Don't explicitly check for LFE
[openal-soft.git] / Alc / effects / reverb.c
blobddf4689b24aafd0e9364a0f16504dccb6049e05a
1 /**
2 * Reverb for the OpenAL cross platform audio library
3 * Copyright (C) 2008-2009 by Christopher Fitzgerald.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
21 #include "config.h"
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <math.h>
27 #include "alMain.h"
28 #include "alu.h"
29 #include "alAuxEffectSlot.h"
30 #include "alEffect.h"
31 #include "alFilter.h"
32 #include "alError.h"
35 /* This is the maximum number of samples processed for each inner loop
36 * iteration. */
37 #define MAX_UPDATE_SAMPLES 256
39 typedef struct DelayLine
41 // The delay lines use sample lengths that are powers of 2 to allow the
42 // use of bit-masking instead of a modulus for wrapping.
43 ALuint Mask;
44 ALfloat *Line;
45 } DelayLine;
47 typedef struct ALreverbState {
48 DERIVE_FROM_TYPE(ALeffectState);
50 ALboolean IsEax;
52 // All delay lines are allocated as a single buffer to reduce memory
53 // fragmentation and management code.
54 ALfloat *SampleBuffer;
55 ALuint TotalSamples;
57 // Master effect filters
58 ALfilterState LpFilter;
59 ALfilterState HpFilter; // EAX only
61 struct {
62 // Modulator delay line.
63 DelayLine Delay;
65 // The vibrato time is tracked with an index over a modulus-wrapped
66 // range (in samples).
67 ALuint Index;
68 ALuint Range;
70 // The depth of frequency change (also in samples) and its filter.
71 ALfloat Depth;
72 ALfloat Coeff;
73 ALfloat Filter;
74 } Mod;
76 // Initial effect delay.
77 DelayLine Delay;
78 // The tap points for the initial delay. First tap goes to early
79 // reflections, the last to late reverb.
80 ALuint DelayTap[2];
82 struct {
83 // Output gain for early reflections.
84 ALfloat Gain;
86 // Early reflections are done with 4 delay lines.
87 ALfloat Coeff[4];
88 DelayLine Delay[4];
89 ALuint Offset[4];
91 // The gain for each output channel based on 3D panning.
92 ALfloat PanGain[4][MAX_OUTPUT_CHANNELS];
93 } Early;
95 // Decorrelator delay line.
96 DelayLine Decorrelator;
97 // There are actually 4 decorrelator taps, but the first occurs at the
98 // initial sample.
99 ALuint DecoTap[3];
101 struct {
102 // Output gain for late reverb.
103 ALfloat Gain;
105 // Attenuation to compensate for the modal density and decay rate of
106 // the late lines.
107 ALfloat DensityGain;
109 // The feed-back and feed-forward all-pass coefficient.
110 ALfloat ApFeedCoeff;
112 // Mixing matrix coefficient.
113 ALfloat MixCoeff;
115 // Late reverb has 4 parallel all-pass filters.
116 ALfloat ApCoeff[4];
117 DelayLine ApDelay[4];
118 ALuint ApOffset[4];
120 // In addition to 4 cyclical delay lines.
121 ALfloat Coeff[4];
122 DelayLine Delay[4];
123 ALuint Offset[4];
125 // The cyclical delay lines are 1-pole low-pass filtered.
126 ALfloat LpCoeff[4];
127 ALfloat LpSample[4];
129 // The gain for each output channel based on 3D panning.
130 ALfloat PanGain[4][MAX_OUTPUT_CHANNELS];
131 } Late;
133 struct {
134 // Attenuation to compensate for the modal density and decay rate of
135 // the echo line.
136 ALfloat DensityGain;
138 // Echo delay and all-pass lines.
139 DelayLine Delay;
140 DelayLine ApDelay;
142 ALfloat Coeff;
143 ALfloat ApFeedCoeff;
144 ALfloat ApCoeff;
146 ALuint Offset;
147 ALuint ApOffset;
149 // The echo line is 1-pole low-pass filtered.
150 ALfloat LpCoeff;
151 ALfloat LpSample;
153 // Echo mixing coefficient.
154 ALfloat MixCoeff;
155 } Echo;
157 // The current read offset for all delay lines.
158 ALuint Offset;
160 /* Temporary storage used when processing. */
161 ALfloat ReverbSamples[MAX_UPDATE_SAMPLES][4];
162 ALfloat EarlySamples[MAX_UPDATE_SAMPLES][4];
163 } ALreverbState;
165 static ALvoid ALreverbState_Destruct(ALreverbState *State)
167 free(State->SampleBuffer);
168 State->SampleBuffer = NULL;
171 static ALboolean ALreverbState_deviceUpdate(ALreverbState *State, ALCdevice *Device);
172 static ALvoid ALreverbState_update(ALreverbState *State, const ALCdevice *Device, const ALeffectslot *Slot);
173 static ALvoid ALreverbState_processStandard(ALreverbState *State, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels);
174 static ALvoid ALreverbState_processEax(ALreverbState *State, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels);
175 static ALvoid ALreverbState_process(ALreverbState *State, ALuint SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels);
176 DECLARE_DEFAULT_ALLOCATORS(ALreverbState)
178 DEFINE_ALEFFECTSTATE_VTABLE(ALreverbState);
180 /* This is a user config option for modifying the overall output of the reverb
181 * effect.
183 ALfloat ReverbBoost = 1.0f;
185 /* Specifies whether to use a standard reverb effect in place of EAX reverb (no
186 * high-pass, modulation, or echo).
188 ALboolean EmulateEAXReverb = AL_FALSE;
190 /* This coefficient is used to define the maximum frequency range controlled
191 * by the modulation depth. The current value of 0.1 will allow it to swing
192 * from 0.9x to 1.1x. This value must be below 1. At 1 it will cause the
193 * sampler to stall on the downswing, and above 1 it will cause it to sample
194 * backwards.
196 static const ALfloat MODULATION_DEPTH_COEFF = 0.1f;
198 /* A filter is used to avoid the terrible distortion caused by changing
199 * modulation time and/or depth. To be consistent across different sample
200 * rates, the coefficient must be raised to a constant divided by the sample
201 * rate: coeff^(constant / rate).
203 static const ALfloat MODULATION_FILTER_COEFF = 0.048f;
204 static const ALfloat MODULATION_FILTER_CONST = 100000.0f;
206 // When diffusion is above 0, an all-pass filter is used to take the edge off
207 // the echo effect. It uses the following line length (in seconds).
208 static const ALfloat ECHO_ALLPASS_LENGTH = 0.0133f;
210 // Input into the late reverb is decorrelated between four channels. Their
211 // timings are dependent on a fraction and multiplier. See the
212 // UpdateDecorrelator() routine for the calculations involved.
213 static const ALfloat DECO_FRACTION = 0.15f;
214 static const ALfloat DECO_MULTIPLIER = 2.0f;
216 // All delay line lengths are specified in seconds.
218 // The lengths of the early delay lines.
219 static const ALfloat EARLY_LINE_LENGTH[4] =
221 0.0015f, 0.0045f, 0.0135f, 0.0405f
224 // The lengths of the late all-pass delay lines.
225 static const ALfloat ALLPASS_LINE_LENGTH[4] =
227 0.0151f, 0.0167f, 0.0183f, 0.0200f,
230 // The lengths of the late cyclical delay lines.
231 static const ALfloat LATE_LINE_LENGTH[4] =
233 0.0211f, 0.0311f, 0.0461f, 0.0680f
236 // The late cyclical delay lines have a variable length dependent on the
237 // effect's density parameter (inverted for some reason) and this multiplier.
238 static const ALfloat LATE_LINE_MULTIPLIER = 4.0f;
241 /**************************************
242 * Device Update *
243 **************************************/
245 // Given the allocated sample buffer, this function updates each delay line
246 // offset.
247 static inline ALvoid RealizeLineOffset(ALfloat *sampleBuffer, DelayLine *Delay)
249 Delay->Line = &sampleBuffer[(ptrdiff_t)Delay->Line];
252 // Calculate the length of a delay line and store its mask and offset.
253 static ALuint CalcLineLength(ALfloat length, ptrdiff_t offset, ALuint frequency, ALuint extra, DelayLine *Delay)
255 ALuint samples;
257 // All line lengths are powers of 2, calculated from their lengths, with
258 // an additional sample in case of rounding errors.
259 samples = fastf2u(length*frequency) + extra;
260 samples = NextPowerOf2(samples + 1);
261 // All lines share a single sample buffer.
262 Delay->Mask = samples - 1;
263 Delay->Line = (ALfloat*)offset;
264 // Return the sample count for accumulation.
265 return samples;
268 /* Calculates the delay line metrics and allocates the shared sample buffer
269 * for all lines given the sample rate (frequency). If an allocation failure
270 * occurs, it returns AL_FALSE.
272 static ALboolean AllocLines(ALuint frequency, ALreverbState *State)
274 ALuint totalSamples, index;
275 ALfloat length;
276 ALfloat *newBuffer = NULL;
278 // All delay line lengths are calculated to accomodate the full range of
279 // lengths given their respective paramters.
280 totalSamples = 0;
282 /* The modulator's line length is calculated from the maximum modulation
283 * time and depth coefficient, and halfed for the low-to-high frequency
284 * swing. An additional sample is added to keep it stable when there is no
285 * modulation.
