2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
32 #include "alListener.h"
33 #include "alAuxEffectSlot.h"
37 #include "uhjfilter.h"
38 #include "bformatdec.h"
39 #include "static_assert.h"
41 #include "mixer_defs.h"
43 #include "backends/base.h"
53 ALfloat ConeScale
= 1.0f
;
55 /* Localized Z scalar for mono sources */
56 ALfloat ZScale
= 1.0f
;
58 extern inline ALfloat
minf(ALfloat a
, ALfloat b
);
59 extern inline ALfloat
maxf(ALfloat a
, ALfloat b
);
60 extern inline ALfloat
clampf(ALfloat val
, ALfloat min
, ALfloat max
);
62 extern inline ALdouble
mind(ALdouble a
, ALdouble b
);
63 extern inline ALdouble
maxd(ALdouble a
, ALdouble b
);
64 extern inline ALdouble
clampd(ALdouble val
, ALdouble min
, ALdouble max
);
66 extern inline ALuint
minu(ALuint a
, ALuint b
);
67 extern inline ALuint
maxu(ALuint a
, ALuint b
);
68 extern inline ALuint
clampu(ALuint val
, ALuint min
, ALuint max
);
70 extern inline ALint
mini(ALint a
, ALint b
);
71 extern inline ALint
maxi(ALint a
, ALint b
);
72 extern inline ALint
clampi(ALint val
, ALint min
, ALint max
);
74 extern inline ALint64
mini64(ALint64 a
, ALint64 b
);
75 extern inline ALint64
maxi64(ALint64 a
, ALint64 b
);
76 extern inline ALint64
clampi64(ALint64 val
, ALint64 min
, ALint64 max
);
78 extern inline ALuint64
minu64(ALuint64 a
, ALuint64 b
);
79 extern inline ALuint64
maxu64(ALuint64 a
, ALuint64 b
);
80 extern inline ALuint64
clampu64(ALuint64 val
, ALuint64 min
, ALuint64 max
);
82 extern inline ALfloat
lerp(ALfloat val1
, ALfloat val2
, ALfloat mu
);
83 extern inline ALfloat
resample_fir4(ALfloat val0
, ALfloat val1
, ALfloat val2
, ALfloat val3
, ALuint frac
);
84 extern inline ALfloat
resample_fir8(ALfloat val0
, ALfloat val1
, ALfloat val2
, ALfloat val3
, ALfloat val4
, ALfloat val5
, ALfloat val6
, ALfloat val7
, ALuint frac
);
86 extern inline void aluVectorSet(aluVector
*restrict vector
, ALfloat x
, ALfloat y
, ALfloat z
, ALfloat w
);
88 extern inline void aluMatrixfSetRow(aluMatrixf
*matrix
, ALuint row
,
89 ALfloat m0
, ALfloat m1
, ALfloat m2
, ALfloat m3
);
90 extern inline void aluMatrixfSet(aluMatrixf
*matrix
,
91 ALfloat m00
, ALfloat m01
, ALfloat m02
, ALfloat m03
,
92 ALfloat m10
, ALfloat m11
, ALfloat m12
, ALfloat m13
,
93 ALfloat m20
, ALfloat m21
, ALfloat m22
, ALfloat m23
,
94 ALfloat m30
, ALfloat m31
, ALfloat m32
, ALfloat m33
);
96 const aluMatrixf IdentityMatrixf
= {{
97 { 1.0f
, 0.0f
, 0.0f
, 0.0f
},
98 { 0.0f
, 1.0f
, 0.0f
, 0.0f
},
99 { 0.0f
, 0.0f
, 1.0f
, 0.0f
},
100 { 0.0f
, 0.0f
, 0.0f
, 1.0f
},
104 static inline HrtfDirectMixerFunc
SelectHrtfMixer(void)
107 if((CPUCapFlags
&CPU_CAP_SSE
))
108 return MixDirectHrtf_SSE
;
111 if((CPUCapFlags
&CPU_CAP_NEON
))
112 return MixDirectHrtf_Neon
;
115 return MixDirectHrtf_C
;
119 static inline void aluCrossproduct(const ALfloat
*inVector1
, const ALfloat
*inVector2
, ALfloat
*outVector
)
121 outVector
[0] = inVector1
[1]*inVector2
[2] - inVector1
[2]*inVector2
[1];
122 outVector
[1] = inVector1
[2]*inVector2
[0] - inVector1
[0]*inVector2
[2];
123 outVector
[2] = inVector1
[0]*inVector2
[1] - inVector1
[1]*inVector2
[0];
126 static inline ALfloat
aluDotproduct(const aluVector
*vec1
, const aluVector
*vec2
)
128 return vec1
->v
[0]*vec2
->v
[0] + vec1
->v
[1]*vec2
->v
[1] + vec1
->v
[2]*vec2
->v
[2];
131 static ALfloat
aluNormalize(ALfloat
*vec
)
133 ALfloat length
= sqrtf(vec
[0]*vec
[0] + vec
[1]*vec
[1] + vec
[2]*vec
[2]);
136 ALfloat inv_length
= 1.0f
/length
;
137 vec
[0] *= inv_length
;
138 vec
[1] *= inv_length
;
139 vec
[2] *= inv_length
;
144 static void aluMatrixfFloat3(ALfloat
*vec
, ALfloat w
, const aluMatrixf
*mtx
)
146 ALfloat v
[4] = { vec
[0], vec
[1], vec
[2], w
};
148 vec
[0] = v
[0]*mtx
->m
[0][0] + v
[1]*mtx
->m
[1][0] + v
[2]*mtx
->m
[2][0] + v
[3]*mtx
->m
[3][0];
149 vec
[1] = v
[0]*mtx
->m
[0][1] + v
[1]*mtx
->m
[1][1] + v
[2]*mtx
->m
[2][1] + v
[3]*mtx
->m
[3][1];
150 vec
[2] = v
[0]*mtx
->m
[0][2] + v
[1]*mtx
->m
[1][2] + v
[2]*mtx
->m
[2][2] + v
[3]*mtx
->m
[3][2];
153 static aluVector
aluMatrixfVector(const aluMatrixf
*mtx
, const aluVector
*vec
)
156 v
.v
[0] = vec
->v
[0]*mtx
->m
[0][0] + vec
->v
[1]*mtx
->m
[1][0] + vec
->v
[2]*mtx
->m
[2][0] + vec
->v
[3]*mtx
->m
[3][0];
157 v
.v
[1] = vec
->v
[0]*mtx
->m
[0][1] + vec
->v
[1]*mtx
->m
[1][1] + vec
->v
[2]*mtx
->m
[2][1] + vec
->v
[3]*mtx
->m
[3][1];
158 v
.v
[2] = vec
->v
[0]*mtx
->m
[0][2] + vec
->v
[1]*mtx
->m
[1][2] + vec
->v
[2]*mtx
->m
[2][2] + vec
->v
[3]*mtx
->m
[3][2];
159 v
.v
[3] = vec
->v
[0]*mtx
->m
[0][3] + vec
->v
[1]*mtx
->m
[1][3] + vec
->v
[2]*mtx
->m
[2][3] + vec
->v
[3]*mtx
->m
[3][3];
164 /* Prepares the interpolator for a given rate (determined by increment). A
165 * result of AL_FALSE indicates that the filter output will completely cut
168 * With a bit of work, and a trade of memory for CPU cost, this could be
169 * modified for use with an interpolated increment for buttery-smooth pitch
172 static ALboolean
BsincPrepare(const ALuint increment
, BsincState
*state
)
174 static const ALfloat scaleBase
= 1.510578918e-01f
, scaleRange
= 1.177936623e+00f
;
175 static const ALuint m
[BSINC_SCALE_COUNT
] = { 24, 24, 24, 24, 24, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 12 };
176 static const ALuint to
[4][BSINC_SCALE_COUNT
] =
178 { 0, 24, 408, 792, 1176, 1560, 1944, 2328, 2648, 2968, 3288, 3544, 3800, 4056, 4248, 4440 },
179 { 4632, 5016, 5400, 5784, 6168, 6552, 6936, 7320, 7640, 7960, 8280, 8536, 8792, 9048, 9240, 0 },
180 { 0, 9432, 9816, 10200, 10584, 10968, 11352, 11736, 12056, 12376, 12696, 12952, 13208, 13464, 13656, 13848 },
181 { 14040, 14424, 14808, 15192, 15576, 15960, 16344, 16728, 17048, 17368, 17688, 17944, 18200, 18456, 18648, 0 }
183 static const ALuint tm
[2][BSINC_SCALE_COUNT
] =
185 { 0, 24, 24, 24, 24, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 12 },
186 { 24, 24, 24, 24, 24, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 0 }
190 ALboolean uncut
= AL_TRUE
;
192 if(increment
> FRACTIONONE
)
194 sf
= (ALfloat
)FRACTIONONE
/ increment
;
197 /* Signal has been completely cut. The return result can be used
198 * to skip the filter (and output zeros) as an optimization.
206 sf
= (BSINC_SCALE_COUNT
- 1) * (sf
- scaleBase
) * scaleRange
;
208 /* The interpolation factor is fit to this diagonally-symmetric
209 * curve to reduce the transition ripple caused by interpolating
210 * different scales of the sinc function.
