Merge branch 'master' into efx-experiment
[openal-soft.git] / Alc / ALu.c
blobf401046c0a74e10ae538572978dc725e1da70b11
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #define _CRT_SECURE_NO_DEPRECATE // get rid of sprintf security warnings on VS2005
23 #include "config.h"
25 #include <math.h>
26 #include "alMain.h"
27 #include "AL/al.h"
28 #include "AL/alc.h"
29 #include "alSource.h"
30 #include "alBuffer.h"
31 #include "alThunk.h"
32 #include "alListener.h"
34 #if defined(HAVE_STDINT_H)
35 #include <stdint.h>
36 typedef int64_t ALint64;
37 #elif defined(HAVE___INT64)
38 typedef __int64 ALint64;
39 #elif (SIZEOF_LONG == 8)
40 typedef long ALint64;
41 #elif (SIZEOF_LONG_LONG == 8)
42 typedef long long ALint64;
43 #endif
45 #ifdef HAVE_SQRTF
46 #define aluSqrt(x) ((ALfloat)sqrtf((float)(x)))
47 #else
48 #define aluSqrt(x) ((ALfloat)sqrt((double)(x)))
49 #endif
51 // fixes for mingw32.
52 #if defined(max) && !defined(__max)
53 #define __max max
54 #endif
55 #if defined(min) && !defined(__min)
56 #define __min min
57 #endif
59 #define BUFFERSIZE 48000
60 #define FRACTIONBITS 14
61 #define FRACTIONMASK ((1L<<FRACTIONBITS)-1)
62 #define MAX_PITCH 4
64 enum {
65 FRONT_LEFT = 0,
66 FRONT_RIGHT,
67 SIDE_LEFT,
68 SIDE_RIGHT,
69 BACK_LEFT,
70 BACK_RIGHT,
71 CENTER,
72 LFE,
74 OUTPUTCHANNELS
77 /* NOTE: The AL_FORMAT_REAR* enums aren't handled here be cause they're
78 * converted to AL_FORMAT_QUAD* when loaded */
79 __inline ALuint aluBytesFromFormat(ALenum format)
81 switch(format)
83 case AL_FORMAT_MONO8:
84 case AL_FORMAT_STEREO8:
85 case AL_FORMAT_QUAD8:
86 case AL_FORMAT_51CHN8:
87 case AL_FORMAT_61CHN8:
88 case AL_FORMAT_71CHN8:
89 return 1;
91 case AL_FORMAT_MONO16:
92 case AL_FORMAT_STEREO16:
93 case AL_FORMAT_QUAD16:
94 case AL_FORMAT_51CHN16:
95 case AL_FORMAT_61CHN16:
96 case AL_FORMAT_71CHN16:
97 return 2;
99 case AL_FORMAT_MONO_FLOAT32:
100 case AL_FORMAT_STEREO_FLOAT32:
101 case AL_FORMAT_QUAD32:
102 case AL_FORMAT_51CHN32:
103 case AL_FORMAT_61CHN32:
104 case AL_FORMAT_71CHN32:
105 return 4;
107 default:
108 return 0;
112 __inline ALuint aluChannelsFromFormat(ALenum format)
114 switch(format)
116 case AL_FORMAT_MONO8:
117 case AL_FORMAT_MONO16:
118 case AL_FORMAT_MONO_FLOAT32:
119 return 1;
121 case AL_FORMAT_STEREO8:
122 case AL_FORMAT_STEREO16:
123 case AL_FORMAT_STEREO_FLOAT32:
124 return 2;
126 case AL_FORMAT_QUAD8:
127 case AL_FORMAT_QUAD16:
128 case AL_FORMAT_QUAD32:
129 return 4;
131 case AL_FORMAT_51CHN8:
132 case AL_FORMAT_51CHN16:
133 case AL_FORMAT_51CHN32:
134 return 6;
136 case AL_FORMAT_61CHN8:
137 case AL_FORMAT_61CHN16:
138 case AL_FORMAT_61CHN32:
139 return 7;
141 case AL_FORMAT_71CHN8:
142 case AL_FORMAT_71CHN16:
143 case AL_FORMAT_71CHN32:
144 return 8;
146 default:
147 return 0;
151 static __inline ALint aluF2L(ALfloat Value)
153 if(sizeof(ALint) == 4 && sizeof(double) == 8)
155 double temp;
156 temp = Value + (((65536.0*65536.0*16.0)+(65536.0*65536.0*8.0))*65536.0);
157 return *((ALint*)&temp);
159 return (ALint)Value;
162 static __inline ALshort aluF2S(ALfloat Value)
164 ALint i;
166 i = aluF2L(Value);
