Fixed compilation as a subdirectory with MinGW (#991)
[openal-soft.git] / utils / uhjdecoder.cpp
blob4340c7def52adfd1fda3e2ac9c7cce49d680d7f6
1 /*
2 * 2-channel UHJ Decoder
4 * Copyright (c) Chris Robinson <chris.kcat@gmail.com>
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "config.h"
27 #include <algorithm>
28 #include <array>
29 #include <cassert>
30 #include <cerrno>
31 #include <complex>
32 #include <cstddef>
33 #include <cstdio>
34 #include <cstring>
35 #include <memory>
36 #include <string>
37 #include <string_view>
38 #include <system_error>
39 #include <utility>
40 #include <vector>
42 #include "albit.h"
43 #include "almalloc.h"
44 #include "alnumbers.h"
45 #include "alspan.h"
46 #include "alstring.h"
47 #include "vector.h"
48 #include "opthelpers.h"
49 #include "phase_shifter.h"
51 #include "sndfile.h"
53 #include "win_main_utf8.h"
56 namespace {
58 struct FileDeleter {
59 void operator()(gsl::owner<FILE*> file) { fclose(file); }
61 using FilePtr = std::unique_ptr<FILE,FileDeleter>;
63 struct SndFileDeleter {
64 void operator()(SNDFILE *sndfile) { sf_close(sndfile); }
66 using SndFilePtr = std::unique_ptr<SNDFILE,SndFileDeleter>;
69 using ubyte = unsigned char;
70 using ushort = unsigned short;
71 using uint = unsigned int;
72 using complex_d = std::complex<double>;
74 using byte4 = std::array<std::byte,4>;
77 constexpr std::array<ubyte,16> SUBTYPE_BFORMAT_FLOAT{
78 0x03, 0x00, 0x00, 0x00, 0x21, 0x07, 0xd3, 0x11, 0x86, 0x44, 0xc8, 0xc1,
79 0xca, 0x00, 0x00, 0x00
82 void fwrite16le(ushort val, FILE *f)
84 std::array data{static_cast<ubyte>(val&0xff), static_cast<ubyte>((val>>8)&0xff)};
85 fwrite(data.data(), 1, data.size(), f);
88 void fwrite32le(uint val, FILE *f)
90 std::array data{static_cast<ubyte>(val&0xff), static_cast<ubyte>((val>>8)&0xff),
91 static_cast<ubyte>((val>>16)&0xff), static_cast<ubyte>((val>>24)&0xff)};
92 fwrite(data.data(), 1, data.size(), f);
95 byte4 f32AsLEBytes(const float &value)
97 byte4 ret{};
98 std::memcpy(ret.data(), &value, 4);
99 if constexpr(al::endian::native == al::endian::big)
101 std::swap(ret[0], ret[3]);
102 std::swap(ret[1], ret[2]);
104 return ret;
108 constexpr uint BufferLineSize{1024};
110 using FloatBufferLine = std::array<float,BufferLineSize>;
111 using FloatBufferSpan = al::span<float,BufferLineSize>;
114 struct UhjDecoder {
115 constexpr static std::size_t sFilterDelay{1024};
117 alignas(16) std::array<float,BufferLineSize+sFilterDelay> mS{};
118 alignas(16) std::array<float,BufferLineSize+sFilterDelay> mD{};
119 alignas(16) std::array<float,BufferLineSize+sFilterDelay> mT{};
120 alignas(16) std::array<float,BufferLineSize+sFilterDelay> mQ{};
122 /* History for the FIR filter. */
123 alignas(16) std::array<float,sFilterDelay-1> mDTHistory{};
124 alignas(16) std::array<float,sFilterDelay-1> mSHistory{};
126 alignas(16) std::array<float,BufferLineSize + sFilterDelay*2> mTemp{};
128 void decode(const al::span<const float> InSamples, const std::size_t InChannels,
129 const al::span<FloatBufferLine> OutSamples, const std::size_t SamplesToDo);
130 void decode2(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutSamples,
131 const std::size_t SamplesToDo);
134 const PhaseShifterT<UhjDecoder::sFilterDelay*2> PShift{};
137 /* Decoding UHJ is done as:
139 * S = Left + Right
140 * D = Left - Right
142 * W = 0.981532*S + 0.197484*j(0.828331*D + 0.767820*T)
143 * X = 0.418496*S - j(0.828331*D + 0.767820*T)
144 * Y = 0.795968*D - 0.676392*T + j(0.186633*S)
145 * Z = 1.023332*Q
147 * where j is a +90 degree phase shift. 3-channel UHJ excludes Q, while 2-
148 * channel excludes Q and T. The B-Format signal reconstructed from 2-channel
149 * UHJ should not be run through a normal B-Format decoder, as it needs
150 * different shelf filters.