287 length = (AL_EAXREVERB_MAX_MODULATION_TIME*MODULATION_DEPTH_COEFF/2.0f);
288 totalSamples += CalcLineLength(length, totalSamples, frequency, 1,
289 &State->Mod.Delay);
291 // The initial delay is the sum of the reflections and late reverb
292 // delays. This must include space for storing a loop update to feed the
293 // early reflections, decorrelator, and echo.
294 length = AL_EAXREVERB_MAX_REFLECTIONS_DELAY +
295 AL_EAXREVERB_MAX_LATE_REVERB_DELAY;
296 totalSamples += CalcLineLength(length, totalSamples, frequency,
297 MAX_UPDATE_SAMPLES, &State->Delay);
299 // The early reflection lines.
300 for(index = 0;index < 4;index++)
301 totalSamples += CalcLineLength(EARLY_LINE_LENGTH[index], totalSamples,
302 frequency, 0, &State->Early.Delay[index]);
304 // The decorrelator line is calculated from the lowest reverb density (a
305 // parameter value of 1). This must include space for storing a loop update
306 // to feed the late reverb.
307 length = (DECO_FRACTION * DECO_MULTIPLIER * DECO_MULTIPLIER) *
308 LATE_LINE_LENGTH[0] * (1.0f + LATE_LINE_MULTIPLIER);
309 totalSamples += CalcLineLength(length, totalSamples, frequency, MAX_UPDATE_SAMPLES,
310 &State->Decorrelator);
312 // The late all-pass lines.
313 for(index = 0;index < 4;index++)
314 totalSamples += CalcLineLength(ALLPASS_LINE_LENGTH[index], totalSamples,
315 frequency, 0, &State->Late.ApDelay[index]);
317 // The late delay lines are calculated from the lowest reverb density.
318 for(index = 0;index < 4;index++)
320 length = LATE_LINE_LENGTH[index] * (1.0f + LATE_LINE_MULTIPLIER);
321 totalSamples += CalcLineLength(length, totalSamples, frequency, 0,
322 &State->Late.Delay[index]);
325 // The echo all-pass and delay lines.
326 totalSamples += CalcLineLength(ECHO_ALLPASS_LENGTH, totalSamples,
327 frequency, 0, &State->Echo.ApDelay);
328 totalSamples += CalcLineLength(AL_EAXREVERB_MAX_ECHO_TIME, totalSamples,
329 frequency, 0, &State->Echo.Delay);
331 if(totalSamples != State->TotalSamples)
333 TRACE("New reverb buffer length: %u samples (%f sec)\n", totalSamples, totalSamples/(float)frequency);
334 newBuffer = realloc(State->SampleBuffer, sizeof(ALfloat) * totalSamples);
335 if(newBuffer == NULL)
336 return AL_FALSE;
337 State->SampleBuffer = newBuffer;
338 State->TotalSamples = totalSamples;
341 // Update all delays to reflect the new sample buffer.
342 RealizeLineOffset(State->SampleBuffer, &State->Delay);
343 RealizeLineOffset(State->SampleBuffer, &State->Decorrelator);
344 for(index = 0;index < 4;index++)
346 RealizeLineOffset(State->SampleBuffer, &State->Early.Delay[index]);
347 RealizeLineOffset(State->SampleBuffer, &State->Late.ApDelay[index]);
348 RealizeLineOffset(State->SampleBuffer, &State->Late.Delay[index]);
350 RealizeLineOffset(State->SampleBuffer, &State->Mod.Delay);
351 RealizeLineOffset(State->SampleBuffer, &State->Echo.ApDelay);
352 RealizeLineOffset(State->SampleBuffer, &State->Echo.Delay);
354 // Clear the sample buffer.
355 for(index = 0;index < State->TotalSamples;index++)
356 State->SampleBuffer[index] = 0.0f;
358 return AL_TRUE;
361 static ALboolean ALreverbState_deviceUpdate(ALreverbState *State, ALCdevice *Device)
363 ALuint frequency = Device->Frequency, index;
365 // Allocate the delay lines.
366 if(!AllocLines(frequency, State))
367 return AL_FALSE;
369 // Calculate the modulation filter coefficient. Notice that the exponent
370 // is calculated given the current sample rate. This ensures that the
371 // resulting filter response over time is consistent across all sample
372 // rates.
373 State->Mod.Coeff = powf(MODULATION_FILTER_COEFF,
374 MODULATION_FILTER_CONST / frequency);
376 // The early reflection and late all-pass filter line lengths are static,
377 // so their offsets only need to be calculated once.
378 for(index = 0;index < 4;index++)
380 State->Early.Offset[index] = fastf2u(EARLY_LINE_LENGTH[index] * frequency);
381 State->Late.ApOffset[index] = fastf2u(ALLPASS_LINE_LENGTH[index] * frequency);
384 // The echo all-pass filter line length is static, so its offset only
385 // needs to be calculated once.
386 State->Echo.ApOffset = fastf2u(ECHO_ALLPASS_LENGTH * frequency);
388 return AL_TRUE;
391 /**************************************
392 * Effect Update *
393 **************************************/
395 // Calculate a decay coefficient given the length of each cycle and the time
396 // until the decay reaches -60 dB.
397 static inline ALfloat CalcDecayCoeff(ALfloat length, ALfloat decayTime)
399 return powf(0.001f/*-60 dB*/, length/decayTime);
402 // Calculate a decay length from a coefficient and the time until the decay
403 // reaches -60 dB.
404 static inline ALfloat CalcDecayLength(ALfloat coeff, ALfloat decayTime)
406 return log10f(coeff) * decayTime / log10f(0.001f)/*-60 dB*/;
409 // Calculate an attenuation to be applied to the input of any echo models to
410 // compensate for modal density and decay time.
411 static inline ALfloat CalcDensityGain(ALfloat a)
413 /* The energy of a signal can be obtained by finding the area under the
414 * squared signal. This takes the form of Sum(x_n^2), where x is the
415 * amplitude for the sample n.
417 * Decaying feedback matches exponential decay of the form Sum(a^n),
418 * where a is the attenuation coefficient, and n is the sample. The area
419 * under this decay curve can be calculated as: 1 / (1 - a).
421 * Modifying the above equation to find the squared area under the curve
422 * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
423 * calculated by inverting the square root of this approximation,
424 * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
426 return sqrtf(1.0f - (a * a));
429 // Calculate the mixing matrix coefficients given a diffusion factor.
430 static inline ALvoid CalcMatrixCoeffs(ALfloat diffusion, ALfloat *x, ALfloat *y)
432 ALfloat n, t;
434 // The matrix is of order 4, so n is sqrt (4 - 1).
435 n = sqrtf(3.0f);
436 t = diffusion * atanf(n);
438 // Calculate the first mixing matrix coefficient.
439 *x = cosf(t);
440 // Calculate the second mixing matrix coefficient.
441 *y = sinf(t) / n;
444 // Calculate the limited HF ratio for use with the late reverb low-pass
445 // filters.
446 static ALfloat CalcLimitedHfRatio(ALfloat hfRatio, ALfloat airAbsorptionGainHF, ALfloat decayTime)
448 ALfloat limitRatio;
450 /* Find the attenuation due to air absorption in dB (converting delay
451 * time to meters using the speed of sound). Then reversing the decay
452 * equation, solve for HF ratio. The delay length is cancelled out of
453 * the equation, so it can be calculated once for all lines.
455 limitRatio = 1.0f / (CalcDecayLength(airAbsorptionGainHF, decayTime) *
456 SPEEDOFSOUNDMETRESPERSEC);
457 /* Using the limit calculated above, apply the upper bound to the HF
458 * ratio. Also need to limit the result to a minimum of 0.1, just like the
459 * HF ratio parameter. */
460 return clampf(limitRatio, 0.1f, hfRatio);
463 // Calculate the coefficient for a HF (and eventually LF) decay damping
464 // filter.
465 static inline ALfloat CalcDampingCoeff(ALfloat hfRatio, ALfloat length, ALfloat decayTime, ALfloat decayCoeff, ALfloat cw)
467 ALfloat coeff, g;
469 // Eventually this should boost the high frequencies when the ratio
470 // exceeds 1.
471 coeff = 0.0f;
472 if (hfRatio < 1.0f)
474 // Calculate the low-pass coefficient by dividing the HF decay
475 // coefficient by the full decay coefficient.
476 g = CalcDecayCoeff(length, decayTime * hfRatio) / decayCoeff;
478 // Damping is done with a 1-pole filter, so g needs to be squared.
479 g *= g;
480 if(g < 0.9999f) /* 1-epsilon */
482 /* Be careful with gains < 0.001, as that causes the coefficient
483 * head towards 1, which will flatten the signal. */
484 g = maxf(g, 0.001f);
485 coeff = (1 - g*cw - sqrtf(2*g*(1-cw) - g*g*(1 - cw*cw))) /
486 (1 - g);
489 // Very low decay times will produce minimal output, so apply an
490 // upper bound to the coefficient.
491 coeff = minf(coeff, 0.98f);
493 return coeff;
496 // Update the EAX modulation index, range, and depth. Keep in mind that this
497 // kind of vibrato is additive and not multiplicative as one may expect. The
498 // downswing will sound stronger than the upswing.
499 static ALvoid UpdateModulator(ALfloat modTime, ALfloat modDepth, ALuint frequency, ALreverbState *State)
501 ALuint range;
503 /* Modulation is calculated in two parts.
505 * The modulation time effects the sinus applied to the change in
506 * frequency. An index out of the current time range (both in samples)
507 * is incremented each sample. The range is bound to a reasonable
508 * minimum (1 sample) and when the timing changes, the index is rescaled
509 * to the new range (to keep the sinus consistent).