167 i = __min( 32767, i);
168 i = __max(-32768, i);
169 return ((ALshort)i);
172 static __inline ALvoid aluCrossproduct(ALfloat *inVector1,ALfloat *inVector2,ALfloat *outVector)
174 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
175 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
176 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
179 static __inline ALfloat aluDotproduct(ALfloat *inVector1,ALfloat *inVector2)
181 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
182 inVector1[2]*inVector2[2];
185 static __inline ALvoid aluNormalize(ALfloat *inVector)
187 ALfloat length, inverse_length;
189 length = (ALfloat)aluSqrt(aluDotproduct(inVector, inVector));
190 if(length != 0)
192 inverse_length = 1.0f/length;
193 inVector[0] *= inverse_length;
194 inVector[1] *= inverse_length;
195 inVector[2] *= inverse_length;
199 static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat matrix[3][3])
201 ALfloat result[3];
203 result[0] = vector[0]*matrix[0][0] + vector[1]*matrix[1][0] + vector[2]*matrix[2][0];
204 result[1] = vector[0]*matrix[0][1] + vector[1]*matrix[1][1] + vector[2]*matrix[2][1];
205 result[2] = vector[0]*matrix[0][2] + vector[1]*matrix[1][2] + vector[2]*matrix[2][2];
206 memcpy(vector, result, sizeof(result));
209 static __inline ALfloat aluComputeDrySample(ALsource *source, ALfloat DryGainHF, ALfloat sample)
211 if(DryGainHF < 1.0f)
213 sample *= DryGainHF;
214 sample += source->LastDrySample * (1.0f - DryGainHF);
217 source->LastDrySample = sample;
218 return sample;
221 static __inline ALfloat aluComputeWetSample(ALsource *source, ALfloat WetGainHF, ALfloat sample)
223 if(WetGainHF < 1.0f)
225 sample *= WetGainHF;
226 sample += source->LastWetSample * (1.0f - WetGainHF);
229 source->LastWetSample = sample;
230 return sample;
233 static ALvoid CalcSourceParams(ALCcontext *ALContext, ALsource *ALSource,
234 ALenum isMono, ALenum OutputFormat,
235 ALfloat *drysend, ALfloat *wetsend,
236 ALfloat *pitch, ALfloat *drygainhf,
237 ALfloat *wetgainhf)
239 ALfloat ListenerOrientation[6],ListenerPosition[3],ListenerVelocity[3];
240 ALfloat InnerAngle,OuterAngle,OuterGain,Angle,Distance,DryMix,WetMix;
241 ALfloat Direction[3],Position[3],Velocity[3],SourceToListener[3];
242 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff,OuterGainHF;
243 ALfloat Pitch,ConeVolume,SourceVolume,PanningFB,PanningLR,ListenerGain;
244 ALfloat U[3],V[3],N[3];
245 ALfloat DopplerFactor, DopplerVelocity, flSpeedOfSound, flMaxVelocity;
246 ALfloat flVSS, flVLS;
247 ALint DistanceModel;
248 ALfloat Matrix[3][3];
249 ALint HeadRelative;
250 ALfloat flAttenuation;
251 ALfloat RoomAttenuation;
252 ALfloat MetersPerUnit;
253 ALfloat RoomRolloff;
254 ALfloat DryGainHF = 1.0f;
255 ALfloat WetGainHF = 1.0f;
257 //Get context properties
258 DopplerFactor = ALContext->DopplerFactor;
259 DistanceModel = ALContext->DistanceModel;
260 DopplerVelocity = ALContext->DopplerVelocity;
261 flSpeedOfSound = ALContext->flSpeedOfSound;
263 //Get listener properties
264 ListenerGain = ALContext->Listener.Gain;
265 MetersPerUnit = ALContext->Listener.MetersPerUnit;