212 sf
= 1.0f
- cosf(asinf(sf
- si
));
218 si
= BSINC_SCALE_COUNT
- 1;
223 state
->l
= -(ALint
)((m
[si
] / 2) - 1);
224 /* The CPU cost of this table re-mapping could be traded for the memory
225 * cost of a complete table map (1024 elements large).
227 for(pi
= 0;pi
< BSINC_PHASE_COUNT
;pi
++)
229 state
->coeffs
[pi
].filter
= &bsincTab
[to
[0][si
] + tm
[0][si
]*pi
];
230 state
->coeffs
[pi
].scDelta
= &bsincTab
[to
[1][si
] + tm
[1][si
]*pi
];
231 state
->coeffs
[pi
].phDelta
= &bsincTab
[to
[2][si
] + tm
[0][si
]*pi
];
232 state
->coeffs
[pi
].spDelta
= &bsincTab
[to
[3][si
] + tm
[1][si
]*pi
];
238 static ALboolean
CalcListenerParams(ALCcontext
*Context
)
240 ALlistener
*Listener
= Context
->Listener
;
241 ALfloat N
[3], V
[3], U
[3], P
[3];
242 struct ALlistenerProps
*props
;
245 props
= ATOMIC_EXCHANGE(struct ALlistenerProps
*, &Listener
->Update
, NULL
, almemory_order_acq_rel
);
246 if(!props
) return AL_FALSE
;
249 N
[0] = ATOMIC_LOAD(&props
->Forward
[0], almemory_order_relaxed
);
250 N
[1] = ATOMIC_LOAD(&props
->Forward
[1], almemory_order_relaxed
);
251 N
[2] = ATOMIC_LOAD(&props
->Forward
[2], almemory_order_relaxed
);
253 V
[0] = ATOMIC_LOAD(&props
->Up
[0], almemory_order_relaxed
);
254 V
[1] = ATOMIC_LOAD(&props
->Up
[1], almemory_order_relaxed
);
255 V
[2] = ATOMIC_LOAD(&props
->Up
[2], almemory_order_relaxed
);
257 /* Build and normalize right-vector */
258 aluCrossproduct(N
, V
, U
);
261 aluMatrixfSet(&Listener
->Params
.Matrix
,
262 U
[0], V
[0], -N
[0], 0.0,
263 U
[1], V
[1], -N
[1], 0.0,
264 U
[2], V
[2], -N
[2], 0.0,
268 P
[0] = ATOMIC_LOAD(&props
->Position
[0], almemory_order_relaxed
);
269 P
[1] = ATOMIC_LOAD(&props
->Position
[1], almemory_order_relaxed
);
270 P
[2] = ATOMIC_LOAD(&props
->Position
[2], almemory_order_relaxed
);
271 aluMatrixfFloat3(P
, 1.0, &Listener
->Params
.Matrix
);
272 aluMatrixfSetRow(&Listener
->Params
.Matrix
, 3, -P
[0], -P
[1], -P
[2], 1.0f
);
274 aluVectorSet(&vel
, ATOMIC_LOAD(&props
->Velocity
[0], almemory_order_relaxed
),
275 ATOMIC_LOAD(&props
->Velocity
[1], almemory_order_relaxed
),
276 ATOMIC_LOAD(&props
->Velocity
[2], almemory_order_relaxed
),
278 Listener
->Params
.Velocity
= aluMatrixfVector(&Listener
->Params
.Matrix
, &vel
);
280 Listener
->Params
.Gain
= ATOMIC_LOAD(&props
->Gain
, almemory_order_relaxed
) * Context
->GainBoost
;
281 Listener
->Params
.MetersPerUnit
= ATOMIC_LOAD(&props
->MetersPerUnit
, almemory_order_relaxed
);
283 Listener
->Params
.DopplerFactor
= ATOMIC_LOAD(&props
->DopplerFactor
, almemory_order_relaxed
);
284 Listener
->Params
.SpeedOfSound
= ATOMIC_LOAD(&props
->SpeedOfSound
, almemory_order_relaxed
) *
285 ATOMIC_LOAD(&props
->DopplerVelocity
, almemory_order_relaxed
);
287 Listener
->Params
.SourceDistanceModel
= ATOMIC_LOAD(&props
->SourceDistanceModel
, almemory_order_relaxed
);
288 Listener
->Params
.DistanceModel
= ATOMIC_LOAD(&props
->DistanceModel
, almemory_order_relaxed
);
290 ATOMIC_REPLACE_HEAD(struct ALlistenerProps
*, &Listener
->FreeList
, props
);
294 static ALboolean
CalcEffectSlotParams(ALeffectslot
*slot
, ALCdevice
*device
)
296 struct ALeffectslotProps
*props
;
297 ALeffectState
*state
;
299 props
= ATOMIC_EXCHANGE(struct ALeffectslotProps
*, &slot
->Update
, NULL
, almemory_order_acq_rel
);
300 if(!props
) return AL_FALSE
;
302 slot
->Params
.Gain
= ATOMIC_LOAD(&props
->Gain
, almemory_order_relaxed
);
303 slot
->Params
.AuxSendAuto
= ATOMIC_LOAD(&props
->AuxSendAuto
, almemory_order_relaxed
);
304 slot
->Params
.EffectType
= ATOMIC_LOAD(&props
->Type
, almemory_order_relaxed
);
305 if(IsReverbEffect(slot
->Params
.EffectType
))
307 slot
->Params
.RoomRolloff
= props
->Props
.Reverb
.RoomRolloffFactor
;
308 slot
->Params
.DecayTime
= props
->Props
.Reverb
.DecayTime
;
309 slot
->Params
.AirAbsorptionGainHF
= props
->Props
.Reverb
.AirAbsorptionGainHF
;
313 slot
->Params
.RoomRolloff
= 0.0f
;
314 slot
->Params
.DecayTime
= 0.0f
;
315 slot
->Params
.AirAbsorptionGainHF
= 1.0f
;
318 /* Swap effect states. No need to play with the ref counts since they keep
319 * the same number of refs.
321 state
= ATOMIC_EXCHANGE(ALeffectState
*, &props
->State
, slot
->Params
.EffectState
,
322 almemory_order_relaxed
);
323 slot
->Params
.EffectState
= state
;
325 V(state
,update
)(device
, slot
, &props
->Props
);
327 ATOMIC_REPLACE_HEAD(struct ALeffectslotProps
*, &slot
->FreeList
, props
);
332 static void CalcNonAttnSourceParams(ALvoice
*voice
, const struct ALsourceProps
*props
, const ALbuffer
*ALBuffer
, const ALCcontext
*ALContext
)
334 static const struct ChanMap MonoMap
[1] = {
335 { FrontCenter
, 0.0f
, 0.0f
}
337 { BackLeft
, DEG2RAD(-150.0f
), DEG2RAD(0.0f
) },
338 { BackRight
, DEG2RAD( 150.0f
), DEG2RAD(0.0f
) }
340 { FrontLeft
, DEG2RAD( -45.0f
), DEG2RAD(0.0f
) },
341 { FrontRight
, DEG2RAD( 45.0f
), DEG2RAD(0.0f
) },
342 { BackLeft
, DEG2RAD(-135.0f
), DEG2RAD(0.0f
) },
343 { BackRight
, DEG2RAD( 135.0f
), DEG2RAD(0.0f
) }
345 { FrontLeft
, DEG2RAD( -30.0f
), DEG2RAD(0.0f
) },
346 { FrontRight
, DEG2RAD( 30.0f
), DEG2RAD(0.0f
) },
347 { FrontCenter
, DEG2RAD( 0.0f
), DEG2RAD(0.0f
) },
349 { SideLeft
, DEG2RAD(-110.0f
), DEG2RAD(0.0f
) },
350 { SideRight
, DEG2RAD( 110.0f
), DEG2RAD(0.0f
) }
352 { FrontLeft
, DEG2RAD(-30.0f
), DEG2RAD(0.0f
) },
353 { FrontRight
, DEG2RAD( 30.0f
), DEG2RAD(0.0f
) },
354 { FrontCenter
, DEG2RAD( 0.0f
), DEG2RAD(0.0f
) },
356 { BackCenter
, DEG2RAD(180.0f
), DEG2RAD(0.0f
) },
357 { SideLeft
, DEG2RAD(-90.0f
), DEG2RAD(0.0f
) },
358 { SideRight
, DEG2RAD( 90.0f
), DEG2RAD(0.0f
) }
360 { FrontLeft
, DEG2RAD( -30.0f
), DEG2RAD(0.0f
) },
361 { FrontRight
, DEG2RAD( 30.0f
), DEG2RAD(0.0f
) },
362 { FrontCenter
, DEG2RAD( 0.0f
), DEG2RAD(0.0f
) },
364 { BackLeft
, DEG2RAD(-150.0f
), DEG2RAD(0.0f
) },
365 { BackRight
, DEG2RAD( 150.0f
), DEG2RAD(0.0f
) },
366 { SideLeft
, DEG2RAD( -90.0f
), DEG2RAD(0.0f
) },
367 { SideRight
, DEG2RAD( 90.0f
), DEG2RAD(0.0f
) }
370 const ALCdevice
*Device
= ALContext
->Device
;
371 const ALlistener
*Listener
= ALContext
->Listener
;
372 ALfloat SourceVolume
,ListenerGain
,MinVolume
,MaxVolume
;
373 ALfloat DryGain
, DryGainHF
, DryGainLF
;
374 ALfloat WetGain
[MAX_SENDS
];
