Add SSE2 and SSE4.1 cubic resamplers
[openal-soft.git] / Alc / mixer_sse41.c
blob374e7e3163b69db696baea731fa475856d0e471e
1 /**
2 * OpenAL cross platform audio library
3 * Copyright (C) 2014 by Timothy Arceri <t_arceri@yahoo.com.au>.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <xmmintrin.h>
24 #include <emmintrin.h>
25 #include <smmintrin.h>
27 #include "alu.h"
28 #include "mixer_defs.h"
31 const ALfloat *Resample_lerp32_SSE41(const ALfloat *src, ALuint frac, ALuint increment,
32 ALfloat *restrict dst, ALuint numsamples)
34 const __m128i increment4 = _mm_set1_epi32(increment*4);
35 const __m128 fracOne4 = _mm_set1_ps(1.0f/FRACTIONONE);
36 const __m128i fracMask4 = _mm_set1_epi32(FRACTIONMASK);
37 alignas(16) union { ALuint i[4]; float f[4]; } pos_;
38 alignas(16) union { ALuint i[4]; float f[4]; } frac_;
39 __m128i frac4, pos4;
40 ALuint pos;
41 ALuint i;
43 InitiatePositionArrays(frac, increment, frac_.i, pos_.i, 4);
45 frac4 = _mm_castps_si128(_mm_load_ps(frac_.f));
46 pos4 = _mm_castps_si128(_mm_load_ps(pos_.f));
48 for(i = 0;numsamples-i > 3;i += 4)
50 const __m128 val1 = _mm_setr_ps(src[pos_.i[0]], src[pos_.i[1]], src[pos_.i[2]], src[pos_.i[3]]);
51 const __m128 val2 = _mm_setr_ps(src[pos_.i[0]+1], src[pos_.i[1]+1], src[pos_.i[2]+1], src[pos_.i[3]+1]);
53 /* val1 + (val2-val1)*mu */
54 const __m128 r0 = _mm_sub_ps(val2, val1);
55 const __m128 mu = _mm_mul_ps(_mm_cvtepi32_ps(frac4), fracOne4);
56 const __m128 out = _mm_add_ps(val1, _mm_mul_ps(mu, r0));
58 _mm_store_ps(&dst[i], out);
60 frac4 = _mm_add_epi32(frac4, increment4);
61 pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, FRACTIONBITS));
62 frac4 = _mm_and_si128(frac4, fracMask4);
64 pos_.i[0] = _mm_extract_epi32(pos4, 0);
65 pos_.i[1] = _mm_extract_epi32(pos4, 1);
66 pos_.i[2] = _mm_extract_epi32(pos4, 2);
67 pos_.i[3] = _mm_extract_epi32(pos4, 3);
70 pos = pos_.i[0];
71 frac = _mm_cvtsi128_si32(frac4);
73 for(;i < numsamples;i++)
75 dst[i] = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE));
77 frac += increment;
78 pos += frac>>FRACTIONBITS;
79 frac &= FRACTIONMASK;
81 return dst;
84 const ALfloat *Resample_cubic32_SSE41(const ALfloat *src, ALuint frac, ALuint increment,
85 ALfloat *restrict dst, ALuint numsamples)
87 const __m128i increment4 = _mm_set1_epi32(increment*4);
88 const __m128i fracMask4 = _mm_set1_epi32(FRACTIONMASK);
89 alignas(16) union { ALuint i[4]; float f[4]; } pos_;
90 alignas(16) union { ALuint i[4]; float f[4]; } frac_;
91 __m128i frac4, pos4;
92 ALuint pos;
93 ALuint i;
95 InitiatePositionArrays(frac, increment, frac_.i, pos_.i, 4);
97 frac4 = _mm_castps_si128(_mm_load_ps(frac_.f));
98 pos4 = _mm_castps_si128(_mm_load_ps(pos_.f));
100 --src;
101 for(i = 0;numsamples-i > 3;i += 4)
103 const __m128 val0 = _mm_setr_ps(src[pos_.i[0] ], src[pos_.i[1] ], src[pos_.i[2] ], src[pos_.i[3] ]);
104 const __m128 val1 = _mm_setr_ps(src[pos_.i[0]+1], src[pos_.i[1]+1], src[pos_.i[2]+1], src[pos_.i[3]+1]);
105 const __m128 val2 = _mm_setr_ps(src[pos_.i[0]+2], src[pos_.i[1]+2], src[pos_.i[2]+2], src[pos_.i[3]+2]);
106 const __m128 val3 = _mm_setr_ps(src[pos_.i[0]+3], src[pos_.i[1]+3], src[pos_.i[2]+3], src[pos_.i[3]+3]);
107 __m128 k0 = _mm_load_ps(CubicLUT[frac_.i[0]]);
108 __m128 k1 = _mm_load_ps(CubicLUT[frac_.i[1]]);
109 __m128 k2 = _mm_load_ps(CubicLUT[frac_.i[2]]);
110 __m128 k3 = _mm_load_ps(CubicLUT[frac_.i[3]]);
111 __m128 out;
113 _MM_TRANSPOSE4_PS(k0, k1, k2, k3);
115 /* k0*val0 + k1*val1 + k2*val2 + k3*val3 */
116 out = _mm_mul_ps(k0, val0);
117 out = _mm_add_ps(out, _mm_mul_ps(k1, val1));
118 out = _mm_add_ps(out, _mm_mul_ps(k2, val2));
119 out = _mm_add_ps(out, _mm_mul_ps(k3, val3));
120 _mm_store_ps(&dst[i], out);
122 frac4 = _mm_add_epi32(frac4, increment4);
123 pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, FRACTIONBITS));
124 frac4 = _mm_and_si128(frac4, fracMask4);
126 pos_.i[0] = _mm_extract_epi32(pos4, 0);
127 pos_.i[1] = _mm_extract_epi32(pos4, 1);
128 pos_.i[2] = _mm_extract_epi32(pos4, 2);
129 pos_.i[3] = _mm_extract_epi32(pos4, 3);
130 frac_.i[0] = _mm_extract_epi32(frac4, 0);
131 frac_.i[1] = _mm_extract_epi32(frac4, 1);
132 frac_.i[2] = _mm_extract_epi32(frac4, 2);
133 frac_.i[3] = _mm_extract_epi32(frac4, 3);
136 pos = pos_.i[0];
137 frac = frac_.i[0];
139 for(;i < numsamples;i++)
141 dst[i] = cubic(src[pos], src[pos+1], src[pos+2], src[pos+3], frac);
143 frac += increment;
144 pos += frac>>FRACTIONBITS;
145 frac &= FRACTIONMASK;
147 return dst;