511 range = maxu(fastf2u(modTime*frequency), 1);
512 State->Mod.Index = (ALuint)(State->Mod.Index * (ALuint64)range /
513 State->Mod.Range);
514 State->Mod.Range = range;
516 /* The modulation depth effects the amount of frequency change over the
517 * range of the sinus. It needs to be scaled by the modulation time so
518 * that a given depth produces a consistent change in frequency over all
519 * ranges of time. Since the depth is applied to a sinus value, it needs
520 * to be halfed once for the sinus range and again for the sinus swing
521 * in time (half of it is spent decreasing the frequency, half is spent
522 * increasing it).
524 State->Mod.Depth = modDepth * MODULATION_DEPTH_COEFF * modTime / 2.0f /
525 2.0f * frequency;
528 // Update the offsets for the initial effect delay line.
529 static ALvoid UpdateDelayLine(ALfloat earlyDelay, ALfloat lateDelay, ALuint frequency, ALreverbState *State)
531 // Calculate the initial delay taps.
532 State->DelayTap[0] = fastf2u(earlyDelay * frequency);
533 State->DelayTap[1] = fastf2u((earlyDelay + lateDelay) * frequency);
536 // Update the early reflections mix and line coefficients.
537 static ALvoid UpdateEarlyLines(ALfloat lateDelay, ALreverbState *State)
539 ALuint index;
541 // Calculate the early reflections with a constant attenuation of 0.5.
542 State->Early.Gain = 0.5f;
544 // Calculate the gain (coefficient) for each early delay line using the
545 // late delay time. This expands the early reflections to the start of
546 // the late reverb.
547 for(index = 0;index < 4;index++)
548 State->Early.Coeff[index] = CalcDecayCoeff(EARLY_LINE_LENGTH[index],
549 lateDelay);
552 // Update the offsets for the decorrelator line.
553 static ALvoid UpdateDecorrelator(ALfloat density, ALuint frequency, ALreverbState *State)
555 ALuint index;
556 ALfloat length;
558 /* The late reverb inputs are decorrelated to smooth the reverb tail and
559 * reduce harsh echos. The first tap occurs immediately, while the
560 * remaining taps are delayed by multiples of a fraction of the smallest
561 * cyclical delay time.
563 * offset[index] = (FRACTION (MULTIPLIER^index)) smallest_delay
565 for(index = 0;index < 3;index++)
567 length = (DECO_FRACTION * powf(DECO_MULTIPLIER, (ALfloat)index)) *
568 LATE_LINE_LENGTH[0] * (1.0f + (density * LATE_LINE_MULTIPLIER));
569 State->DecoTap[index] = fastf2u(length * frequency);
573 // Update the late reverb mix, line lengths, and line coefficients.
574 static ALvoid UpdateLateLines(ALfloat xMix, ALfloat density, ALfloat decayTime, ALfloat diffusion, ALfloat echoDepth, ALfloat hfRatio, ALfloat cw, ALuint frequency, ALreverbState *State)
576 ALfloat length;
577 ALuint index;
579 /* Calculate the late reverb gain. Since the output is tapped prior to the
580 * application of the next delay line coefficients, this gain needs to be
581 * attenuated by the 'x' mixing matrix coefficient as well. Also attenuate
582 * the late reverb when echo depth is high and diffusion is low, so the
583 * echo is slightly stronger than the decorrelated echos in the reverb
584 * tail.
586 State->Late.Gain = xMix * (1.0f - (echoDepth*0.5f*(1.0f - diffusion)));
588 /* To compensate for changes in modal density and decay time of the late
589 * reverb signal, the input is attenuated based on the maximal energy of
590 * the outgoing signal. This approximation is used to keep the apparent
591 * energy of the signal equal for all ranges of density and decay time.
593 * The average length of the cyclcical delay lines is used to calculate
594 * the attenuation coefficient.
596 length = (LATE_LINE_LENGTH[0] + LATE_LINE_LENGTH[1] +
597 LATE_LINE_LENGTH[2] + LATE_LINE_LENGTH[3]) / 4.0f;
598 length *= 1.0f + (density * LATE_LINE_MULTIPLIER);
599 State->Late.DensityGain = CalcDensityGain(
600 CalcDecayCoeff(length, decayTime)
603 // Calculate the all-pass feed-back and feed-forward coefficient.
604 State->Late.ApFeedCoeff = 0.5f * powf(diffusion, 2.0f);
606 for(index = 0;index < 4;index++)
608 // Calculate the gain (coefficient) for each all-pass line.
609 State->Late.ApCoeff[index] = CalcDecayCoeff(
610 ALLPASS_LINE_LENGTH[index], decayTime
613 // Calculate the length (in seconds) of each cyclical delay line.
614 length = LATE_LINE_LENGTH[index] *
615 (1.0f + (density * LATE_LINE_MULTIPLIER));
617 // Calculate the delay offset for each cyclical delay line.
618 State->Late.Offset[index] = fastf2u(length * frequency);
620 // Calculate the gain (coefficient) for each cyclical line.
621 State->Late.Coeff[index] = CalcDecayCoeff(length, decayTime);
623 // Calculate the damping coefficient for each low-pass filter.
624 State->Late.LpCoeff[index] = CalcDampingCoeff(
625 hfRatio, length, decayTime, State->Late.Coeff[index], cw
628 // Attenuate the cyclical line coefficients by the mixing coefficient
629 // (x).
630 State->Late.Coeff[index] *= xMix;
634 // Update the echo gain, line offset, line coefficients, and mixing
635 // coefficients.
636 static ALvoid UpdateEchoLine(ALfloat echoTime, ALfloat decayTime, ALfloat diffusion, ALfloat echoDepth, ALfloat hfRatio, ALfloat cw, ALuint frequency, ALreverbState *State)
638 // Update the offset and coefficient for the echo delay line.
639 State->Echo.Offset = fastf2u(echoTime * frequency);
641 // Calculate the decay coefficient for the echo line.
642 State->Echo.Coeff = CalcDecayCoeff(echoTime, decayTime);
644 // Calculate the energy-based attenuation coefficient for the echo delay
645 // line.
646 State->Echo.DensityGain = CalcDensityGain(State->Echo.Coeff);
648 // Calculate the echo all-pass feed coefficient.
649 State->Echo.ApFeedCoeff = 0.5f * powf(diffusion, 2.0f);
651 // Calculate the echo all-pass attenuation coefficient.
652 State->Echo.ApCoeff = CalcDecayCoeff(ECHO_ALLPASS_LENGTH, decayTime);
654 // Calculate the damping coefficient for each low-pass filter.
655 State->Echo.LpCoeff = CalcDampingCoeff(hfRatio, echoTime, decayTime,
656 State->Echo.Coeff, cw);
658 /* Calculate the echo mixing coefficient. This is applied to the output mix
659 * only, not the feedback.
661 State->Echo.MixCoeff = echoDepth;
664 // Update the early and late 3D panning gains.
665 static ALvoid UpdateDirectPanning(const ALCdevice *Device, const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, ALfloat Gain, ALfloat EarlyGain, ALfloat LateGain, ALreverbState *State)
667 ALfloat AmbientGains[MAX_OUTPUT_CHANNELS];
668 ALfloat DirGains[MAX_OUTPUT_CHANNELS];
669 ALfloat coeffs[MAX_AMBI_COEFFS];
670 ALfloat length;
671 ALuint i;
673 /* Apply a boost of about 3dB to better match the expected stereo output volume. */
674 Gain *= 1.414213562f;
675 ComputeAmbientGains(Device->AmbiCoeffs, Device->NumChannels, Gain, AmbientGains);
677 memset(State->Early.PanGain, 0, sizeof(State->Early.PanGain));
678 length = sqrtf(ReflectionsPan[0]*ReflectionsPan[0] + ReflectionsPan[1]*ReflectionsPan[1] + ReflectionsPan[2]*ReflectionsPan[2]);
679 if(!(length > FLT_EPSILON))
681 for(i = 0;i < Device->NumChannels;i++)
682 State->Early.PanGain[i&3][i] = AmbientGains[i] * EarlyGain;
684 else
686 /* Note that EAX Reverb's panning vectors are using right-handed
687 * coordinates, rather that the OpenAL's left-handed coordinates.
688 * Negate Z to fix this.