152 * NOTE: Some sources specify
154 * S = (Left + Right)/2
155 * D = (Left - Right)/2
157 * However, this is incorrect. It's halving Left and Right even though they
158 * were already halved during encoding, causing S and D to be half what they
159 * initially were at the encoding stage. This division is not present in
160 * Gerzon's original paper for deriving Sigma (S) or Delta (D) from the L and R
161 * signals. As proof, taking Y for example:
163 * Y = 0.795968*D - 0.676392*T + j(0.186633*S)
165 * * Plug in the encoding parameters, using ? as a placeholder for whether S
166 * and D should receive an extra 0.5 factor
167 * Y = 0.795968*(j(-0.3420201*W + 0.5098604*X) + 0.6554516*Y)*? -
168 * 0.676392*(j(-0.1432*W + 0.6512*X) - 0.7071068*Y) +
169 * 0.186633*j(0.9396926*W + 0.1855740*X)*?
171 * * Move common factors in
172 * Y = (j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X) + 0.6554516*0.795968*?*Y) -
173 * (j(-0.1432*0.676392*W + 0.6512*0.676392*X) - 0.7071068*0.676392*Y) +
174 * j(0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X)
176 * * Clean up extraneous groupings
177 * Y = j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X) + 0.6554516*0.795968*?*Y -
178 * j(-0.1432*0.676392*W + 0.6512*0.676392*X) + 0.7071068*0.676392*Y +
179 * j*(0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X)
181 * * Move phase shifts together and combine them
182 * Y = j(-0.3420201*0.795968*?*W + 0.5098604*0.795968*?*X - -0.1432*0.676392*W -
183 * 0.6512*0.676392*X + 0.9396926*0.186633*?*W + 0.1855740*0.186633*?*X) +
184 * 0.6554516*0.795968*?*Y + 0.7071068*0.676392*Y
186 * * Reorder terms
187 * Y = j(-0.3420201*0.795968*?*W + 0.1432*0.676392*W + 0.9396926*0.186633*?*W +
188 * 0.5098604*0.795968*?*X + -0.6512*0.676392*X + 0.1855740*0.186633*?*X) +
189 * 0.7071068*0.676392*Y + 0.6554516*0.795968*?*Y
191 * * Move common factors out
192 * Y = j((-0.3420201*0.795968*? + 0.1432*0.676392 + 0.9396926*0.186633*?)*W +
193 * ( 0.5098604*0.795968*? + -0.6512*0.676392 + 0.1855740*0.186633*?)*X) +
194 * (0.7071068*0.676392 + 0.6554516*0.795968*?)*Y
196 * * Result w/ 0.5 factor:
197 * -0.3420201*0.795968*0.5 + 0.1432*0.676392 + 0.9396926*0.186633*0.5 = 0.04843*W
198 * 0.5098604*0.795968*0.5 + -0.6512*0.676392 + 0.1855740*0.186633*0.5 = -0.22023*X
199 * 0.7071068*0.676392 + 0.6554516*0.795968*0.5 = 0.73914*Y
200 * -> Y = j(0.04843*W + -0.22023*X) + 0.73914*Y
202 * * Result w/o 0.5 factor:
203 * -0.3420201*0.795968 + 0.1432*0.676392 + 0.9396926*0.186633 = 0.00000*W
204 * 0.5098604*0.795968 + -0.6512*0.676392 + 0.1855740*0.186633 = 0.00000*X
205 * 0.7071068*0.676392 + 0.6554516*0.795968 = 1.00000*Y
206 * -> Y = j(0.00000*W + 0.00000*X) + 1.00000*Y
208 * Not halving produces a result matching the original input.