266 memcpy(ListenerPosition, ALContext->Listener.Position, sizeof(ALContext->Listener.Position));
267 memcpy(ListenerVelocity, ALContext->Listener.Velocity, sizeof(ALContext->Listener.Velocity));
268 memcpy(&ListenerOrientation[0], ALContext->Listener.Forward, sizeof(ALContext->Listener.Forward));
269 memcpy(&ListenerOrientation[3], ALContext->Listener.Up, sizeof(ALContext->Listener.Up));
271 //Get source properties
272 Pitch = ALSource->flPitch;
273 SourceVolume = ALSource->flGain;
274 memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition));
275 memcpy(Velocity, ALSource->vVelocity, sizeof(ALSource->vVelocity));
276 memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation));
277 MinVolume = ALSource->flMinGain;
278 MaxVolume = ALSource->flMaxGain;
279 MinDist = ALSource->flRefDistance;
280 MaxDist = ALSource->flMaxDistance;
281 Rolloff = ALSource->flRollOffFactor;
282 OuterGain = ALSource->flOuterGain;
283 InnerAngle = ALSource->flInnerAngle;
284 OuterAngle = ALSource->flOuterAngle;
285 HeadRelative = ALSource->bHeadRelative;
286 OuterGainHF = ALSource->OuterGainHF;
287 RoomRolloff = ALSource->RoomRolloffFactor;
289 //Only apply 3D calculations for mono buffers
290 if(isMono != AL_FALSE)
292 //1. Translate Listener to origin (convert to head relative)
293 if(HeadRelative==AL_FALSE)
295 Position[0] -= ListenerPosition[0];
296 Position[1] -= ListenerPosition[1];
297 Position[2] -= ListenerPosition[2];
300 //2. Calculate distance attenuation
301 Distance = aluSqrt(aluDotproduct(Position, Position));
303 flAttenuation = 1.0f;
304 RoomAttenuation = 1.0f;
305 switch (DistanceModel)
307 case AL_INVERSE_DISTANCE_CLAMPED:
308 Distance=__max(Distance,MinDist);
309 Distance=__min(Distance,MaxDist);
310 if (MaxDist < MinDist)
311 break;
312 //fall-through
313 case AL_INVERSE_DISTANCE:
314 if (MinDist > 0.0f)
316 if ((MinDist + (Rolloff * (Distance - MinDist))) > 0.0f)
317 flAttenuation = MinDist / (MinDist + (Rolloff * (Distance - MinDist)));
318 if ((MinDist + (RoomRolloff * (Distance - MinDist))) > 0.0f)
319 RoomAttenuation = MinDist / (MinDist + (RoomRolloff * (Distance - MinDist)));
321 break;
323 case AL_LINEAR_DISTANCE_CLAMPED:
324 Distance=__max(Distance,MinDist);
325 Distance=__min(Distance,MaxDist);
326 if (MaxDist < MinDist)
327 break;
328 //fall-through
329 case AL_LINEAR_DISTANCE:
330 Distance=__min(Distance,MaxDist);
331 if (MaxDist != MinDist)
333 flAttenuation = 1.0f - (Rolloff*(Distance-MinDist)/(MaxDist - MinDist));
334 RoomAttenuation = 1.0f - (RoomRolloff*(Distance-MinDist)/(MaxDist - MinDist));
336 break;
338 case AL_EXPONENT_DISTANCE_CLAMPED:
339 Distance=__max(Distance,MinDist);
340 Distance=__min(Distance,MaxDist);
341 if (MaxDist < MinDist)
342 break;
343 //fall-through
344 case AL_EXPONENT_DISTANCE:
345 if ((Distance > 0.0f) && (MinDist > 0.0f))
347 flAttenuation = (ALfloat)pow(Distance/MinDist, -Rolloff);
348 RoomAttenuation = (ALfloat)pow(Distance/MinDist, -RoomRolloff);
350 break;
352 case AL_NONE:
353 default:
354 flAttenuation = 1.0f;
355 RoomAttenuation = 1.0f;
356 break;
