Up-sample first-order content when using a higher order HQ decoder
[openal-soft.git] / Alc / bformatdec.c
blobab148d1bf0e88c27e7bcb9e9ec2a57122ac5ae67
2 #include "config.h"
4 #include "bformatdec.h"
5 #include "ambdec.h"
6 #include "alu.h"
8 #include "threads.h"
11 typedef struct BandSplitter {
12 ALfloat coeff;
13 ALfloat lp_z1;
14 ALfloat lp_z2;
15 ALfloat hp_z1;
16 } BandSplitter;
18 static void bandsplit_init(BandSplitter *splitter, ALfloat freq_mult)
20 ALfloat w = freq_mult * F_TAU;
21 ALfloat cw = cosf(w);
22 if(cw > FLT_EPSILON)
23 splitter->coeff = (sinf(w) - 1.0f) / cw;
24 else
25 splitter->coeff = cw * -0.5f;
27 splitter->lp_z1 = 0.0f;
28 splitter->lp_z2 = 0.0f;
29 splitter->hp_z1 = 0.0f;
32 static void bandsplit_process(BandSplitter *splitter, ALfloat *restrict hpout, ALfloat *restrict lpout,
33 const ALfloat *input, ALuint count)
35 ALfloat coeff, d, x;
36 ALuint i;
38 coeff = splitter->coeff*0.5f + 0.5f;
39 for(i = 0;i < count;i++)
41 x = input[i];
43 d = (x - splitter->lp_z1) * coeff;
44 x = splitter->lp_z1 + d;
45 splitter->lp_z1 = x + d;
47 d = (x - splitter->lp_z2) * coeff;
48 x = splitter->lp_z2 + d;
49 splitter->lp_z2 = x + d;
51 lpout[i] = x;
54 coeff = splitter->coeff;
55 for(i = 0;i < count;i++)
57 x = input[i];
59 d = x - coeff*splitter->hp_z1;
60 x = splitter->hp_z1 + coeff*d;
61 splitter->hp_z1 = d;
63 hpout[i] = x - lpout[i];
68 static const ALfloat UnitScale[MAX_AMBI_COEFFS] = {
69 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
70 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f
72 static const ALfloat SN3D2N3DScale[MAX_AMBI_COEFFS] = {
73 1.000000000f, /* ACN 0 (W), sqrt(1) */
74 1.732050808f, /* ACN 1 (Y), sqrt(3) */
75 1.732050808f, /* ACN 2 (Z), sqrt(3) */
76 1.732050808f, /* ACN 3 (X), sqrt(3) */
77 2.236067978f, /* ACN 4 (V), sqrt(5) */
78 2.236067978f, /* ACN 5 (T), sqrt(5) */
79 2.236067978f, /* ACN 6 (R), sqrt(5) */
80 2.236067978f, /* ACN 7 (S), sqrt(5) */
81 2.236067978f, /* ACN 8 (U), sqrt(5) */
82 2.645751311f, /* ACN 9 (Q), sqrt(7) */
83 2.645751311f, /* ACN 10 (O), sqrt(7) */
84 2.645751311f, /* ACN 11 (M), sqrt(7) */
85 2.645751311f, /* ACN 12 (K), sqrt(7) */
86 2.645751311f, /* ACN 13 (L), sqrt(7) */
87 2.645751311f, /* ACN 14 (N), sqrt(7) */
88 2.645751311f, /* ACN 15 (P), sqrt(7) */
90 static const ALfloat FuMa2N3DScale[MAX_AMBI_COEFFS] = {
91 1.414213562f, /* ACN 0 (W), sqrt(2) */
92 1.732050808f, /* ACN 1 (Y), sqrt(3) */
93 1.732050808f, /* ACN 2 (Z), sqrt(3) */
94 1.732050808f, /* ACN 3 (X), sqrt(3) */
95 1.936491673f, /* ACN 4 (V), sqrt(15)/2 */
96 1.936491673f, /* ACN 5 (T), sqrt(15)/2 */
97 2.236067978f, /* ACN 6 (R), sqrt(5) */