375 ALfloat WetGainHF
[MAX_SENDS
];
376 ALfloat WetGainLF
[MAX_SENDS
];
377 ALeffectslot
*SendSlots
[MAX_SENDS
];
378 ALuint NumSends
, Frequency
;
380 const struct ChanMap
*chans
= NULL
;
381 struct ChanMap StereoMap
[2] = {
382 { FrontLeft
, DEG2RAD(-30.0f
), DEG2RAD(0.0f
) },
383 { FrontRight
, DEG2RAD( 30.0f
), DEG2RAD(0.0f
) }
385 ALuint num_channels
= 0;
386 ALboolean DirectChannels
;
387 ALboolean isbformat
= AL_FALSE
;
391 /* Get device properties */
392 NumSends
= Device
->NumAuxSends
;
393 Frequency
= Device
->Frequency
;
395 /* Get listener properties */
396 ListenerGain
= Listener
->Params
.Gain
;
398 /* Get source properties */
399 SourceVolume
= ATOMIC_LOAD(&props
->Gain
, almemory_order_relaxed
);
400 MinVolume
= ATOMIC_LOAD(&props
->MinGain
, almemory_order_relaxed
);
401 MaxVolume
= ATOMIC_LOAD(&props
->MaxGain
, almemory_order_relaxed
);
402 Pitch
= ATOMIC_LOAD(&props
->Pitch
, almemory_order_relaxed
);
403 Relative
= ATOMIC_LOAD(&props
->HeadRelative
, almemory_order_relaxed
);
404 DirectChannels
= ATOMIC_LOAD(&props
->DirectChannels
, almemory_order_relaxed
);
406 /* Convert counter-clockwise to clockwise. */
407 StereoMap
[0].angle
= -ATOMIC_LOAD(&props
->StereoPan
[0], almemory_order_relaxed
);
408 StereoMap
[1].angle
= -ATOMIC_LOAD(&props
->StereoPan
[1], almemory_order_relaxed
);
410 voice
->DirectOut
.Buffer
= Device
->Dry
.Buffer
;
411 voice
->DirectOut
.Channels
= Device
->Dry
.NumChannels
;
412 for(i
= 0;i
< NumSends
;i
++)
414 SendSlots
[i
] = ATOMIC_LOAD(&props
->Send
[i
].Slot
, almemory_order_relaxed
);
415 if(!SendSlots
[i
] && i
== 0)
416 SendSlots
[i
] = Device
->DefaultSlot
;
417 if(!SendSlots
[i
] || SendSlots
[i
]->Params
.EffectType
== AL_EFFECT_NULL
)
420 voice
->SendOut
[i
].Buffer
= NULL
;
421 voice
->SendOut
[i
].Channels
= 0;
425 voice
->SendOut
[i
].Buffer
= SendSlots
[i
]->WetBuffer
;
426 voice
->SendOut
[i
].Channels
= SendSlots
[i
]->NumChannels
;
430 /* Calculate the stepping value */
431 Pitch
*= (ALfloat
)ALBuffer
->Frequency
/ Frequency
;
432 if(Pitch
> (ALfloat
)MAX_PITCH
)
433 voice
->Step
= MAX_PITCH
<<FRACTIONBITS
;
435 voice
->Step
= maxi(fastf2i(Pitch
*FRACTIONONE
+ 0.5f
), 1);
436 BsincPrepare(voice
->Step
, &voice
->SincState
);
438 /* Calculate gains */
439 DryGain
= clampf(SourceVolume
, MinVolume
, MaxVolume
);
440 DryGain
*= ATOMIC_LOAD(&props
->Direct
.Gain
, almemory_order_relaxed
) * ListenerGain
;
441 DryGain
= minf(DryGain
, GAIN_MIX_MAX
);
442 DryGainHF
= ATOMIC_LOAD(&props
->Direct
.GainHF
, almemory_order_relaxed
);
443 DryGainLF
= ATOMIC_LOAD(&props
->Direct
.GainLF
, almemory_order_relaxed
);
444 for(i
= 0;i
< NumSends
;i
++)
446 WetGain
[i
] = clampf(SourceVolume
, MinVolume
, MaxVolume
);
447 WetGain
[i
] *= ATOMIC_LOAD(&props
->Send
[i
].Gain
, almemory_order_relaxed
) * ListenerGain
;
448 WetGain
[i
] = minf(WetGain
[i
], GAIN_MIX_MAX
);
449 WetGainHF
[i
] = ATOMIC_LOAD(&props
->Send
[i
].GainHF
, almemory_order_relaxed
);
450 WetGainLF
[i
] = ATOMIC_LOAD(&props
->Send
[i
].GainLF
, almemory_order_relaxed
);
453 switch(ALBuffer
->FmtChannels
)
493 DirectChannels
= AL_FALSE
;
499 DirectChannels
= AL_FALSE
;
505 ALfloat N
[3], V
[3], U
[3];
510 N
[0] = ATOMIC_LOAD(&props
->Orientation
[0][0], almemory_order_relaxed
);
511 N
[1] = ATOMIC_LOAD(&props
->Orientation
[0][1], almemory_order_relaxed
);
512 N
[2] = ATOMIC_LOAD(&props
->Orientation
[0][2], almemory_order_relaxed
);
514 V
[0] = ATOMIC_LOAD(&props
->Orientation
[1][0], almemory_order_relaxed
);
515 V
[1] = ATOMIC_LOAD(&props
->Orientation
[1][1], almemory_order_relaxed
);
516 V
[2] = ATOMIC_LOAD(&props
->Orientation
[1][2], almemory_order_relaxed
);
520 const aluMatrixf
*lmatrix
= &Listener
->Params
.Matrix
;
521 aluMatrixfFloat3(N
, 0.0f
, lmatrix
);
522 aluMatrixfFloat3(V
, 0.0f
, lmatrix
);
524 /* Build and normalize right-vector */
525 aluCrossproduct(N
, V
, U
);
528 /* Build a rotate + conversion matrix (FuMa -> ACN+N3D). */
529 scale
= 1.732050808f
;
530 aluMatrixfSet(&matrix
,
531 1.414213562f
, 0.0f
, 0.0f
, 0.0f
,
532 0.0f
, -N
[0]*scale
, N
[1]*scale
, -N
[2]*scale
,
533 0.0f
, U
[0]*scale
, -U
[1]*scale
, U
[2]*scale
,
534 0.0f
, -V
[0]*scale
, V
[1]*scale
, -V
[2]*scale
537 voice
->DirectOut
.Buffer
= Device
->FOAOut
.Buffer
;
538 voice
->DirectOut
.Channels
= Device
->FOAOut
.NumChannels
;
539 for(c
= 0;c
< num_channels
;c
++)
540 ComputeFirstOrderGains(Device
->FOAOut
, matrix
.m
[c
], DryGain
,
541 voice
->Chan
[c
].Direct
.Gains
.Target
);
543 for(i
= 0;i
< NumSends
;i
++)
547 for(c
= 0;c
< num_channels
;c
++)
549 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
550 voice
->Chan
[c
].Send
[i
].Gains
.Target
[j
] = 0.0f
;
555 for(c
= 0;c
< num_channels
;c
++)
557 const ALeffectslot
*Slot
= SendSlots
[i
];
558 ComputeFirstOrderGainsBF(Slot
->ChanMap
, Slot
->NumChannels
, matrix
.m
[c
],
559 WetGain
[i
], voice
->Chan
[c
].Send
[i
].Gains
.Target
);
564 voice
->IsHrtf
= AL_FALSE
;
568 ALfloat coeffs
[MAX_AMBI_COEFFS
];
572 /* Skip the virtual channels and write inputs to the real output. */
573 voice
->DirectOut
.Buffer
= Device
->RealOut
.Buffer
;
574 voice
->DirectOut
.Channels
= Device
->RealOut
.NumChannels
;
575 for(c
= 0;c
< num_channels
;c
++)
578 for(j
= 0;j
< MAX_OUTPUT_CHANNELS
;j
++)
579 voice
->Chan
[c
].Direct
.Gains
.Target
[j
] = 0.0f
;
580 if((idx
=GetChannelIdxByName(Device
->RealOut
, chans
[c
].channel
)) != -1)
581 voice
->Chan
[c
].Direct
.Gains
.Target
[idx
] = DryGain
;
584 /* Auxiliary sends still use normal panning since they mix to B-Format, which can't
586 for(c
= 0;c
< num_channels
;c
++)
588 CalcAngleCoeffs(chans
[c
].angle
, chans
[c
].elevation
, 0.0f
, coeffs
);
590 for(i
= 0;i
< NumSends
;i
++)
594 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
595 voice
->Chan
[c
].Send
[i
].Gains
.Target
[j
] = 0.0f
;
599 const ALeffectslot
*Slot
= SendSlots
[i
];
600 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
, coeffs
,
601 WetGain
[i
], voice
->Chan
[c
].Send
[i
].Gains
.Target
);
606 voice
->IsHrtf
= AL_FALSE
;
608 else if(Device
->Render_Mode
== HrtfRender
)
610 /* Full HRTF rendering. Skip the virtual channels and render each
611 * input channel to the real outputs.