359 // Source Gain + Attenuation
360 DryMix = SourceVolume * flAttenuation;
361 WetMix = SourceVolume * ((ALSource->WetGainAuto &&
362 ALSource->Send[0].Slot.AuxSendAuto) ?
363 RoomAttenuation : 1.0f);
365 // Clamp to Min/Max Gain
366 DryMix = __min(DryMix,MaxVolume);
367 DryMix = __max(DryMix,MinVolume);
368 WetMix = __min(WetMix,MaxVolume);
369 WetMix = __max(WetMix,MinVolume);
370 //3. Apply directional soundcones
371 SourceToListener[0] = -Position[0];
372 SourceToListener[1] = -Position[1];
373 SourceToListener[2] = -Position[2];
374 aluNormalize(Direction);
375 aluNormalize(SourceToListener);
376 Angle = (ALfloat)(180.0*acos(aluDotproduct(Direction,SourceToListener))/3.141592654f);
377 if(Angle >= InnerAngle && Angle <= OuterAngle)
379 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
380 ConeVolume = (1.0f+(OuterGain-1.0f)*scale);
381 if(ALSource->WetGainAuto)
382 WetMix *= ConeVolume;
383 if(ALSource->DryGainHFAuto)
384 DryGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
385 if(ALSource->WetGainHFAuto)
386 WetGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
388 else if(Angle > OuterAngle)
390 ConeVolume = (1.0f+(OuterGain-1.0f));
391 if(ALSource->WetGainAuto)
392 WetMix *= ConeVolume;
393 if(ALSource->DryGainHFAuto)
394 DryGainHF *= (1.0f+(OuterGainHF-1.0f));
395 if(ALSource->WetGainHFAuto)
396 WetGainHF *= (1.0f+(OuterGainHF-1.0f));
398 else
399 ConeVolume = 1.0f;
401 //4. Calculate Velocity
402 if(DopplerFactor != 0.0f)
404 flVLS = aluDotproduct(ListenerVelocity, SourceToListener);
405 flVSS = aluDotproduct(Velocity, SourceToListener);
407 flMaxVelocity = (DopplerVelocity * flSpeedOfSound) / DopplerFactor;
409 if (flVSS >= flMaxVelocity)
410 flVSS = (flMaxVelocity - 1.0f);
411 else if (flVSS <= -flMaxVelocity)
412 flVSS = -flMaxVelocity + 1.0f;
414 if (flVLS >= flMaxVelocity)
415 flVLS = (flMaxVelocity - 1.0f);
416 else if (flVLS <= -flMaxVelocity)
417 flVLS = -flMaxVelocity + 1.0f;
419 pitch[0] = Pitch * ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVLS)) /
420 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVSS));
422 else
423 pitch[0] = Pitch;
425 //5. Align coordinate system axes
426 aluCrossproduct(&ListenerOrientation[0], &ListenerOrientation[3], U); // Right-vector
427 aluNormalize(U); // Normalized Right-vector
428 memcpy(V, &ListenerOrientation[3], sizeof(V)); // Up-vector
429 aluNormalize(V); // Normalized Up-vector
430 memcpy(N, &ListenerOrientation[0], sizeof(N)); // At-vector
431 aluNormalize(N); // Normalized At-vector
432 Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0];
433 Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1];
434 Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2];
435 aluMatrixVector(Position, Matrix);
437 //6. Apply filter gains and filters
438 switch(ALSource->DirectFilter.filter)
440 case AL_FILTER_LOWPASS:
441 DryMix *= ALSource->DirectFilter.Gain;
442 DryGainHF *= ALSource->DirectFilter.GainHF;
443 break;
446 switch(ALSource->Send[0].WetFilter.filter)
448 case AL_FILTER_LOWPASS:
449 WetMix *= ALSource->Send[0].WetFilter.Gain;
450 WetGainHF *= ALSource->Send[0].WetFilter.GainHF;
451 break;
454 if(ALSource->AirAbsorptionFactor > 0.0f)
455 DryGainHF *= pow(ALSource->AirAbsorptionFactor * AIRABSORBGAINHF,
456 Distance * MetersPerUnit);
458 *drygainhf = DryGainHF;
459 *wetgainhf = WetGainHF;
461 //7. Convert normalized position into pannings, then into channel volumes
462 aluNormalize(Position);
463 WetMix *= ALSource->Send[0].Slot.Gain;
464 switch(aluChannelsFromFormat(OutputFormat))
466 case 1:
467 drysend[FRONT_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f); //Direct
468 drysend[FRONT_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f); //Direct
469 if(ALSource->Send[0].Slot.effectslot)
471 wetsend[FRONT_LEFT] = ListenerGain * WetMix * aluSqrt(1.0f); //Room
472 wetsend[FRONT_RIGHT] = ListenerGain * WetMix * aluSqrt(1.0f); //Room
474 else
476 wetsend[FRONT_LEFT] = 0.0f;
477 wetsend[FRONT_RIGHT] = 0.0f;
478 *wetgainhf = 1.0f;
480 break;
481 case 2:
482 PanningLR = 0.5f + 0.5f*Position[0];
483 drysend[FRONT_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt(1.0f-PanningLR); //L Direct
484 drysend[FRONT_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt( PanningLR); //R Direct
485 if(ALSource->Send[0].Slot.effectslot)
