2 * OpenAL cross platform audio library
3 * Copyright (C) 2014 by Timothy Arceri <t_arceri@yahoo.com.au>.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Library General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Library General Public License for more details.
14 * You should have received a copy of the GNU Library General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 * Or go to http://www.gnu.org/copyleft/lgpl.html
23 #include <xmmintrin.h>
24 #include <emmintrin.h>
25 #include <smmintrin.h>
28 #include "mixer_defs.h"
31 const ALfloat
*Resample_lerp32_SSE41(const BsincState
* UNUSED(state
), const ALfloat
*src
, ALuint frac
, ALuint increment
,
32 ALfloat
*restrict dst
, ALuint numsamples
)
34 const __m128i increment4
= _mm_set1_epi32(increment
*4);
35 const __m128 fracOne4
= _mm_set1_ps(1.0f
/FRACTIONONE
);
36 const __m128i fracMask4
= _mm_set1_epi32(FRACTIONMASK
);
37 union { alignas(16) ALuint i
[4]; float f
[4]; } pos_
;
38 union { alignas(16) ALuint i
[4]; float f
[4]; } frac_
;
43 InitiatePositionArrays(frac
, increment
, frac_
.i
, pos_
.i
, 4);
45 frac4
= _mm_castps_si128(_mm_load_ps(frac_
.f
));
46 pos4
= _mm_castps_si128(_mm_load_ps(pos_
.f
));
48 for(i
= 0;numsamples
-i
> 3;i
+= 4)
50 const __m128 val1
= _mm_setr_ps(src
[pos_
.i
[0]], src
[pos_
.i
[1]], src
[pos_
.i
[2]], src
[pos_
.i
[3]]);
51 const __m128 val2
= _mm_setr_ps(src
[pos_
.i
[0]+1], src
[pos_
.i
[1]+1], src
[pos_
.i
[2]+1], src
[pos_
.i
[3]+1]);
53 /* val1 + (val2-val1)*mu */
54 const __m128 r0
= _mm_sub_ps(val2
, val1
);
55 const __m128 mu
= _mm_mul_ps(_mm_cvtepi32_ps(frac4
), fracOne4
);
56 const __m128 out
= _mm_add_ps(val1
, _mm_mul_ps(mu
, r0
));
58 _mm_store_ps(&dst
[i
], out
);
60 frac4
= _mm_add_epi32(frac4
, increment4
);
61 pos4
= _mm_add_epi32(pos4
, _mm_srli_epi32(frac4
, FRACTIONBITS
));
62 frac4
= _mm_and_si128(frac4
, fracMask4
);
64 pos_
.i
[0] = _mm_extract_epi32(pos4
, 0);
65 pos_
.i
[1] = _mm_extract_epi32(pos4
, 1);
66 pos_
.i
[2] = _mm_extract_epi32(pos4
, 2);
67 pos_
.i
[3] = _mm_extract_epi32(pos4
, 3);
70 /* NOTE: These four elements represent the position *after* the last four
71 * samples, so the lowest element is the next position to resample.
74 frac
= _mm_cvtsi128_si32(frac4
);
76 for(;i
< numsamples
;i
++)
78 dst
[i
] = lerp(src
[pos
], src
[pos
+1], frac
* (1.0f
/FRACTIONONE
));
81 pos
+= frac
>>FRACTIONBITS
;
87 const ALfloat
*Resample_fir4_32_SSE41(const BsincState
* UNUSED(state
), const ALfloat
*src
, ALuint frac
, ALuint increment
,
88 ALfloat
*restrict dst
, ALuint numsamples
)
90 const __m128i increment4
= _mm_set1_epi32(increment
*4);
91 const __m128i fracMask4
= _mm_set1_epi32(FRACTIONMASK
);
92 union { alignas(16) ALuint i
[4]; float f
[4]; } pos_
;
93 union { alignas(16) ALuint i
[4]; float f
[4]; } frac_
;
98 InitiatePositionArrays(frac
, increment
, frac_
.i
, pos_
.i
, 4);
100 frac4
= _mm_castps_si128(_mm_load_ps(frac_
.f
));
101 pos4
= _mm_castps_si128(_mm_load_ps(pos_
.f
));
104 for(i
= 0;numsamples
-i
> 3;i
+= 4)
106 const __m128 val0
= _mm_loadu_ps(&src
[pos_
.i
[0]]);
107 const __m128 val1
= _mm_loadu_ps(&src
[pos_
.i
[1]]);
108 const __m128 val2
= _mm_loadu_ps(&src
[pos_
.i
[2]]);
109 const __m128 val3
= _mm_loadu_ps(&src
[pos_
.i
[3]]);
110 __m128 k0
= _mm_load_ps(ResampleCoeffs
.FIR4
[frac_
.i
[0]]);
111 __m128 k1
= _mm_load_ps(ResampleCoeffs
.FIR4
[frac_
.i
[1]]);
112 __m128 k2
= _mm_load_ps(ResampleCoeffs