690 ALfloat pan[3] = {
691 ReflectionsPan[0] / length,
692 ReflectionsPan[1] / length,
693 -ReflectionsPan[2] / length,
695 length = minf(length, 1.0f);
697 CalcDirectionCoeffs(pan, coeffs);
698 ComputePanningGains(Device->AmbiCoeffs, Device->NumChannels, coeffs, Gain, DirGains);
699 for(i = 0;i < Device->NumChannels;i++)
700 State->Early.PanGain[i&3][i] = lerp(AmbientGains[i], DirGains[i], length) * EarlyGain;
703 memset(State->Late.PanGain, 0, sizeof(State->Late.PanGain));
704 length = sqrtf(LateReverbPan[0]*LateReverbPan[0] + LateReverbPan[1]*LateReverbPan[1] + LateReverbPan[2]*LateReverbPan[2]);
705 if(!(length > FLT_EPSILON))
707 for(i = 0;i < Device->NumChannels;i++)
708 State->Late.PanGain[i&3][i] = AmbientGains[i] * LateGain;
710 else
712 ALfloat pan[3] = {
713 LateReverbPan[0] / length,
714 LateReverbPan[1] / length,
715 -LateReverbPan[2] / length,
717 length = minf(length, 1.0f);
719 CalcDirectionCoeffs(pan, coeffs);
720 ComputePanningGains(Device->AmbiCoeffs, Device->NumChannels, coeffs, Gain, DirGains);
721 for(i = 0;i < Device->NumChannels;i++)
722 State->Late.PanGain[i&3][i] = lerp(AmbientGains[i], DirGains[i], length) * LateGain;
726 static ALvoid Update3DPanning(const ALCdevice *Device, const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, ALfloat Gain, ALfloat EarlyGain, ALfloat LateGain, ALreverbState *State)
728 static const ALfloat PanDirs[4][3] = {
729 { -0.707106781f, 0.0f, -0.707106781f }, /* Front left */
730 { 0.707106781f, 0.0f, -0.707106781f }, /* Front right */
731 { 0.707106781f, 0.0f, 0.707106781f }, /* Back right */
732 { -0.707106781f, 0.0f, 0.707106781f } /* Back left */
734 ALfloat coeffs[MAX_AMBI_COEFFS];
735 ALfloat gain[4];
736 ALfloat length;
737 ALuint i;
739 /* 0.5 would be the gain scaling when the panning vector is 0. This also
740 * equals sqrt(1/4), a nice gain scaling for the four virtual points
741 * producing an "ambient" response.
743 gain[0] = gain[1] = gain[2] = gain[3] = 0.5f;
744 length = sqrtf(ReflectionsPan[0]*ReflectionsPan[0] + ReflectionsPan[1]*ReflectionsPan[1] + ReflectionsPan[2]*ReflectionsPan[2]);
745 if(length > 1.0f)
747 ALfloat pan[3] = {
748 ReflectionsPan[0] / length,
749 ReflectionsPan[1] / length,
750 -ReflectionsPan[2] / length,
752 for(i = 0;i < 4;i++)
754 ALfloat dotp = pan[0]*PanDirs[i][0] + pan[1]*PanDirs[i][1] + pan[2]*PanDirs[i][2];
755 gain[i] = dotp*0.5f + 0.5f;
758 else if(length > FLT_EPSILON)
760 for(i = 0;i < 4;i++)
762 ALfloat dotp = ReflectionsPan[0]*PanDirs[i][0] + ReflectionsPan[1]*PanDirs[i][1] +
763 -ReflectionsPan[2]*PanDirs[i][2];
764 gain[i] = dotp*0.5f + 0.5f;
767 for(i = 0;i < 4;i++)
769 CalcDirectionCoeffs(PanDirs[i], coeffs);
770 ComputePanningGains(Device->AmbiCoeffs, Device->NumChannels, coeffs,
771 Gain*EarlyGain*gain[i], State->Early.PanGain[i]);
774 gain[0] = gain[1] = gain[2] = gain[3] = 0.5f;
775 length = sqrtf(LateReverbPan[0]*LateReverbPan[0] + LateReverbPan[1]*LateReverbPan[1] + LateReverbPan[2]*LateReverbPan[2]);
776 if(length > 1.0f)
778 ALfloat pan[3] = {
779 LateReverbPan[0] / length,
780 LateReverbPan[1] / length,
781 -LateReverbPan[2] / length,
783 length = 1.0f;
784 for(i = 0;i < 4;i++)
786 ALfloat dotp = pan[0]*PanDirs[i][0] + pan[1]*PanDirs[i][1] + pan[2]*PanDirs[i][2];
787 gain[i] = dotp*0.5f + 0.5f;
790 else if(length > FLT_EPSILON)
792 for(i = 0;i < 4;i++)
794 ALfloat dotp = LateReverbPan[0]*PanDirs[i][0] + LateReverbPan[1]*PanDirs[i][1] +
795 -LateReverbPan[2]*PanDirs[i][2];
796 gain[i] = dotp*0.5f + 0.5f;
799 for(i = 0;i < 4;i++)
801 CalcDirectionCoeffs(PanDirs[i], coeffs);
802 ComputePanningGains(Device->AmbiCoeffs, Device->NumChannels, coeffs,
803 Gain*LateGain*gain[i], State->Late.PanGain[i]);
807 static ALvoid ALreverbState_update(ALreverbState *State, const ALCdevice *Device, const ALeffectslot *Slot)
809 const ALeffectProps *props = &Slot->EffectProps;
810 ALuint frequency = Device->Frequency;
811 ALfloat lfscale, hfscale, hfRatio;
812 ALfloat gain, gainlf, gainhf;
813 ALfloat cw, x, y;
815 if(Slot->EffectType == AL_EFFECT_EAXREVERB && !EmulateEAXReverb)
816 State->IsEax = AL_TRUE;
817 else if(Slot->EffectType == AL_EFFECT_REVERB || EmulateEAXReverb)
818 State->IsEax = AL_FALSE;
820 // Calculate the master filters
821 hfscale = props->Reverb.HFReference / frequency;
822 gainhf = maxf(props->Reverb.GainHF, 0.0001f);
823 ALfilterState_setParams(&State->LpFilter, ALfilterType_HighShelf,
824 gainhf, hfscale, calc_rcpQ_from_slope(gainhf, 0.75f));
825 lfscale = props->Reverb.LFReference / frequency;
826 gainlf = maxf(props->Reverb.GainLF, 0.0001f);
827 ALfilterState_setParams(&State->HpFilter, ALfilterType_LowShelf,
828 gainlf, lfscale, calc_rcpQ_from_slope(gainlf, 0.75f));
830 // Update the modulator line.
831 UpdateModulator(props->Reverb.ModulationTime, props->Reverb.ModulationDepth,
832 frequency, State);
834 // Update the initial effect delay.
835 UpdateDelayLine(props->Reverb.ReflectionsDelay, props->Reverb.LateReverbDelay,
836 frequency, State);
838 // Update the early lines.
839 UpdateEarlyLines(props->Reverb.LateReverbDelay, State);
841 // Update the decorrelator.
842 UpdateDecorrelator(props->Reverb.Density, frequency, State);
844 // Get the mixing matrix coefficients (x and y).
845 CalcMatrixCoeffs(props->Reverb.Diffusion, &x, &y);
846 // Then divide x into y to simplify the matrix calculation.
847 State->Late.MixCoeff = y / x;
849 // If the HF limit parameter is flagged, calculate an appropriate limit
850 // based on the air absorption parameter.
851 hfRatio = props->Reverb.DecayHFRatio;
852 if(props->Reverb.DecayHFLimit && props->Reverb.AirAbsorptionGainHF < 1.0f)
853 hfRatio = CalcLimitedHfRatio(hfRatio, props->Reverb.AirAbsorptionGainHF,
854 props->Reverb.DecayTime);
856 cw = cosf(F_TAU * hfscale);
857 // Update the late lines.
858 UpdateLateLines(x, props->Reverb.Density, props->Reverb.DecayTime,
859 props->Reverb.Diffusion, props->Reverb.EchoDepth,
860 hfRatio, cw, frequency, State);
862 // Update the echo line.
863 UpdateEchoLine(props->Reverb.EchoTime, props->Reverb.DecayTime,
864 props->Reverb.Diffusion, props->Reverb.EchoDepth,
865 hfRatio, cw, frequency, State);
867 gain = props->Reverb.Gain * Slot->Gain * ReverbBoost;
868 // Update early and late 3D panning.
869 if(Device->Hrtf || Device->FmtChans == DevFmtBFormat3D)
870 Update3DPanning(Device, props->Reverb.ReflectionsPan,
871 props->Reverb.LateReverbPan, gain,
872 props->Reverb.ReflectionsGain,
873 props->Reverb.LateReverbGain, State);
874 else
875 UpdateDirectPanning(Device, props->Reverb.ReflectionsPan,
876 props->Reverb.LateReverbPan, gain,
877 props->Reverb.ReflectionsGain,
878 props->Reverb.LateReverbGain, State);
882 /**************************************
883 * Effect Processing *
884 **************************************/
886 // Basic delay line input/output routines.
887 static inline ALfloat DelayLineOut(DelayLine *Delay, ALuint offset)
889 return Delay->Line[offset&Delay->Mask];
892 static inline ALvoid DelayLineIn(DelayLine *Delay, ALuint offset, ALfloat in)
894 Delay->Line[offset&Delay->Mask] = in;
897 // Given an input sample, this function produces modulation for the late
898 // reverb.
899 static inline ALfloat EAXModulation(ALreverbState *State, ALuint offset, ALfloat in)
901 ALfloat sinus, frac, fdelay;
902 ALfloat out0, out1;
903 ALuint delay;
905 // Calculate the sinus rythm (dependent on modulation time and the
906 // sampling rate). The center of the sinus is moved to reduce the delay
907 // of the effect when the time or depth are low.
908 sinus = 1.0f - cosf(F_TAU * State->Mod.Index / State->Mod.Range);
910 // Step the modulation index forward, keeping it bound to its range.
911 State->Mod.Index = (State->Mod.Index + 1) % State->Mod.Range;
913 // The depth determines the range over which to read the input samples
914 // from, so it must be filtered to reduce the distortion caused by even
915 // small parameter changes.
916 State->Mod.Filter = lerp(State->Mod.Filter, State->Mod.Depth,
917 State->Mod.Coeff);
919 // Calculate the read offset and fraction between it and the next sample.
920 frac = modff(State->Mod.Filter*sinus + 1.0f, &fdelay);
921 delay = fastf2u(fdelay);
923 // Get the two samples crossed by the offset, and feed the delay line
924 // with the next input sample.