487 wetsend[FRONT_LEFT] = ListenerGain * WetMix * aluSqrt(1.0f-PanningLR); //L Room
488 wetsend[FRONT_RIGHT] = ListenerGain * WetMix * aluSqrt( PanningLR); //R Room
490 else
492 wetsend[FRONT_LEFT] = 0.0f;
493 wetsend[FRONT_RIGHT] = 0.0f;
494 *wetgainhf = 1.0f;
496 break;
497 case 4:
498 /* TODO: Add center/lfe channel in spatial calculations? */
499 case 6:
500 /* TODO: Special paths for 6.1 and 7.1 output would be nice */
501 case 7:
502 case 8:
503 // Apply a scalar so each individual speaker has more weight
504 PanningLR = 0.5f + (0.5f*Position[0]*1.41421356f);
505 PanningLR = __min(1.0f, PanningLR);
506 PanningLR = __max(0.0f, PanningLR);
507 PanningFB = 0.5f + (0.5f*Position[2]*1.41421356f);
508 PanningFB = __min(1.0f, PanningFB);
509 PanningFB = __max(0.0f, PanningFB);
510 drysend[FRONT_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB)); //FL Direct
511 drysend[FRONT_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB)); //FR Direct
512 drysend[BACK_LEFT] = ConeVolume * ListenerGain * DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB)); //BL Direct
513 drysend[BACK_RIGHT] = ConeVolume * ListenerGain * DryMix * aluSqrt(( PanningLR)*( PanningFB)); //BR Direct
514 drysend[SIDE_LEFT] = 0.0f;
515 drysend[SIDE_RIGHT] = 0.0f;
516 if(ALSource->Send[0].Slot.effectslot)
518 wetsend[FRONT_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB)); //FL Room
519 wetsend[FRONT_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB)); //FR Room
520 wetsend[BACK_LEFT] = ListenerGain * WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB)); //BL Room
521 wetsend[BACK_RIGHT] = ListenerGain * WetMix * aluSqrt(( PanningLR)*( PanningFB)); //BR Room
523 else
525 wetsend[FRONT_LEFT] = 0.0f;
526 wetsend[FRONT_RIGHT] = 0.0f;
527 wetsend[BACK_LEFT] = 0.0f;
528 wetsend[BACK_RIGHT] = 0.0f;
529 *wetgainhf = 1.0f;
531 wetsend[SIDE_LEFT] = 0.0f;
532 wetsend[SIDE_RIGHT] = 0.0f;
533 break;
534 default:
535 break;
538 else
540 *drygainhf = DryGainHF;
541 *wetgainhf = WetGainHF;
543 //1. Multi-channel buffers always play "normal"
544 drysend[FRONT_LEFT] = SourceVolume * 1.0f * ListenerGain;
545 drysend[FRONT_RIGHT] = SourceVolume * 1.0f * ListenerGain;
546 drysend[SIDE_LEFT] = SourceVolume * 1.0f * ListenerGain;
547 drysend[SIDE_RIGHT] = SourceVolume * 1.0f * ListenerGain;
548 drysend[BACK_LEFT] = SourceVolume * 1.0f * ListenerGain;
549 drysend[BACK_RIGHT] = SourceVolume * 1.0f * ListenerGain;
550 drysend[CENTER] = SourceVolume * 1.0f * ListenerGain;
551 drysend[LFE] = SourceVolume * 1.0f * ListenerGain;
552 if(ALSource->Send[0].Slot.effectslot)
554 wetsend[FRONT_LEFT] = SourceVolume * 0.0f * ListenerGain;
555 wetsend[FRONT_RIGHT] = SourceVolume * 0.0f * ListenerGain;
556 wetsend[SIDE_LEFT] = SourceVolume * 0.0f * ListenerGain;
557 wetsend[SIDE_RIGHT] = SourceVolume * 0.0f * ListenerGain;
558 wetsend[BACK_LEFT] = SourceVolume * 0.0f * ListenerGain;
559 wetsend[BACK_RIGHT] = SourceVolume * 0.0f * ListenerGain;
560 wetsend[CENTER] = SourceVolume * 0.0f * ListenerGain;
561 wetsend[LFE] = SourceVolume * 0.0f * ListenerGain;
562 *wetgainhf = 1.0f;
565 pitch[0] = Pitch;
569 ALvoid aluMixData(ALCcontext *ALContext,ALvoid *buffer,ALsizei size,ALenum format)
571 static float DryBuffer[BUFFERSIZE][OUTPUTCHANNELS];
572 static float WetBuffer[BUFFERSIZE][OUTPUTCHANNELS];
573 ALfloat DrySend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
574 ALfloat WetSend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
575 ALfloat DryGainHF = 0.0f;
576 ALfloat WetGainHF = 0.0f;
577 ALuint BlockAlign,BufferSize;
578 ALuint DataSize=0,DataPosInt=0,DataPosFrac=0;
579 ALuint Channels,Bits,Frequency,ulExtraSamples;
580 ALfloat Pitch;
581 ALint Looping,increment,State;
582 ALuint Buffer,fraction;
583 ALuint SamplesToDo;
584 ALsource *ALSource;
585 ALbuffer *ALBuffer;
586 ALfloat value;
587 ALshort *Data;
588 ALuint i,j,k;
589 ALbufferlistitem *BufferListItem;
590 ALuint loop;
591 ALint64 DataSize64,DataPos64;
593 SuspendContext(ALContext);
595 if(buffer)
597 //Figure output format variables
598 BlockAlign = aluChannelsFromFormat(format);
599 BlockAlign *= aluBytesFromFormat(format);
601 size /= BlockAlign;
602 while(size > 0)
604 //Setup variables
605 ALSource = (ALContext ? ALContext->Source : NULL);
606 SamplesToDo = min(size, BUFFERSIZE);
608 //Clear mixing buffer
