALfloat xMix
, ALfloat density
, ALfloat decayTime
, ALfloat diffusion
, ALfloat hfRatio
, ALfloat cw
, ALuint frequency
, ALverbState
*State
)
946 /* Calculate the late reverb gain (from the master effect gain, and late
947 * reverb gain parameters). Since the output is tapped prior to the
948 * application of the next delay line coefficients, this gain needs to be
949 * attenuated by the 'x' mixing matrix coefficient as well.
951 State
->Late
.Gain
= reverbGain
* lateGain
* xMix
;
953 /* To compensate for changes in modal density and decay time of the late
954 * reverb signal, the input is attenuated based on the maximal energy of
955 * the outgoing signal. This approximation is used to keep the apparent
956 * energy of the signal equal for all ranges of density and decay time.
958 * The average length of the cyclcical delay lines is used to calculate
959 * the attenuation coefficient.
961 length
= (LATE_LINE_LENGTH
[0] + LATE_LINE_LENGTH
[1] +
962 LATE_LINE_LENGTH
[2] + LATE_LINE_LENGTH
[3]) / 4.0f
;
963 length
*= 1.0f
+ (density
* LATE_LINE_MULTIPLIER
);
964 State
->Late
.DensityGain
= CalcDensityGain(CalcDecayCoeff(length
,
967 // Calculate the all-pass feed-back and feed-forward coefficient.
968 State
->Late
.ApFeedCoeff
= 0.5f
* powf(diffusion
, 2.0f
);
970 for(index
= 0;index
< 4;index
++)
972 // Calculate the gain (coefficient) for each all-pass line.
973 State
->Late
.ApCoeff
[index
] = CalcDecayCoeff(ALLPASS_LINE_LENGTH
[index
],
976 // Calculate the length (in seconds) of each cyclical delay line.
977 length
= LATE_LINE_LENGTH
[index
] * (1.0f
+ (density
*
978 LATE_LINE_MULTIPLIER
));
980 // Calculate the delay offset for each cyclical delay line.
981 State
->Late
.Offset
[index
] = fastf2u(length
* frequency
);
983 // Calculate the gain (coefficient) for each cyclical line.
984 State
->Late
.Coeff
[index
] = CalcDecayCoeff(length
, decayTime
);
986 // Calculate the damping coefficient for each low-pass filter.
987 State
->Late
.LpCoeff
[index
] =
988 CalcDampingCoeff(hfRatio
, length
, decayTime
,
989 State
->Late
.Coeff
[index
], cw
);
991 // Attenuate the cyclical line coefficients by the mixing coefficient
993 State
->Late
.Coeff
[index
] *= xMix
;
997 // Update the echo gain, line offset, line coefficients, and mixing
999 static ALvoid
UpdateEchoLine(ALfloat reverbGain
, ALfloat lateGain
, ALfloat echoTime
, ALfloat decayTime
, ALfloat diffusion
, ALfloat echoDepth
, ALfloat hfRatio
, ALfloat cw
, ALuint frequency
, ALverbState
*State
)
1001 // Update the offset and coefficient for the echo delay line.
1002 State
->Echo
.Offset
= fastf2u(echoTime
* frequency
);
1004 // Calculate the decay coefficient for the echo line.
1005 State
->Echo
.Coeff
= CalcDecayCoeff(echoTime
, decayTime
);
1007 // Calculate the energy-based attenuation coefficient for the echo delay
1009 State
->Echo
.DensityGain
= CalcDensityGain(State
->Echo
.Coeff
);
1011 // Calculate the echo all-pass feed coefficient.
1012 State
->Echo
.ApFeedCoeff
= 0.5f
* powf(diffusion
, 2.0f
);
1014 // Calculate the echo all-pass attenuation coefficient.
1015 State
->Echo
.ApCoeff
= CalcDecayCoeff(ECHO_ALLPASS_LENGTH
, decayTime
);
1017 // Calculate the damping coefficient for each low-pass filter.
1018 State
->Echo
.LpCoeff
= CalcDampingCoeff(hfRatio
, echoTime
, decayTime
,
1019 State
->Echo
.Coeff
, cw
);
1021 /* Calculate the echo mixing coefficients. The first is applied to the
1022 * echo itself. The second is used to attenuate the late reverb when
1023 * echo depth is high and diffusion is low, so the echo is slightly
1024 * stronger than the decorrelated echos in the reverb tail.