925 out0 = DelayLineOut(&State->Mod.Delay, offset - delay);
926 out1 = DelayLineOut(&State->Mod.Delay, offset - delay - 1);
927 DelayLineIn(&State->Mod.Delay, offset, in);
929 // The output is obtained by linearly interpolating the two samples that
930 // were acquired above.
931 return lerp(out0, out1, frac);
934 // Given some input sample, this function produces four-channel outputs for the
935 // early reflections.
936 static inline ALvoid EarlyReflection(ALreverbState *State, ALuint todo, ALfloat (*restrict out)[4])
938 ALfloat d[4], v, f[4];
939 ALuint i;
941 for(i = 0;i < todo;i++)
943 ALuint offset = State->Offset+i;
945 // Obtain the decayed results of each early delay line.
946 d[0] = DelayLineOut(&State->Early.Delay[0], offset-State->Early.Offset[0]) * State->Early.Coeff[0];
947 d[1] = DelayLineOut(&State->Early.Delay[1], offset-State->Early.Offset[1]) * State->Early.Coeff[1];
948 d[2] = DelayLineOut(&State->Early.Delay[2], offset-State->Early.Offset[2]) * State->Early.Coeff[2];
949 d[3] = DelayLineOut(&State->Early.Delay[3], offset-State->Early.Offset[3]) * State->Early.Coeff[3];
951 /* The following uses a lossless scattering junction from waveguide
952 * theory. It actually amounts to a householder mixing matrix, which
953 * will produce a maximally diffuse response, and means this can
954 * probably be considered a simple feed-back delay network (FDN).
956 * ---
958 * v = 2/N / d_i
959 * ---
960 * i=1
962 v = (d[0] + d[1] + d[2] + d[3]) * 0.5f;
963 // The junction is loaded with the input here.
964 v += DelayLineOut(&State->Delay, offset-State->DelayTap[0]);
966 // Calculate the feed values for the delay lines.
967 f[0] = v - d[0];
968 f[1] = v - d[1];
969 f[2] = v - d[2];
970 f[3] = v - d[3];
972 // Re-feed the delay lines.
973 DelayLineIn(&State->Early.Delay[0], offset, f[0]);
974 DelayLineIn(&State->Early.Delay[1], offset, f[1]);
975 DelayLineIn(&State->Early.Delay[2], offset, f[2]);
976 DelayLineIn(&State->Early.Delay[3], offset, f[3]);
978 // Output the results of the junction for all four channels.
979 out[i][0] = State->Early.Gain * f[0];
980 out[i][1] = State->Early.Gain * f[1];
981 out[i][2] = State->Early.Gain * f[2];
982 out[i][3] = State->Early.Gain * f[3];
986 // Basic attenuated all-pass input/output routine.
987 static inline ALfloat AllpassInOut(DelayLine *Delay, ALuint outOffset, ALuint inOffset, ALfloat in, ALfloat feedCoeff, ALfloat coeff)
989 ALfloat out, feed;
991 out = DelayLineOut(Delay, outOffset);
992 feed = feedCoeff * in;
993 DelayLineIn(Delay, inOffset, (feedCoeff * (out - feed)) + in);
995 // The time-based attenuation is only applied to the delay output to
996 // keep it from affecting the feed-back path (which is already controlled
997 // by the all-pass feed coefficient).
998 return (coeff * out) - feed;
1001 // All-pass input/output routine for late reverb.
1002 static inline ALfloat LateAllPassInOut(ALreverbState *State, ALuint offset, ALuint index, ALfloat in)
1004 return AllpassInOut(&State->Late.ApDelay[index],
1005 offset - State->Late.ApOffset[index],
1006 offset, in, State->Late.ApFeedCoeff,
1007 State->Late.ApCoeff[index]);
1010 // Low-pass filter input/output routine for late reverb.
1011 static inline ALfloat LateLowPassInOut(ALreverbState *State, ALuint index, ALfloat in)
1013 in = lerp(in, State->Late.LpSample[index], State->Late.LpCoeff[index]);
1014 State->Late.LpSample[index] = in;
1015 return in;
1018 // Given four decorrelated input samples, this function produces four-channel
1019 // output for the late reverb.
1020 static inline ALvoid LateReverb(ALreverbState *State, ALuint todo, ALfloat (*restrict out)[4])
1022 ALfloat d[4], f[4];
1023 ALuint i;
1025 for(i = 0;i < todo;i++)
1027 ALuint offset = State->Offset+i;
1029 f[0] = DelayLineOut(&State->Decorrelator, offset);
1030 f[1] = DelayLineOut(&State->Decorrelator, offset-State->DecoTap[0]);
1031 f[2] = DelayLineOut(&State->Decorrelator, offset-State->DecoTap[1]);
1032 f[3] = DelayLineOut(&State->Decorrelator, offset-State->DecoTap[2]);
1034 // Obtain the decayed results of the cyclical delay lines, and add the
1035 // corresponding input channels. Then pass the results through the
1036 // low-pass filters.
1037 f[0] += DelayLineOut(&State->Late.Delay[0], offset-State->Late.Offset[0]) * State->Late.Coeff[0];
1038 f[1] += DelayLineOut(&State->Late.Delay[1], offset-State->Late.Offset[1]) * State->Late.Coeff[1];
1039 f[2] += DelayLineOut(&State->Late.Delay[2], offset-State->Late.Offset[2]) * State->Late.Coeff[2];
1040 f[3] += DelayLineOut(&State->Late.Delay[3], offset-State->Late.Offset[3]) * State->Late.Coeff[3];
1042 // This is where the feed-back cycles from line 0 to 1 to 3 to 2 and
1043 // back to 0.
1044 d[0] = LateLowPassInOut(State, 2, f[2]);
1045 d[1] = LateLowPassInOut(State, 0, f[0]);
1046 d[2] = LateLowPassInOut(State, 3, f[3]);
1047 d[3] = LateLowPassInOut(State, 1, f[1]);
1049 // To help increase diffusion, run each line through an all-pass filter.
1050 // When there is no diffusion, the shortest all-pass filter will feed
1051 // the shortest delay line.
1052 d[0] = LateAllPassInOut(State, offset, 0, d[0]);
1053 d[1] = LateAllPassInOut(State, offset, 1, d[1]);
1054 d[2] = LateAllPassInOut(State, offset, 2, d[2]);
1055 d[3] = LateAllPassInOut(State, offset, 3, d[3]);
1057 /* Late reverb is done with a modified feed-back delay network (FDN)
1058 * topology. Four input lines are each fed through their own all-pass
1059 * filter and then into the mixing matrix. The four outputs of the
1060 * mixing matrix are then cycled back to the inputs. Each output feeds
1061 * a different input to form a circlular feed cycle.
1063 * The mixing matrix used is a 4D skew-symmetric rotation matrix
1064 * derived using a single unitary rotational parameter:
1066 * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
1067 * [ -a, d, c, -b ]
1068 * [ -b, -c, d, a ]
1069 * [ -c, b, -a, d ]
1071 * The rotation is constructed from the effect's diffusion parameter,
1072 * yielding: 1 = x^2 + 3 y^2; where a, b, and c are the coefficient y
1073 * with differing signs, and d is the coefficient x. The matrix is
1074 * thus:
1076 * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
1077 * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
1078 * [ y, -y, x, y ] x = cos(t)
1079 * [ -y, -y, -y, x ] y = sin(t) / n
1081 * To reduce the number of multiplies, the x coefficient is applied
1082 * with the cyclical delay line coefficients. Thus only the y
1083 * coefficient is applied when mixing, and is modified to be: y / x.
1085 f[0] = d[0] + (State->Late.MixCoeff * ( d[1] + -d[2] + d[3]));
1086 f[1] = d[1] + (State->Late.MixCoeff * (-d[0] + d[2] + d[3]));
1087 f[2] = d[2] + (State->Late.MixCoeff * ( d[0] + -d[1] + d[3]));
1088 f[3] = d[3] + (State->Late.MixCoeff * (-d[0] + -d[1] + -d[2] ));
1090 // Output the results of the matrix for all four channels, attenuated by
1091 // the late reverb gain (which is attenuated by the 'x' mix coefficient).
1092 out[i][0] = State->Late.Gain * f[0];
1093 out[i][1] = State->Late.Gain * f[1];
1094 out[i][2] = State->Late.Gain * f[2];
1095 out[i][3] = State->Late.Gain * f[3];
1097 // Re-feed the cyclical delay lines.
1098 DelayLineIn(&State->Late.Delay[0], offset, f[0]);
1099 DelayLineIn(&State->Late.Delay[1], offset, f[1]);
1100 DelayLineIn(&State->Late.Delay[2], offset, f[2]);
1101 DelayLineIn(&State->Late.Delay[3], offset, f[3]);
1105 // Given an input sample, this function mixes echo into the four-channel late
1106 // reverb.
1107 static inline ALvoid EAXEcho(ALreverbState *State, ALuint todo, ALfloat (*restrict late)[4])
1109 ALfloat out, feed;
1110 ALuint i;
1112 for(i = 0;i < todo;i++)
1114 ALuint offset = State->Offset+i;
1116 // Get the latest attenuated echo sample for output.
1117 feed = DelayLineOut(&State->Echo.Delay, offset-State->Echo.Offset) *
1118 State->Echo.Coeff;
1120 // Mix the output into the late reverb channels.