609 memset(DryBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
610 memset(WetBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
612 //Actual mixing loop
613 while(ALSource)
615 j = 0;
616 State = ALSource->state;
617 while(State == AL_PLAYING && j < SamplesToDo)
619 DataSize = 0;
620 DataPosInt = 0;
621 DataPosFrac = 0;
623 //Get buffer info
624 if((Buffer = ALSource->ulBufferID))
626 ALBuffer = (ALbuffer*)ALTHUNK_LOOKUPENTRY(Buffer);
628 Data = ALBuffer->data;
629 Bits = aluBytesFromFormat(ALBuffer->format) * 8;
630 Channels = aluChannelsFromFormat(ALBuffer->format);
631 DataSize = ALBuffer->size;
632 Frequency = ALBuffer->frequency;
634 CalcSourceParams(ALContext, ALSource,
635 (Channels==1) ? AL_TRUE : AL_FALSE,
636 format, DrySend, WetSend, &Pitch,
637 &DryGainHF, &WetGainHF);
640 Pitch = (Pitch*Frequency) / ALContext->Frequency;
641 DataSize = DataSize / (Bits*Channels/8);
643 //Get source info
644 DataPosInt = ALSource->position;
645 DataPosFrac = ALSource->position_fraction;
647 //Compute 18.14 fixed point step
648 increment = aluF2L(Pitch*(1L<<FRACTIONBITS));
649 if(increment > (MAX_PITCH<<FRACTIONBITS))
650 increment = (MAX_PITCH<<FRACTIONBITS);
652 //Figure out how many samples we can mix.
653 //Pitch must be <= 4 (the number below !)
654 DataSize64 = DataSize+MAX_PITCH;
655 DataSize64 <<= FRACTIONBITS;
656 DataPos64 = DataPosInt;
657 DataPos64 <<= FRACTIONBITS;
658 DataPos64 += DataPosFrac;
659 BufferSize = (ALuint)((DataSize64-DataPos64) / increment);
660 BufferListItem = ALSource->queue;
661 for(loop = 0; loop < ALSource->BuffersPlayed; loop++)
663 if(BufferListItem)
664 BufferListItem = BufferListItem->next;
666 if (BufferListItem)
668 if (BufferListItem->next)
670 if(BufferListItem->next->buffer &&
671 ((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->data)
673 ulExtraSamples = min(((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->size, (ALint)(16*Channels));
674 memcpy(&Data[DataSize*Channels], ((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->data, ulExtraSamples);
677 else if (ALSource->bLooping)
679 if (ALSource->queue->buffer)
681 if(((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->data)
683 ulExtraSamples = min(((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->size, (ALint)(16*Channels));
684 memcpy(&Data[DataSize*Channels], ((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->data, ulExtraSamples);
689 BufferSize = min(BufferSize, (SamplesToDo-j));
691 //Actual sample mixing loop
692 Data += DataPosInt*Channels;
693 while(BufferSize--)
695 k = DataPosFrac>>FRACTIONBITS;
696 fraction = DataPosFrac&FRACTIONMASK;
697 if(Channels==1)
699 //First order interpolator
700 ALfloat sample = (ALfloat)((ALshort)(((Data[k]*((1L<<FRACTIONBITS)-fraction))+(Data[k+1]*(fraction)))>>FRACTIONBITS));
702 //Direct path final mix buffer and panning
703 value = aluComputeDrySample(ALSource, DryGainHF, sample);
704 DryBuffer[j][FRONT_LEFT] += value*DrySend[FRONT_LEFT];
705 DryBuffer[j][FRONT_RIGHT] += value*DrySend[FRONT_RIGHT];
706 #if 0 /* FIXME: Re-enable when proper 6-channel spatialization is used */
707 DryBuffer[j][SIDE_LEFT] += value*DrySend[SIDE_LEFT];
708 DryBuffer[j][SIDE_RIGHT] += value*DrySend[SIDE_RIGHT];
709 #endif
710 DryBuffer[j][BACK_LEFT] += value*DrySend[BACK_LEFT];
711 DryBuffer[j][BACK_RIGHT] += value*DrySend[BACK_RIGHT];
712 //Room path final mix buffer and panning
713 value = aluComputeWetSample(ALSource, WetGainHF, sample);
714 WetBuffer[j][FRONT_LEFT] += value*WetSend[FRONT_LEFT];
715 WetBuffer[j][FRONT_RIGHT] += value*WetSend[FRONT_RIGHT];
716 #if 0 /* FIXME: Re-enable when proper 6-channel spatialization is used */
717 WetBuffer[j][SIDE_LEFT] += value*WetSend[SIDE_LEFT];
718 WetBuffer[j][SIDE_RIGHT] += value*WetSend[SIDE_RIGHT];
719 #endif
720 WetBuffer[j][BACK_LEFT] += value*WetSend[BACK_LEFT];
721 WetBuffer[j][BACK_RIGHT] += value*WetSend[BACK_RIGHT];
723 else
725 //First order interpolator (front left)
726 value = (ALfloat)((ALshort)(((Data[k*Channels ]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels ]*(fraction)))>>FRACTIONBITS));
727 DryBuffer[j][FRONT_LEFT] += value*DrySend[FRONT_LEFT];
728 WetBuffer[j][FRONT_LEFT] += value*WetSend[FRONT_LEFT];
729 //First order interpolator (front right)
730 value = (ALfloat)((ALshort)(((Data[k*Channels+1]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+1]*(fraction)))>>FRACTIONBITS));