210 void UhjDecoder::decode(const al::span<const float> InSamples, const std::size_t InChannels,
211 const al::span<FloatBufferLine> OutSamples, const std::size_t SamplesToDo)
213 ASSUME(SamplesToDo > 0);
215 auto woutput = al::span{OutSamples[0]};
216 auto xoutput = al::span{OutSamples[1]};
217 auto youtput = al::span{OutSamples[2]};
219 /* Add a delay to the input channels, to align it with the all-passed
220 * signal.
223 /* S = Left + Right */
224 for(std::size_t i{0};i < SamplesToDo;++i)
225 mS[sFilterDelay+i] = InSamples[i*InChannels + 0] + InSamples[i*InChannels + 1];
227 /* D = Left - Right */
228 for(std::size_t i{0};i < SamplesToDo;++i)
229 mD[sFilterDelay+i] = InSamples[i*InChannels + 0] - InSamples[i*InChannels + 1];
231 if(InChannels > 2)
233 /* T */
234 for(std::size_t i{0};i < SamplesToDo;++i)
235 mT[sFilterDelay+i] = InSamples[i*InChannels + 2];
237 if(InChannels > 3)
239 /* Q */
240 for(std::size_t i{0};i < SamplesToDo;++i)
241 mQ[sFilterDelay+i] = InSamples[i*InChannels + 3];
244 /* Precompute j(0.828331*D + 0.767820*T) and store in xoutput. */
245 auto tmpiter = std::copy(mDTHistory.cbegin(), mDTHistory.cend(), mTemp.begin());
246 std::transform(mD.cbegin(), mD.cbegin()+SamplesToDo+sFilterDelay, mT.cbegin(), tmpiter,
247 [](const float d, const float t) noexcept { return 0.828331f*d + 0.767820f*t; });
248 std::copy_n(mTemp.cbegin()+SamplesToDo, mDTHistory.size(), mDTHistory.begin());
249 PShift.process(xoutput.first(SamplesToDo), mTemp);
251 for(std::size_t i{0};i < SamplesToDo;++i)
253 /* W = 0.981532*S + 0.197484*j(0.828331*D + 0.767820*T) */
254 woutput[i] = 0.981532f*mS[i] + 0.197484f*xoutput[i];
255 /* X = 0.418496*S - j(0.828331*D + 0.767820*T) */
256 xoutput[i] = 0.418496f*mS[i] - xoutput[i];
259 /* Precompute j*S and store in youtput. */
260 tmpiter = std::copy(mSHistory.cbegin(), mSHistory.cend(), mTemp.begin());
261 std::copy_n(mS.cbegin(), SamplesToDo+sFilterDelay, tmpiter);
262 std::copy_n(mTemp.cbegin()+SamplesToDo, mSHistory.size(), mSHistory.begin());
263 PShift.process(youtput.first(SamplesToDo), mTemp);
265 for(std::size_t i{0};i < SamplesToDo;++i)
267 /* Y = 0.795968*D - 0.676392*T + j(0.186633*S) */
268 youtput[i] = 0.795968f*mD[i] - 0.676392f*mT[i] + 0.186633f*youtput[i];
271 if(OutSamples.size() > 3)
273 auto zoutput = al::span{OutSamples[3]};
274 /* Z = 1.023332*Q */
275 for(std::size_t i{0};i < SamplesToDo;++i)
276 zoutput[i] = 1.023332f*mQ[i];
279 std::copy(mS.begin()+SamplesToDo, mS.begin()+SamplesToDo+sFilterDelay, mS.begin());
280 std::copy(mD.begin()+SamplesToDo, mD.begin()+SamplesToDo+sFilterDelay, mD.begin());
281 std::copy(mT.begin()+SamplesToDo, mT.begin()+SamplesToDo+sFilterDelay, mT.begin());
282 std::copy(mQ.begin()+SamplesToDo, mQ.begin()+SamplesToDo+sFilterDelay, mQ.begin());
285 /* This is an alternative equation for decoding 2-channel UHJ. Not sure what
286 * the intended benefit is over the above equation as this slightly reduces the
287 * amount of the original left response and has more of the phase-shifted
288 * forward response on the left response.
