Remove some unnecessary duplicate math, which was making long lines
[openal-soft.git] / Alc / ALu.c
blobe24fca8d2e61ad95de6c2945d44f24d88737ea66
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 1999-2007 by authors.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #define _CRT_SECURE_NO_DEPRECATE // get rid of sprintf security warnings on VS2005
23 #include "config.h"
25 #include <math.h>
26 #include "alMain.h"
27 #include "AL/al.h"
28 #include "AL/alc.h"
29 #include "alSource.h"
30 #include "alBuffer.h"
31 #include "alThunk.h"
32 #include "alListener.h"
33 #include "alAuxEffectSlot.h"
34 #include "bs2b.h"
36 #if defined(HAVE_STDINT_H)
37 #include <stdint.h>
38 typedef int64_t ALint64;
39 #elif defined(HAVE___INT64)
40 typedef __int64 ALint64;
41 #elif (SIZEOF_LONG == 8)
42 typedef long ALint64;
43 #elif (SIZEOF_LONG_LONG == 8)
44 typedef long long ALint64;
45 #endif
47 #ifdef HAVE_SQRTF
48 #define aluSqrt(x) ((ALfloat)sqrtf((float)(x)))
49 #else
50 #define aluSqrt(x) ((ALfloat)sqrt((double)(x)))
51 #endif
53 #ifdef HAVE_ACOSF
54 #define aluAcos(x) ((ALfloat)acosf((float)(x)))
55 #else
56 #define aluAcos(x) ((ALfloat)acos((double)(x)))
57 #endif
59 // fixes for mingw32.
60 #if defined(max) && !defined(__max)
61 #define __max max
62 #endif
63 #if defined(min) && !defined(__min)
64 #define __min min
65 #endif
67 #define BUFFERSIZE 48000
68 #define FRACTIONBITS 14
69 #define FRACTIONMASK ((1L<<FRACTIONBITS)-1)
70 #define MAX_PITCH 4
72 enum {
73 FRONT_LEFT = 0,
74 FRONT_RIGHT,
75 SIDE_LEFT,
76 SIDE_RIGHT,
77 BACK_LEFT,
78 BACK_RIGHT,
79 CENTER,
80 LFE,
82 OUTPUTCHANNELS
85 /* NOTE: The AL_FORMAT_REAR* enums aren't handled here be cause they're
86 * converted to AL_FORMAT_QUAD* when loaded */
87 __inline ALuint aluBytesFromFormat(ALenum format)
89 switch(format)
91 case AL_FORMAT_MONO8:
92 case AL_FORMAT_STEREO8:
93 case AL_FORMAT_QUAD8_LOKI:
94 case AL_FORMAT_QUAD8:
95 case AL_FORMAT_51CHN8:
96 case AL_FORMAT_61CHN8:
97 case AL_FORMAT_71CHN8:
98 return 1;
100 case AL_FORMAT_MONO16:
101 case AL_FORMAT_STEREO16:
102 case AL_FORMAT_QUAD16_LOKI:
103 case AL_FORMAT_QUAD16:
104 case AL_FORMAT_51CHN16:
105 case AL_FORMAT_61CHN16:
106 case AL_FORMAT_71CHN16:
107 return 2;
109 case AL_FORMAT_MONO_FLOAT32:
110 case AL_FORMAT_STEREO_FLOAT32:
111 case AL_FORMAT_QUAD32:
112 case AL_FORMAT_51CHN32:
113 case AL_FORMAT_61CHN32:
114 case AL_FORMAT_71CHN32:
115 return 4;
117 default:
118 return 0;
122 __inline ALuint aluChannelsFromFormat(ALenum format)
124 switch(format)
126 case AL_FORMAT_MONO8:
127 case AL_FORMAT_MONO16:
128 case AL_FORMAT_MONO_FLOAT32:
129 return 1;
131 case AL_FORMAT_STEREO8:
132 case AL_FORMAT_STEREO16:
133 case AL_FORMAT_STEREO_FLOAT32:
134 return 2;
136 case AL_FORMAT_QUAD8_LOKI:
137 case AL_FORMAT_QUAD16_LOKI:
138 case AL_FORMAT_QUAD8:
139 case AL_FORMAT_QUAD16:
140 case AL_FORMAT_QUAD32:
141 return 4;
143 case AL_FORMAT_51CHN8:
144 case AL_FORMAT_51CHN16:
145 case AL_FORMAT_51CHN32:
146 return 6;
148 case AL_FORMAT_61CHN8:
149 case AL_FORMAT_61CHN16:
150 case AL_FORMAT_61CHN32:
151 return 7;
153 case AL_FORMAT_71CHN8:
154 case AL_FORMAT_71CHN16:
155 case AL_FORMAT_71CHN32:
156 return 8;
158 default:
159 return 0;
163 static __inline ALint aluF2L(ALfloat Value)
165 #if 0
166 if(sizeof(ALint) == 4 && sizeof(double) == 8)
168 double temp;
169 temp = Value + (((65536.0*65536.0*16.0)+(65536.0*65536.0*8.0))*65536.0);
170 return *((ALint*)&temp);
172 #endif
173 return (ALint)Value;
176 static __inline ALshort aluF2S(ALfloat Value)
178 ALint i;
180 i = aluF2L(Value);
181 i = __min( 32767, i);
182 i = __max(-32768, i);
183 return ((ALshort)i);
186 static __inline ALvoid aluCrossproduct(ALfloat *inVector1,ALfloat *inVector2,ALfloat *outVector)
188 outVector[0] = inVector1[1]*inVector2[2] - inVector1[2]*inVector2[1];
189 outVector[1] = inVector1[2]*inVector2[0] - inVector1[0]*inVector2[2];
190 outVector[2] = inVector1[0]*inVector2[1] - inVector1[1]*inVector2[0];
193 static __inline ALfloat aluDotproduct(ALfloat *inVector1,ALfloat *inVector2)
195 return inVector1[0]*inVector2[0] + inVector1[1]*inVector2[1] +