.FIR4
[frac_
.i
[2]]);
113 __m128 k3
= _mm_load_ps(ResampleCoeffs
.FIR4
[frac_
.i
[3]]);
116 k0
= _mm_mul_ps(k0
, val0
);
117 k1
= _mm_mul_ps(k1
, val1
);
118 k2
= _mm_mul_ps(k2
, val2
);
119 k3
= _mm_mul_ps(k3
, val3
);
120 k0
= _mm_hadd_ps(k0
, k1
);
121 k2
= _mm_hadd_ps(k2
, k3
);
122 out
= _mm_hadd_ps(k0
, k2
);
124 _mm_store_ps(&dst
[i
], out
);
126 frac4
= _mm_add_epi32(frac4
, increment4
);
127 pos4
= _mm_add_epi32(pos4
, _mm_srli_epi32(frac4
, FRACTIONBITS
));
128 frac4
= _mm_and_si128(frac4
, fracMask4
);
130 pos_
.i
[0] = _mm_extract_epi32(pos4
, 0);
131 pos_
.i
[1] = _mm_extract_epi32(pos4
, 1);
132 pos_
.i
[2] = _mm_extract_epi32(pos4
, 2);
133 pos_
.i
[3] = _mm_extract_epi32(pos4
, 3);
134 frac_
.i
[0] = _mm_extract_epi32(frac4
, 0);
135 frac_
.i
[1] = _mm_extract_epi32(frac4
, 1);
136 frac_
.i
[2] = _mm_extract_epi32(frac4
, 2);
137 frac_
.i
[3] = _mm_extract_epi32(frac4
, 3);
143 for(;i
< numsamples
;i
++)
145 dst
[i
] = resample_fir4(src
[pos
], src
[pos
+1], src
[pos
+2], src
[pos
+3], frac
);
148 pos
+= frac
>>FRACTIONBITS
;
149 frac
&= FRACTIONMASK
;
154 const ALfloat
*Resample_fir8_32_SSE41(const BsincState
* UNUSED(state
), const ALfloat
*src
, ALuint frac
, ALuint increment
,
155 ALfloat
*restrict dst
, ALuint numsamples
)
157 const __m128i increment4
= _mm_set1_epi32(increment
*4);
158 const __m128i fracMask4
= _mm_set1_epi32(FRACTIONMASK
);
159 union { alignas(16) ALuint i
[4]; float f
[4]; } pos_
;
160 union { alignas(16) ALuint i
[4]; float f
[4]; } frac_
;
165 InitiatePositionArrays(frac
, increment
, frac_
.i
, pos_
.i
, 4);
167 frac4
= _mm_castps_si128(_mm_load_ps(frac_
.f
));
168 pos4
= _mm_castps_si128(_mm_load_ps(pos_
.f
));
171 for(i
= 0;numsamples
-i
> 3;i
+= 4)
174 for(j
= 0;j
< 8;j
+=4)
176 const __m128 val0
= _mm_loadu_ps(&src
[pos_
.i
[0]+j
]);
177 const __m128 val1
= _mm_loadu_ps(&src
[pos_
.i
[1]+j
]);
178 const __m128 val2
= _mm_loadu_ps(&src
[pos_
.i
[2]+j
]);
179 const __m128 val3
= _mm_loadu_ps(&src
[pos_
.i
[3]+j
]);
180 __m128 k0
= _mm_load_ps(&ResampleCoeffs
.FIR8
[frac_
.i
[0]][j
]);
181 __m128 k1
= _mm_load_ps(&ResampleCoeffs
.FIR8
[frac_
.i
[1]][j
]);
182 __m128 k2
= _mm_load_ps(&ResampleCoeffs
.FIR8
[frac_
.i
[2]][j
]);
183 __m128 k3
= _mm_load_ps(&ResampleCoeffs
.FIR8
[frac_
.i
[3]][j
]);
185 k0
= _mm_mul_ps(k0
, val0
);
186 k1
= _mm_mul_ps(k1
, val1
);
187 k2
= _mm_mul_ps(k2
, val2
);
188 k3
= _mm_mul_ps(k3
, val3
);
189 k0
= _mm_hadd_ps(k0
, k1
);
190 k2
= _mm_hadd_ps(k2
, k3
);
191 out
[j
>>2] = _mm_hadd_ps(k0
, k2
);
194 out
[0] = _mm_add_ps(out
[0], out
[1]);
195 _mm_store_ps(&dst
[i
], out
[0]);
197 frac4
= _mm_add_epi32(frac4
, increment4
);
198 pos4
= _mm_add_epi32(pos4
, _mm_srli_epi32(frac4
, FRACTIONBITS
));
199 frac4
= _mm_and_si128(frac4
, fracMask4
);
201 pos_
.i
[0] = _mm_extract_epi32(pos4
, 0);
202 pos_
.i
[1] = _mm_extract_epi32(pos4
, 1);
203 pos_
.i
[2] = _mm_extract_epi32(pos4
, 2);
204 pos_
.i
[3] = _mm_extract_epi32(pos4
, 3);
205 frac_
.i
[0] = _mm_extract_epi32(frac4
, 0);
206 frac_
.i
[1] = _mm_extract_epi32(frac4
, 1);
207 frac_
.i
[2] = _mm_extract_epi32(frac4
, 2);
208 frac_
.i
[3] = _mm_extract_epi32(frac4
, 3);
214 for(;i
< numsamples
;i
++)
216 dst
[i
] = resample_fir8(src
[pos
], src
[pos
+1], src
[pos
+2], src
[pos
+3],
217 src
[pos
+4], src
[pos
+5], src
[pos
+6], src
[pos
+7], frac
);
220 pos
+= frac
>>FRACTIONBITS
;
221 frac
&= FRACTIONMASK
;