290 * This decoding is done as:
292 * S = Left + Right
293 * D = Left - Right
295 * W = 0.981530*S + j*0.163585*D
296 * X = 0.418504*S - j*0.828347*D
297 * Y = 0.762956*D + j*0.384230*S
299 * where j is a +90 degree phase shift.
301 * NOTE: As above, S and D should not be halved. The only consequence of
302 * halving here is merely a -6dB reduction in output, but it's still incorrect.
304 void UhjDecoder::decode2(const al::span<const float> InSamples,
305 const al::span<FloatBufferLine> OutSamples, const std::size_t SamplesToDo)
307 ASSUME(SamplesToDo > 0);
309 auto woutput = al::span{OutSamples[0]};
310 auto xoutput = al::span{OutSamples[1]};
311 auto youtput = al::span{OutSamples[2]};
313 /* S = Left + Right */
314 for(std::size_t i{0};i < SamplesToDo;++i)
315 mS[sFilterDelay+i] = InSamples[i*2 + 0] + InSamples[i*2 + 1];
317 /* D = Left - Right */
318 for(std::size_t i{0};i < SamplesToDo;++i)
319 mD[sFilterDelay+i] = InSamples[i*2 + 0] - InSamples[i*2 + 1];
321 /* Precompute j*D and store in xoutput. */
322 auto tmpiter = std::copy(mDTHistory.cbegin(), mDTHistory.cend(), mTemp.begin());
323 std::copy_n(mD.cbegin(), SamplesToDo+sFilterDelay, tmpiter);
324 std::copy_n(mTemp.cbegin()+SamplesToDo, mDTHistory.size(), mDTHistory.begin());
325 PShift.process(xoutput.first(SamplesToDo), mTemp);
327 for(std::size_t i{0};i < SamplesToDo;++i)
329 /* W = 0.981530*S + j*0.163585*D */
330 woutput[i] = 0.981530f*mS[i] + 0.163585f*xoutput[i];
331 /* X = 0.418504*S - j*0.828347*D */
332 xoutput[i] = 0.418504f*mS[i] - 0.828347f*xoutput[i];
335 /* Precompute j*S and store in youtput. */
336 tmpiter = std::copy(mSHistory.cbegin(), mSHistory.cend(), mTemp.begin());
337 std::copy_n(mS.cbegin(), SamplesToDo+sFilterDelay, tmpiter);
338 std::copy_n(mTemp.cbegin()+SamplesToDo, mSHistory.size(), mSHistory.begin());
339 PShift.process(youtput.first(SamplesToDo), mTemp);
341 for(std::size_t i{0};i < SamplesToDo;++i)
343 /* Y = 0.762956*D + j*0.384230*S */
344 youtput[i] = 0.762956f*mD[i] + 0.384230f*youtput[i];
347 std::copy(mS.begin()+SamplesToDo, mS.begin()+SamplesToDo+sFilterDelay, mS.begin());
348 std::copy(mD.begin()+SamplesToDo, mD.begin()+SamplesToDo+sFilterDelay, mD.begin());
352 int main(al::span<std::string_view> args)
354 if(args.size() < 2 || args[1] == "-h" || args[1] == "--help")
356 printf("Usage: %.*s <[options] filename.wav...>\n\n"
357 " Options:\n"
358 " --general Use the general equations for 2-channel UHJ (default).\n"
359 " --alternative Use the alternative equations for 2-channel UHJ.\n"
360 "\n"
361 "Note: When decoding 2-channel UHJ to an .amb file, the result should not use\n"
362 "the normal B-Format shelf filters! Only 3- and 4-channel UHJ can accurately\n"
363 "reconstruct the original B-Format signal.",
364 al::sizei(args[0]), args[0].data());
365 return 1;
368 std::size_t num_files{0}, num_decoded{0};
369 bool use_general{true};
370 for(size_t fidx{1};fidx < args.size();++fidx)
372 if(args[fidx] == "--general")
374 use_general = true;
375 continue;
377 if(args[fidx] == "--alternative")
379 use_general = false;
380 continue;
382 ++num_files;
383 SF_INFO ininfo{};
384 SndFilePtr infile{sf_open(std::string{args[fidx]}.c_str(), SFM_READ, &ininfo)};
385 if(!infile)
387 fprintf(stderr, "Failed to open %.*s\n", al::sizei(args[fidx]), args[fidx].data());
388 continue;