613 voice
->DirectOut
.Buffer
= Device
->RealOut
.Buffer
;
614 voice
->DirectOut
.Channels
= Device
->RealOut
.NumChannels
;
615 for(c
= 0;c
< num_channels
;c
++)
617 if(chans
[c
].channel
== LFE
)
620 voice
->Chan
[c
].Direct
.Hrtf
.Target
.Delay
[0] = 0;
621 voice
->Chan
[c
].Direct
.Hrtf
.Target
.Delay
[1] = 0;
622 for(i
= 0;i
< HRIR_LENGTH
;i
++)
624 voice
->Chan
[c
].Direct
.Hrtf
.Target
.Coeffs
[i
][0] = 0.0f
;
625 voice
->Chan
[c
].Direct
.Hrtf
.Target
.Coeffs
[i
][1] = 0.0f
;
628 for(i
= 0;i
< NumSends
;i
++)
630 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
631 voice
->Chan
[c
].Send
[i
].Gains
.Target
[j
] = 0.0f
;
637 /* Get the static HRIR coefficients and delays for this channel. */
638 GetHrtfCoeffs(Device
->Hrtf
.Handle
,
639 chans
[c
].elevation
, chans
[c
].angle
, 0.0f
, DryGain
,
640 voice
->Chan
[c
].Direct
.Hrtf
.Target
.Coeffs
,
641 voice
->Chan
[c
].Direct
.Hrtf
.Target
.Delay
644 /* Normal panning for auxiliary sends. */
645 CalcAngleCoeffs(chans
[c
].angle
, chans
[c
].elevation
, 0.0f
, coeffs
);
647 for(i
= 0;i
< NumSends
;i
++)
651 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
652 voice
->Chan
[c
].Send
[i
].Gains
.Target
[j
] = 0.0f
;
656 const ALeffectslot
*Slot
= SendSlots
[i
];
657 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
, coeffs
,
658 WetGain
[i
], voice
->Chan
[c
].Send
[i
].Gains
.Target
);
663 voice
->IsHrtf
= AL_TRUE
;
667 /* Non-HRTF rendering. Use normal panning to the output. */
668 for(c
= 0;c
< num_channels
;c
++)
670 /* Special-case LFE */
671 if(chans
[c
].channel
== LFE
)
673 for(j
= 0;j
< MAX_OUTPUT_CHANNELS
;j
++)
674 voice
->Chan
[c
].Direct
.Gains
.Target
[j
] = 0.0f
;
675 if(Device
->Dry
.Buffer
== Device
->RealOut
.Buffer
)
678 if((idx
=GetChannelIdxByName(Device
->RealOut
, chans
[c
].channel
)) != -1)
679 voice
->Chan
[c
].Direct
.Gains
.Target
[idx
] = DryGain
;
682 for(i
= 0;i
< NumSends
;i
++)
685 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
686 voice
->Chan
[c
].Send
[i
].Gains
.Target
[j
] = 0.0f
;
691 if(Device
->Render_Mode
== StereoPair
)
693 /* Clamp X so it remains within 30 degrees of 0 or 180 degree azimuth. */
694 ALfloat x
= sinf(chans
[c
].angle
) * cosf(chans
[c
].elevation
);
695 coeffs
[0] = clampf(-x
, -0.5f
, 0.5f
) + 0.5f
;
696 voice
->Chan
[c
].Direct
.Gains
.Target
[0] = coeffs
[0] * DryGain
;
697 voice
->Chan
[c
].Direct
.Gains
.Target
[1] = (1.0f
-coeffs
[0]) * DryGain
;
698 for(j
= 2;j
< MAX_OUTPUT_CHANNELS
;j
++)
699 voice
->Chan
[c
].Direct
.Gains
.Target
[j
] = 0.0f
;
701 CalcAngleCoeffs(chans
[c
].angle
, chans
[c
].elevation
, 0.0f
, coeffs
);
705 CalcAngleCoeffs(chans
[c
].angle
, chans
[c
].elevation
, 0.0f
, coeffs
);
706 ComputePanningGains(Device
->Dry
, coeffs
, DryGain
,
707 voice
->Chan
[c
].Direct
.Gains
.Target
);
710 for(i
= 0;i
< NumSends
;i
++)
715 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
716 voice
->Chan
[c
].Send
[i
].Gains
.Target
[j
] = 0.0f
;
720 const ALeffectslot
*Slot
= SendSlots
[i
];
721 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
, coeffs
,
722 WetGain
[i
], voice
->Chan
[c
].Send
[i
].Gains
.Target
);
727 voice
->IsHrtf
= AL_FALSE
;
732 ALfloat hfscale
= ATOMIC_LOAD(&props
->Direct
.HFReference
, almemory_order_relaxed
) /
734 ALfloat lfscale
= ATOMIC_LOAD(&props
->Direct
.LFReference
, almemory_order_relaxed
) /
736 DryGainHF
= maxf(DryGainHF
, 0.0001f
);
737 DryGainLF
= maxf(DryGainLF
, 0.0001f
);
738 for(c
= 0;c
< num_channels
;c
++)
740 voice
->Chan
[c
].Direct
.FilterType
= AF_None
;
741 if(DryGainHF
!= 1.0f
) voice
->Chan
[c
].Direct
.FilterType
|= AF_LowPass
;
742 if(DryGainLF
!= 1.0f
) voice
->Chan
[c
].Direct
.FilterType
|= AF_HighPass
;
743 ALfilterState_setParams(
744 &voice
->Chan
[c
].Direct
.LowPass
, ALfilterType_HighShelf
,
745 DryGainHF
, hfscale
, calc_rcpQ_from_slope(DryGainHF
, 0.75f
)
747 ALfilterState_setParams(
748 &voice
->Chan
[c
].Direct
.HighPass
, ALfilterType_LowShelf
,
749 DryGainLF
, lfscale
, calc_rcpQ_from_slope(DryGainLF
, 0.75f
)
753 for(i
= 0;i
< NumSends
;i
++)
755 ALfloat hfscale
= ATOMIC_LOAD(&props
->Send
[i
].HFReference
, almemory_order_relaxed
) /
757 ALfloat lfscale
= ATOMIC_LOAD(&props
->Send
[i
].LFReference
, almemory_order_relaxed
) /
759 WetGainHF
[i
] = maxf(WetGainHF
[i
], 0.0001f
);
760 WetGainLF
[i
] = maxf(WetGainLF
[i
], 0.0001f
);
761 for(c
= 0;c
< num_channels
;c
++)
763 voice
->Chan
[c
].Send
[i
].FilterType
= AF_None
;
764 if(WetGainHF
[i
] != 1.0f
) voice
->Chan
[c
].Send
[i
].FilterType
|= AF_LowPass
;
765 if(WetGainLF
[i
] != 1.0f
) voice
->Chan
[c
].Send
[i
].FilterType
|= AF_HighPass
;
766 ALfilterState_setParams(
767 &voice
->Chan
[c
].Send
[i
].LowPass
, ALfilterType_HighShelf
,
768 WetGainHF
[i
], hfscale
, calc_rcpQ_from_slope(WetGainHF
[i
], 0.75f
)
770 ALfilterState_setParams(
771 &voice
->Chan
[c
].Send
[i
].HighPass
, ALfilterType_LowShelf
,
772 WetGainLF
[i
], lfscale
, calc_rcpQ_from_slope(WetGainLF
[i
], 0.75f
)
778 static void CalcAttnSourceParams(ALvoice
*voice
, const struct ALsourceProps
*props
, const ALbuffer
*ALBuffer
, const ALCcontext
*ALContext
)
780 const ALCdevice
*Device
= ALContext
->Device
;
781 const ALlistener
*Listener
= ALContext
->Listener
;
782 aluVector Position
, Velocity
, Direction
, SourceToListener
;
783 ALfloat InnerAngle
,OuterAngle
,Distance
,ClampedDist
;
784 ALfloat MinVolume
,MaxVolume
,MinDist
,MaxDist
,Rolloff
;
785 ALfloat SourceVolume
,ListenerGain
;
786 ALfloat DopplerFactor
, SpeedOfSound
;
787 ALfloat AirAbsorptionFactor
;
788 ALfloat RoomAirAbsorption
[MAX_SENDS
];
789 ALeffectslot
*SendSlots
[MAX_SENDS
];
791 ALfloat RoomAttenuation
[MAX_SENDS
];
792 ALfloat MetersPerUnit
;
793 ALfloat RoomRolloffBase
;
794 ALfloat RoomRolloff
[MAX_SENDS
];
795 ALfloat DecayDistance
[MAX_SENDS
];
799 ALboolean DryGainHFAuto
;
800 ALfloat WetGain
[MAX_SENDS
];
801 ALfloat WetGainHF
[MAX_SENDS
];
802 ALfloat WetGainLF
[MAX_SENDS
];
803 ALboolean WetGainAuto
;
804 ALboolean WetGainHFAuto
;
812 for(i
= 0;i
< MAX_SENDS
;i
++)
818 /* Get context/device properties */
819 DopplerFactor
= Listener
->Params
.DopplerFactor
;
820 SpeedOfSound
= Listener
->Params
.SpeedOfSound
;
821 NumSends
= Device
->NumAuxSends
;
822 Frequency
= Device
->Frequency
;
824 /* Get listener properties */
825 ListenerGain
= Listener
->Params
.Gain
;
826 MetersPerUnit
= Listener
->Params
.MetersPerUnit
;