1026 State
->Echo
.MixCoeff
[0] = reverbGain
* lateGain
* echoDepth
;
1027 State
->Echo
.MixCoeff
[1] = 1.0f
- (echoDepth
* 0.5f
* (1.0f
- diffusion
));
1030 // Update the early and late 3D panning gains.
1031 static ALvoid
Update3DPanning(const ALCdevice
*Device
, const ALfloat
*ReflectionsPan
, const ALfloat
*LateReverbPan
, ALfloat Gain
, ALverbState
*State
)
1033 ALfloat earlyPan
[3] = { ReflectionsPan
[0], ReflectionsPan
[1],
1034 ReflectionsPan
[2] };
1035 ALfloat latePan
[3] = { LateReverbPan
[0], LateReverbPan
[1],
1037 ALfloat ambientGain
;
1042 Gain
*= ReverbBoost
;
1044 /* Attenuate reverb according to its coverage (dirGain=0 will give
1045 * Gain*ambientGain, and dirGain=1 will give Gain). */
1046 ambientGain
= minf(sqrtf(2.0f
/Device
->NumChan
), 1.0f
);
1048 length
= earlyPan
[0]*earlyPan
[0] + earlyPan
[1]*earlyPan
[1] + earlyPan
[2]*earlyPan
[2];
1051 length
= 1.0f
/ sqrtf(length
);
1052 earlyPan
[0] *= length
;
1053 earlyPan
[1] *= length
;
1054 earlyPan
[2] *= length
;
1056 length
= latePan
[0]*latePan
[0] + latePan
[1]*latePan
[1] + latePan
[2]*latePan
[2];
1059 length
= 1.0f
/ sqrtf(length
);
1060 latePan
[0] *= length
;
1061 latePan
[1] *= length
;
1062 latePan
[2] *= length
;
1065 dirGain
= sqrtf(earlyPan
[0]*earlyPan
[0] + earlyPan
[2]*earlyPan
[2]);
1066 for(index
= 0;index
< MaxChannels
;index
++)
1067 State
->Early
.PanGain
[index
] = 0.0f
;
1068 ComputeAngleGains(Device
, atan2f(earlyPan
[0], earlyPan
[2]), (1.0f
-dirGain
)*F_PI
,
1069 lerp(ambientGain
, 1.0f
, dirGain
) * Gain
, State
->Early
.PanGain
);
1071 dirGain
= sqrtf(latePan
[0]*latePan
[0] + latePan
[2]*latePan
[2]);
1072 for(index
= 0;index
< MaxChannels
;index
++)
1073 State
->Late
.PanGain
[index
] = 0.0f
;
1074 ComputeAngleGains(Device
, atan2f(latePan
[0], latePan
[2]), (1.0f
-dirGain
)*F_PI
,
1075 lerp(ambientGain
, 1.0f
, dirGain
) * Gain
, State
->Late
.PanGain
);
1078 // This updates the EAX reverb state. This is called any time the EAX reverb
1079 // effect is loaded into a slot.
1080 static ALvoid
ReverbUpdate(ALeffectState
*effect
, ALCdevice
*Device
, const ALeffectslot
*Slot
)
1082 ALverbState
*State
= (ALverbState
*)effect
;
1083 ALuint frequency
= Device
->Frequency
;
1084 ALboolean isEAX
= AL_FALSE
;
1085 ALfloat cw
, x
, y
, hfRatio
;
1087 if(Slot
->effect
.type
== AL_EFFECT_EAXREVERB
&& !EmulateEAXReverb
)
1089 State
->state
.Process
= EAXVerbProcess
;
1092 else if(Slot
->effect
.type
== AL_EFFECT_REVERB
|| EmulateEAXReverb
)
1094 State
->state
.Process
= VerbProcess
;
1098 // Calculate the master low-pass filter (from the master effect HF gain).
1099 if(isEAX
) cw
= CalcI3DL2HFreq(Slot
->effect
.Reverb
.HFReference
, frequency
);
1100 else cw
= CalcI3DL2HFreq(LOWPASSFREQREF
, frequency
);
1101 // This is done with 2 chained 1-pole filters, so no need to square g.