390 if(sf_command(infile.get(), SFC_WAVEX_GET_AMBISONIC, nullptr, 0) == SF_AMBISONIC_B_FORMAT)
392 fprintf(stderr, "%.*s is already B-Format\n", al::sizei(args[fidx]),
393 args[fidx].data());
394 continue;
396 uint outchans{};
397 if(ininfo.channels == 2)
398 outchans = 3;
399 else if(ininfo.channels == 3 || ininfo.channels == 4)
400 outchans = static_cast<uint>(ininfo.channels);
401 else
403 fprintf(stderr, "%.*s is not a 2-, 3-, or 4-channel file\n", al::sizei(args[fidx]),
404 args[fidx].data());
405 continue;
407 printf("Converting %.*s from %d-channel UHJ%s...\n", al::sizei(args[fidx]),
408 args[fidx].data(), ininfo.channels,
409 (ininfo.channels == 2) ? use_general ? " (general)" : " (alternative)" : "");
411 std::string outname{args[fidx]};
412 auto lastslash = outname.find_last_of('/');
413 if(lastslash != std::string::npos)
414 outname.erase(0, lastslash+1);
415 auto lastdot = outname.find_last_of('.');
416 if(lastdot != std::string::npos)
417 outname.resize(lastdot+1);
418 outname += "amb";
420 FilePtr outfile{fopen(outname.c_str(), "wb")};
421 if(!outfile)
423 fprintf(stderr, "Failed to create %s\n", outname.c_str());
424 continue;
427 fputs("RIFF", outfile.get());
428 fwrite32le(0xFFFFFFFF, outfile.get()); // 'RIFF' header len; filled in at close
430 fputs("WAVE", outfile.get());
432 fputs("fmt ", outfile.get());
433 fwrite32le(40, outfile.get()); // 'fmt ' header len; 40 bytes for EXTENSIBLE
435 // 16-bit val, format type id (extensible: 0xFFFE)
436 fwrite16le(0xFFFE, outfile.get());
437 // 16-bit val, channel count
438 fwrite16le(static_cast<ushort>(outchans), outfile.get());
439 // 32-bit val, frequency
440 fwrite32le(static_cast<uint>(ininfo.samplerate), outfile.get());
441 // 32-bit val, bytes per second
442 fwrite32le(static_cast<uint>(ininfo.samplerate)*outchans*uint{sizeof(float)}, outfile.get());
443 // 16-bit val, frame size
444 fwrite16le(static_cast<ushort>(sizeof(float)*outchans), outfile.get());
445 // 16-bit val, bits per sample
446 fwrite16le(static_cast<ushort>(sizeof(float)*8), outfile.get());
447 // 16-bit val, extra byte count
448 fwrite16le(22, outfile.get());
449 // 16-bit val, valid bits per sample
450 fwrite16le(static_cast<ushort>(sizeof(float)*8), outfile.get());
451 // 32-bit val, channel mask
452 fwrite32le(0, outfile.get());
453 // 16 byte GUID, sub-type format
454 fwrite(SUBTYPE_BFORMAT_FLOAT.data(), 1, SUBTYPE_BFORMAT_FLOAT.size(), outfile.get());
456 fputs("data", outfile.get());
457 fwrite32le(0xFFFFFFFF, outfile.get()); // 'data' header len; filled in at close
458 if(ferror(outfile.get()))
460 fprintf(stderr, "Error writing wave file header: %s (%d)\n",
461 std::generic_category().message(errno).c_str(), errno);
462 continue;
465 auto DataStart = ftell(outfile.get());
467 auto decoder = std::make_unique<UhjDecoder>();
468 auto inmem = std::vector<float>(size_t{BufferLineSize}*static_cast<uint>(ininfo.channels));
469 auto decmem = al::vector<std::array<float,BufferLineSize>, 16>(outchans);
470 auto outmem = std::vector<byte4>(size_t{BufferLineSize}*outchans);
472 /* A number of initial samples need to be skipped to cut the lead-in
473 * from the all-pass filter delay. The same number of samples need to
474 * be fed through the decoder after reaching the end of the input file
475 * to ensure none of the original input is lost.