98 1.936491673f, /* ACN 7 (S), sqrt(15)/2 */
99 1.936491673f, /* ACN 8 (U), sqrt(15)/2 */
100 2.091650066f, /* ACN 9 (Q), sqrt(35/8) */
101 1.972026594f, /* ACN 10 (O), sqrt(35)/3 */
102 2.231093404f, /* ACN 11 (M), sqrt(224/45) */
103 2.645751311f, /* ACN 12 (K), sqrt(7) */
104 2.231093404f, /* ACN 13 (L), sqrt(224/45) */
105 1.972026594f, /* ACN 14 (N), sqrt(35)/3 */
106 2.091650066f, /* ACN 15 (P), sqrt(35/8) */
110 static const ALfloat SquareMatrixHF[4][MAX_AMBI_COEFFS] = {
111 { 0.353553f, 0.204094f, 0.0f, 0.204094f },
112 { 0.353553f, -0.204094f, 0.0f, 0.204094f },
113 { 0.353553f, 0.204094f, 0.0f, -0.204094f },
114 { 0.353553f, -0.204094f, 0.0f, -0.204094f },
116 static ALfloat SquareEncoder[4][MAX_AMBI_COEFFS];
118 static const ALfloat CubeMatrixHF[8][MAX_AMBI_COEFFS] = {
119 { 0.25f, 0.14425f, 0.14425f, 0.14425f },
120 { 0.25f, -0.14425f, 0.14425f, 0.14425f },
121 { 0.25f, 0.14425f, 0.14425f, -0.14425f },
122 { 0.25f, -0.14425f, 0.14425f, -0.14425f },
123 { 0.25f, 0.14425f, -0.14425f, 0.14425f },
124 { 0.25f, -0.14425f, -0.14425f, 0.14425f },
125 { 0.25f, 0.14425f, -0.14425f, -0.14425f },
126 { 0.25f, -0.14425f, -0.14425f, -0.14425f },
128 static ALfloat CubeEncoder[8][MAX_AMBI_COEFFS];
130 static alonce_flag encoder_inited = AL_ONCE_FLAG_INIT;
132 static void init_encoder(void)
134 CalcXYZCoeffs(-0.577350269f, 0.577350269f, -0.577350269f, CubeEncoder[0]);
135 CalcXYZCoeffs( 0.577350269f, 0.577350269f, -0.577350269f, CubeEncoder[1]);
136 CalcXYZCoeffs(-0.577350269f, 0.577350269f, 0.577350269f, CubeEncoder[2]);
137 CalcXYZCoeffs( 0.577350269f, 0.577350269f, 0.577350269f, CubeEncoder[3]);
138 CalcXYZCoeffs(-0.577350269f, -0.577350269f, -0.577350269f, CubeEncoder[4]);
139 CalcXYZCoeffs( 0.577350269f, -0.577350269f, -0.577350269f, CubeEncoder[5]);
140 CalcXYZCoeffs(-0.577350269f, -0.577350269f, 0.577350269f, CubeEncoder[6]);
141 CalcXYZCoeffs( 0.577350269f, -0.577350269f, 0.577350269f, CubeEncoder[7]);
143 CalcXYZCoeffs(-0.707106781f, 0.0f, -0.707106781f, SquareEncoder[0]);
144 CalcXYZCoeffs( 0.707106781f, 0.0f, -0.707106781f, SquareEncoder[1]);
145 CalcXYZCoeffs(-0.707106781f, 0.0f, 0.707106781f, SquareEncoder[2]);
146 CalcXYZCoeffs( 0.707106781f, 0.0f, 0.707106781f, SquareEncoder[3]);
150 /* NOTE: Low-frequency (LF) fields and BandSplitter filters are unused with
151 * single-band decoding
153 typedef struct BFormatDec {
154 alignas(16) ALfloat MatrixHF[MAX_OUTPUT_CHANNELS][MAX_AMBI_COEFFS];
155 alignas(16) ALfloat MatrixLF[MAX_OUTPUT_CHANNELS][MAX_AMBI_COEFFS];
157 BandSplitter XOver[MAX_AMBI_COEFFS];
159 ALfloat (*Samples)[BUFFERSIZE];
160 /* These two alias into Samples */