731 DryBuffer[j][FRONT_RIGHT] += value*DrySend[FRONT_RIGHT];
732 WetBuffer[j][FRONT_RIGHT] += value*WetSend[FRONT_RIGHT];
733 if(Channels >= 4)
735 int i = 2;
736 if(Channels >= 7)
738 //First order interpolator (side left)
739 value = (ALfloat)((ALshort)(((Data[k*Channels+2]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+2]*(fraction)))>>FRACTIONBITS));
740 DryBuffer[j][SIDE_LEFT] += value*DrySend[SIDE_LEFT];
741 WetBuffer[j][SIDE_LEFT] += value*WetSend[SIDE_LEFT];
742 //First order interpolator (side right)
743 value = (ALfloat)((ALshort)(((Data[k*Channels+3]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+3]*(fraction)))>>FRACTIONBITS));
744 DryBuffer[j][SIDE_RIGHT] += value*DrySend[SIDE_RIGHT];
745 WetBuffer[j][SIDE_RIGHT] += value*WetSend[SIDE_RIGHT];
746 i += 2;
748 //First order interpolator (back left)
749 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
750 DryBuffer[j][BACK_LEFT] += value*DrySend[BACK_LEFT];
751 WetBuffer[j][BACK_LEFT] += value*WetSend[BACK_LEFT];
752 i++;
753 //First order interpolator (back right)
754 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
755 DryBuffer[j][BACK_RIGHT] += value*DrySend[BACK_RIGHT];
756 WetBuffer[j][BACK_RIGHT] += value*WetSend[BACK_RIGHT];
757 i++;
758 if(Channels >= 6)
760 if(Channels != 7)
762 //First order interpolator (center)
763 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
764 DryBuffer[j][CENTER] += value*DrySend[CENTER];
765 WetBuffer[j][CENTER] += value*WetSend[CENTER];
766 i++;
768 //First order interpolator (lfe)
769 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
770 DryBuffer[j][LFE] += value*DrySend[LFE];
771 WetBuffer[j][LFE] += value*WetSend[LFE];
775 DataPosFrac += increment;
776 j++;
778 DataPosInt += (DataPosFrac>>FRACTIONBITS);
779 DataPosFrac = (DataPosFrac&FRACTIONMASK);
781 //Update source info
782 ALSource->position = DataPosInt;
783 ALSource->position_fraction = DataPosFrac;
786 //Handle looping sources
787 if(!Buffer || DataPosInt >= DataSize)
789 //queueing
790 if(ALSource->queue)
792 Looping = ALSource->bLooping;
793 if(ALSource->BuffersPlayed < (ALSource->BuffersInQueue-1))
795 BufferListItem = ALSource->queue;
796 for(loop = 0; loop <= ALSource->BuffersPlayed; loop++)
798 if(BufferListItem)
800 if(!Looping)
801 BufferListItem->bufferstate = PROCESSED;
802 BufferListItem = BufferListItem->next;
805 if(!Looping)
806 ALSource->BuffersProcessed++;
807 if(BufferListItem)
808 ALSource->ulBufferID = BufferListItem->buffer;
809 ALSource->position = DataPosInt-DataSize;
810 ALSource->position_fraction = DataPosFrac;
811 ALSource->BuffersPlayed++;
813 else
815 if(!Looping)
817 /* alSourceStop */
818 ALSource->state = AL_STOPPED;
819 ALSource->inuse = AL_FALSE;
820 ALSource->BuffersPlayed = ALSource->BuffersProcessed = ALSource->BuffersInQueue;
821 BufferListItem = ALSource->queue;
822 while(BufferListItem != NULL)
824 BufferListItem->bufferstate = PROCESSED;
825 BufferListItem = BufferListItem->next;
828 else
830 /* alSourceRewind */
831 /* alSourcePlay */
832 ALSource->state = AL_PLAYING;
833 ALSource->inuse = AL_TRUE;
834 ALSource->play = AL_TRUE;
835 ALSource->BuffersPlayed = 0;
836 ALSource->BufferPosition = 0;
837 ALSource->lBytesPlayed = 0;
838 ALSource->BuffersProcessed = 0;
839 BufferListItem = ALSource->queue;
840 while(BufferListItem != NULL)
842 BufferListItem->bufferstate = PENDING;
843 BufferListItem = BufferListItem->next;
845 ALSource->ulBufferID = ALSource->queue->buffer;
847 ALSource->position = DataPosInt-DataSize;
848 ALSource->position_fraction = DataPosFrac;
854 //Get source state
855 State = ALSource->state;
858 ALSource = ALSource->next;
861 //Post processing loop
862 switch(format)
864 case AL_FORMAT_MONO8:
865 for(i = 0;i < SamplesToDo;i++)
867 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT]+
868 WetBuffer[i][FRONT_LEFT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
869 buffer = ((ALubyte*)buffer) + 1;
871 break;
872 case AL_FORMAT_STEREO8:
873 for(i = 0;i < SamplesToDo;i++)
875 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
876 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
877 buffer = ((ALubyte*)buffer) + 2;
879 break;
880 case AL_FORMAT_QUAD8:
881 for(i = 0;i < SamplesToDo;i++)
883 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