828 /* Get source properties */
829 SourceVolume
= ATOMIC_LOAD(&props
->Gain
, almemory_order_relaxed
);
830 MinVolume
= ATOMIC_LOAD(&props
->MinGain
, almemory_order_relaxed
);
831 MaxVolume
= ATOMIC_LOAD(&props
->MaxGain
, almemory_order_relaxed
);
832 Pitch
= ATOMIC_LOAD(&props
->Pitch
, almemory_order_relaxed
);
833 aluVectorSet(&Position
, ATOMIC_LOAD(&props
->Position
[0], almemory_order_relaxed
),
834 ATOMIC_LOAD(&props
->Position
[1], almemory_order_relaxed
),
835 ATOMIC_LOAD(&props
->Position
[2], almemory_order_relaxed
),
837 aluVectorSet(&Direction
, ATOMIC_LOAD(&props
->Direction
[0], almemory_order_relaxed
),
838 ATOMIC_LOAD(&props
->Direction
[1], almemory_order_relaxed
),
839 ATOMIC_LOAD(&props
->Direction
[2], almemory_order_relaxed
),
841 aluVectorSet(&Velocity
, ATOMIC_LOAD(&props
->Velocity
[0], almemory_order_relaxed
),
842 ATOMIC_LOAD(&props
->Velocity
[1], almemory_order_relaxed
),
843 ATOMIC_LOAD(&props
->Velocity
[2], almemory_order_relaxed
),
845 MinDist
= ATOMIC_LOAD(&props
->RefDistance
, almemory_order_relaxed
);
846 MaxDist
= ATOMIC_LOAD(&props
->MaxDistance
, almemory_order_relaxed
);
847 Rolloff
= ATOMIC_LOAD(&props
->RollOffFactor
, almemory_order_relaxed
);
848 DopplerFactor
*= ATOMIC_LOAD(&props
->DopplerFactor
, almemory_order_relaxed
);
849 InnerAngle
= ATOMIC_LOAD(&props
->InnerAngle
, almemory_order_relaxed
);
850 OuterAngle
= ATOMIC_LOAD(&props
->OuterAngle
, almemory_order_relaxed
);
851 AirAbsorptionFactor
= ATOMIC_LOAD(&props
->AirAbsorptionFactor
, almemory_order_relaxed
);
852 DryGainHFAuto
= ATOMIC_LOAD(&props
->DryGainHFAuto
, almemory_order_relaxed
);
853 WetGainAuto
= ATOMIC_LOAD(&props
->WetGainAuto
, almemory_order_relaxed
);
854 WetGainHFAuto
= ATOMIC_LOAD(&props
->WetGainHFAuto
, almemory_order_relaxed
);
855 RoomRolloffBase
= ATOMIC_LOAD(&props
->RoomRolloffFactor
, almemory_order_relaxed
);
857 voice
->DirectOut
.Buffer
= Device
->Dry
.Buffer
;
858 voice
->DirectOut
.Channels
= Device
->Dry
.NumChannels
;
859 for(i
= 0;i
< NumSends
;i
++)
861 SendSlots
[i
] = ATOMIC_LOAD(&props
->Send
[i
].Slot
, almemory_order_relaxed
);
863 if(!SendSlots
[i
] && i
== 0)
864 SendSlots
[i
] = Device
->DefaultSlot
;
865 if(!SendSlots
[i
] || SendSlots
[i
]->Params
.EffectType
== AL_EFFECT_NULL
)
868 RoomRolloff
[i
] = 0.0f
;
869 DecayDistance
[i
] = 0.0f
;
870 RoomAirAbsorption
[i
] = 1.0f
;
872 else if(SendSlots
[i
]->Params
.AuxSendAuto
)
874 RoomRolloff
[i
] = SendSlots
[i
]->Params
.RoomRolloff
+ RoomRolloffBase
;
875 DecayDistance
[i
] = SendSlots
[i
]->Params
.DecayTime
*
876 SPEEDOFSOUNDMETRESPERSEC
;
877 RoomAirAbsorption
[i
] = SendSlots
[i
]->Params
.AirAbsorptionGainHF
;
881 /* If the slot's auxiliary send auto is off, the data sent to the
882 * effect slot is the same as the dry path, sans filter effects */
883 RoomRolloff
[i
] = Rolloff
;
884 DecayDistance
[i
] = 0.0f
;
885 RoomAirAbsorption
[i
] = AIRABSORBGAINHF
;
890 voice
->SendOut
[i
].Buffer
= NULL
;
891 voice
->SendOut
[i
].Channels
= 0;
895 voice
->SendOut
[i
].Buffer
= SendSlots
[i
]->WetBuffer
;
896 voice
->SendOut
[i
].Channels
= SendSlots
[i
]->NumChannels
;
900 /* Transform source to listener space (convert to head relative) */
901 if(ATOMIC_LOAD(&props
->HeadRelative
, almemory_order_relaxed
) == AL_FALSE
)
903 const aluMatrixf
*Matrix
= &Listener
->Params
.Matrix
;
904 /* Transform source vectors */
905 Position
= aluMatrixfVector(Matrix
, &Position
);
906 Velocity
= aluMatrixfVector(Matrix
, &Velocity
);
907 Direction
= aluMatrixfVector(Matrix
, &Direction
);
911 const aluVector
*lvelocity
= &Listener
->Params
.Velocity
;
912 /* Offset the source velocity to be relative of the listener velocity */
913 Velocity
.v
[0] += lvelocity
->v
[0];
914 Velocity
.v
[1] += lvelocity
->v
[1];
915 Velocity
.v
[2] += lvelocity
->v
[2];
918 aluNormalize(Direction
.v
);
919 SourceToListener
.v
[0] = -Position
.v
[0];
920 SourceToListener
.v
[1] = -Position
.v
[1];
921 SourceToListener
.v
[2] = -Position
.v
[2];
922 SourceToListener
.v
[3] = 0.0f
;
923 Distance
= aluNormalize(SourceToListener
.v
);
925 /* Calculate distance attenuation */
926 ClampedDist
= Distance
;
929 for(i
= 0;i
< NumSends
;i
++)
930 RoomAttenuation
[i
] = 1.0f
;
931 switch(Listener
->Params
.SourceDistanceModel
?
932 ATOMIC_LOAD(&props
->DistanceModel
, almemory_order_relaxed
) :
933 Listener
->Params
.DistanceModel
)
935 case InverseDistanceClamped
:
936 ClampedDist
= clampf(ClampedDist
, MinDist
, MaxDist
);
937 if(MaxDist
< MinDist
)
940 case InverseDistance
:
943 ALfloat dist
= lerp(MinDist
, ClampedDist
, Rolloff
);
944 if(dist
> 0.0f
) Attenuation
= MinDist
/ dist
;
945 for(i
= 0;i
< NumSends
;i
++)
947 dist
= lerp(MinDist
, ClampedDist
, RoomRolloff
[i
]);
948 if(dist
> 0.0f
) RoomAttenuation
[i
] = MinDist
/ dist
;
953 case LinearDistanceClamped
:
954 ClampedDist
= clampf(ClampedDist
, MinDist
, MaxDist
);
955 if(MaxDist
< MinDist
)
959 if(MaxDist
!= MinDist
)
961 Attenuation
= 1.0f
- (Rolloff
*(ClampedDist
-MinDist
)/(MaxDist
- MinDist
));
962 Attenuation
= maxf(Attenuation
, 0.0f
);
963 for(i
= 0;i
< NumSends
;i
++)
965 RoomAttenuation
[i
] = 1.0f
- (RoomRolloff
[i
]*(ClampedDist
-MinDist
)/(MaxDist
- MinDist
));
966 RoomAttenuation
[i
] = maxf(RoomAttenuation
[i
], 0.0f
);
971 case ExponentDistanceClamped
:
972 ClampedDist
= clampf(ClampedDist
, MinDist
, MaxDist
);
973 if(MaxDist
< MinDist
)
976 case ExponentDistance
:
977 if(ClampedDist
> 0.0f
&& MinDist
> 0.0f
)
979 Attenuation
= powf(ClampedDist
/MinDist
, -Rolloff
);
980 for(i
= 0;i
< NumSends
;i
++)
981 RoomAttenuation
[i
] = powf(ClampedDist
/MinDist
, -RoomRolloff
[i
]);
985 case DisableDistance
:
986 ClampedDist
= MinDist
;
990 /* Source Gain + Attenuation */
991 DryGain
= SourceVolume
* Attenuation
;
992 for(i
= 0;i
< NumSends
;i
++)
993 WetGain
[i
] = SourceVolume
* RoomAttenuation
[i
];
995 /* Distance-based air absorption */
996 if(AirAbsorptionFactor
> 0.0f
&& ClampedDist
> MinDist
)
998 ALfloat meters
= (ClampedDist
-MinDist
) * MetersPerUnit
;
999 DryGainHF
*= powf(AIRABSORBGAINHF
, AirAbsorptionFactor
*meters
);
1000 for(i
= 0;i
< NumSends
;i
++)
1001 WetGainHF
[i
] *= powf(RoomAirAbsorption
[i
], AirAbsorptionFactor
*meters
);
1006 ALfloat ApparentDist
= 1.0f
/maxf(Attenuation
, 0.00001f
) - 1.0f
;
1008 /* Apply a decay-time transformation to the wet path, based on the
1009 * attenuation of the dry path.