161 ALfloat (*SamplesHF)[BUFFERSIZE];
162 ALfloat (*SamplesLF)[BUFFERSIZE];
164 struct {
165 const ALfloat (*restrict MatrixHF)[MAX_AMBI_COEFFS];
166 const ALfloat (*restrict Encoder)[MAX_AMBI_COEFFS];
167 ALuint NumChannels;
168 } UpSampler;
170 ALuint NumChannels;
171 ALboolean DualBand;
172 } BFormatDec;
174 BFormatDec *bformatdec_alloc()
176 alcall_once(&encoder_inited, init_encoder);
177 return al_calloc(16, sizeof(BFormatDec));
180 void bformatdec_free(BFormatDec *dec)
182 if(dec)
184 al_free(dec->Samples);
185 dec->Samples = NULL;
186 dec->SamplesHF = NULL;
187 dec->SamplesLF = NULL;
189 memset(dec, 0, sizeof(*dec));
190 al_free(dec);
194 int bformatdec_getOrder(const struct BFormatDec *dec)
196 if(dec->NumChannels > 9) return 3;
197 if(dec->NumChannels > 4) return 2;
198 if(dec->NumChannels > 1) return 1;
199 return 0;
202 void bformatdec_reset(BFormatDec *dec, const AmbDecConf *conf, ALuint chancount, ALuint srate, const ALuint chanmap[MAX_OUTPUT_CHANNELS])
204 const ALfloat *coeff_scale = UnitScale;
205 ALfloat ratio;
206 ALuint i;
208 al_free(dec->Samples);
209 dec->Samples = NULL;
210 dec->SamplesHF = NULL;
211 dec->SamplesLF = NULL;
213 dec->NumChannels = chancount;
214 dec->Samples = al_calloc(16, dec->NumChannels * conf->FreqBands *
215 sizeof(dec->Samples[0]));
216 dec->SamplesHF = dec->Samples;
217 dec->SamplesLF = dec->SamplesHF + dec->NumChannels;
219 if(conf->CoeffScale == ADS_SN3D)
220 coeff_scale = SN3D2N3DScale;
221 else if(conf->CoeffScale == ADS_FuMa)
222 coeff_scale = FuMa2N3DScale;
224 if((conf->ChanMask & ~0x831b))
226 dec->UpSampler.MatrixHF = CubeMatrixHF;
227 dec->UpSampler.Encoder = (const ALfloat(*)[MAX_AMBI_COEFFS])CubeEncoder;
228 dec->UpSampler.NumChannels = 8;
230 else
232 dec->UpSampler.MatrixHF = SquareMatrixHF;
233 dec->UpSampler.Encoder = (const ALfloat(*)[MAX_AMBI_COEFFS])SquareEncoder;
234 dec->UpSampler.NumChannels = 4;
237 if(conf->FreqBands == 1)
239 dec->DualBand = AL_FALSE;
240 ratio = 1.0f;
242 else
244 dec->DualBand = AL_TRUE;
246 ratio = conf->XOverFreq / (ALfloat)srate;
247 for(i = 0;i < MAX_AMBI_COEFFS;i++)
248 bandsplit_init(&dec->XOver[i], ratio);
250 ratio = powf(10.0f, conf->XOverRatio / 40.0f);
251 memset(dec->MatrixLF, 0, sizeof(dec->MatrixLF));
252 for(i = 0;i < conf->NumSpeakers;i++)
254 ALuint chan = chanmap[i];
255 ALuint j, k = 0;
256 ALfloat gain;
258 for(j = 0;j < MAX_AMBI_COEFFS;j++)
260 if(j == 0) gain = conf->LFOrderGain[0] / ratio;
261 else if(j == 1) gain = conf->LFOrderGain[1] / ratio;
262 else if(j == 4) gain = conf->LFOrderGain[2] / ratio;
263 else if(j == 9) gain = conf->LFOrderGain[3] / ratio;