196 inVector1[2]*inVector2[2];
199 static __inline ALvoid aluNormalize(ALfloat *inVector)
201 ALfloat length, inverse_length;
203 length = (ALfloat)aluSqrt(aluDotproduct(inVector, inVector));
204 if(length != 0)
206 inverse_length = 1.0f/length;
207 inVector[0] *= inverse_length;
208 inVector[1] *= inverse_length;
209 inVector[2] *= inverse_length;
213 static __inline ALvoid aluMatrixVector(ALfloat *vector,ALfloat matrix[3][3])
215 ALfloat result[3];
217 result[0] = vector[0]*matrix[0][0] + vector[1]*matrix[1][0] + vector[2]*matrix[2][0];
218 result[1] = vector[0]*matrix[0][1] + vector[1]*matrix[1][1] + vector[2]*matrix[2][1];
219 result[2] = vector[0]*matrix[0][2] + vector[1]*matrix[1][2] + vector[2]*matrix[2][2];
220 memcpy(vector, result, sizeof(result));
223 static __inline ALfloat aluComputeDrySample(ALsource *source, ALfloat DryGainHF, ALfloat sample)
225 if(DryGainHF < 1.0f)
227 if(DryGainHF > 0.0f)
229 sample *= DryGainHF;
230 sample += source->LastDrySample * (1.0f-DryGainHF);
232 else
233 sample = 0.0f;
236 source->LastDrySample = sample;
237 return sample;
240 static __inline ALfloat aluComputeWetSample(ALsource *source, ALfloat WetGainHF, ALfloat sample)
242 if(WetGainHF < 1.0f)
244 if(WetGainHF > 0.0f)
246 sample *= WetGainHF;
247 sample += source->LastWetSample * (1.0f-WetGainHF);
249 else
250 sample = 0.0f;
253 source->LastWetSample = sample;
254 return sample;
257 static ALvoid CalcSourceParams(ALCcontext *ALContext, ALsource *ALSource,
258 ALenum isMono, ALenum OutputFormat,
259 ALfloat *drysend, ALfloat *wetsend,
260 ALfloat *pitch, ALfloat *drygainhf,
261 ALfloat *wetgainhf)
263 ALfloat InnerAngle,OuterAngle,Angle,Distance,DryMix,WetMix=0.0f;
264 ALfloat Direction[3],Position[3],SourceToListener[3];
265 ALfloat MinVolume,MaxVolume,MinDist,MaxDist,Rolloff,OuterGainHF;
266 ALfloat ConeVolume,SourceVolume,PanningFB,PanningLR,ListenerGain;
267 ALfloat U[3],V[3],N[3];
268 ALfloat DopplerFactor, DopplerVelocity, flSpeedOfSound, flMaxVelocity;
269 ALfloat Matrix[3][3];
270 ALfloat flAttenuation;
271 ALfloat RoomAttenuation;
272 ALfloat MetersPerUnit;
273 ALfloat RoomRolloff;
274 ALfloat DryGainHF = 1.0f;
275 ALfloat WetGainHF = 1.0f;
277 //Get context properties
278 DopplerFactor = ALContext->DopplerFactor;
279 DopplerVelocity = ALContext->DopplerVelocity;
280 flSpeedOfSound = ALContext->flSpeedOfSound;
282 //Get listener properties
283 ListenerGain = ALContext->Listener.Gain;
284 MetersPerUnit = ALContext->Listener.MetersPerUnit;
286 //Get source properties
287 SourceVolume = ALSource->flGain;
288 memcpy(Position, ALSource->vPosition, sizeof(ALSource->vPosition));
289 memcpy(Direction, ALSource->vOrientation, sizeof(ALSource->vOrientation));
290 MinVolume = ALSource->flMinGain;
291 MaxVolume = ALSource->flMaxGain;
292 MinDist = ALSource->flRefDistance;
293 MaxDist = ALSource->flMaxDistance;
294 Rolloff = ALSource->flRollOffFactor;
295 InnerAngle = ALSource->flInnerAngle;
296 OuterAngle = ALSource->flOuterAngle;
297 OuterGainHF = ALSource->OuterGainHF;
298 RoomRolloff = ALSource->RoomRolloffFactor;
300 //Only apply 3D calculations for mono buffers
301 if(isMono != AL_FALSE)
303 //1. Translate Listener to origin (convert to head relative)
304 if(ALSource->bHeadRelative==AL_FALSE)
306 Position[0] -= ALContext->Listener.Position[0];
307 Position[1] -= ALContext->Listener.Position[1];
308 Position[2] -= ALContext->Listener.Position[2];
311 //2. Calculate distance attenuation
312 Distance = aluSqrt(aluDotproduct(Position, Position));
314 if(ALSource->Send[0].Slot && !ALSource->Send[0].Slot->AuxSendAuto)
316 if(ALSource->Send[0].Slot->effect.type == AL_EFFECT_REVERB)
317 RoomRolloff = ALSource->Send[0].Slot->effect.Reverb.RoomRolloffFactor;
320 flAttenuation = 1.0f;
321 RoomAttenuation = 1.0f;
322 switch (ALContext->DistanceModel)
324 case AL_INVERSE_DISTANCE_CLAMPED:
325 Distance=__max(Distance,MinDist);
326 Distance=__min(Distance,MaxDist);
327 if (MaxDist < MinDist)
328 break;
329 //fall-through
330 case AL_INVERSE_DISTANCE:
331 if (MinDist > 0.0f)
333 if ((MinDist + (Rolloff * (Distance - MinDist))) > 0.0f)