1011 * Using the apparent distance, based on the distance attenuation, the
1012 * initial decay of the reverb effect is calculated and applied to the
1015 for(i
= 0;i
< NumSends
;i
++)
1017 if(DecayDistance
[i
] > 0.0f
)
1018 WetGain
[i
] *= powf(0.001f
/*-60dB*/, ApparentDist
/DecayDistance
[i
]);
1022 /* Calculate directional soundcones */
1023 if(InnerAngle
< 360.0f
)
1030 Angle
= RAD2DEG(acosf(aluDotproduct(&Direction
, &SourceToListener
)) * ConeScale
) * 2.0f
;
1031 if(Angle
> InnerAngle
)
1033 if(Angle
< OuterAngle
)
1035 scale
= (Angle
-InnerAngle
) / (OuterAngle
-InnerAngle
);
1037 1.0f
, ATOMIC_LOAD(&props
->OuterGain
, almemory_order_relaxed
), scale
1040 1.0f
, ATOMIC_LOAD(&props
->OuterGainHF
, almemory_order_relaxed
), scale
1045 ConeVolume
= ATOMIC_LOAD(&props
->OuterGain
, almemory_order_relaxed
);
1046 ConeHF
= ATOMIC_LOAD(&props
->OuterGainHF
, almemory_order_relaxed
);
1048 DryGain
*= ConeVolume
;
1050 DryGainHF
*= ConeHF
;
1053 /* Wet path uses the total area of the cone emitter (the room will
1054 * receive the same amount of sound regardless of its direction).
1056 scale
= (asinf(maxf((OuterAngle
-InnerAngle
)/360.0f
, 0.0f
)) / F_PI
) +
1057 (InnerAngle
/360.0f
);
1061 1.0f
, ATOMIC_LOAD(&props
->OuterGain
, almemory_order_relaxed
), scale
1063 for(i
= 0;i
< NumSends
;i
++)
1064 WetGain
[i
] *= ConeVolume
;
1069 1.0f
, ATOMIC_LOAD(&props
->OuterGainHF
, almemory_order_relaxed
), scale
1071 for(i
= 0;i
< NumSends
;i
++)
1072 WetGainHF
[i
] *= ConeHF
;
1076 /* Apply gain and frequency filters */
1077 DryGain
= clampf(DryGain
, MinVolume
, MaxVolume
);
1078 DryGain
*= ATOMIC_LOAD(&props
->Direct
.Gain
, almemory_order_relaxed
) * ListenerGain
;
1079 DryGain
= minf(DryGain
, GAIN_MIX_MAX
);
1080 DryGainHF
*= ATOMIC_LOAD(&props
->Direct
.GainHF
, almemory_order_relaxed
);
1081 DryGainLF
*= ATOMIC_LOAD(&props
->Direct
.GainLF
, almemory_order_relaxed
);
1082 for(i
= 0;i
< NumSends
;i
++)
1084 WetGain
[i
] = clampf(WetGain
[i
], MinVolume
, MaxVolume
);
1085 WetGain
[i
] *= ATOMIC_LOAD(&props
->Send
[i
].Gain
, almemory_order_relaxed
) * ListenerGain
;
1086 WetGain
[i
] = minf(WetGain
[i
], GAIN_MIX_MAX
);
1087 WetGainHF
[i
] *= ATOMIC_LOAD(&props
->Send
[i
].GainHF
, almemory_order_relaxed
);
1088 WetGainLF
[i
] *= ATOMIC_LOAD(&props
->Send
[i
].GainLF
, almemory_order_relaxed
);
1091 /* Calculate velocity-based doppler effect */
1092 if(DopplerFactor
> 0.0f
)
1094 const aluVector
*lvelocity
= &Listener
->Params
.Velocity
;
1097 if(SpeedOfSound
< 1.0f
)
1099 DopplerFactor
*= 1.0f
/SpeedOfSound
;
1100 SpeedOfSound
= 1.0f
;
1103 VSS
= aluDotproduct(&Velocity
, &SourceToListener
) * DopplerFactor
;
1104 VLS
= aluDotproduct(lvelocity
, &SourceToListener
) * DopplerFactor
;
1106 Pitch
*= clampf(SpeedOfSound
-VLS
, 1.0f
, SpeedOfSound
*2.0f
- 1.0f
) /
1107 clampf(SpeedOfSound
-VSS
, 1.0f
, SpeedOfSound
*2.0f
- 1.0f
);
1110 /* Calculate fixed-point stepping value, based on the pitch, buffer
1111 * frequency, and output frequency.
1113 Pitch
*= (ALfloat
)ALBuffer
->Frequency
/ Frequency
;
1114 if(Pitch
> (ALfloat
)MAX_PITCH
)
1115 voice
->Step
= MAX_PITCH
<<FRACTIONBITS
;
1117 voice
->Step
= maxi(fastf2i(Pitch
*FRACTIONONE
+ 0.5f
), 1);
1118 BsincPrepare(voice
->Step
, &voice
->SincState
);
1120 if(Device
->Render_Mode
== HrtfRender
)
1122 /* Full HRTF rendering. Skip the virtual channels and render to the
1125 ALfloat dir
[3] = { 0.0f
, 0.0f
, -1.0f
};
1126 ALfloat ev
= 0.0f
, az
= 0.0f
;
1127 ALfloat radius
= ATOMIC_LOAD(&props
->Radius
, almemory_order_relaxed
);
1128 ALfloat coeffs
[MAX_AMBI_COEFFS
];
1129 ALfloat spread
= 0.0f
;
1131 voice
->DirectOut
.Buffer
= Device
->RealOut
.Buffer
;
1132 voice
->DirectOut
.Channels
= Device
->RealOut
.NumChannels
;
1134 if(Distance
> FLT_EPSILON
)
1136 dir
[0] = -SourceToListener
.v
[0];
1137 dir
[1] = -SourceToListener
.v
[1];
1138 dir
[2] = -SourceToListener
.v
[2] * ZScale
;
1140 /* Calculate elevation and azimuth only when the source is not at
1141 * the listener. This prevents +0 and -0 Z from producing
1142 * inconsistent panning. Also, clamp Y in case FP precision errors
1143 * cause it to land outside of -1..+1. */
1144 ev
= asinf(clampf(dir
[1], -1.0f
, 1.0f
));
1145 az
= atan2f(dir
[0], -dir
[2]);
1147 if(radius
> Distance
)
1148 spread
= F_TAU
- Distance
/radius
*F_PI
;
1149 else if(Distance
> FLT_EPSILON
)
1150 spread
= asinf(radius
/ Distance
) * 2.0f
;
1152 /* Get the HRIR coefficients and delays. */
1153 GetHrtfCoeffs(Device
->Hrtf
.Handle
, ev
, az
, spread
, DryGain
,
1154 voice
->Chan
[0].Direct
.Hrtf
.Target
.Coeffs
,
1155 voice
->Chan
[0].Direct
.Hrtf
.Target
.Delay
);
1157 CalcDirectionCoeffs(dir
, spread
, coeffs
);
1159 for(i
= 0;i
< NumSends
;i
++)
1164 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
1165 voice
->Chan
[0].Send
[i
].Gains
.Target
[j
] = 0.0f
;
1169 const ALeffectslot
*Slot
= SendSlots
[i
];
1170 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
, coeffs
,
1171 WetGain
[i
], voice
->Chan
[0].Send
[i
].Gains
.Target
);
1175 voice
->IsHrtf
= AL_TRUE
;
1179 /* Non-HRTF rendering. */
1180 ALfloat dir
[3] = { 0.0f
, 0.0f
, -1.0f
};
1181 ALfloat radius
= ATOMIC_LOAD(&props
->Radius
, almemory_order_relaxed
);
1182 ALfloat coeffs
[MAX_AMBI_COEFFS
];
1183 ALfloat spread
= 0.0f
;