264 if((conf->ChanMask&(1<<j)))
265 dec->MatrixLF[chan][j] = conf->LFMatrix[i][k++] / coeff_scale[j] * gain;
270 memset(dec->MatrixHF, 0, sizeof(dec->MatrixHF));
271 for(i = 0;i < conf->NumSpeakers;i++)
273 ALuint chan = chanmap[i];
274 ALuint j, k = 0;
275 ALfloat gain;
277 for(j = 0;j < MAX_AMBI_COEFFS;j++)
279 if(j == 0) gain = conf->HFOrderGain[0] * ratio;
280 else if(j == 1) gain = conf->HFOrderGain[1] * ratio;
281 else if(j == 4) gain = conf->HFOrderGain[2] * ratio;
282 else if(j == 9) gain = conf->HFOrderGain[3] * ratio;
283 if((conf->ChanMask&(1<<j)))
284 dec->MatrixHF[chan][j] = conf->HFMatrix[i][k++] / coeff_scale[j] * gain;
290 static void apply_row(ALfloat *out, const ALfloat *mtx, ALfloat (*restrict in)[BUFFERSIZE], ALuint inchans, ALuint todo)
292 ALuint c, i;
294 for(c = 0;c < inchans;c++)
296 ALfloat gain = mtx[c];
297 if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
298 continue;
299 for(i = 0;i < todo;i++)
300 out[i] += in[c][i] * gain;
304 void bformatdec_process(struct BFormatDec *dec, ALfloat (*restrict OutBuffer)[BUFFERSIZE], ALuint OutChannels, ALfloat (*restrict InSamples)[BUFFERSIZE], ALuint SamplesToDo)
306 ALuint chan, i;
308 if(dec->DualBand)
310 for(i = 0;i < dec->NumChannels;i++)
311 bandsplit_process(&dec->XOver[i], dec->SamplesHF[i], dec->SamplesLF[i],
312 InSamples[i], SamplesToDo);
314 for(chan = 0;chan < OutChannels;chan++)
316 apply_row(OutBuffer[chan], dec->MatrixHF[chan], dec->SamplesHF,
317 dec->NumChannels, SamplesToDo);
318 apply_row(OutBuffer[chan], dec->MatrixLF[chan], dec->SamplesLF,
319 dec->NumChannels, SamplesToDo);
322 else
324 for(chan = 0;chan < OutChannels;chan++)
325 apply_row(OutBuffer[chan], dec->MatrixHF[chan], InSamples,
326 dec->NumChannels, SamplesToDo);
331 void bformatdec_upSample(struct BFormatDec *dec, ALfloat (*restrict OutBuffer)[BUFFERSIZE], ALfloat (*restrict InSamples)[BUFFERSIZE], ALuint InChannels, ALuint SamplesToDo)
333 ALuint i, j, k;
335 /* This up-sampler is very simplistic. It essentially decodes the first-
336 * order content to a square channel array (or cube if height is desired),
337 * then encodes those points onto the higher order soundfield.
339 for(k = 0;k < dec->UpSampler.NumChannels;k++)
341 memset(dec->Samples[0], 0, SamplesToDo*sizeof(ALfloat));
342 apply_row(dec->Samples[0], dec->UpSampler.MatrixHF[k], InSamples,
343 InChannels, SamplesToDo);
345 for(j = 0;j < dec->NumChannels;j++)
347 ALfloat gain = dec->UpSampler.Encoder[k][j];
348 if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
349 continue;
350 for(i = 0;i < SamplesToDo;i++)
351 OutBuffer[j][i] += dec->Samples[0][i] * gain;