334 flAttenuation = MinDist / (MinDist + (Rolloff * (Distance - MinDist)));
335 if ((MinDist + (RoomRolloff * (Distance - MinDist))) > 0.0f)
336 RoomAttenuation = MinDist / (MinDist + (RoomRolloff * (Distance - MinDist)));
338 break;
340 case AL_LINEAR_DISTANCE_CLAMPED:
341 Distance=__max(Distance,MinDist);
342 Distance=__min(Distance,MaxDist);
343 if (MaxDist < MinDist)
344 break;
345 //fall-through
346 case AL_LINEAR_DISTANCE:
347 Distance=__min(Distance,MaxDist);
348 if (MaxDist != MinDist)
350 flAttenuation = 1.0f - (Rolloff*(Distance-MinDist)/(MaxDist - MinDist));
351 RoomAttenuation = 1.0f - (RoomRolloff*(Distance-MinDist)/(MaxDist - MinDist));
353 break;
355 case AL_EXPONENT_DISTANCE_CLAMPED:
356 Distance=__max(Distance,MinDist);
357 Distance=__min(Distance,MaxDist);
358 if (MaxDist < MinDist)
359 break;
360 //fall-through
361 case AL_EXPONENT_DISTANCE:
362 if ((Distance > 0.0f) && (MinDist > 0.0f))
364 flAttenuation = (ALfloat)pow(Distance/MinDist, -Rolloff);
365 RoomAttenuation = (ALfloat)pow(Distance/MinDist, -RoomRolloff);
367 break;
369 case AL_NONE:
370 default:
371 flAttenuation = 1.0f;
372 RoomAttenuation = 1.0f;
373 break;
376 // Source Gain + Attenuation and clamp to Min/Max Gain
377 DryMix = SourceVolume * flAttenuation;
378 DryMix = __min(DryMix,MaxVolume);
379 DryMix = __max(DryMix,MinVolume);
381 WetMix = SourceVolume * (ALSource->WetGainAuto ?
382 RoomAttenuation : 1.0f);
383 WetMix = __min(WetMix,MaxVolume);
384 WetMix = __max(WetMix,MinVolume);
386 //3. Apply directional soundcones
387 SourceToListener[0] = -Position[0];
388 SourceToListener[1] = -Position[1];
389 SourceToListener[2] = -Position[2];
390 aluNormalize(Direction);
391 aluNormalize(SourceToListener);
392 Angle = aluAcos(aluDotproduct(Direction,SourceToListener)) * 180.0f /
393 3.141592654f;
394 if(Angle >= InnerAngle && Angle <= OuterAngle)
396 ALfloat scale = (Angle-InnerAngle) / (OuterAngle-InnerAngle);
397 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f)*scale);
398 if(ALSource->WetGainAuto)
399 WetMix *= ConeVolume;
400 if(ALSource->DryGainHFAuto)
401 DryGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
402 if(ALSource->WetGainHFAuto)
403 WetGainHF *= (1.0f+(OuterGainHF-1.0f)*scale);
405 else if(Angle > OuterAngle)
407 ConeVolume = (1.0f+(ALSource->flOuterGain-1.0f));
408 if(ALSource->WetGainAuto)
409 WetMix *= ConeVolume;
410 if(ALSource->DryGainHFAuto)
411 DryGainHF *= (1.0f+(OuterGainHF-1.0f));
412 if(ALSource->WetGainHFAuto)
413 WetGainHF *= (1.0f+(OuterGainHF-1.0f));
415 else
416 ConeVolume = 1.0f;
418 //4. Calculate Velocity
419 if(DopplerFactor != 0.0f)
421 ALfloat flVSS, flVLS;
423 flVLS = aluDotproduct(ALContext->Listener.Velocity,
424 SourceToListener);
425 flVSS = aluDotproduct(ALSource->vVelocity, SourceToListener);
427 flMaxVelocity = (DopplerVelocity * flSpeedOfSound) / DopplerFactor;
429 if (flVSS >= flMaxVelocity)
430 flVSS = (flMaxVelocity - 1.0f);
431 else if (flVSS <= -flMaxVelocity)
432 flVSS = -flMaxVelocity + 1.0f;
434 if (flVLS >= flMaxVelocity)
435 flVLS = (flMaxVelocity - 1.0f);
436 else if (flVLS <= -flMaxVelocity)
437 flVLS = -flMaxVelocity + 1.0f;
439 pitch[0] = ALSource->flPitch *
440 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVLS)) /
441 ((flSpeedOfSound * DopplerVelocity) - (DopplerFactor * flVSS));
443 else
444 pitch[0] = ALSource->flPitch;
446 //5. Align coordinate system axes
447 aluCrossproduct(ALContext->Listener.Forward, ALContext->Listener.Up, U); // Right-vector
448 aluNormalize(U); // Normalized Right-vector
449 memcpy(V, ALContext->Listener.Up, sizeof(V)); // Up-vector
450 aluNormalize(V); // Normalized Up-vector
451 memcpy(N, ALContext->Listener.Forward, sizeof(N)); // At-vector
452 aluNormalize(N); // Normalized At-vector
453 Matrix[0][0] = U[0]; Matrix[0][1] = V[0]; Matrix[0][2] = -N[0];
454 Matrix[1][0] = U[1]; Matrix[1][1] = V[1]; Matrix[1][2] = -N[1];
455 Matrix[2][0] = U[2]; Matrix[2][1] = V[2]; Matrix[2][2] = -N[2];
456 aluMatrixVector(Position, Matrix);
458 //6. Apply filter gains and filters
459 switch(ALSource->DirectFilter.filter)