1121 out = State->Echo.MixCoeff * feed;
1122 late[i][0] += out;
1123 late[i][1] += out;
1124 late[i][2] += out;
1125 late[i][3] += out;
1127 // Mix the energy-attenuated input with the output and pass it through
1128 // the echo low-pass filter.
1129 feed += DelayLineOut(&State->Delay, offset-State->DelayTap[1]) *
1130 State->Echo.DensityGain;
1131 feed = lerp(feed, State->Echo.LpSample, State->Echo.LpCoeff);
1132 State->Echo.LpSample = feed;
1134 // Then the echo all-pass filter.
1135 feed = AllpassInOut(&State->Echo.ApDelay, offset-State->Echo.ApOffset,
1136 offset, feed, State->Echo.ApFeedCoeff,
1137 State->Echo.ApCoeff);
1139 // Feed the delay with the mixed and filtered sample.
1140 DelayLineIn(&State->Echo.Delay, offset, feed);
1144 // Perform the non-EAX reverb pass on a given input sample, resulting in
1145 // four-channel output.
1146 static inline ALvoid VerbPass(ALreverbState *State, ALuint todo, const ALfloat *in, ALfloat (*restrict early)[4], ALfloat (*restrict late)[4])
1148 ALuint i;
1150 // Low-pass filter the incoming samples.
1151 for(i = 0;i < todo;i++)
1152 DelayLineIn(&State->Delay, State->Offset+i,
1153 ALfilterState_processSingle(&State->LpFilter, in[i])
1156 // Calculate the early reflection from the first delay tap.
1157 EarlyReflection(State, todo, early);
1159 // Feed the decorrelator from the energy-attenuated output of the second
1160 // delay tap.
1161 for(i = 0;i < todo;i++)
1163 ALuint offset = State->Offset+i;
1164 ALfloat sample = DelayLineOut(&State->Delay, offset - State->DelayTap[1]) *
1165 State->Late.DensityGain;
1166 DelayLineIn(&State->Decorrelator, offset, sample);
1169 // Calculate the late reverb from the decorrelator taps.
1170 LateReverb(State, todo, late);
1172 // Step all delays forward one sample.
1173 State->Offset += todo;
1176 // Perform the EAX reverb pass on a given input sample, resulting in four-
1177 // channel output.
1178 static inline ALvoid EAXVerbPass(ALreverbState *State, ALuint todo, const ALfloat *input, ALfloat (*restrict early)[4], ALfloat (*restrict late)[4])
1180 ALuint i;
1182 // Band-pass and modulate the incoming samples.
1183 for(i = 0;i < todo;i++)
1185 ALfloat sample = input[i];
1186 sample = ALfilterState_processSingle(&State->LpFilter, sample);
1187 sample = ALfilterState_processSingle(&State->HpFilter, sample);
1189 // Perform any modulation on the input.
1190 sample = EAXModulation(State, State->Offset+i, sample);
1192 // Feed the initial delay line.
1193 DelayLineIn(&State->Delay, State->Offset+i, sample);
1196 // Calculate the early reflection from the first delay tap.
1197 EarlyReflection(State, todo, early);
1199 // Feed the decorrelator from the energy-attenuated output of the second
1200 // delay tap.
1201 for(i = 0;i < todo;i++)
1203 ALuint offset = State->Offset+i;
1204 ALfloat sample = DelayLineOut(&State->Delay, offset - State->DelayTap[1]) *
1205 State->Late.DensityGain;
1206 DelayLineIn(&State->Decorrelator, offset, sample);
1209 // Calculate the late reverb from the decorrelator taps.
1210 LateReverb(State, todo, late);
1212 // Calculate and mix in any echo.
1213 EAXEcho(State, todo, late);
1215 // Step all delays forward.
1216 State->Offset += todo;
1219 static ALvoid ALreverbState_processStandard(ALreverbState *State, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels)
1221 ALfloat (*restrict early)[4] = State->EarlySamples;
1222 ALfloat (*restrict late)[4] = State->ReverbSamples;
1223 ALuint index, c, i, l;
1224 ALfloat gain;
1226 /* Process reverb for these samples. */
1227 for(index = 0;index < SamplesToDo;)
1229 ALuint todo = minu(SamplesToDo-index, MAX_UPDATE_SAMPLES);
1231 VerbPass(State, todo, &SamplesIn[index], early, late);
1233 for(l = 0;l < 4;l++)
1235 for(c = 0;c < NumChannels;c++)
1237 gain = State->Early.PanGain[l][c];
1238 if(fabsf(gain) > GAIN_SILENCE_THRESHOLD)
1240 for(i = 0;i < todo;i++)
1241 SamplesOut[c][index+i] += gain*early[i][l];
1243 gain = State->Late.PanGain[l][c];
1244 if(fabsf(gain) > GAIN_SILENCE_THRESHOLD)
1246 for(i = 0;i < todo;i++)
1247 SamplesOut[c][index+i] += gain*late[i][l];
1252 index += todo;
1256 static ALvoid ALreverbState_processEax(ALreverbState *State, ALuint SamplesToDo, const ALfloat *restrict SamplesIn, ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels)
1258 ALfloat (*restrict early)[4] = State->EarlySamples;
1259 ALfloat (*restrict late)[4] = State->ReverbSamples;
1260 ALuint index, c, i, l;
1261 ALfloat gain;
1263 /* Process reverb for these samples. */
1264 for(index = 0;index < SamplesToDo;)
1266 ALuint todo = minu(SamplesToDo-index, MAX_UPDATE_SAMPLES);
1268 EAXVerbPass(State, todo, &SamplesIn[index], early, late);
1270 for(l = 0;l < 4;l++)
1272 for(c = 0;c < NumChannels;c++)
1274 gain = State->Early.PanGain[l][c];
1275 if(fabsf(gain) > GAIN_SILENCE_THRESHOLD)
1277 for(i = 0;i < todo;i++)
1278 SamplesOut[c][index+i] += gain*early[i][l];
1280 gain = State->Late.PanGain[l][c];
1281 if(fabsf(gain) > GAIN_SILENCE_THRESHOLD)
1283 for(i = 0;i < todo;i++)
1284 SamplesOut[c][index+i] += gain*late[i][l];
1289 index += todo;
1293 static ALvoid ALreverbState_process(ALreverbState *State, ALuint SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels)
1295 if(State->IsEax)
1296 ALreverbState_processEax(State, SamplesToDo, SamplesIn[0], SamplesOut, NumChannels);
1297 else
1298 ALreverbState_processStandard(State, SamplesToDo, SamplesIn[0], SamplesOut, NumChannels);
1302 typedef struct ALreverbStateFactory {
1303 DERIVE_FROM_TYPE(ALeffectStateFactory);
1304 } ALreverbStateFactory;
1306 static ALeffectState *ALreverbStateFactory_create(ALreverbStateFactory* UNUSED(factory))
1308 ALreverbState *state;
1309 ALuint index, l;
1311 state = ALreverbState_New(sizeof(*state));
1312 if(!state) return NULL;
1313 SET_VTABLE2(ALreverbState, ALeffectState, state);
1315 state->TotalSamples = 0;
1316 state->SampleBuffer = NULL;
1318 ALfilterState_clear(&state->LpFilter);
1319 ALfilterState_clear(&state->HpFilter);
1321 state->Mod.Delay.Mask = 0;
1322 state->Mod.Delay.Line = NULL;
1323 state->Mod.Index = 0;
1324 state->Mod.Range = 1;
1325 state->Mod.Depth = 0.0f;
1326 state->Mod.Coeff = 0.0f;
1327 state->Mod.Filter = 0.0f;
1329 state->Delay.Mask = 0;
1330 state->Delay.Line = NULL;
1331 state->DelayTap[0] = 0;
1332 state->DelayTap[1] = 0;
1334 state->Early.Gain = 0.0f;
1335 for(index = 0;index < 4;index++)
1337 state->Early.Coeff[index] = 0.0f;
1338 state->Early.Delay[index].Mask = 0;
1339 state->Early.Delay[index].Line = NULL;
1340 state->Early.Offset[index] = 0;
1343 state->Decorrelator.Mask = 0;
1344 state->Decorrelator.Line = NULL;
1345 state->DecoTap[0] = 0;
1346 state->DecoTap[1] = 0;
1347 state->DecoTap[2] = 0;
1349 state->Late.Gain = 0.0f;
1350 state->Late.DensityGain = 0.0f;
1351 state->Late.ApFeedCoeff = 0.0f;
1352 state->Late.MixCoeff = 0.0f;
1353 for(index = 0;index < 4;index++)
1355 state->Late.ApCoeff[index] = 0.0f;
1356 state->Late.ApDelay[index].Mask = 0;
1357 state->Late.ApDelay[index].Line = NULL;
1358 state->Late.ApOffset[index] = 0;
1360 state->Late.Coeff[index] = 0.0f;
1361 state->Late.Delay[index].Mask = 0;
1362 state->Late.Delay[index].Line = NULL;
1363 state->Late.Offset[index] = 0;
1365 state->Late.LpCoeff[index] = 0.0f;
1366 state->Late.LpSample[index] = 0.0f;
1369 for(l = 0;l < 4;l++)
1371 for(index = 0;index < MAX_OUTPUT_CHANNELS;index++)
1373 state->Early.PanGain[l][index] = 0.0f;
1374 state->Late.PanGain[l][index] = 0.0f;
1378 state->Echo.DensityGain = 0.0f;
1379 state->Echo.Delay.Mask = 0;
1380 state->Echo.Delay.Line = NULL;
1381 state->Echo.ApDelay.Mask = 0;
1382 state->Echo.ApDelay.Line = NULL;
1383 state->Echo.Coeff = 0.0f;
1384 state->Echo.ApFeedCoeff = 0.0f;
1385 state->Echo.ApCoeff = 0.0f;
1386 state->Echo.Offset = 0;
1387 state->Echo.ApOffset = 0;
1388 state->Echo.LpCoeff = 0.0f;
1389 state->Echo.LpSample = 0.0f;
1390 state->Echo.MixCoeff = 0.0f;