1185 /* Get the localized direction, and compute panned gains. */
1186 if(Distance
> FLT_EPSILON
)
1188 dir
[0] = -SourceToListener
.v
[0];
1189 dir
[1] = -SourceToListener
.v
[1];
1190 dir
[2] = -SourceToListener
.v
[2] * ZScale
;
1192 if(radius
> Distance
)
1193 spread
= F_TAU
- Distance
/radius
*F_PI
;
1194 else if(Distance
> FLT_EPSILON
)
1195 spread
= asinf(radius
/ Distance
) * 2.0f
;
1197 if(Device
->Render_Mode
== StereoPair
)
1199 /* Clamp X so it remains within 30 degrees of 0 or 180 degree azimuth. */
1200 ALfloat x
= -dir
[0] * (0.5f
* (cosf(spread
*0.5f
) + 1.0f
));
1201 x
= clampf(x
, -0.5f
, 0.5f
) + 0.5f
;
1202 voice
->Chan
[0].Direct
.Gains
.Target
[0] = x
* DryGain
;
1203 voice
->Chan
[0].Direct
.Gains
.Target
[1] = (1.0f
-x
) * DryGain
;
1204 for(i
= 2;i
< MAX_OUTPUT_CHANNELS
;i
++)
1205 voice
->Chan
[0].Direct
.Gains
.Target
[i
] = 0.0f
;
1207 CalcDirectionCoeffs(dir
, spread
, coeffs
);
1211 CalcDirectionCoeffs(dir
, spread
, coeffs
);
1212 ComputePanningGains(Device
->Dry
, coeffs
, DryGain
,
1213 voice
->Chan
[0].Direct
.Gains
.Target
);
1216 for(i
= 0;i
< NumSends
;i
++)
1221 for(j
= 0;j
< MAX_EFFECT_CHANNELS
;j
++)
1222 voice
->Chan
[0].Send
[i
].Gains
.Target
[j
] = 0.0f
;
1226 const ALeffectslot
*Slot
= SendSlots
[i
];
1227 ComputePanningGainsBF(Slot
->ChanMap
, Slot
->NumChannels
, coeffs
,
1228 WetGain
[i
], voice
->Chan
[0].Send
[i
].Gains
.Target
);
1232 voice
->IsHrtf
= AL_FALSE
;
1236 ALfloat hfscale
= ATOMIC_LOAD(&props
->Direct
.HFReference
, almemory_order_relaxed
) /
1238 ALfloat lfscale
= ATOMIC_LOAD(&props
->Direct
.LFReference
, almemory_order_relaxed
) /
1240 DryGainHF
= maxf(DryGainHF
, 0.0001f
);
1241 DryGainLF
= maxf(DryGainLF
, 0.0001f
);
1242 voice
->Chan
[0].Direct
.FilterType
= AF_None
;
1243 if(DryGainHF
!= 1.0f
) voice
->Chan
[0].Direct
.FilterType
|= AF_LowPass
;
1244 if(DryGainLF
!= 1.0f
) voice
->Chan
[0].Direct
.FilterType
|= AF_HighPass
;
1245 ALfilterState_setParams(
1246 &voice
->Chan
[0].Direct
.LowPass
, ALfilterType_HighShelf
,
1247 DryGainHF
, hfscale
, calc_rcpQ_from_slope(DryGainHF
, 0.75f
)
1249 ALfilterState_setParams(
1250 &voice
->Chan
[0].Direct
.HighPass
, ALfilterType_LowShelf
,
1251 DryGainLF
, lfscale
, calc_rcpQ_from_slope(DryGainLF
, 0.75f
)
1254 for(i
= 0;i
< NumSends
;i
++)
1256 ALfloat hfscale
= ATOMIC_LOAD(&props
->Send
[i
].HFReference
, almemory_order_relaxed
) /
1258 ALfloat lfscale
= ATOMIC_LOAD(&props
->Send
[i
].LFReference
, almemory_order_relaxed
) /
1260 WetGainHF
[i
] = maxf(WetGainHF
[i
], 0.0001f
);
1261 WetGainLF
[i
] = maxf(WetGainLF
[i
], 0.0001f
);
1262 voice
->Chan
[0].Send
[i
].FilterType
= AF_None
;
1263 if(WetGainHF
[i
] != 1.0f
) voice
->Chan
[0].Send
[i
].FilterType
|= AF_LowPass
;
1264 if(WetGainLF
[i
] != 1.0f
) voice
->Chan
[0].Send
[i
].FilterType
|= AF_HighPass
;
1265 ALfilterState_setParams(
1266 &voice
->Chan
[0].Send
[i
].LowPass
, ALfilterType_HighShelf
,
1267 WetGainHF
[i
], hfscale
, calc_rcpQ_from_slope(WetGainHF
[i
], 0.75f
)
1269 ALfilterState_setParams(
1270 &voice
->Chan
[0].Send
[i
].HighPass
, ALfilterType_LowShelf
,
1271 WetGainLF
[i
], lfscale
, calc_rcpQ_from_slope(WetGainLF
[i
], 0.75f
)
1276 static void CalcSourceParams(ALvoice
*voice
, ALCcontext
*context
, ALboolean force
)
1278 ALsource
*source
= voice
->Source
;
1279 const ALbufferlistitem
*BufferListItem
;
1280 struct ALsourceProps
*props
;
1282 props
= ATOMIC_EXCHANGE(struct ALsourceProps
*, &source
->Update
, NULL
, almemory_order_acq_rel
);
1283 if(!props
&& !force
) return;
1287 voice
->Props
= *props
;
1289 ATOMIC_REPLACE_HEAD(struct ALsourceProps
*, &source
->FreeList
, props
);
1292 BufferListItem
= ATOMIC_LOAD(&source
->queue
, almemory_order_relaxed
);
1293 while(BufferListItem
!= NULL
)
1295 const ALbuffer
*buffer
;
1296 if((buffer
=BufferListItem
->buffer
) != NULL
)
1298 if(buffer
->FmtChannels
== FmtMono
)
1299 CalcAttnSourceParams(voice
, &voice
->Props
, buffer
, context
);
1301 CalcNonAttnSourceParams(voice
, &voice
->Props
, buffer
, context
);
1304 BufferListItem
= BufferListItem
->next
;
1309 static void UpdateContextSources(ALCcontext
*ctx
, ALeffectslot
*slot
)
1311 ALvoice
*voice
, *voice_end
;
1314 IncrementRef(&ctx
->UpdateCount
);
1315 if(!ATOMIC_LOAD(&ctx
->HoldUpdates
, almemory_order_acquire
))
1317 ALboolean force
= CalcListenerParams(ctx
);
1320 force
|= CalcEffectSlotParams(slot
, ctx
->Device
);
1321 slot
= ATOMIC_LOAD(&slot
->next
, almemory_order_relaxed
);
1324 voice
= ctx
->Voices
;
1325 voice_end
= voice
+ ctx
->VoiceCount
;
1326 for(;voice
!= voice_end
;++voice
)
1328 if(!(source
=voice
->Source
)) continue;
1329 if(source
->state
!= AL_PLAYING
&& source
->state
!= AL_PAUSED
)
1330 voice
->Source
= NULL
;
1332 CalcSourceParams(voice
, ctx
, force
);
1335 IncrementRef(&ctx
->UpdateCount
);
1339 /* Specialized function to clamp to [-1, +1] with only one branch. This also
1340 * converts NaN to 0. */
1341 static inline ALfloat
aluClampf(ALfloat val
)
1343 if(fabsf(val
) <= 1.0f
) return val
;
1344 return (ALfloat
)((0.0f
< val
) - (val
< 0.0f
));
1347 static inline ALfloat
aluF2F(ALfloat val
)
1350 static inline ALint
aluF2I(ALfloat val
)
1352 /* Floats only have a 24-bit mantissa, so [-16777215, +16777215] is the max
1353 * integer range normalized floats can be safely converted to.