1102 State
->LpFilter
.coeff
= lpCoeffCalc(Slot
->effect
.Reverb
.GainHF
, cw
);
1106 // Update the modulator line.
1107 UpdateModulator(Slot
->effect
.Reverb
.ModulationTime
,
1108 Slot
->effect
.Reverb
.ModulationDepth
,
1112 // Update the initial effect delay.
1113 UpdateDelayLine(Slot
->effect
.Reverb
.ReflectionsDelay
,
1114 Slot
->effect
.Reverb
.LateReverbDelay
,
1117 // Update the early lines.
1118 UpdateEarlyLines(Slot
->effect
.Reverb
.Gain
,
1119 Slot
->effect
.Reverb
.ReflectionsGain
,
1120 Slot
->effect
.Reverb
.LateReverbDelay
, State
);
1122 // Update the decorrelator.
1123 UpdateDecorrelator(Slot
->effect
.Reverb
.Density
, frequency
, State
);
1125 // Get the mixing matrix coefficients (x and y).
1126 CalcMatrixCoeffs(Slot
->effect
.Reverb
.Diffusion
, &x
, &y
);
1127 // Then divide x into y to simplify the matrix calculation.
1128 State
->Late
.MixCoeff
= y
/ x
;
1130 // If the HF limit parameter is flagged, calculate an appropriate limit
1131 // based on the air absorption parameter.
1132 hfRatio
= Slot
->effect
.Reverb
.DecayHFRatio
;
1133 if(Slot
->effect
.Reverb
.DecayHFLimit
&&
1134 Slot
->effect
.Reverb
.AirAbsorptionGainHF
< 1.0f
)
1135 hfRatio
= CalcLimitedHfRatio(hfRatio
,
1136 Slot
->effect
.Reverb
.AirAbsorptionGainHF
,
1137 Slot
->effect
.Reverb
.DecayTime
);
1139 // Update the late lines.
1140 UpdateLateLines(Slot
->effect
.Reverb
.Gain
, Slot
->effect
.Reverb
.LateReverbGain
,
1141 x
, Slot
->effect
.Reverb
.Density
, Slot
->effect
.Reverb
.DecayTime
,
1142 Slot
->effect
.Reverb
.Diffusion
, hfRatio
, cw
, frequency
, State
);
1146 // Update the echo line.
1147 UpdateEchoLine(Slot
->effect
.Reverb
.Gain
, Slot
->effect
.Reverb
.LateReverbGain
,
1148 Slot
->effect
.Reverb
.EchoTime
, Slot
->effect
.Reverb
.DecayTime
,
1149 Slot
->effect
.Reverb
.Diffusion
, Slot
->effect
.Reverb
.EchoDepth
,
1150 hfRatio
, cw
, frequency
, State
);
1152 // Update early and late 3D panning.
1153 Update3DPanning(Device
, Slot
->effect
.Reverb
.ReflectionsPan
,
1154 Slot
->effect
.Reverb
.LateReverbPan
, Slot
->Gain
, State
);
1158 ALfloat gain
= Slot
->Gain
;
1161 /* Update channel gains */
1162 gain
*= sqrtf(2.0f
/Device
->NumChan
) * ReverbBoost
;
1163 for(index
= 0;index
< MaxChannels
;index
++)
1164 State
->Gain
[index
] = 0.0f
;
1165 for(index
= 0;index
< Device
->NumChan
;index
++)
1167 enum Channel chan
= Device
->Speaker2Chan
[index
];
1168 State
->Gain
[chan
] = gain
;
1173 // This destroys the reverb state. It should be called only when the effect
1174 // slot has a different (or no) effect loaded over the reverb effect.
1175 static ALvoid
ReverbDestroy(ALeffectState
*effect
)
1177 ALverbState
*State
= (ALverbState
*)effect
;
1180 free(State
->SampleBuffer
);
1181 State
->SampleBuffer
= NULL
;
1186 // This creates the reverb state. It should be called only when the reverb
1187 // effect is loaded into a slot that doesn't already have a reverb effect.