461 case AL_FILTER_LOWPASS:
462 DryMix *= ALSource->DirectFilter.Gain;
463 DryGainHF *= ALSource->DirectFilter.GainHF;
464 break;
467 switch(ALSource->Send[0].WetFilter.filter)
469 case AL_FILTER_LOWPASS:
470 WetMix *= ALSource->Send[0].WetFilter.Gain;
471 WetGainHF *= ALSource->Send[0].WetFilter.GainHF;
472 break;
475 if(ALSource->AirAbsorptionFactor > 0.0f)
476 DryGainHF *= pow(ALSource->AirAbsorptionFactor * AIRABSORBGAINHF,
477 Distance * MetersPerUnit);
479 if(ALSource->Send[0].Slot)
481 WetMix *= ALSource->Send[0].Slot->Gain;
483 if(ALSource->Send[0].Slot->effect.type == AL_EFFECT_REVERB)
485 WetGainHF *= ALSource->Send[0].Slot->effect.Reverb.GainHF;
486 WetGainHF *= pow(ALSource->Send[0].Slot->effect.Reverb.AirAbsorptionGainHF,
487 Distance * MetersPerUnit);
490 else
492 WetMix = 0.0f;
493 WetGainHF = 1.0f;
496 DryMix *= ListenerGain * ConeVolume;
497 WetMix *= ListenerGain;
499 //7. Convert normalized position into pannings, then into channel volumes
500 aluNormalize(Position);
501 switch(aluChannelsFromFormat(OutputFormat))
503 case 1:
504 drysend[FRONT_LEFT] = DryMix * aluSqrt(1.0f); //Direct
505 drysend[FRONT_RIGHT] = DryMix * aluSqrt(1.0f); //Direct
506 wetsend[FRONT_LEFT] = WetMix * aluSqrt(1.0f); //Room
507 wetsend[FRONT_RIGHT] = WetMix * aluSqrt(1.0f); //Room
508 break;
509 case 2:
510 PanningLR = 0.5f + 0.5f*Position[0];
511 drysend[FRONT_LEFT] = DryMix * aluSqrt(1.0f-PanningLR); //L Direct
512 drysend[FRONT_RIGHT] = DryMix * aluSqrt( PanningLR); //R Direct
513 wetsend[FRONT_LEFT] = WetMix * aluSqrt(1.0f-PanningLR); //L Room
514 wetsend[FRONT_RIGHT] = WetMix * aluSqrt( PanningLR); //R Room
515 break;
516 case 4:
517 /* TODO: Add center/lfe channel in spatial calculations? */
518 case 6:
519 // Apply a scalar so each individual speaker has more weight
520 PanningLR = 0.5f + (0.5f*Position[0]*1.41421356f);
521 PanningLR = __min(1.0f, PanningLR);
522 PanningLR = __max(0.0f, PanningLR);
523 PanningFB = 0.5f + (0.5f*Position[2]*1.41421356f);
524 PanningFB = __min(1.0f, PanningFB);
525 PanningFB = __max(0.0f, PanningFB);
526 drysend[FRONT_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
527 drysend[FRONT_RIGHT] = DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
528 drysend[BACK_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
529 drysend[BACK_RIGHT] = DryMix * aluSqrt(( PanningLR)*( PanningFB));
530 wetsend[FRONT_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
531 wetsend[FRONT_RIGHT] = WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
532 wetsend[BACK_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
533 wetsend[BACK_RIGHT] = WetMix * aluSqrt(( PanningLR)*( PanningFB));
534 break;
535 case 7:
536 case 8:
537 PanningFB = 1.0f - fabs(Position[2]*1.15470054f);
538 PanningFB = __min(1.0f, PanningFB);
539 PanningFB = __max(0.0f, PanningFB);
540 PanningLR = 0.5f + (0.5*Position[0]*((1.0f-PanningFB)*2.0f));
541 PanningLR = __min(1.0f, PanningLR);
542 PanningLR = __max(0.0f, PanningLR);
543 if(Position[2] > 0.0f)
545 drysend[BACK_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
546 drysend[BACK_RIGHT] = DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
547 drysend[SIDE_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
548 drysend[SIDE_RIGHT] = DryMix * aluSqrt(( PanningLR)*( PanningFB));
549 drysend[FRONT_LEFT] = 0.0f;
550 drysend[FRONT_RIGHT] = 0.0f;
551 wetsend[BACK_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
552 wetsend[BACK_RIGHT] = WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
553 wetsend[SIDE_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
554 wetsend[SIDE_RIGHT] = WetMix * aluSqrt(( PanningLR)*( PanningFB));
555 wetsend[FRONT_LEFT] = 0.0f;
556 wetsend[FRONT_RIGHT] = 0.0f;
558 else
560 drysend[FRONT_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
561 drysend[FRONT_RIGHT] = DryMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
562 drysend[SIDE_LEFT] = DryMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
563 drysend[SIDE_RIGHT] = DryMix * aluSqrt(( PanningLR)*( PanningFB));
564 drysend[BACK_LEFT] = 0.0f;