477 std::size_t LeadIn{UhjDecoder::sFilterDelay};
478 sf_count_t LeadOut{UhjDecoder::sFilterDelay};
479 while(LeadOut > 0)
481 sf_count_t sgot{sf_readf_float(infile.get(), inmem.data(), BufferLineSize)};
482 sgot = std::max<sf_count_t>(sgot, 0);
483 if(sgot < BufferLineSize)
485 const sf_count_t remaining{std::min(BufferLineSize - sgot, LeadOut)};
486 std::fill_n(inmem.begin() + sgot*ininfo.channels, remaining*ininfo.channels, 0.0f);
487 sgot += remaining;
488 LeadOut -= remaining;
491 auto got = static_cast<std::size_t>(sgot);
492 if(ininfo.channels > 2 || use_general)
493 decoder->decode(inmem, static_cast<uint>(ininfo.channels), decmem, got);
494 else
495 decoder->decode2(inmem, decmem, got);
496 if(LeadIn >= got)
498 LeadIn -= got;
499 continue;
502 got -= LeadIn;
503 for(std::size_t i{0};i < got;++i)
505 /* Attenuate by -3dB for FuMa output levels. */
506 constexpr auto inv_sqrt2 = static_cast<float>(1.0/al::numbers::sqrt2);
507 for(std::size_t j{0};j < outchans;++j)
508 outmem[i*outchans + j] = f32AsLEBytes(decmem[j][LeadIn+i] * inv_sqrt2);
510 LeadIn = 0;
512 std::size_t wrote{fwrite(outmem.data(), sizeof(byte4)*outchans, got, outfile.get())};
513 if(wrote < got)
515 fprintf(stderr, "Error writing wave data: %s (%d)\n",
516 std::generic_category().message(errno).c_str(), errno);
517 break;
521 auto DataEnd = ftell(outfile.get());
522 if(DataEnd > DataStart)
524 long dataLen{DataEnd - DataStart};
525 if(fseek(outfile.get(), 4, SEEK_SET) == 0)
526 fwrite32le(static_cast<uint>(DataEnd-8), outfile.get()); // 'WAVE' header len
527 if(fseek(outfile.get(), DataStart-4, SEEK_SET) == 0)
528 fwrite32le(static_cast<uint>(dataLen), outfile.get()); // 'data' header len
530 fflush(outfile.get());
531 ++num_decoded;
533 if(num_decoded == 0)
534 fprintf(stderr, "Failed to decode any input files\n");
535 else if(num_decoded < num_files)
536 fprintf(stderr, "Decoded %zu of %zu files\n", num_decoded, num_files);
537 else
538 printf("Decoded %zu file%s\n", num_decoded, (num_decoded==1)?"":"s");
539 return 0;
542 } /* namespace */
544 int main(int argc, char *argv[])
546 assert(argc >= 0);
547 auto args = std::vector<std::string_view>(static_cast<unsigned int>(argc));
548 std::copy_n(argv, args.size(), args.begin());
549 return main(al::span{args});