1392 state->Offset = 0;
1394 return STATIC_CAST(ALeffectState, state);
1397 DEFINE_ALEFFECTSTATEFACTORY_VTABLE(ALreverbStateFactory);
1399 ALeffectStateFactory *ALreverbStateFactory_getFactory(void)
1401 static ALreverbStateFactory ReverbFactory = { { GET_VTABLE2(ALreverbStateFactory, ALeffectStateFactory) } };
1403 return STATIC_CAST(ALeffectStateFactory, &ReverbFactory);
1407 void ALeaxreverb_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
1409 ALeffectProps *props = &effect->Props;
1410 switch(param)
1412 case AL_EAXREVERB_DECAY_HFLIMIT:
1413 if(!(val >= AL_EAXREVERB_MIN_DECAY_HFLIMIT && val <= AL_EAXREVERB_MAX_DECAY_HFLIMIT))
1414 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1415 props->Reverb.DecayHFLimit = val;
1416 break;
1418 default:
1419 SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
1422 void ALeaxreverb_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
1424 ALeaxreverb_setParami(effect, context, param, vals[0]);
1426 void ALeaxreverb_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
1428 ALeffectProps *props = &effect->Props;
1429 switch(param)
1431 case AL_EAXREVERB_DENSITY:
1432 if(!(val >= AL_EAXREVERB_MIN_DENSITY && val <= AL_EAXREVERB_MAX_DENSITY))
1433 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1434 props->Reverb.Density = val;
1435 break;
1437 case AL_EAXREVERB_DIFFUSION:
1438 if(!(val >= AL_EAXREVERB_MIN_DIFFUSION && val <= AL_EAXREVERB_MAX_DIFFUSION))
1439 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1440 props->Reverb.Diffusion = val;
1441 break;
1443 case AL_EAXREVERB_GAIN:
1444 if(!(val >= AL_EAXREVERB_MIN_GAIN && val <= AL_EAXREVERB_MAX_GAIN))
1445 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1446 props->Reverb.Gain = val;
1447 break;
1449 case AL_EAXREVERB_GAINHF:
1450 if(!(val >= AL_EAXREVERB_MIN_GAINHF && val <= AL_EAXREVERB_MAX_GAINHF))
1451 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1452 props->Reverb.GainHF = val;
1453 break;
1455 case AL_EAXREVERB_GAINLF:
1456 if(!(val >= AL_EAXREVERB_MIN_GAINLF && val <= AL_EAXREVERB_MAX_GAINLF))
1457 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1458 props->Reverb.GainLF = val;
1459 break;
1461 case AL_EAXREVERB_DECAY_TIME:
1462 if(!(val >= AL_EAXREVERB_MIN_DECAY_TIME && val <= AL_EAXREVERB_MAX_DECAY_TIME))
1463 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1464 props->Reverb.DecayTime = val;
1465 break;
1467 case AL_EAXREVERB_DECAY_HFRATIO:
1468 if(!(val >= AL_EAXREVERB_MIN_DECAY_HFRATIO && val <= AL_EAXREVERB_MAX_DECAY_HFRATIO))
1469 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1470 props->Reverb.DecayHFRatio = val;
1471 break;
1473 case AL_EAXREVERB_DECAY_LFRATIO:
1474 if(!(val >= AL_EAXREVERB_MIN_DECAY_LFRATIO && val <= AL_EAXREVERB_MAX_DECAY_LFRATIO))
1475 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1476 props->Reverb.DecayLFRatio = val;
1477 break;
1479 case AL_EAXREVERB_REFLECTIONS_GAIN:
1480 if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_GAIN && val <= AL_EAXREVERB_MAX_REFLECTIONS_GAIN))
1481 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1482 props->Reverb.ReflectionsGain = val;
1483 break;
1485 case AL_EAXREVERB_REFLECTIONS_DELAY:
1486 if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_DELAY && val <= AL_EAXREVERB_MAX_REFLECTIONS_DELAY))
1487 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1488 props->Reverb.ReflectionsDelay = val;
1489 break;
1491 case AL_EAXREVERB_LATE_REVERB_GAIN:
1492 if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_GAIN && val <= AL_EAXREVERB_MAX_LATE_REVERB_GAIN))
1493 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1494 props->Reverb.LateReverbGain = val;
1495 break;
1497 case AL_EAXREVERB_LATE_REVERB_DELAY:
1498 if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_DELAY && val <= AL_EAXREVERB_MAX_LATE_REVERB_DELAY))
1499 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1500 props->Reverb.LateReverbDelay = val;
1501 break;
1503 case AL_EAXREVERB_AIR_ABSORPTION_GAINHF:
1504 if(!(val >= AL_EAXREVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_EAXREVERB_MAX_AIR_ABSORPTION_GAINHF))
1505 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1506 props->Reverb.AirAbsorptionGainHF = val;
1507 break;
1509 case AL_EAXREVERB_ECHO_TIME:
1510 if(!(val >= AL_EAXREVERB_MIN_ECHO_TIME && val <= AL_EAXREVERB_MAX_ECHO_TIME))
1511 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1512 props->Reverb.EchoTime = val;
1513 break;
1515 case AL_EAXREVERB_ECHO_DEPTH:
1516 if(!(val >= AL_EAXREVERB_MIN_ECHO_DEPTH && val <= AL_EAXREVERB_MAX_ECHO_DEPTH))
1517 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1518 props->Reverb.EchoDepth = val;
1519 break;
1521 case AL_EAXREVERB_MODULATION_TIME:
1522 if(!(val >= AL_EAXREVERB_MIN_MODULATION_TIME && val <= AL_EAXREVERB_MAX_MODULATION_TIME))
1523 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1524 props->Reverb.ModulationTime = val;
1525 break;
1527 case AL_EAXREVERB_MODULATION_DEPTH:
1528 if(!(val >= AL_EAXREVERB_MIN_MODULATION_DEPTH && val <= AL_EAXREVERB_MAX_MODULATION_DEPTH))
1529 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1530 props->Reverb.ModulationDepth = val;
1531 break;
1533 case AL_EAXREVERB_HFREFERENCE:
1534 if(!(val >= AL_EAXREVERB_MIN_HFREFERENCE && val <= AL_EAXREVERB_MAX_HFREFERENCE))
1535 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1536 props->Reverb.HFReference = val;
1537 break;
1539 case AL_EAXREVERB_LFREFERENCE:
1540 if(!(val >= AL_EAXREVERB_MIN_LFREFERENCE && val <= AL_EAXREVERB_MAX_LFREFERENCE))
1541 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1542 props->Reverb.LFReference = val;
1543 break;
1545 case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR:
1546 if(!(val >= AL_EAXREVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_EAXREVERB_MAX_ROOM_ROLLOFF_FACTOR))
1547 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1548 props->Reverb.RoomRolloffFactor = val;
1549 break;
1551 default:
1552 SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
1555 void ALeaxreverb_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
1557 ALeffectProps *props = &effect->Props;
1558 switch(param)
1560 case AL_EAXREVERB_REFLECTIONS_PAN:
1561 if(!(isfinite(vals[0]) && isfinite(vals[1]) && isfinite(vals[2])))
1562 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1563 LockContext(context);
1564 props->Reverb.ReflectionsPan[0] = vals[0];
1565 props->Reverb.ReflectionsPan[1] = vals[1];
1566 props->Reverb.ReflectionsPan[2] = vals[2];
1567 UnlockContext(context);
1568 break;
1569 case AL_EAXREVERB_LATE_REVERB_PAN:
1570 if(!(isfinite(vals[0]) && isfinite(vals[1]) && isfinite(vals[2])))
1571 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1572 LockContext(context);
1573 props->Reverb.LateReverbPan[0] = vals[0];
1574 props->Reverb.LateReverbPan[1] = vals[1];
1575 props->Reverb.LateReverbPan[2] = vals[2];
1576 UnlockContext(context);
1577 break;
1579 default:
1580 ALeaxreverb_setParamf(effect, context, param, vals[0]);
1581 break;
1585 void ALeaxreverb_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
1587 const ALeffectProps *props = &effect->Props;
1588 switch(param)
1590 case AL_EAXREVERB_DECAY_HFLIMIT:
1591 *val = props->Reverb.DecayHFLimit;
1592 break;
1594 default:
1595 SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
1598 void ALeaxreverb_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
1600 ALeaxreverb_getParami(effect, context, param, vals);
1602 void ALeaxreverb_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
1604 const ALeffectProps *props = &effect->Props;
1605 switch(param)
1607 case AL_EAXREVERB_DENSITY:
1608 *val = props->Reverb.Density;
1609 break;
1611 case AL_EAXREVERB_DIFFUSION:
1612 *val = props->Reverb.Diffusion;
1613 break;
1615 case AL_EAXREVERB_GAIN:
1616 *val = props->Reverb.Gain;
1617 break;
1619 case AL_EAXREVERB_GAINHF:
1620 *val = props->Reverb.GainHF;
1621 break;