1188 ALeffectState
*ReverbCreate(void)
1190 ALverbState
*State
= NULL
;
1193 State
= malloc(sizeof(ALverbState
));
1197 State
->state
.Destroy
= ReverbDestroy
;
1198 State
->state
.DeviceUpdate
= ReverbDeviceUpdate
;
1199 State
->state
.Update
= ReverbUpdate
;
1200 State
->state
.Process
= VerbProcess
;
1202 State
->TotalSamples
= 0;
1203 State
->SampleBuffer
= NULL
;
1205 State
->LpFilter
.coeff
= 0.0f
;
1206 State
->LpFilter
.history
[0] = 0.0f
;
1207 State
->LpFilter
.history
[1] = 0.0f
;
1209 State
->Mod
.Delay
.Mask
= 0;
1210 State
->Mod
.Delay
.Line
= NULL
;
1211 State
->Mod
.Index
= 0;
1212 State
->Mod
.Range
= 1;
1213 State
->Mod
.Depth
= 0.0f
;
1214 State
->Mod
.Coeff
= 0.0f
;
1215 State
->Mod
.Filter
= 0.0f
;
1217 State
->Delay
.Mask
= 0;
1218 State
->Delay
.Line
= NULL
;
1219 State
->DelayTap
[0] = 0;
1220 State
->DelayTap
[1] = 0;
1222 State
->Early
.Gain
= 0.0f
;
1223 for(index
= 0;index
< 4;index
++)
1225 State
->Early
.Coeff
[index
] = 0.0f
;
1226 State
->Early
.Delay
[index
].Mask
= 0;
1227 State
->Early
.Delay
[index
].Line
= NULL
;
1228 State
->Early
.Offset
[index
] = 0;
1231 State
->Decorrelator
.Mask
= 0;
1232 State
->Decorrelator
.Line
= NULL
;
1233 State
->DecoTap
[0] = 0;
1234 State
->DecoTap
[1] = 0;
1235 State
->DecoTap
[2] = 0;
1237 State
->Late
.Gain
= 0.0f
;
1238 State
->Late
.DensityGain
= 0.0f
;
1239 State
->Late
.ApFeedCoeff
= 0.0f
;
1240 State
->Late
.MixCoeff
= 0.0f
;
1241 for(index
= 0;index
< 4;index
++)
1243 State
->Late
.ApCoeff
[index
] = 0.0f
;
1244 State
->Late
.ApDelay
[index
].Mask
= 0;
1245 State
->Late
.ApDelay
[index
].Line
= NULL
;
1246 State
->Late
.ApOffset
[index
] = 0;
1248 State
->Late
.Coeff
[index
] = 0.0f
;
1249 State
->Late
.Delay
[index
].Mask
= 0;
1250 State
->Late
.Delay
[index
].Line
= NULL
;
1251 State
->Late
.Offset
[index
] = 0;
1253 State
->Late
.LpCoeff
[index
] = 0.0f
;
1254 State
->Late
.LpSample
[index
] = 0.0f
;
1257 for(index
= 0;index
< MaxChannels
;index
++)
1259 State
->Early
.PanGain
[index
] = 0.0f
;
1260 State
->Late
.PanGain
[index
] = 0.0f
;
1263 State
->Echo
.DensityGain
= 0.0f
;
1264 State
->Echo
.Delay
.Mask
= 0;
1265 State
->Echo
.Delay
.Line
= NULL
;
1266 State
->Echo
.ApDelay
.Mask
= 0;
1267 State
->Echo
.ApDelay
.Line
= NULL
;
1268 State
->Echo
.Coeff
= 0.0f
;
1269 State
->Echo
.ApFeedCoeff
= 0.0f
;
1270 State
->Echo
.ApCoeff
= 0.0f
;
1271 State
->Echo
.Offset
= 0;
1272 State
->Echo
.ApOffset
= 0;
1273 State
->Echo
.LpCoeff
= 0.0f
;
1274 State
->Echo
.LpSample
= 0.0f
;
1275 State
->Echo
.MixCoeff
[0] = 0.0f
;
1276 State
->Echo
.MixCoeff
[1] = 0.0f
;
1280 State
->Gain
= State
->Late
.PanGain
;
1282 return &State
->state
;