884 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
885 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
886 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
887 buffer = ((ALubyte*)buffer) + 4;
889 break;
890 case AL_FORMAT_51CHN8:
891 for(i = 0;i < SamplesToDo;i++)
893 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
894 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
895 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
896 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
897 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
898 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
899 buffer = ((ALubyte*)buffer) + 6;
901 break;
902 case AL_FORMAT_61CHN8:
903 for(i = 0;i < SamplesToDo;i++)
905 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
906 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
907 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT])>>8)+128);
908 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT])>>8)+128);
909 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
910 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
911 ((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
912 buffer = ((ALubyte*)buffer) + 7;
914 break;
915 case AL_FORMAT_71CHN8:
916 for(i = 0;i < SamplesToDo;i++)
918 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
919 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
920 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT])>>8)+128);
921 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT])>>8)+128);
922 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
923 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
924 ((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
925 ((ALubyte*)buffer)[7] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
926 buffer = ((ALubyte*)buffer) + 8;
928 break;
930 case AL_FORMAT_MONO16:
931 for(i = 0;i < SamplesToDo;i++)
933 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT]+
934 WetBuffer[i][FRONT_LEFT]+WetBuffer[i][FRONT_RIGHT]);
935 buffer = ((ALshort*)buffer) + 1;
937 break;
938 case AL_FORMAT_STEREO16:
939 for(i = 0;i < SamplesToDo;i++)
941 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
942 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
943 buffer = ((ALshort*)buffer) + 2;
945 break;
946 case AL_FORMAT_QUAD16:
947 for(i = 0;i < SamplesToDo;i++)
949 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
950 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
951 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
952 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
953 buffer = ((ALshort*)buffer) + 4;
955 break;
956 case AL_FORMAT_51CHN16:
957 for(i = 0;i < SamplesToDo;i++)
959 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
960 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
961 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
962 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
963 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
964 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
965 buffer = ((ALshort*)buffer) + 6;
967 break;
968 case AL_FORMAT_61CHN16:
969 for(i = 0;i < SamplesToDo;i++)
971 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
972 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
973 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT]);
974 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT]);
975 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
976 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
977 ((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
978 buffer = ((ALshort*)buffer) + 7;
980 break;
981 case AL_FORMAT_71CHN16:
982 for(i = 0;i < SamplesToDo;i++)
984 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
985 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
986 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT]);
987 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT]);
988 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
989 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
990 ((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
991 ((ALshort*)buffer)[7] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
992 buffer = ((ALshort*)buffer) + 8;
994 break;
996 default:
997 break;
1000 size -= SamplesToDo;
1004 ProcessContext(ALContext);