1623 case AL_EAXREVERB_GAINLF:
1624 *val = props->Reverb.GainLF;
1625 break;
1627 case AL_EAXREVERB_DECAY_TIME:
1628 *val = props->Reverb.DecayTime;
1629 break;
1631 case AL_EAXREVERB_DECAY_HFRATIO:
1632 *val = props->Reverb.DecayHFRatio;
1633 break;
1635 case AL_EAXREVERB_DECAY_LFRATIO:
1636 *val = props->Reverb.DecayLFRatio;
1637 break;
1639 case AL_EAXREVERB_REFLECTIONS_GAIN:
1640 *val = props->Reverb.ReflectionsGain;
1641 break;
1643 case AL_EAXREVERB_REFLECTIONS_DELAY:
1644 *val = props->Reverb.ReflectionsDelay;
1645 break;
1647 case AL_EAXREVERB_LATE_REVERB_GAIN:
1648 *val = props->Reverb.LateReverbGain;
1649 break;
1651 case AL_EAXREVERB_LATE_REVERB_DELAY:
1652 *val = props->Reverb.LateReverbDelay;
1653 break;
1655 case AL_EAXREVERB_AIR_ABSORPTION_GAINHF:
1656 *val = props->Reverb.AirAbsorptionGainHF;
1657 break;
1659 case AL_EAXREVERB_ECHO_TIME:
1660 *val = props->Reverb.EchoTime;
1661 break;
1663 case AL_EAXREVERB_ECHO_DEPTH:
1664 *val = props->Reverb.EchoDepth;
1665 break;
1667 case AL_EAXREVERB_MODULATION_TIME:
1668 *val = props->Reverb.ModulationTime;
1669 break;
1671 case AL_EAXREVERB_MODULATION_DEPTH:
1672 *val = props->Reverb.ModulationDepth;
1673 break;
1675 case AL_EAXREVERB_HFREFERENCE:
1676 *val = props->Reverb.HFReference;
1677 break;
1679 case AL_EAXREVERB_LFREFERENCE:
1680 *val = props->Reverb.LFReference;
1681 break;
1683 case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR:
1684 *val = props->Reverb.RoomRolloffFactor;
1685 break;
1687 default:
1688 SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
1691 void ALeaxreverb_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
1693 const ALeffectProps *props = &effect->Props;
1694 switch(param)
1696 case AL_EAXREVERB_REFLECTIONS_PAN:
1697 LockContext(context);
1698 vals[0] = props->Reverb.ReflectionsPan[0];
1699 vals[1] = props->Reverb.ReflectionsPan[1];
1700 vals[2] = props->Reverb.ReflectionsPan[2];
1701 UnlockContext(context);
1702 break;
1703 case AL_EAXREVERB_LATE_REVERB_PAN:
1704 LockContext(context);
1705 vals[0] = props->Reverb.LateReverbPan[0];
1706 vals[1] = props->Reverb.LateReverbPan[1];
1707 vals[2] = props->Reverb.LateReverbPan[2];
1708 UnlockContext(context);
1709 break;
1711 default:
1712 ALeaxreverb_getParamf(effect, context, param, vals);
1713 break;
1717 DEFINE_ALEFFECT_VTABLE(ALeaxreverb);
1719 void ALreverb_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
1721 ALeffectProps *props = &effect->Props;
1722 switch(param)
1724 case AL_REVERB_DECAY_HFLIMIT:
1725 if(!(val >= AL_REVERB_MIN_DECAY_HFLIMIT && val <= AL_REVERB_MAX_DECAY_HFLIMIT))
1726 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1727 props->Reverb.DecayHFLimit = val;
1728 break;
1730 default:
1731 SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
1734 void ALreverb_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
1736 ALreverb_setParami(effect, context, param, vals[0]);
1738 void ALreverb_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
1740 ALeffectProps *props = &effect->Props;
1741 switch(param)
1743 case AL_REVERB_DENSITY:
1744 if(!(val >= AL_REVERB_MIN_DENSITY && val <= AL_REVERB_MAX_DENSITY))
1745 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1746 props->Reverb.Density = val;
1747 break;
1749 case AL_REVERB_DIFFUSION:
1750 if(!(val >= AL_REVERB_MIN_DIFFUSION && val <= AL_REVERB_MAX_DIFFUSION))
1751 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1752 props->Reverb.Diffusion = val;
1753 break;
1755 case AL_REVERB_GAIN:
1756 if(!(val >= AL_REVERB_MIN_GAIN && val <= AL_REVERB_MAX_GAIN))
1757 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1758 props->Reverb.Gain = val;
1759 break;
1761 case AL_REVERB_GAINHF:
1762 if(!(val >= AL_REVERB_MIN_GAINHF && val <= AL_REVERB_MAX_GAINHF))
1763 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1764 props->Reverb.GainHF = val;
1765 break;
1767 case AL_REVERB_DECAY_TIME:
1768 if(!(val >= AL_REVERB_MIN_DECAY_TIME && val <= AL_REVERB_MAX_DECAY_TIME))
1769 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1770 props->Reverb.DecayTime = val;
1771 break;
1773 case AL_REVERB_DECAY_HFRATIO:
1774 if(!(val >= AL_REVERB_MIN_DECAY_HFRATIO && val <= AL_REVERB_MAX_DECAY_HFRATIO))
1775 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1776 props->Reverb.DecayHFRatio = val;
1777 break;
1779 case AL_REVERB_REFLECTIONS_GAIN:
1780 if(!(val >= AL_REVERB_MIN_REFLECTIONS_GAIN && val <= AL_REVERB_MAX_REFLECTIONS_GAIN))
1781 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1782 props->Reverb.ReflectionsGain = val;
1783 break;
1785 case AL_REVERB_REFLECTIONS_DELAY:
1786 if(!(val >= AL_REVERB_MIN_REFLECTIONS_DELAY && val <= AL_REVERB_MAX_REFLECTIONS_DELAY))
1787 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1788 props->Reverb.ReflectionsDelay = val;
1789 break;
1791 case AL_REVERB_LATE_REVERB_GAIN:
1792 if(!(val >= AL_REVERB_MIN_LATE_REVERB_GAIN && val <= AL_REVERB_MAX_LATE_REVERB_GAIN))
1793 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1794 props->Reverb.LateReverbGain = val;
1795 break;
1797 case AL_REVERB_LATE_REVERB_DELAY:
1798 if(!(val >= AL_REVERB_MIN_LATE_REVERB_DELAY && val <= AL_REVERB_MAX_LATE_REVERB_DELAY))
1799 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1800 props->Reverb.LateReverbDelay = val;
1801 break;
1803 case AL_REVERB_AIR_ABSORPTION_GAINHF:
1804 if(!(val >= AL_REVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_REVERB_MAX_AIR_ABSORPTION_GAINHF))
1805 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1806 props->Reverb.AirAbsorptionGainHF = val;
1807 break;
1809 case AL_REVERB_ROOM_ROLLOFF_FACTOR:
1810 if(!(val >= AL_REVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_REVERB_MAX_ROOM_ROLLOFF_FACTOR))
1811 SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
1812 props->Reverb.RoomRolloffFactor = val;
1813 break;
1815 default:
1816 SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
1819 void ALreverb_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
1821 ALreverb_setParamf(effect, context, param, vals[0]);
1824 void ALreverb_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
1826 const ALeffectProps *props = &effect->Props;
1827 switch(param)
1829 case AL_REVERB_DECAY_HFLIMIT:
1830 *val = props->Reverb.DecayHFLimit;
1831 break;
1833 default:
1834 SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
1837 void ALreverb_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
1839 ALreverb_getParami(effect, context, param, vals);
1841 void ALreverb_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
1843 const ALeffectProps *props = &effect->Props;
1844 switch(param)
1846 case AL_REVERB_DENSITY:
1847 *val = props->Reverb.Density;
1848 break;
1850 case AL_REVERB_DIFFUSION:
1851 *val = props->Reverb.Diffusion;
1852 break;
1854 case AL_REVERB_GAIN:
1855 *val = props->Reverb.Gain;
1856 break;
1858 case AL_REVERB_GAINHF:
1859 *val = props->Reverb.GainHF;
1860 break;
1862 case AL_REVERB_DECAY_TIME:
1863 *val = props->Reverb.DecayTime;
1864 break;
1866 case AL_REVERB_DECAY_HFRATIO:
1867 *val = props->Reverb.DecayHFRatio;
1868 break;
1870 case AL_REVERB_REFLECTIONS_GAIN:
1871 *val = props->Reverb.ReflectionsGain;
1872 break;
1874 case AL_REVERB_REFLECTIONS_DELAY:
1875 *val = props->Reverb.ReflectionsDelay;
1876 break;
1878 case AL_REVERB_LATE_REVERB_GAIN:
1879 *val = props->Reverb.LateReverbGain;
1880 break;
1882 case AL_REVERB_LATE_REVERB_DELAY:
1883 *val = props->Reverb.LateReverbDelay;
1884 break;
1886 case AL_REVERB_AIR_ABSORPTION_GAINHF:
1887 *val = props->Reverb.AirAbsorptionGainHF;
1888 break;
1890 case AL_REVERB_ROOM_ROLLOFF_FACTOR:
1891 *val = props->Reverb.RoomRolloffFactor;
1892 break;
1894 default:
1895 SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
1898 void ALreverb_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
1900 ALreverb_getParamf(effect, context, param, vals);
1903 DEFINE_ALEFFECT_VTABLE(ALreverb);