565 drysend[BACK_RIGHT] = 0.0f;
566 wetsend[FRONT_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*(1.0f-PanningFB));
567 wetsend[FRONT_RIGHT] = WetMix * aluSqrt(( PanningLR)*(1.0f-PanningFB));
568 wetsend[SIDE_LEFT] = WetMix * aluSqrt((1.0f-PanningLR)*( PanningFB));
569 wetsend[SIDE_RIGHT] = WetMix * aluSqrt(( PanningLR)*( PanningFB));
570 wetsend[BACK_LEFT] = 0.0f;
571 wetsend[BACK_RIGHT] = 0.0f;
573 default:
574 break;
577 *drygainhf = DryGainHF;
578 *wetgainhf = WetGainHF;
580 else
582 //1. Multi-channel buffers always play "normal"
583 pitch[0] = ALSource->flPitch;
585 drysend[FRONT_LEFT] = SourceVolume * ListenerGain;
586 drysend[FRONT_RIGHT] = SourceVolume * ListenerGain;
587 drysend[SIDE_LEFT] = SourceVolume * ListenerGain;
588 drysend[SIDE_RIGHT] = SourceVolume * ListenerGain;
589 drysend[BACK_LEFT] = SourceVolume * ListenerGain;
590 drysend[BACK_RIGHT] = SourceVolume * ListenerGain;
591 drysend[CENTER] = SourceVolume * ListenerGain;
592 drysend[LFE] = SourceVolume * ListenerGain;
593 wetsend[FRONT_LEFT] = 0.0f;
594 wetsend[FRONT_RIGHT] = 0.0f;
595 wetsend[SIDE_LEFT] = 0.0f;
596 wetsend[SIDE_RIGHT] = 0.0f;
597 wetsend[BACK_LEFT] = 0.0f;
598 wetsend[BACK_RIGHT] = 0.0f;
599 wetsend[CENTER] = 0.0f;
600 wetsend[LFE] = 0.0f;
601 WetGainHF = 1.0f;
603 *drygainhf = DryGainHF;
604 *wetgainhf = WetGainHF;
608 ALvoid aluMixData(ALCcontext *ALContext,ALvoid *buffer,ALsizei size,ALenum format)
610 static float DryBuffer[BUFFERSIZE][OUTPUTCHANNELS];
611 static float WetBuffer[BUFFERSIZE][OUTPUTCHANNELS];
612 static float ReverbBuffer[BUFFERSIZE];
613 ALfloat DrySend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
614 ALfloat WetSend[OUTPUTCHANNELS] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
615 ALfloat DryGainHF = 0.0f;
616 ALfloat WetGainHF = 0.0f;
617 ALuint BlockAlign,BufferSize;
618 ALuint DataSize=0,DataPosInt=0,DataPosFrac=0;
619 ALuint Channels,Frequency,ulExtraSamples;
620 ALboolean doReverb;
621 ALfloat Pitch;
622 ALint Looping,increment,State;
623 ALuint Buffer,fraction;
624 ALuint SamplesToDo;
625 ALsource *ALSource;
626 ALbuffer *ALBuffer;
627 ALeffectslot *ALEffectSlot;
628 ALfloat value;
629 ALshort *Data;
630 ALuint i,j,k;
631 ALbufferlistitem *BufferListItem;
632 ALuint loop;
633 ALint64 DataSize64,DataPos64;
635 SuspendContext(ALContext);
637 if(buffer)
639 //Figure output format variables
640 BlockAlign = aluChannelsFromFormat(format);
641 BlockAlign *= aluBytesFromFormat(format);
643 size /= BlockAlign;
644 while(size > 0)
646 //Setup variables
647 ALSource = (ALContext ? ALContext->Source : NULL);
648 SamplesToDo = min(size, BUFFERSIZE);
650 //Clear mixing buffer
651 memset(DryBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
652 memset(WetBuffer, 0, SamplesToDo*OUTPUTCHANNELS*sizeof(ALfloat));
653 memset(ReverbBuffer, 0, SamplesToDo*sizeof(ALfloat));
655 //Actual mixing loop
656 while(ALSource)
658 j = 0;
659 State = ALSource->state;
661 doReverb = ((ALSource->Send[0].Slot &&
662 ALSource->Send[0].Slot->effect.type == AL_EFFECT_REVERB) ?
663 AL_TRUE : AL_FALSE);
665 while(State == AL_PLAYING && j < SamplesToDo)
667 DataSize = 0;
668 DataPosInt = 0;
669 DataPosFrac = 0;
671 //Get buffer info
672 if((Buffer = ALSource->ulBufferID))
674 ALBuffer = (ALbuffer*)ALTHUNK_LOOKUPENTRY(Buffer);
676 Data = ALBuffer->data;
677 Channels = aluChannelsFromFormat(ALBuffer->format);
678 DataSize = ALBuffer->size;
679 Frequency = ALBuffer->frequency;
681 CalcSourceParams(ALContext, ALSource,
682 (Channels==1) ? AL_TRUE : AL_FALSE,
683 format, DrySend, WetSend, &Pitch,
684 &DryGainHF, &WetGainHF);
687 Pitch = (Pitch*Frequency) / ALContext->Frequency;
688 DataSize /= Channels * aluBytesFromFormat(ALBuffer->format);
690 //Get source info
691 DataPosInt = ALSource->position;
692 DataPosFrac = ALSource->position_fraction;
694 //Compute 18.14 fixed point step
695 increment = aluF2L(Pitch*(1L<<FRACTIONBITS));
696 if(increment > (MAX_PITCH<<FRACTIONBITS))
697 increment = (MAX_PITCH<<FRACTIONBITS);
699 //Figure out how many samples we can mix.
700 //Pitch must be <= 4 (the number below !)