1355 return fastf2i(aluClampf(val
)*16777215.0f
)<<7;
1357 static inline ALuint
aluF2UI(ALfloat val
)
1358 { return aluF2I(val
)+2147483648u; }
1360 static inline ALshort
aluF2S(ALfloat val
)
1361 { return fastf2i(aluClampf(val
)*32767.0f
); }
1362 static inline ALushort
aluF2US(ALfloat val
)
1363 { return aluF2S(val
)+32768; }
1365 static inline ALbyte
aluF2B(ALfloat val
)
1366 { return fastf2i(aluClampf(val
)*127.0f
); }
1367 static inline ALubyte
aluF2UB(ALfloat val
)
1368 { return aluF2B(val
)+128; }
1370 #define DECL_TEMPLATE(T, func) \
1371 static void Write_##T(ALfloatBUFFERSIZE *InBuffer, ALvoid *OutBuffer, \
1372 ALuint SamplesToDo, ALuint numchans) \
1375 for(j = 0;j < numchans;j++) \
1377 const ALfloat *in = InBuffer[j]; \
1378 T *restrict out = (T*)OutBuffer + j; \
1379 for(i = 0;i < SamplesToDo;i++) \
1380 out[i*numchans] = func(in[i]); \
1384 DECL_TEMPLATE(ALfloat
, aluF2F
)
1385 DECL_TEMPLATE(ALuint
, aluF2UI
)
1386 DECL_TEMPLATE(ALint
, aluF2I
)
1387 DECL_TEMPLATE(ALushort
, aluF2US
)
1388 DECL_TEMPLATE(ALshort
, aluF2S
)
1389 DECL_TEMPLATE(ALubyte
, aluF2UB
)
1390 DECL_TEMPLATE(ALbyte
, aluF2B
)
1392 #undef DECL_TEMPLATE
1395 ALvoid
aluMixData(ALCdevice
*device
, ALvoid
*buffer
, ALsizei size
)
1398 ALvoice
*voice
, *voice_end
;
1405 SetMixerFPUMode(&oldMode
);
1409 SamplesToDo
= minu(size
, BUFFERSIZE
);
1410 for(c
= 0;c
< device
->Dry
.NumChannels
;c
++)
1411 memset(device
->Dry
.Buffer
[c
], 0, SamplesToDo
*sizeof(ALfloat
));
1412 if(device
->Dry
.Buffer
!= device
->RealOut
.Buffer
)
1413 for(c
= 0;c
< device
->RealOut
.NumChannels
;c
++)
1414 memset(device
->RealOut
.Buffer
[c
], 0, SamplesToDo
*sizeof(ALfloat
));
1415 if(device
->Dry
.Buffer
!= device
->FOAOut
.Buffer
)
1416 for(c
= 0;c
< device
->FOAOut
.NumChannels
;c
++)
1417 memset(device
->FOAOut
.Buffer
[c
], 0, SamplesToDo
*sizeof(ALfloat
));
1419 IncrementRef(&device
->MixCount
);
1420 V0(device
->Backend
,lock
)();
1422 if((slot
=device
->DefaultSlot
) != NULL
)
1424 CalcEffectSlotParams(device
->DefaultSlot
, device
);
1425 for(i
= 0;i
< slot
->NumChannels
;i
++)
1426 memset(slot
->WetBuffer
[i
], 0, SamplesToDo
*sizeof(ALfloat
));
1429 ctx
= ATOMIC_LOAD(&device
->ContextList
, almemory_order_acquire
);
1432 ALeffectslot
*slotroot
;
1434 slotroot
= ATOMIC_LOAD(&ctx
->ActiveAuxSlotList
, almemory_order_acquire
);
1435 UpdateContextSources(ctx
, slotroot
);
1440 for(i
= 0;i
< slot
->NumChannels
;i
++)
1441 memset(slot
->WetBuffer
[i
], 0, SamplesToDo
*sizeof(ALfloat
));
1442 slot
= ATOMIC_LOAD(&slot
->next
, almemory_order_relaxed
);
1445 /* source processing */
1446 voice
= ctx
->Voices
;
1447 voice_end
= voice
+ ctx
->VoiceCount
;
1448 for(;voice
!= voice_end
;++voice
)
1450 ALboolean IsVoiceInit
= (voice
->Step
> 0);
1451 source
= voice
->Source
;
1452 if(source
&& source
->state
== AL_PLAYING
&& IsVoiceInit
)
1453 MixSource(voice
, source
, device
, SamplesToDo
);
1456 /* effect slot processing */
1460 ALeffectState
*state
= slot
->Params
.EffectState
;
1461 V(state
,process
)(SamplesToDo
, SAFE_CONST(ALfloatBUFFERSIZE
*,slot
->WetBuffer
),
1462 state
->OutBuffer
, state
->OutChannels
);
1463 slot
= ATOMIC_LOAD(&slot
->next
, almemory_order_relaxed
);
1469 if(device
->DefaultSlot
!= NULL
)
1471 const ALeffectslot
*slot
= device
->DefaultSlot
;
1472 ALeffectState
*state
= slot
->Params
.EffectState
;
1473 V(state
,process
)(SamplesToDo
, slot
->WetBuffer
, state
->OutBuffer
,
1474 state
->OutChannels
);
1477 /* Increment the clock time. Every second's worth of samples is
1478 * converted and added to clock base so that large sample counts don't
1479 * overflow during conversion. This also guarantees an exact, stable
1481 device
->SamplesDone
+= SamplesToDo
;
1482 device
->ClockBase
+= (device
->SamplesDone
/device
->Frequency
) * DEVICE_CLOCK_RES
;
1483 device
->SamplesDone
%= device
->Frequency
;
1484 V0(device
->Backend
,unlock
)();
1485 IncrementRef(&device
->MixCount
);
1487 if(device
->Hrtf
.Handle
)
1489 int lidx
= GetChannelIdxByName(device
->RealOut
, FrontLeft
);
1490 int ridx
= GetChannelIdxByName(device
->RealOut
, FrontRight
);
1491 if(lidx
!= -1 && ridx
!= -1)
1493 HrtfDirectMixerFunc HrtfMix
= SelectHrtfMixer();
1494 ALuint irsize
= device
->Hrtf
.IrSize
;
1495 for(c
= 0;c
< device
->Dry
.NumChannels
;c
++)
1497 HrtfMix(device
->RealOut
.Buffer
, lidx
, ridx
,
1498 device
->Dry
.Buffer
[c
], device
->Hrtf
.Offset
, irsize
,
1499 device
->Hrtf
.Coeffs
[c
], device
->Hrtf
.Values
[c
],
1503 device
->Hrtf
.Offset
+= SamplesToDo
;
1506 else if(device
->AmbiDecoder
)
1508 if(device
->Dry
.Buffer
!= device
->FOAOut
.Buffer
)
1509 bformatdec_upSample(device
->AmbiDecoder
,
1510 device
->Dry
.Buffer
, SAFE_CONST(ALfloatBUFFERSIZE
*,device
->FOAOut
.Buffer
),
1511 device
->FOAOut
.NumChannels
, SamplesToDo
1513 bformatdec_process(device
->AmbiDecoder
,
1514 device
->RealOut
.Buffer
, device
->RealOut
.NumChannels
,
1515 SAFE_CONST(ALfloatBUFFERSIZE
*,device
->Dry
.Buffer
), SamplesToDo
1518 else if(device
->AmbiUp
)
1520 ambiup_process(device
->AmbiUp
,
1521 device
->RealOut
.Buffer
, device
->RealOut
.NumChannels
,
1522 SAFE_CONST(ALfloatBUFFERSIZE
*,device
->FOAOut
.Buffer
), SamplesToDo
1525 else if(device
->Uhj_Encoder
)
1527 int lidx
= GetChannelIdxByName(device
->RealOut
, FrontLeft
);
1528 int ridx
= GetChannelIdxByName(device
->RealOut
, FrontRight
);
1529 if(lidx
!= -1 && ridx
!= -1)
1531 /* Encode to stereo-compatible 2-channel UHJ output. */
1532 EncodeUhj2(device
->Uhj_Encoder
,
1533 device
->RealOut
.Buffer
[lidx
], device
->RealOut
.Buffer
[ridx
],
1534 device
->Dry
.Buffer
, SamplesToDo
1538 else if(device
->Bs2b
)
1540 int lidx
= GetChannelIdxByName(device
->RealOut
, FrontLeft
);
1541 int ridx
= GetChannelIdxByName(device
->RealOut
, FrontRight
);
1542 if(lidx
!= -1 && ridx
!= -1)
1544 /* Apply binaural/crossfeed filter */
1545 bs2b_cross_feed(device
->Bs2b
, device
->RealOut
.Buffer
[lidx
],
1546 device
->RealOut
.Buffer
[ridx
], SamplesToDo
);
1552 ALfloat (*OutBuffer
)[BUFFERSIZE
] = device
->RealOut
.Buffer
;
1553 ALuint OutChannels
= device
->RealOut
.NumChannels
;
1555 #define WRITE(T, a, b, c, d) do { \
1556 Write_##T((a), (b), (c), (d)); \
1557 buffer = (T*)buffer + (c)*(d); \
1559 switch(device
->FmtType
)
1562 WRITE(ALbyte
, OutBuffer
, buffer
, SamplesToDo
, OutChannels
);
1565 WRITE(ALubyte
, OutBuffer
, buffer
, SamplesToDo
, OutChannels
);
1568 WRITE(ALshort
, OutBuffer
, buffer
, SamplesToDo
, OutChannels
);
1571 WRITE(ALushort
, OutBuffer
, buffer
, SamplesToDo
, OutChannels
);
1574 WRITE(ALint
, OutBuffer
, buffer
, SamplesToDo
, OutChannels
);
1577 WRITE(ALuint
, OutBuffer
, buffer
, SamplesToDo
, OutChannels
);
1580 WRITE(ALfloat
, OutBuffer
, buffer
, SamplesToDo
, OutChannels
);
1586 size
-= SamplesToDo
;
1589 RestoreFPUMode(&oldMode
);
1593 ALvoid
aluHandleDisconnect(ALCdevice
*device
)
1595 ALCcontext
*Context
;
1597 device
->Connected
= ALC_FALSE
;
1599 Context
= ATOMIC_LOAD_SEQ(&device
->ContextList
);
1602 ALvoice
*voice
, *voice_end
;
1604 voice
= Context
->Voices
;
1605 voice_end
= voice
+ Context
->VoiceCount
;
1606 while(voice
!= voice_end
)
1608 ALsource
*source
= voice
->Source
;
1609 voice
->Source
= NULL
;
1611 if(source
&& source
->state
== AL_PLAYING
)
1613 source
->state
= AL_STOPPED
;
1614 ATOMIC_STORE(&source
->current_buffer
, NULL
, almemory_order_relaxed
);
1615 ATOMIC_STORE(&source
->position
, 0, almemory_order_relaxed
);
1616 ATOMIC_STORE(&source
->position_fraction
, 0, almemory_order_release
);
1621 Context
->VoiceCount
= 0;
1623 Context
= Context
->next
;