Document the different filter types, and combine some split lines
[openal-soft.git] / Alc / mixer_neon.c
blobcd3f45747a03e2937e1202f5bf91e42e57e1243e
1 #include "config.h"
3 #include <arm_neon.h>
5 #include "AL/al.h"
6 #include "AL/alc.h"
7 #include "alMain.h"
8 #include "alu.h"
9 #include "hrtf.h"
12 static inline void ApplyCoeffsStep(ALuint Offset, ALfloat (*restrict Values)[2],
13 const ALuint IrSize,
14 ALfloat (*restrict Coeffs)[2],
15 const ALfloat (*restrict CoeffStep)[2],
16 ALfloat left, ALfloat right)
18 ALuint c;
19 float32x4_t leftright4;
21 float32x2_t leftright2 = vdup_n_f32(0.0);
22 leftright2 = vset_lane_f32(left, leftright2, 0);
23 leftright2 = vset_lane_f32(right, leftright2, 1);
24 leftright4 = vcombine_f32(leftright2, leftright2);
26 for(c = 0;c < IrSize;c += 2)
28 const ALuint o0 = (Offset+c)&HRIR_MASK;
29 const ALuint o1 = (o0+1)&HRIR_MASK;
30 float32x4_t vals = vcombine_f32(vld1_f32((float32_t*)&Values[o0][0]),
31 vld1_f32((float32_t*)&Values[o1][0]));
32 float32x4_t coefs = vld1q_f32((float32_t*)&Coeffs[c][0]);
33 float32x4_t deltas = vld1q_f32(&CoeffStep[c][0]);
35 vals = vmlaq_f32(vals, coefs, leftright4);
36 coefs = vaddq_f32(coefs, deltas);
38 vst1_f32((float32_t*)&Values[o0][0], vget_low_f32(vals));
39 vst1_f32((float32_t*)&Values[o1][0], vget_high_f32(vals));
40 vst1q_f32(&Coeffs[c][0], coefs);
44 static inline void ApplyCoeffs(ALuint Offset, ALfloat (*restrict Values)[2],
45 const ALuint IrSize,
46 ALfloat (*restrict Coeffs)[2],
47 ALfloat left, ALfloat right)
49 ALuint c;
50 float32x4_t leftright4;
52 float32x2_t leftright2 = vdup_n_f32(0.0);
53 leftright2 = vset_lane_f32(left, leftright2, 0);
54 leftright2 = vset_lane_f32(right, leftright2, 1);
55 leftright4 = vcombine_f32(leftright2, leftright2);
57 for(c = 0;c < IrSize;c += 2)
59 const ALuint o0 = (Offset+c)&HRIR_MASK;
60 const ALuint o1 = (o0+1)&HRIR_MASK;
61 float32x4_t vals = vcombine_f32(vld1_f32((float32_t*)&Values[o0][0]),
62 vld1_f32((float32_t*)&Values[o1][0]));
63 float32x4_t coefs = vld1q_f32((float32_t*)&Coeffs[c][0]);
65 vals = vmlaq_f32(vals, coefs, leftright4);
67 vst1_f32((float32_t*)&Values[o0][0], vget_low_f32(vals));
68 vst1_f32((float32_t*)&Values[o1][0], vget_high_f32(vals));
73 #define SUFFIX Neon
74 #include "mixer_inc.c"
75 #undef SUFFIX
78 void MixDirect_Neon(DirectParams *params, const ALfloat *restrict data, ALuint srcchan,
79 ALuint OutPos, ALuint BufferSize)
81 ALfloat (*restrict OutBuffer)[BUFFERSIZE] = params->OutBuffer;
82 ALuint Counter = maxu(params->Counter, OutPos) - OutPos;
83 ALfloat DrySend, Step;
84 float32x4_t gain;
85 ALuint c;
87 for(c = 0;c < MaxChannels;c++)
89 ALuint pos = 0;
90 DrySend = params->Mix.Gains.Current[srcchan][c];
91 Step = params->Mix.Gains.Step[srcchan][c];
92 if(Step != 1.0f && Counter > 0)
94 for(;pos < BufferSize && pos < Counter;pos++)
96 OutBuffer[c][OutPos+pos] += data[pos]*DrySend;
97 DrySend *= Step;
99 if(pos == Counter)
100 DrySend = params->Mix.Gains.Target[srcchan][c];
101 params->Mix.Gains.Current[srcchan][c] = DrySend;
102 /* Mix until pos is aligned with 4 or the mix is done. */
103 for(;pos < BufferSize && (pos&3) != 0;pos++)
104 OutBuffer[c][OutPos+pos] += data[pos]*DrySend;
107 if(!(DrySend > GAIN_SILENCE_THRESHOLD))
108 continue;
109 gain = vdupq_n_f32(DrySend);
110 for(;BufferSize-pos > 3;pos += 4)
112 const float32x4_t val4 = vld1q_f32(&data[pos]);
113 float32x4_t dry4 = vld1q_f32(&OutBuffer[c][OutPos+pos]);
114 dry4 = vaddq_f32(dry4, vmulq_f32(val4, gain));
115 vst1q_f32(&OutBuffer[c][OutPos+pos], dry4);
117 for(;pos < BufferSize;pos++)
118 OutBuffer[c][OutPos+pos] += data[pos]*DrySend;
123 void MixSend_Neon(SendParams *params, const ALfloat *restrict data,
124 ALuint OutPos, ALuint BufferSize)
126 ALfloat (*restrict OutBuffer)[BUFFERSIZE] = params->OutBuffer;
127 ALuint Counter = maxu(params->Counter, OutPos) - OutPos;
128 ALfloat WetGain, Step;
129 float32x4_t gain;
132 ALuint pos = 0;
133 WetGain = params->Gain.Current;
134 Step = params->Gain.Step;
135 if(Step != 1.0f && Counter > 0)
137 for(;pos < BufferSize && pos < Counter;pos++)
139 OutBuffer[0][OutPos+pos] += data[pos]*WetGain;
140 WetGain *= Step;
142 if(pos == Counter)
143 WetGain = params->Gain.Target;
144 params->Gain.Current = WetGain;
145 for(;pos < BufferSize && (pos&3) != 0;pos++)
146 OutBuffer[0][OutPos+pos] += data[pos]*WetGain;
149 if(!(WetGain > GAIN_SILENCE_THRESHOLD))
150 return;
151 gain = vdupq_n_f32(WetGain);
152 for(;BufferSize-pos > 3;pos += 4)
154 const float32x4_t val4 = vld1q_f32(&data[pos]);
155 float32x4_t wet4 = vld1q_f32(&OutBuffer[0][OutPos+pos]);
156 wet4 = vaddq_f32(wet4, vmulq_f32(val4, gain));
157 vst1q_f32(&OutBuffer[0][OutPos+pos], wet4);
159 for(;pos < BufferSize;pos++)
160 OutBuffer[0][OutPos+pos] += data[pos] * WetGain;