701 DataSize64 = DataSize+MAX_PITCH;
702 DataSize64 <<= FRACTIONBITS;
703 DataPos64 = DataPosInt;
704 DataPos64 <<= FRACTIONBITS;
705 DataPos64 += DataPosFrac;
706 BufferSize = (ALuint)((DataSize64-DataPos64) / increment);
707 BufferListItem = ALSource->queue;
708 for(loop = 0; loop < ALSource->BuffersPlayed; loop++)
710 if(BufferListItem)
711 BufferListItem = BufferListItem->next;
713 if (BufferListItem)
715 if (BufferListItem->next)
717 if(BufferListItem->next->buffer &&
718 ((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->data)
720 ulExtraSamples = min(((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->size, (ALint)(16*Channels));
721 memcpy(&Data[DataSize*Channels], ((ALbuffer*)ALTHUNK_LOOKUPENTRY(BufferListItem->next->buffer))->data, ulExtraSamples);
724 else if (ALSource->bLooping)
726 if (ALSource->queue->buffer)
728 if(((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->data)
730 ulExtraSamples = min(((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->size, (ALint)(16*Channels));
731 memcpy(&Data[DataSize*Channels], ((ALbuffer*)ALTHUNK_LOOKUPENTRY(ALSource->queue->buffer))->data, ulExtraSamples);
736 BufferSize = min(BufferSize, (SamplesToDo-j));
738 //Actual sample mixing loop
739 Data += DataPosInt*Channels;
740 while(BufferSize--)
742 k = DataPosFrac>>FRACTIONBITS;
743 fraction = DataPosFrac&FRACTIONMASK;
744 if(Channels==1)
746 //First order interpolator
747 ALfloat sample = (ALfloat)((ALshort)(((Data[k]*((1L<<FRACTIONBITS)-fraction))+(Data[k+1]*(fraction)))>>FRACTIONBITS));
749 //Direct path final mix buffer and panning
750 value = aluComputeDrySample(ALSource, DryGainHF, sample);
751 DryBuffer[j][FRONT_LEFT] += value*DrySend[FRONT_LEFT];
752 DryBuffer[j][FRONT_RIGHT] += value*DrySend[FRONT_RIGHT];
753 DryBuffer[j][SIDE_LEFT] += value*DrySend[SIDE_LEFT];
754 DryBuffer[j][SIDE_RIGHT] += value*DrySend[SIDE_RIGHT];
755 DryBuffer[j][BACK_LEFT] += value*DrySend[BACK_LEFT];
756 DryBuffer[j][BACK_RIGHT] += value*DrySend[BACK_RIGHT];
757 //Room path final mix buffer and panning
758 value = aluComputeWetSample(ALSource, WetGainHF, sample);
759 if(doReverb)
760 ReverbBuffer[j] += value;
761 else
763 WetBuffer[j][FRONT_LEFT] += value*WetSend[FRONT_LEFT];
764 WetBuffer[j][FRONT_RIGHT] += value*WetSend[FRONT_RIGHT];
765 WetBuffer[j][SIDE_LEFT] += value*WetSend[SIDE_LEFT];
766 WetBuffer[j][SIDE_RIGHT] += value*WetSend[SIDE_RIGHT];
767 WetBuffer[j][BACK_LEFT] += value*WetSend[BACK_LEFT];
768 WetBuffer[j][BACK_RIGHT] += value*WetSend[BACK_RIGHT];
771 else
773 //First order interpolator (front left)
774 value = (ALfloat)((ALshort)(((Data[k*Channels ]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels ]*(fraction)))>>FRACTIONBITS));
775 DryBuffer[j][FRONT_LEFT] += value*DrySend[FRONT_LEFT];
776 WetBuffer[j][FRONT_LEFT] += value*WetSend[FRONT_LEFT];
777 //First order interpolator (front right)
778 value = (ALfloat)((ALshort)(((Data[k*Channels+1]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+1]*(fraction)))>>FRACTIONBITS));
779 DryBuffer[j][FRONT_RIGHT] += value*DrySend[FRONT_RIGHT];
780 WetBuffer[j][FRONT_RIGHT] += value*WetSend[FRONT_RIGHT];
781 if(Channels >= 4)
783 int i = 2;
784 if(Channels >= 6)
786 if(Channels != 7)
788 //First order interpolator (center)
789 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
790 DryBuffer[j][CENTER] += value*DrySend[CENTER];
791 WetBuffer[j][CENTER] += value*WetSend[CENTER];
792 i++;
794 //First order interpolator (lfe)
795 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
796 DryBuffer[j][LFE] += value*DrySend[LFE];
797 WetBuffer[j][LFE] += value*WetSend[LFE];
798 i++;
800 //First order interpolator (back left)
801 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
802 DryBuffer[j][BACK_LEFT] += value*DrySend[BACK_LEFT];
803 WetBuffer[j][BACK_LEFT] += value*WetSend[BACK_LEFT];
804 i++;
805 //First order interpolator (back right)
806 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
807 DryBuffer[j][BACK_RIGHT] += value*DrySend[BACK_RIGHT];
808 WetBuffer[j][BACK_RIGHT] += value*WetSend[BACK_RIGHT];
809 i++;
810 if(Channels >= 7)
812 //First order interpolator (side left)
813 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
814 DryBuffer[j][SIDE_LEFT] += value*DrySend[SIDE_LEFT];
815 WetBuffer[j][SIDE_LEFT] += value*WetSend[SIDE_LEFT];
816 i++;
817 //First order interpolator (side right)
818 value = (ALfloat)((ALshort)(((Data[k*Channels+i]*((1L<<FRACTIONBITS)-fraction))+(Data[(k+1)*Channels+i]*(fraction)))>>FRACTIONBITS));
819 DryBuffer[j][SIDE_RIGHT] += value*DrySend[SIDE_RIGHT];
820 WetBuffer[j][SIDE_RIGHT] += value*WetSend[SIDE_RIGHT];
821 i++;
825 DataPosFrac += increment;
826 j++;
828 DataPosInt += (DataPosFrac>>FRACTIONBITS);
829 DataPosFrac = (DataPosFrac&FRACTIONMASK);
831 //Update source info
832 ALSource->position = DataPosInt;
833 ALSource->position_fraction = DataPosFrac;
836 //Handle looping sources
837 if(!Buffer || DataPosInt >= DataSize)
839 //queueing
840 if(ALSource->queue)
842 Looping = ALSource->bLooping;
843 if(ALSource->BuffersPlayed < (ALSource->BuffersInQueue-1))
845 BufferListItem = ALSource->queue;
846 for(loop = 0; loop <= ALSource->BuffersPlayed; loop++)
848 if(BufferListItem)
850 if(!Looping)
851 BufferListItem->bufferstate = PROCESSED;
852 BufferListItem = BufferListItem->next;
855 if(!Looping)
856 ALSource->BuffersProcessed++;
857 if(BufferListItem)
858 ALSource->ulBufferID = BufferListItem->buffer;
859 ALSource->position = DataPosInt-DataSize;
860 ALSource->position_fraction = DataPosFrac;
861 ALSource->BuffersPlayed++;
863 else
865 if(!Looping)
867 /* alSourceStop */
868 ALSource->state = AL_STOPPED;
869 ALSource->inuse = AL_FALSE;
870 ALSource->BuffersPlayed = ALSource->BuffersProcessed = ALSource->BuffersInQueue;
871 BufferListItem = ALSource->queue;
872 while(BufferListItem != NULL)
874 BufferListItem->bufferstate = PROCESSED;
875 BufferListItem = BufferListItem->next;
878 else
880 /* alSourceRewind */
881 /* alSourcePlay */
882 ALSource->state = AL_PLAYING;
883 ALSource->inuse = AL_TRUE;
884 ALSource->play = AL_TRUE;
885 ALSource->BuffersPlayed = 0;
886 ALSource->BufferPosition = 0;
887 ALSource->lBytesPlayed = 0;
888 ALSource->BuffersProcessed = 0;
889 BufferListItem = ALSource->queue;
890 while(BufferListItem != NULL)
892 BufferListItem->bufferstate = PENDING;
893 BufferListItem = BufferListItem->next;
895 ALSource->ulBufferID = ALSource->queue->buffer;
897 ALSource->position = DataPosInt-DataSize;
898 ALSource->position_fraction = DataPosFrac;
904 //Get source state
905 State = ALSource->state;
908 ALSource = ALSource->next;
911 ALEffectSlot = (ALContext ? ALContext->AuxiliaryEffectSlot : NULL);
912 while(ALEffectSlot)
914 if(ALEffectSlot->effect.type == AL_EFFECT_REVERB)
916 ALfloat *DelayBuffer = ALEffectSlot->ReverbBuffer;
917 ALuint Pos = ALEffectSlot->ReverbPos;
918 ALuint LatePos = ALEffectSlot->ReverbLatePos;
919 ALuint ReflectPos = ALEffectSlot->ReverbReflectPos;
920 ALuint Length = ALEffectSlot->ReverbLength;
921 ALfloat DecayGain = ALEffectSlot->ReverbDecayGain;
922 ALfloat DecayHFRatio = ALEffectSlot->effect.Reverb.DecayHFRatio;
923 ALfloat Gain = ALEffectSlot->effect.Reverb.Gain;
924 ALfloat ReflectGain = ALEffectSlot->effect.Reverb.ReflectionsGain;
925 ALfloat LateReverbGain = ALEffectSlot->effect.Reverb.LateReverbGain;
926 ALfloat LastDecaySample = ALEffectSlot->LastDecaySample;
927 ALfloat sample;
929 for(i = 0;i < SamplesToDo;i++)
931 DelayBuffer[Pos] = ReverbBuffer[i] * Gain;
933 sample = DelayBuffer[ReflectPos] * ReflectGain;
935 DelayBuffer[LatePos] *= LateReverbGain;
937 Pos = (Pos+1) % Length;
938 DelayBuffer[Pos] *= DecayHFRatio;
939 DelayBuffer[Pos] += LastDecaySample * (1.0f-DecayHFRatio);
940 LastDecaySample = DelayBuffer[Pos];
941 DelayBuffer[Pos] *= DecayGain;
943 DelayBuffer[LatePos] += DelayBuffer[Pos];
945 sample += DelayBuffer[LatePos];
947 WetBuffer[i][FRONT_LEFT] += sample;
948 WetBuffer[i][FRONT_RIGHT] += sample;
949 WetBuffer[i][SIDE_LEFT] += sample;
950 WetBuffer[i][SIDE_RIGHT] += sample;
951 WetBuffer[i][BACK_LEFT] += sample;
952 WetBuffer[i][BACK_RIGHT] += sample;
954 LatePos = (LatePos+1) % Length;
955 ReflectPos = (ReflectPos+1) % Length;
958 ALEffectSlot->ReverbPos = Pos;
959 ALEffectSlot->ReverbLatePos = LatePos;
960 ALEffectSlot->ReverbReflectPos = ReflectPos;
961 ALEffectSlot->LastDecaySample = LastDecaySample;
963 ALEffectSlot = ALEffectSlot->next;
966 //Post processing loop
967 switch(format)
969 case AL_FORMAT_MONO8:
970 for(i = 0;i < SamplesToDo;i++)
972 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT]+
973 WetBuffer[i][FRONT_LEFT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
974 buffer = ((ALubyte*)buffer) + 1;
976 break;
977 case AL_FORMAT_STEREO8:
978 if(ALContext && ALContext->bs2b)
980 for(i = 0;i < SamplesToDo;i++)
982 float samples[2];
983 samples[0] = DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT];
984 samples[1] = DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT];
985 bs2b_cross_feed(ALContext->bs2b, samples);
986 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(samples[0])>>8)+128);
987 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(samples[1])>>8)+128);
988 buffer = ((ALubyte*)buffer) + 2;
991 else
993 for(i = 0;i < SamplesToDo;i++)
995 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
996 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
997 buffer = ((ALubyte*)buffer) + 2;
1000 break;
1001 case AL_FORMAT_QUAD8:
1002 for(i = 0;i < SamplesToDo;i++)
1004 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1005 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1006 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1007 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1008 buffer = ((ALubyte*)buffer) + 4;
1010 break;
1011 case AL_FORMAT_51CHN8:
1012 for(i = 0;i < SamplesToDo;i++)
1014 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1015 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1016 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1017 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1018 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
1019 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1020 buffer = ((ALubyte*)buffer) + 6;
1022 break;
1023 case AL_FORMAT_61CHN8:
1024 for(i = 0;i < SamplesToDo;i++)
1026 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1027 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1028 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT])>>8)+128);
1029 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT])>>8)+128);
1030 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1031 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1032 ((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1033 buffer = ((ALubyte*)buffer) + 7;
1035 break;
1036 case AL_FORMAT_71CHN8:
1037 for(i = 0;i < SamplesToDo;i++)
1039 ((ALubyte*)buffer)[0] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT])>>8)+128);
1040 ((ALubyte*)buffer)[1] = (ALubyte)((aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT])>>8)+128);
1041 ((ALubyte*)buffer)[2] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT])>>8)+128);
1042 ((ALubyte*)buffer)[3] = (ALubyte)((aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT])>>8)+128);
1043 ((ALubyte*)buffer)[4] = (ALubyte)((aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT])>>8)+128);
1044 ((ALubyte*)buffer)[5] = (ALubyte)((aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT])>>8)+128);
1045 ((ALubyte*)buffer)[6] = (ALubyte)((aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER])>>8)+128);
1046 ((ALubyte*)buffer)[7] = (ALubyte)((aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE])>>8)+128);
1047 buffer = ((ALubyte*)buffer) + 8;
1049 break;
1051 case AL_FORMAT_MONO16:
1052 for(i = 0;i < SamplesToDo;i++)
1054 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT]+DryBuffer[i][FRONT_RIGHT]+
1055 WetBuffer[i][FRONT_LEFT]+WetBuffer[i][FRONT_RIGHT]);
1056 buffer = ((ALshort*)buffer) + 1;
1058 break;
1059 case AL_FORMAT_STEREO16:
1060 if(ALContext && ALContext->bs2b)
1062 for(i = 0;i < SamplesToDo;i++)
1064 float samples[2];
1065 samples[0] = DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT];
1066 samples[1] = DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT];
1067 bs2b_cross_feed(ALContext->bs2b, samples);
1068 ((ALshort*)buffer)[0] = aluF2S(samples[0]);
1069 ((ALshort*)buffer)[1] = aluF2S(samples[1]);
1070 buffer = ((ALshort*)buffer) + 2;
1073 else
1075 for(i = 0;i < SamplesToDo;i++)
1077 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1078 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1079 buffer = ((ALshort*)buffer) + 2;
1082 break;
1083 case AL_FORMAT_QUAD16:
1084 for(i = 0;i < SamplesToDo;i++)
1086 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1087 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1088 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1089 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1090 buffer = ((ALshort*)buffer) + 4;
1092 break;
1093 case AL_FORMAT_51CHN16:
1094 for(i = 0;i < SamplesToDo;i++)
1096 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1097 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1098 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1099 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1100 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1101 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1102 buffer = ((ALshort*)buffer) + 6;
1104 break;
1105 case AL_FORMAT_61CHN16:
1106 for(i = 0;i < SamplesToDo;i++)
1108 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1109 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1110 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT]);
1111 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT]);
1112 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1113 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1114 ((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1115 buffer = ((ALshort*)buffer) + 7;
1117 break;
1118 case AL_FORMAT_71CHN16:
1119 for(i = 0;i < SamplesToDo;i++)
1121 ((ALshort*)buffer)[0] = aluF2S(DryBuffer[i][FRONT_LEFT] +WetBuffer[i][FRONT_LEFT]);
1122 ((ALshort*)buffer)[1] = aluF2S(DryBuffer[i][FRONT_RIGHT]+WetBuffer[i][FRONT_RIGHT]);
1123 ((ALshort*)buffer)[2] = aluF2S(DryBuffer[i][SIDE_LEFT] +WetBuffer[i][SIDE_LEFT]);
1124 ((ALshort*)buffer)[3] = aluF2S(DryBuffer[i][SIDE_RIGHT] +WetBuffer[i][SIDE_RIGHT]);
1125 ((ALshort*)buffer)[4] = aluF2S(DryBuffer[i][BACK_LEFT] +WetBuffer[i][BACK_LEFT]);
1126 ((ALshort*)buffer)[5] = aluF2S(DryBuffer[i][BACK_RIGHT] +WetBuffer[i][BACK_RIGHT]);
1127 ((ALshort*)buffer)[6] = aluF2S(DryBuffer[i][CENTER] +WetBuffer[i][CENTER]);
1128 ((ALshort*)buffer)[7] = aluF2S(DryBuffer[i][LFE] +WetBuffer[i][LFE]);
1129 buffer = ((ALshort*)buffer) + 8;
1131 break;
1133 default:
1134 break;
1137 size -= SamplesToDo;
1141 ProcessContext(ALContext);